WorldWideScience

Sample records for nanoscale size magnetic

  1. Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor

    Krause, S.; Herzog, G.; Stapelfeldt, T.; Berbil-Bautista, L.; Bode, M.; Vedmedenko, E. Y.; Wiesendanger, R.

    2009-09-01

    The thermal switching behavior of individual in-plane magnetized Fe/W(110) nanoislands is investigated by a combined study of variable-temperature spin-polarized scanning tunneling microscopy and Monte Carlo simulations. Even for islands consisting of less than 100 atoms the magnetization reversal takes place via nucleation and propagation. The Arrhenius prefactor is found to strongly depend on the individual island size and shape, and based on the experimental results a simple model is developed to describe the magnetization reversal in terms of metastable states. Complementary Monte Carlo simulations confirm the model and provide new insight into the microscopic processes involved in magnetization reversal of smallest nanomagnets.

  2. Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-07-01

    In this article, buckling behavior of nonlocal magneto-electro-elastic functionally graded (MEE-FG) beams is investigated based on a higher-order beam model. Material properties of smart nanobeam are supposed to change continuously throughout the thickness based on the power-law model. Eringen's nonlocal elasticity theory is adopted to capture the small size effects. Nonlocal governing equations of MEE-FG nanobeam are obtained employing Hamilton's principle and they are solved using the Navier solution. Numerical results are presented to indicate the effects of magnetic potential, electric voltage, nonlocal parameter and material composition on buckling behavior of MEE-FG nanobeams. Therefore, the present study makes the first attempt in analyzing the buckling responses of higher-order shear deformable (HOSD) MEE-FG nanobeams.

  3. Fourth International Conference on Nanoscale Magnetism

    Aktas, Bekir; Advances in Nanoscale Magnetism

    2009-01-01

    The book aims to provide an overview of recent progress in the understanding of magnetic properties in nanoscale through recent results of various theoretical and experimental investigations. The papers describe a wide range of physical aspects, together with theoretical and experimental methods. It is of central interest to researchers and specialists in magnetism and magnetic materials science, both in academic and industrial research, as well as advanced students.

  4. Analytical TEM investigations of nanoscale magnetic materials

    Meingast, A.

    2015-01-01

    Analytical transmission electron microscopy has been applied within this thesis to investigate several novel approaches to design and fabricate nanoscale magnetic materials. As the size of the features of interest rank in the sub-nanometer range, it is necessary to employ techniques with a resolution – both spatial and analytical – well below this magnitude. Only at this performance level it is possible to examine material properties, necessary for the further tailoring of materials. Within this work two key aspects have been covered: First, analytical TEM (transmission electron microscopy) investigations were carried out to get insight into novel magnetic materials with high detail. Second, new analytical and imaging possibilities enabled with the commissioning of the new ASTEM (Austrian scanning transmission electron microscope) were explored. The aberration corrected TITAN® microscope (© FEI Company) allows resolving features in scanning transmission mode (STEM) with 70 pm distance. Thereby, direct imaging of light elements in STEM mode by using the annular bright field method becomes possible. Facilitated through high beam currents within the electron probe, an increased acquisition speed of analytical signals is possible. For energy dispersive X-ray spectroscopy (EDXS) a new four detector disc geometry around the specimen was implemented, which increases the accessible collection angle. With the integration of the latest generation of image filter and electron spectrometer (GIF QuantumERS), electron energy loss spectroscopy (EELS) is boosted through the high acquisition speed and the dual spectroscopy mode. The high acquisition speed allows to record up to 1000 spectra per second and the possibility to record atomically resolved EELS maps is at hand. Hereby it is important to avoid beam damage and alteration of the material during imaging and analysis. With the simultaneous acquisition of the low and the high loss spectral region, an extended range for

  5. Quantum dynamics in nanoscale magnets in dissipative environments

    Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.

    2000-01-01

    In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic

  6. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  7. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Wang Dapeng; Poudyal, Narayan; Rong, Chuanbing [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Zhang Ying [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Kramer, M.J. [Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Liu, J. Ping, E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-09-15

    Nanoscale hybrid magnets containing SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B hard magnetic phases have been produced via a novel 'in-one-pot' processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybrid magnets have greatly improved thermal stability compared to the Nd{sub 2}Fe{sub 14}B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo{sub 5} counterpart. - Highlights: Black-Right-Pointing-Pointer We realize interphase exchange coupling in nanoscale SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B magnets. Black-Right-Pointing-Pointer We observe homogenously distributed two-phase grains with size smaller than 20 nm. Black-Right-Pointing-Pointer We observe a common Curie temperature in the hybrid magnet. Black-Right-Pointing-Pointer High-temperature magnetic properties of the hybrid magnets greatly improved. Black-Right-Pointing-Pointer Plastic deformation of composite materials leads to self-nanoscaling of grains.

  8. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Utsumi, Y.

    2014-01-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices. - Highlights: • We describe an experimental investigation of the magnetic response of a single layered ferromagnetic nano-scale wire. • We present the conventional broadband microwave spectroscopy with a vector network analyzer and rectifying spectroscopy obtained with a Wheatstone bridge technique. • The investigation enables us to characterize the size effect on the ferromagnetic response and also to detect the magnetization precession induced by the thermal fluctuations

  9. Nanoscale magnetic heat pumps and engines

    Bauer, G.E.W.; Bretzel, S.; Brataas, A.; Tserkovnyak, Y.

    2010-01-01

    We present the linear-response matrix for a sliding domain wall in a rotatable magnetic nanowire, which is driven out of equilibrium by temperature and voltage bias, mechanical torque, and magnetic field. An expression for heat-current-induced domain-wall motion is derived. Application of Onsager’s

  10. Magnetism From Fundamentals to Nanoscale Dynamics

    Stöhr, Joachim

    2006-01-01

    The present text book gives an comprehensive account of magnetism, spanning the historical development, the physical foundations and the continuing research underlying the field, one of the oldest yet still vibrant field of physics. It covers both the classical and quantum mechanical aspects of magnetism and novel experimental techniques. Perhaps uniquely, it also discusses spin transport and magnetization dynamics phenomena associated with atomically and spin engineered nano-structures against the backdrop of spintronics and magnetic storage and memory applications. Despite the existence of various books on the topic, a fresh text book that reviews the fundamental physical concepts and uses them in a coherent fashion to explain some of the forefront problems and applications today was thought useful by the authors and their colleagues. Magnetism is written for students on the late undergraduate and the graduate levels and should also serve as a state-of-the-art reference for scientists in academia and resear...

  11. Nanoscale magnetic ratchets based on shape anisotropy

    Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.

    2017-02-01

    Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

  12. Probing defect and magnetic structures on the nanoscale

    Kallis, Alexis

    2010-01-01

    This thesis reports on experimental research on structural defects and magnetic species on the nanoscale. The latter project involved considerable development work on the production of a spin-polarised mono-energetic positron beam. The construction of the system is described through various trial steps with emphasis on the methods of maximum practical polarization of the positron beam and of electrons in the sample with the smallest possible loss of beam intensity. A new sodium-22 source caps...

  13. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    Joseph, C.H., E-mail: hadlee.joseph@artov.imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Electronics Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome (Italy); Sardi, G.M. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Tuca, S.S.; Gramse, G. [Johannes Kepler University, Institute for Biophysics, Gruberstrasse 40, A-4020 Linz (Austria); Lucibello, A.; Proietti, E. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kienberger, F. [Keysight Technologies Austria GmbH, Keysight Laboratories, Gruberstrasse 40, A-4020 Linz (Austria); Marcelli, R. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-12-15

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S{sub 11} are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S{sub 11} with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  14. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Wang, Dapeng; Poudyal, Narayan; Rong, Chuanbing; Zhang, Ying; Kramer, Matthew J.; Liu, J. Ping

    2012-05-11

    Nanoscalehybridmagnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel “in-one-pot” processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybridmagnets have greatly improved thermal stability compared to the Nd2Fe14B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo5 counterpart.

  15. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-01-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet. (papers)

  16. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  17. TUTORIAL: Focused-ion-beam-based rapid prototyping of nanoscale magnetic devices

    Khizroev, S.; Litvinov, D.

    2004-03-01

    In this tutorial, focused-ion-beam (FIB)-based fabrication is considered from a very unconventional angle. FIB is considered not as a fabrication tool that can be used for mass production of electronic devices, similar to optical and E-beam—based lithography, but rather as a powerful tool to rapidly fabricate individual nanoscale magnetic devices for prototyping future electronic applications. Among the effects of FIB-based fabrication of magnetic devices, the influence of Ga+-ion implantation on magnetic properties is presented. With help of magnetic force microscopy (MFM), it is shown that there is a critical doze of ions that a magnetic material can be exposed to without experiencing a change in the magnetic properties. Exploiting FIB from such an unconventional perspective is especially favourable today when the future of so many novel technologies depends on the ability to rapidly fabricate prototype nanoscale magnetic devices. As one of the most illustrative examples, the multi-billion-dollar data storage industry is analysed as the technology field that strongly benefited from implementing FIB in the above-described role. The essential role of FIB in the most recent trend of the industry towards perpendicular magnetic recording is presented. Moreover, other emerging and fast-growing technologies are considered as examples of nanoscale technologies whose future could strongly depend on the implementation of FIB in the role of a nanoscale fabrication tool for rapid prototyping. Among the other described technologies are 'ballistic' magnetoresistance, patterned magnetic media, magnetoresistive RAM (MRAM), and magnetic force microscopy.

  18. Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies

    Miklaszewski, Andrzej, E-mail: andrzej.miklaszewski@put.poznan.pl [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Kaczmarek, Mariusz [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczyslaw [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland)

    2017-04-01

    Novel in situ Metal Matrix Nanocomposite (MMNC) materials based on titanium and boron, revealed their new properties in the nanoscale range. In situ nanocomposites, obtained through mechanical alloying and traditional powder metallurgy compaction and sintering, show obvious differences to their microstructural analogue. A unique microstructure connected with good mechanical properties reliant on the processing conditions favour the nanoscale range of results of the Ti-TiB in situ MMNC example. The data summarised in this work, support and extend the knowledge boundaries of the nanoscale size effect that influence not only the mechanical properties but also the studies on the cell viability and cytocompatibility. Prepared in the same bulk, in situ MMNC, based on titanium and boron, could be considered as a possible candidate for dental implants and other medical applications. The observed relations and research conclusions are transferable to the in situ MMNC material group. Aside from all the discussed relations, the increasing share of these composites in the ever-growing material markets, heavily depends on the attractiveness and a possible wider application of these composites as well as their operational simplicity presented in this work. - Highlights: • Nano and microscale size precursor influence the final composite microstructure and properties. • Obtained from the nanoscale precursor sinters, characterise with a uniform and highly dispersed microstructure • Mechanical properties favoured Nano scale size precursor • Boron addition could be significantly reduced for moderate properties range. • A possible candidate for dental implants and other medical applications.

  19. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties

    Burn, D M; Atkinson, D; Hase, T P A

    2014-01-01

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga + ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe. (paper)

  20. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  1. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  2. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  3. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    Kevan, Stephen [Univ. of Oregon, Eugene, OR (United States)

    2016-05-27

    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  4. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating

    Zhang, Wanyi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Yang, Lin; Kuang, Huijuan; Yang, Pengfei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Aguilar, Zoraida P.; Wang, Andrew [Ocean NanoTech, LLC, Springdale, AR72764 (United States); Fu, Fen, E-mail: fu_fen@163.com [The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Xu, Hengyi, E-mail: kidyxu@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2016-11-15

    Graphical abstract: In spite of the immense benefits from quantum dots (QDs), there is scanty information regarding their toxicity mechanisms against late pregnancy. - Highlights: • QDs and CdCl{sub 2} were effectively blocked by the placental barrier. • CdSe QDs more effectively altered the expression levels of susceptive genes. • Nanoscale size of QDs is more important than free Cd in inducing toxicity. • Outer surface shell coating of QDs played a protective role. - Abstract: In this study, the effects of cadmium containing QDs (such as CdSe/ZnS and CdSe QDs) and bulk CdCl{sub 2} in pregnant mice, their fetuses, and the pregnancy outcomes were investigated. It was shown that although the QDs and bulk CdCl{sub 2} were effectively blocked by the placental barrier, the damage on the placenta caused by CdSe QDs still led to fetus malformation, while the mice in CdSe/ZnS QDs treatment group exhibited slightly hampered growth but showed no significant abnormalities. Moreover, the Cd contents in the placenta and the uterus of CdSe QDs and CdSe/ZnS QDs treatment groups showed significantly higher than the CdCl{sub 2} treated group which indicated that the nanoscale size of the QDs allowed relative ease of entry into the gestation tissues. In addition, the CdSe QDs more effectively altered the expression levels of susceptive genes related to cell apoptosis, dysplasia, metal transport, cryptorrhea, and oxidative stress, etc. These findings suggested that the nanoscale size of the QDs were probably more important than the free Cd in inducing toxicity. Furthermore, the results indicated that the outer surface shell coating played a protective role in the adverse effects of QDs on late pregnancy mice.

  5. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    He, Q.; Chu, Y. H.; Heron, J. T.; Yang, S. Y.; Wang, C. H.; Kuo, C. Y.; Lin, H. J.; Yu, P.; Liang, C. W.; Zeches, R. J.; Chen, C. T.; Arenholz, E.; Scholl, A.; Ramesh, R.

    2010-08-02

    The emergence of enhanced spontaneous magnetic moments in self-assembled, epitaxial nanostructures of tetragonal (T-phase) and rhombohedral phases (R-phase) of the multiferroic BiFeO{sub 3} system is demonstrated. X-ray magnetic circular dichroism based photoemission electron microscopy (PEEM) was applied to investigate the local nature of this magnetism. We find that the spontaneous magnetization of the R-phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent T-phase and the epitaxial constraint. Reversible electric field control and manipulation of this magnetic moment at room temperature is shown using a combination of piezoresponse force microscopy and PEEM studies.

  6. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    Oommen, Joanna Mary; Hussain, Muhammad Mustafa; Emwas, Abdul-Hamid M.; Agarwal, Praveen; Archer, Lynden A.

    2010-01-01

    using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core

  7. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  8. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  9. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...

  10. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  11. Harnessing microbial subsurface metal reduction activities to synthesize nanoscale cobalt ferrite with enhanced magnetic properties

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-01-01

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe 2 O 4 ) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼ 10 6 erg cm -3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure

  12. Nano-Scale Devices for Frequency-Based Magnetic Biosensing

    2017-01-31

    show the basic measurement setup (the field is applied perpendicular to the disk plane). A radiofrequency signal is injected across the disk (disks...shown in Fig. 7(a). A spectrum analyser (S.A.) (or a high frequency oscilloscope) is used to measure the radiofrequency STO output signal with Fig...crystals and, via electrical measurements , in magnetic-vortex-containing, isolated micro- and nano-devices. Via micromagnetic simulations, we have largely

  13. Nanoscale thermoelectrical detection of magnetic domain wall propagation

    Krzysteczko, P.; Wells, J.; Scarioni, A.F.; Šobáň, Zbyněk; Janda, Tomáš; Hu, X.; Saidl, Vít; Campion, R. P.; Mansell, R.; Lee, J.H.; Cowburn, R.P.; Němec, P.; Kazakova, O.; Wunderlich, Joerg; Schumacher, H.W.

    2017-01-01

    Roč. 95, č. 22 (2017), s. 1-6, č. článku 220410. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G EU Projects: European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : microscope * driven * wire Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  14. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-05-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.

  15. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-01-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346

  16. Nanoscale magnetic characterization of tunneling magnetoresistance spin valve head by electron holography.

    Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira

    2012-12-07

    Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  18. Size effect on transfection and cytotoxicity of nanoscale plasmid DNA/polyethyleneimine complexes for aerosol gene delivery

    Hoon Byeon, Jeong, E-mail: jbyeon@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, Jang-Woo, E-mail: jwkim@hoseo.edu [Department of Digital Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of)

    2014-02-03

    Nanoscale plasmid DNA (pDNA)/polyethyleneimine (PEI) complexes were fabricated in the aerosol state using a nebulization system consisting of a collison atomizer and a cool-walled diffusion dryer. The aerosol fabricated nanoscale complexes were collected and employed to determine fundamental properties of the complexes, such as size, structure, surface charge, and in vitro gene transfection efficiency and cytotoxicity. The results showed that mass ratio between pDNA and PEI should be optimized to enhance gene transfection efficiency without a significant loss of cell viability. These findings may support practical advancements in the field of nonviral gene delivery.

  19. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-10-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  20. Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires

    Kebe, Th.; Carl, A.

    2004-01-01

    wires, thereby proving that the tip calibration equations depend on the underlying stray field geometry. Finally, we propose an experimental approach which allows one to measure the magnetization of nanoscale ferromagnetic elements with an in-plane orientation of the magnetization, quantitatively, by using a calibrated MFM-tip

  1. Analysis of the magnetic properties nanoscale barium hexaferrite (BHF) prepared by milling and ultrasonic method

    Novizal; Edie, Sasito; Manawan, Mykel T.E.

    2016-01-01

    Barium hexaferrite (BHF) is well established material which widely used respectively as permanent magnets. In this research, we report our recent investigation on magnetic properties analysis of barium hexaferrite (BHF) compounds with a ratio of Fe/Ba: 11 prepared by a mechanical alloying process and high power ultrasonic destruction to promote the soft magnetic properties. The investigation carried out by Scanning Electron Microscope (SEM) shows the grain size between 500-1500 nm, it indicates that each grain is composed of several crystallites or polycrystalline. By mean of X-ray diff raction revealed the phase composition and the mean crystallite size <70 nm. The Characterization of the magnetic properties of the effects of downsizing the particle size of ∼ 200 nm to ∼ 50 nm by the ultasonik method provide saturation value of 0.35 T, remanent 0.24 T and the coercivity is 115 kA / m. (paper)

  2. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  3. The Role of Isolation Methods on a Nanoscale Surface Structure and Its Effect on the Size of Exosomes

    JungReem Woo

    2016-06-01

    Full Text Available Exosomes are ~100 nanometre diameter vesicles secreted by mammalian cells. These emerging disease biomarkers carry nucleic acids, proteins and lipids specific to the parental cells that secrete them. Exosomes are typically isolated in bulk by ultracentrifugation, filtration or immu‐ noaffinity precipitation for downstream proteomic, genomic, or lipidomic analysis. However, the structural properties and heterogeneity of isolated exosomes at the single vesicle level are not well characterized due to their small size. In this paper, by using high-resolution atomic force microscope imaging, we show the nanoscale mor‐ phology and structural heterogeneity in exosomes derived from U87 cells. Quantitative assessment of single exosomes reveals nanoscale variations in morphology, surface roughness and counts isolated by ultracentrifugation (UC and immunoaffinity (IA purification. Both methods produce intact globular, 30-120 nm sized vesicles when imaged under fluid and in air. However, IA exosomes had higher surface roughness and bimodal size population compared to UC exosomes. The study highlights the differences in size and surface topography of exosomes purified from a single cell type using different isolation methods.

  4. On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size

    Chong Liu

    2011-09-01

    Full Text Available In this work, we investigate the validity of the Navier-Stokes (NS equations for nanoscale liquid flows through molecular dynamics simulations. We focus on the role of channel size by considering the fluid-wall interaction. Liquid flows between two planar parallel walls driven by an external force with channel size ranging from 2 to 80 nm are studied. The volumetric flux is computed and the dependence of the volumetric flux on the channel size is explained both qualitatively and quantitatively. It is found that the flow is sensitive to the fluid-wall binding energy and the classical fluid mechanics falls apart in small nanochannels. However, the wall effects become insignificant and the NS equations are valid when the channel size is larger than about 150 molecular diameters (∼ 50 nm.

  5. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.

    Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M

    2017-08-01

    Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L2 1 single crystals from a Cu-Al-Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

  6. Towards nanoscale magnetic memory elements : fabrication and properties of sub - 100 nm magnetic tunnel junctions

    Fabrie, C.G.C.H.M.

    2008-01-01

    The rapidly growing field of spintronics has recently attracted much attention. Spintronics is electronics in which the spin degree of freedom has been added to conventional chargebased electronic devices. A magnetic tunnel junction (MTJ) is an example of a spintronic device. MTJs consist of two

  7. The Quest for Nanoscale Magnets: The example of [Mn12] Single Molecule Magnets.

    Rogez, Guillaume; Donnio, Bertrand; Terazzi, Emmanuel; Gallani, Jean-Louis; Kappler, Jean-Paul; Bucher, Jean-Pierre; Drillon, Marc

    2009-11-20

    Recent advances on the organization and characterization of [Mn12] single molecule magnets (SMMs) on a surface or in 3D are reviewed. By using nonconventional techniques such as X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM), it is shown that [Mn12]-based SMMs deposited on a surface lose their SMM behavior, even though the molecules seem to be structurally undamaged. A new approach is reported to get high-density information-storage devices, based on the 3D assembling of SMMs in a liquid crystalline phase. The 3D nanostructure exhibits the anisotropic character of the SMMs, thus opening the way to address micrometric volumes by two photon absorption using the pump-probe technique. We present recent developments such as µ-SQUID, magneto-optical Kerr effect (MOKE), or magneto-optical circular dichroism (MOCD), which enable the characterization of SMM nanostructures with exceptional sensitivity. Further, the spin-polarized version of the STM under ultrahigh vacuum is shown to be the key tool for addressing not only single molecule magnets, but also magnetic nano-objects. Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Finding the magnetic size distribution of magnetic nanoparticles from magnetization measurements via the iterative Kaczmarz algorithm

    Schmidt, Daniel, E-mail: frank.wiekhorst@ptb.de; Eberbeck, Dietmar; Steinhoff, Uwe; Wiekhorst, Frank

    2017-06-01

    The characterization of the size distribution of magnetic nanoparticles is an important step for the evaluation of their suitability for many different applications like magnetic hyperthermia, drug targeting or Magnetic Particle Imaging. We present a new method based on the iterative Kaczmarz algorithm that enables the reconstruction of the size distribution from magnetization measurements without a priori knowledge of the distribution form. We show in simulations that the method is capable of very exact reconstructions of a given size distribution and, in that, is highly robust to noise contamination. Moreover, we applied the method on the well characterized FeraSpin™ series and obtained results that were in accordance with literature and boundary conditions based on their synthesis via separation of the original suspension FeraSpin R. It is therefore concluded that this method is a powerful and intuitive tool for reconstructing particle size distributions from magnetization measurements. - Highlights: • A new method for the size distribution fit of magnetic nanoparticles is proposed. • Employed Kaczmarz algorithm does not need a priori input or eigenwert regularization. • The method is highly robust to noise contamination. • Size distributions are reconstructed from simulated and measured magnetization curves.

  9. Nanoscale Metal-Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy.

    Meng, Jing; Chen, Xiujin; Tian, Yang; Li, Zhongfeng; Zheng, Qingfeng

    2017-12-11

    Imaging-guided photothermal therapy (PTT) provides an attractive way to treat cancer. A composite material of a nanoscale metal-organic framework (NMOF) and graphene oxide (GO) has been prepared for potential use in tumor-guided PTT with magnetic resonance imaging (MRI). The NMOFs containing Fe 3+ were prefabricated with an octahedral morphology through a solvothermal reaction to offer a strong T 2 -weighted contrast in MRI. Then the NMOFs were decorated with GO nanosheets, which had good photothermal properties. After decoration, zeta-potential characterization shows that the aqueous stability of the composite material is enhanced, UV/Vis and near-infrared (NIR) spectra confirm that NIR absorption is also increased, and photothermal experiments reveal that the composite materials express higher photothermal conversion effects and conversion stability. The fabricated NMOF/GO shows low cytotoxicity, effective T 2 -weighted contrast of MRI, and positive PTT behavior for a tumor model in vitro. The performance of the composite NMOF/GO for MRI and PTT was also tested upon injection into A549 tumor-bearing mice. The studies in vivo revealed that the fabricated NMOF/GO was efficient in T 2 -weighted imaging and ablation of the A549 tumor with low cytotoxicity, which implied that the prepared composite contrast agent was a potential multifunctional nanotheranostic agent. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Size dependent magnetism of mass selected deposited transition metal clusters

    Lau, T.

    2002-05-01

    The size dependent magnetic properties of small iron clusters deposited on ultrathin Ni/Cu(100) films have been studied with circularly polarised synchrotron radiation. For X-ray magnetic circular dichroism studies, the magnetic moments of size selected clusters were aligned perpendicular to the sample surface. Exchange coupling of the clusters to the ultrathin Ni/Cu(100) film determines the orientation of their magnetic moments. All clusters are coupled ferromagnetically to the underlayer. With the use of sum rules, orbital and spin magnetic moments as well as their ratios have been extracted from X-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably as a function of cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of a strongly size dependent orbital moment. Both orbital and spin magnetic moments are significantly enhanced in small clusters as compared to bulk iron, although this effect is more pronounced for the spin moment. Magnetic properties of deposited clusters are governed by the interplay of cluster specific properties on the one hand and cluster-substrate interactions on the other hand. Size dependent variations of magnetic moments are modified upon contact with the substrate. (orig.)

  11. Small angle neutron scattering measurements of magnetic cluster sizes in magnetic recorging disks

    Toney, M

    2003-01-01

    We describe Small Angle Neutron Scattering measurements of the magnetic cluster size distributions for several longitudinal magnetic recording media. We find that the average magnetic cluster size is slightly larger than the average physical grain size, that there is a broad distribution of cluster sizes, and that the cluster size is inversely correlated to the media signal-to-noise ratio. These results show that intergranular magnetic coupling in these media is small and they provide empirical data for the cluster-size distribution that can be incorporated into models of magnetic recording.

  12. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  13. Magnetic response of superconducting mesoscopic-size YBCO powder

    Deimling, C.V. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: cesard@df.ufscar.br; Motta, M.; Lisboa-Filho, P.N. [Laboratorio de Materiais Supercondutores, Departamento de Fisica, Universidade Estadual Paulista, Bauru, SP Brazil (Brazil); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2008-07-15

    In this work it is reported the magnetic behavior of submicron and mesoscopic-size superconducting YBCO powders, prepared by a modified polymeric precursors method. The grain size and microstructure were analyzed using scanning electron microscopy (SEM). Measurements of magnetization and AC-susceptibility as a function of temperature were performed with a quantum design SQUID magnetometer. Our results indicated significant differences on the magnetic propreties, in connection with the calcination temperature and the pressure used to pelletize the samples. This contribution is part of an effort to study vortex dynamics and magnetic properties of submicron and mesoscopic-size superconducting samples.

  14. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier

    Lv, Hua; Leitao, Diana C.; Hou, Zhiwei; Freitas, Paulo P.; Cardoso, Susana; Kämpfe, Thomas; Müller, Johannes; Langer, Juergen; Wrona, Jerzy

    2018-05-01

    Recently, the perpendicular magnetic tunnel junctions (p-MTJs) arouse great interest because of its unique features in the application of spin-transfer-torque magnetoresistive random access memory (STT-MRAM), such as low switching current density, good thermal stability and high access speed. In this paper, we investigated current induced switching (CIS) in ultrathin MgO barrier p-MTJs with dimension down to 50 nm. We obtained a CIS perpendicular tunnel magnetoresistance (p-TMR) of 123.9% and 7.0 Ω.μm2 resistance area product (RA) with a critical switching density of 1.4×1010 A/m2 in a 300 nm diameter junction. We observe that the extrinsic breakdown mechanism dominates, since the resistance of our p-MTJs decreases gradually with the increasing current. From the statistical analysis of differently sized p-MTJs, we observe that the breakdown voltage (Vb) of 1.4 V is 2 times the switching voltage (Vs) of 0.7 V and the breakdown process exhibits two different breakdown states, unsteady and steady state. Using Simmons' model, we find that the steady state is related with the barrier height of the MgO layer. Furthermore, our study suggests a more efficient method to evaluate the MTJ stability under high bias rather than measuring Vb. In conclusion, we developed well performant p-MTJs for the use in STT-MRAM and demonstrate the mechanism and control of breakdown in nano-scale ultrathin MgO barrier p-MTJs.

  15. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  16. Structure evolution and magnetic properties of annealed nanoscale Gd/Ti multilayers

    Larrañaga A.

    2013-01-01

    Full Text Available The structure and magnetic properties were comparatively analyzed for [Gd/Ti]n multilayers with Gd layer thickness of 1.5 to 12 nm. Multilayers were deposited by sputtering technique at room temperature and annealed for the temperatures up to 400 ºC. It was observed that the samples are highly textured in a different way depending on the Gd layer thickness and annealing temperature. It was found that the heat treatment practically does not change the Gd grain size. The lattice parameters obtained from X-ray results change significantly only for [Gd(1.5nm/Ti]50 multilayers, but their values remain higher than for the bulk Gd. The initial slope of the temperature dependence of magnetization near Curie temperature becomes steeper and Curie temperature increases upon annealing. Curie temperature variation can be understood by taking into account both relaxation of the lattice imperfections and change in lattice constants.

  17. Size analysis of single-core magnetic nanoparticles

    Ludwig, Frank, E-mail: f.ludwig@tu-bs.de [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Balceris, Christoph; Viereck, Thilo [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Posth, Oliver; Steinhoff, Uwe [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Gavilan, Helena; Costo, Rocio [Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Madrid (Spain); Zeng, Lunjie; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Jonasson, Christian; Johansson, Christer [ACREO Swedish ICT AB, Göteborg (Sweden)

    2017-04-01

    Single-core iron-oxide nanoparticles with nominal core diameters of 14 nm and 19 nm were analyzed with a variety of non-magnetic and magnetic analysis techniques, including transmission electron microscopy (TEM), dynamic light scattering (DLS), static magnetization vs. magnetic field (M-H) measurements, ac susceptibility (ACS) and magnetorelaxometry (MRX). From the experimental data, distributions of core and hydrodynamic sizes are derived. Except for TEM where a number-weighted distribution is directly obtained, models have to be applied in order to determine size distributions from the measurand. It was found that the mean core diameters determined from TEM, M-H, ACS and MRX measurements agree well although they are based on different models (Langevin function, Brownian and Néel relaxation times). Especially for the sample with large cores, particle interaction effects come into play, causing agglomerates which were detected in DLS, ACS and MRX measurements. We observed that the number and size of agglomerates can be minimized by sufficiently strong diluting the suspension. - Highlights: • Investigation of size parameters of single-core magnetic nanoparticles with nominal core diameters of 14 nm and 19 nm utilizing different magnetic and non-magnetic methods • Hydrodynamic size determined from ac susceptibility measurements is consistent with the DLS findings • Core size agrees determined from static magnetization curves, MRX and ACS data agrees with results from TEM although the estimation is based on different models (Langevin function, Brownian and Néel relaxation times).

  18. Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics

    Chekhov, Alexander L.; Stognij, Alexander I.; Satoh, Takuya; Murzina, Tatiana V.; Razdolski, Ilya; Stupakiewicz, Andrzej

    2018-05-01

    Ultrafast all-optical control of spins with femtosecond laser pulses is one of the hot topics at the crossroads of photonics and magnetism with a direct impact on future magnetic recording. Unveiling light-assisted recording mechanisms for an increase of the bit density beyond the diffraction limit without excessive heating of the recording medium is an open challenge. Here we show that surface plasmon-polaritons in hybrid metal-dielectric structures can provide spatial confinement of the inverse Faraday effect, mediating the excitation of localized coherent spin precession with 0.41 THz frequency. We demonstrate a two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within the 100 nm layer in dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways towards non-thermal opto-magnetic recording at the nano-scale.

  19. Size dependence of non-magnetic thickness in YIG nanoparticles

    Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.

    2016-07-01

    This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.

  20. Effects of sample size on the second magnetization peak in ...

    the sample size decreases – a result that could be interpreted as a size effect in the order– disorder vortex matter phase transition. However, local magnetic measurements trace this effect to metastable disordered vortex states, revealing the same order–disorder transition induction in samples of different size. Keywords.

  1. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron

    Petersen, Elijah J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pinto, Roger A. [Department of Chemical Engineering, University of Michigan, Ann Arbor (United States); Shi, Xiangyang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Qingguo, E-mail: qhuang@uga.edu [Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer nZVIs were synthesized using a layer-by-layer or poly(acrylic acid) stabilization approach. Black-Right-Pointing-Pointer These nZVIs were used to degrade TCE and PCB. Black-Right-Pointing-Pointer nZVI coatings impacted reactivity by altering pollutants/particle interactions. Black-Right-Pointing-Pointer Smaller nZVI particle size led to greater reactivity. - Abstract: Nano-scale zerovalent iron (nZVI) has been studied in recent years for environmental remediation applications such as the degradation of chlorinated organic contaminants. To overcome limitations related to the transport of nZVI, it is becoming common to add a polymer stabilizer to limit aggregation and enhance the particle reactivity. Another method investigated to enhance particle reactivity has been to limit particle size through novel synthesis techniques. However, the relative impacts of particle size and interactions of the chemicals with the coatings are not yet well understood. The purpose of this study was to investigate the mechanisms of particle size and polymer coating or polyelectrolyte multilayer (PEM) synthesis conditions on degradation of two common chlorinated contaminants: trichloroethylene (TCE) and polychlorinated biphenyls (PCBs). This was accomplished using two different synthesis techniques, a layer-by-layer approach at different pH values or iron reduction in the presence of varying concentrations of poly(acrylic acid). nZVI produced by both techniques yielded higher degradation rates than a traditional approach. The mechanistic investigation indicated that hydrophobicity and sorption to the multilayer impacts the availability of the hydrophobic compound to the nZVI and that particle size also had a large role with smaller particles having stronger dechlorination rates.

  2. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    Kuchibhatla, Satyanarayana Vnt

    Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV-screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and +4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by

  3. Structure, microstructure and magnetic properties of electrodeposited Co and Co-Pt in different nanoscale geometries

    Khatri, Manvendra Singh

    2010-07-09

    Thin films and nanowires of Co-Pt have been prepared by means of electrodeposition. Composition, structure, microstructure and magnetic properties have been intensively studied using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry and correlated to the deposition parameters such as electrolyte composition, deposition current and/or potential. Co rich Co-Pt films have been deposited at various current densities. A nearly constant composition of Co{sub 70}Pt{sub 30} was achieved for current densities between 18 and 32 mA/cm{sup 2}. Detailed texture measurements confirmed an increasing fraction of the hexagonal phase with its c-axis aligned perpendicular to the film plane with increasing current density. Accordingly, magnetic properties are strongly affected by the magnetocrystalline anisotropy of the hexagonal phase that competes with the shape anisotropy of the thin film geometry. Co-Pt nanowires have been prepared within alumina templates at different deposition potentials between -0.6 and -0.9 V{sub SCE} changing the composition from nearly pure Pt to Co. The composition Co{sub 80}Pt{sub 20} was observed at a deposition potential of -0.7 V{sub SCE}. Co-Pt nanowires are nanocrystalline in the as-deposited state. Magnetic measurements reveal changing fcc and hcp phase fractions within the wires as the effective anisotropy significantly differs from the expected shape anisotropy for nanowires with high aspect ratio. This change in effective anisotropy is attributed to the preferential alignment of the c-axis of hcp Co-Pt phase perpendicular to the nanowires axis. A promising alternative with much smaller feature sizes is the diblock copolymer template. Electrodeposition of Co and Co-Pt into these templates has been carried out. Inhomogeneities in the template thickness as well as a certain substrate roughness have been identified to be the reasons for inhomogeneous template filling. Thus magnetic properties are dominated by large

  4. Nanoscale E-Cadherin ligand patterns show threshold size for cellular adhesion and adherence junction formation

    Kristensen, Stine H; Pedersen, Gitte Albinus; Nejsum, Lene Niemann

    2012-01-01

    The role of ligand spatial distribution on the formation of cadherin mediated cell-cell contacts is studied utilizing nanopatterns of E-cadherin ligands. Protein patches ranging in size from 100 nm to 800 nm prepared by colloidal lithography critically influence adhesion, spreading and formation ...

  5. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  6. Magnetic properties of Fe20 Ni80 antidots: Pore size and array disorder

    Palma, J.L.; Gallardo, C.; Spinu, L.; Vargas, J.M.; Dorneles, L.S.; Denardin, J.C.; Escrig, J.

    2013-01-01

    Magnetic properties of nanoscale Fe 20 Ni 80 antidot arrays with different hole sizes prepared on top of nanoporous alumina membranes have been studied by means of magnetometry and micromagnetic simulations. The results show a significant increase of the coercivity as well as a reduction of the remanence of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Fe 20 Ni 80 thin film. When the external field is applied parallel to the antidots, the reversal of magnetization is achieved by free-core vortex propagation, whereas when the external field is applied perpendicular to the antidots, the reversal occurs through a process other than the coherent rotation (a maze-like pattern). Besides, in-plane hysteresis loops varying the angle show that the degree of disorder in the sample breaks the expected hexagonal symmetry. - Highlights: • Magnetic properties are strongly influenced by the pore diameter of the samples. • Coercive fields for antidots are higher than the values for the continuous film. • Disorder breaks the hexagonal symmetry of the sample. • Each hole acts as a vortex nucleation point. • Antidots have unique properties that allow them to be used in applications

  7. Effects of particle size and coating on nanoscale Ag and TiO₂ exposure in zebrafish (Danio rerio) embryos.

    Osborne, Olivia J; Johnston, Blair D; Moger, Julian; Balousha, Mohammed; Lead, Jamie R; Kudoh, Tetsuhiro; Tyler, Charles R

    2013-12-01

    Manufactured metal (oxide) nanoparticles are entering the aquatic environment with little understanding on their potential health impacts for exposed organisms. Adopting an integrative approach, we investigated effects of particle size and coating on biological responses for two of the most commonly used metal (oxide) nanoscale particles, silver (Ag) and titanium dioxide (TiO₂) in zebrafish embryos. Titanium dioxide nanoparticles (nominally, 4 nm, 10 nm, 30 nm and 134 nm) had little or no toxicity on the endpoints measured. Ag both in nano form (10 nm and 35 nm) and its larger counterpart (600-1600 nm) induced dose-dependent lethality and morphological defects, occurring predominantly during gastrula stage. Of the silver material tested 10 nm nanoparticles appeared to be the most toxic. Coating Ag nanoparticles with citrate or fulvic acid decreased toxicity significantly. In situ hybridisation analysis identified the yolk syncytial layer (YSL) as a target tissue for Ag-nano toxicity where there was a significant induction of the heavy metal stress response gene, metallothionein 2 (Mt2) at sub-lethal exposures. Coherent Anti-stroke Raman Scattering (CARS) microscopy provided no evidence for silver particles crossing the chorionic membrane in exposed embryos. Collectively, our data suggest that silver ions play a major role in the toxicity of Ag nanoparticles.

  8. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-08-02

    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

  9. Spintronics in nanoscale devices

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  10. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-01-01

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: ► A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. ► A direct method is used to calculate phonon group velocity for these nanowires. ► 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. ► Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2–300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10 14 m −2 the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10 14 m −2 , lattice thermal conductivity would be independent of that.

  11. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  12. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  13. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  14. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  15. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  16. Controlled fabrication of nano-scale double barrier magnetic tunnel junctions using focused ion beam milling method

    Wei, H.X.; Wang, T.X.; Zeng, Z.M.; Zhang, X.Q.; Zhao, J.; Han, X.F.

    2006-01-01

    The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni 79 Fe 21 (5)/Ir 22 Mn 78 (12)/Co 6 Fe 2 B 2 (4)/Al(1) -oxide/Co 6 Fe 2 B 2 (6)/Al (1)-oxide/Co 6 Fe 2 B 2 (4)/Ir 22 Mn 78 (12)/Ni 79 Fe 21 (5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nmx400 nm, 200 nmx200 nm nano-scale were prepared and their R-H, I-V characteristics were measured.

  17. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals

    Dan Liu

    2017-01-01

    Full Text Available Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb and the irreversible temperature (Tirr increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M band and redshift of one-phonon longitudinal (1LO and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.

  18. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  19. Size-controlled magnetic nanoparticles with lecithin for biomedical applications

    Park, S. I.; Kim, J. H.; Kim, C. G.; Kim, C. O.

    2007-05-01

    Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items—molar ratio between Fe(CO) 5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO) 5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation.

  20. Size-controlled magnetic nanoparticles with lecithin for biomedical applications

    Park, S.I.; Kim, J.H.; Kim, C.G.; Kim, C.O.

    2007-01-01

    Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items-molar ratio between Fe(CO) 5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO) 5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation

  1. Size Induced Structural and Magnetic Properties of Nanostructured ...

    Their structural and magnetic properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) measurements. The average crystallite size of CoFe2O4was observed to increase from 23 to 65 nm as the annealing temperature was increased from ...

  2. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.

    Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R

    2014-08-15

    We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.

  3. Size effect on magnetic ordering in Ce3Al11

    Wang, C.R.; Chen, Y.Y.; Neeleshwar, S.; Ou, M.N.; Ho, J.C.

    2003-01-01

    To study the size dependence of magnetic ordering, magnetic measurements have been made between 1.8 and 300 K on Ce 3 Al 11 particles having an average particle size of 1400 A. The nanoparticles were single phase as confirmed by X-ray diffraction. At low temperatures a ferromagnetic transition occurs at T C =6.2 K, which is the same as that for the bulk material. On the other hand, the antiferromagnetic transition at T N =3.2 K for the bulk material is not visible down to 1.8 K. Meanwhile, the slightly smaller Curie constant of nanoparticles as compared to that of the bulk indicates a certain degree of demagnetization of Ce ions when the particle size is sufficiently reduced

  4. Finite-size modifications of the magnetic properties of clusters

    Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker

    1993-01-01

    relative to the bulk, and the consequent neutron-scattering cross section exhibits discretely spaced wave-vector-broadened eigenstates. The implications of the finite size on thermodynamic properties, like the temperature dependence of the magnetization and the critical temperature, are also elucidated. We...... find the temperature dependence of the cluster magnetization to be well described by an effective power law, M(mean) is-proportional-to 1 - BT(alpha), with a size-dependent, but structure-independent, exponent larger than the bulk value. The critical temperature of the clusters is calculated from...... the spin-wave spectrum by a method based on the correlation theory and the spherical approximation generalized to the case of finite systems. A size-dependent reduction of the critical temperature by up to 50% for the smallest clusters is found. The trends found for the model clusters are extrapolated...

  5. Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid

    Büttner, Markus; Weber, Peter; Schmidl, Frank; Seidel, Paul; Röder, Michael; Schnabelrauch, Matthias; Wagner, Kerstin; Görnert, Peter; Glöckl, Gunnar; Weitschies, Werner

    2011-01-01

    In this work we address the question which relates between the size of the magnetically active core of magnetic nanoparticles (MNPs) and the size of the overall particle in the solution (the so-called hydrodynamic diameter d hyd ) exists. For this purpose we use two methods of examination that can deliver conclusions about the properties of MNP which are not accessible with normal microscopy. On the one hand, we use temperature dependent magnetorelaxation (TMRX) method, which enables direct access to the energy barrier distribution and by using additional hysteresis loop measurements can provide details about the size of the magnetically active cores. On the other hand, to determine the size of the overall particle in the solution, we use the magnetooptical relaxation of ferrofluids (MORFF) method, where the stimulation is done magnetically while the reading of the relaxation signal, however, is done optically. As a basis for the examinations in this work we use a ferrofluid that was developed for medicinal purposes and which has been fractioned magnetically to obtain differently sized fractions of MNPs. The two values obtained through these methods for each fraction shows the success in fractioning the original solution. Therefore, one can conclude a direct correlation between the size of the magnetically active core and the size of the complete particle in the solution from the experimental results. To calculate the size of the magnetically active core we found a temperature dependent anisotropy constant which was taken into account for the calculations. Furthermore, we found relaxation signals at 18 K for all fractions in these TMRX measurements, which have their origin in other magnetic effects than the Néel relaxation.

  6. Nanometer-size magnetic domains and coherent magnetization reversal in a giant exchange-bias system

    Dufour, C.; Fitzsimmons, M. R.; Borchers, J. A.

    2011-01-01

    The role of magnetic domains and domain walls in exchange bias has stimulated much contemporary deliberation. Here we present compelling evidence obtained with small-angle scattering of unpolarized- and polarized-neutron beams that magnetization reversal occurs via formation of 10-100s nm-sized m...... to that of structural defects at the seed-layer-superlattice interface....

  7. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet.

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd 2 Fe 14 B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd 2 Fe 14 B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material's overall properties.

  8. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-01

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.

  9. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting.

    Ye, Jongpil

    2015-05-08

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.

  10. Size dependence of magnetization reversal of ring shaped magnetic tunnel junction

    Chen, C.C.; Kuo, C.Y.; Chang, Y.C.; Chang, C.C.; Horng, Lance; Wu, Teho; Chern, G.; Huang, C.Y.; Tsunoda, M.; Takahashi, M.; Wu, J.C.

    2007-01-01

    The size dependence of magnetization reversal of magnetic tunnel junction (MTJ) rings has been investigated. The MTJ rings, with outer diameter of 4, 2 and 1 μm and inner diameter of 1.5, 1 and 0.5 μm were fabricated by a top-down technique. The magnetoresistance curves manifest all of the magnetic domain configurations during magnetization reversal in different sized rings. Various transition processes were observed, such as four transition, three transition and two transition in the largest, middle and smallest MTJ ring, respectively. Furthermore, the biasing fields observed from major loops decrease with decreasing size, which may result from edge roughness produced in the ion-milling process

  11. Permanent magnet finger-size scanning electron microscope columns

    Nelliyan, K., E-mail: elenk@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-07-21

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  12. Synthesis of micro-sized polystyrene magnetic particles

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  13. Permanent magnet finger-size scanning electron microscope columns

    Nelliyan, K.; Khursheed, A.

    2011-01-01

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  14. Magnetic properties of crystalline nanoparticles with different sizes and shapes

    Lima, Ana T.A. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil); Universidade Federal Rural do Semi-Árido, Campus de Caraubas, RN 333, Rio Grande do Norte (Brazil); Dantas, Ana L.; Almeida, N.S. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, Rio Grande do Norte (Brazil)

    2017-03-01

    The effects of shape and finite size on the physical behavior of nanostructured antiferromagnetic particles are investigated. They were modeled as ellipsoidal systems which preserve the crystalline structure of the correspondent bulk material. In our analysis we consider nanoparticles composed by magnetic ions which are themselves insensitive to the presence of surfaces and/or interfaces. Results are shown for structures similar to MnF{sub 2} and NiO crystals. Special attention is given to these last once their singular magnetic arrangement, as well as, their use at different technological and/or biomedical applications, has motivated intense experimental studies at different laboratories. We use the parameters that describe the correspondent bulk material to discuss the magnetic behavior of these particles for different volumes and shapes. - Highlights: • The number of magnetic phases of tetragonal AFM nanoparticles depends on their shape. • Hysteresis loops of NiO particles depends on the direction of the dc magnetic field. • The high frequencies normal modes of NiO particles are insensitive to their geometry.

  15. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  16. Quantum Control of Spins in Diamond for Nanoscale Magnetic Sensing and Imaging

    Dutt, Gurudev [Univ. of Pittsburgh, PA (United States)

    2017-10-25

    Our research activities during the grant period focused on the challenges of highly accurate and precise magnetometry and magnetic imaging using quantum spins inside diamond. Our work has resulted in 6 papers published in peer-reviewed journals, with two more currently under consideration by referees. We showed that through the use of novel phase estimation algorithms inspired by quantum information science we can carry out accurate and high dynamic range DC magnetometry as well as lock-in detection of oscillating (AC) magnetic fields. We investigated the geometric phase as a route to higher precision quantum information and magnetic sensing applications, and probed the experimental limits to the fidelity of such geometric phase gates. We also demonstrated that there is a spin dependent signal in the charge state flipping of the NV defect center in diamond, which could potentialy be useful for higher fidelity spin readout at room temperature. Some of these projects have now led to further investigation in our lab on multi-photon spectroscopy (manuscript in preparation), and plasmonic guiding of light in metal nanowires (manuscript available on arxiv). In addition, several invited talks were given by the PI, and conference presentations were given by the graduate students and postdocs.

  17. Neuromorphic computing with nanoscale spintronic oscillators.

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  18. Spin-orbit driven ferromagnetic resonance: a nanoscale magnetic characterisation technique

    Fang, D.; Kurebayashi, H.; Wunderlich, Joerg; Výborný, Karel; Zarbo, Liviu; Campion, R. P.; Casiraghi, A.; Gallagher, B. L.; Jungwirth, Tomáš; Ferguson, A.J.

    2011-01-01

    Roč. 6, č. 7 (2011), s. 413-417 ISSN 1748-3387 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA AV ČR KJB100100802; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanomagnets Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 27.270, year: 2011

  19. The size of the auroral belt during magnetic storms

    N. Yokoyama

    1998-05-01

    Full Text Available Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also proportional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.Key words. Ionosphere (Auroral ionosphere · Magnetospheric physics (Auroral phenomena; storms and substorms

  20. Magnetic properties of Fe{sub 20} Ni{sub 80} antidots: Pore size and array disorder

    Palma, J.L., E-mail: juan.palma.s@usach.cl [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Gallardo, C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Spinu, L.; Vargas, J.M. [Advanced Material Research Institute (AMRI) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Dorneles, L.S. [Departamento de Fisica, Universidade Federal de Santa Maria UFSM, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900 (Brazil); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2013-10-15

    Magnetic properties of nanoscale Fe{sub 20}Ni{sub 80} antidot arrays with different hole sizes prepared on top of nanoporous alumina membranes have been studied by means of magnetometry and micromagnetic simulations. The results show a significant increase of the coercivity as well as a reduction of the remanence of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Fe{sub 20}Ni{sub 80} thin film. When the external field is applied parallel to the antidots, the reversal of magnetization is achieved by free-core vortex propagation, whereas when the external field is applied perpendicular to the antidots, the reversal occurs through a process other than the coherent rotation (a maze-like pattern). Besides, in-plane hysteresis loops varying the angle show that the degree of disorder in the sample breaks the expected hexagonal symmetry. - Highlights: • Magnetic properties are strongly influenced by the pore diameter of the samples. • Coercive fields for antidots are higher than the values for the continuous film. • Disorder breaks the hexagonal symmetry of the sample. • Each hole acts as a vortex nucleation point. • Antidots have unique properties that allow them to be used in applications.

  1. The size of the auroral belt during magnetic storms

    N. Yokoyama

    Full Text Available Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also proportional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.

    Key words. Ionosphere (Auroral ionosphere · Magnetospheric physics (Auroral phenomena; storms and substorms

  2. submitter A High Precision 3D Magnetic Field Scanner for Small to Medium Size Magnets

    Bergsma, F; Garnier, F; Giudici, P A

    2016-01-01

    A bench to measure the magnetic field of small to-medium-sized magnets with high precision was built. It uses a small-sized head with three orthogonal Hall probes, supported on a long pole at continuous movement during measurement. The head is calibrated in three dimensions by rotation over the full solid angle in a special device. From 0 to 2.5 T, the precision is ±0.2 mT in all components. The spatial range is 1 × 1 × 2 m with precision of ±0.02 mm. The bench and its controls are lightweight and easy to transport. The head can penetrate through small apertures and measure as close as 0.5 mm from the surface of a magnet. The bench can scan complicated grids in Cartesian or cylindrical coordinates, steered by a simple text file on an accompanying PC. The raw data is online converted to magnetic units and stored in a text file.

  3. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.

    Warheit, David B; Donner, E Maria

    2015-11-01

    The basic tenets for assessing health risks posed by nanoparticles (NP) requires documentation of hazards and the corresponding exposures that may occur. Accordingly, this review describes the range and types of potential human exposures that may result from interactions with titanium dioxide (TiO2) particles or NP - either in the occupational/workplace environment, or in consumer products, including food materials and cosmetics. Each of those applications has a predominant route of exposure. Very little is known about the human impact potential from environmental exposures to NP - thus this particular issue will not be discussed further. In the workplace or occupational setting inhalation exposure predominates. Experimental toxicity studies demonstrate low hazards in particle-exposed rats. Only at chronic overload exposures do rats develop forms of lung pathology. These findings are not supported by multiple epidemiology studies in heavily-exposed TiO2 workers which demonstrate a lack of correlation between chronic particle exposures and adverse health outcomes including lung cancer and noncancerous chronic respiratory effects. Cosmetics and sunscreens represent the major application of dermal exposures to TiO2 particles. Experimental dermal studies indicate a lack of penetration of particles beyond the epidermis with no consequent health risks. Oral exposures to ingested TiO2 particles in food occur via passage through the gastrointestinal tract (GIT), with studies indicating negligible uptake of particles into the bloodstream of humans or rats with subsequent excretion through the feces. In addition, standardized guideline-mandated subchronic oral toxicity studies in rats demonstrate very low toxicity effects with NOAELs of >1000 mg/kg bw/day. Additional issues which are summarized in detail in this review are: 1) Methodologies for implementing the Nano Risk Framework - a process for ensuring the responsible development of products containing nanoscale

  4. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles

    Nikiforov, V. N., E-mail: pppnvn@yandex.ru [Moscow State University (Russian Federation); Ignatenko, A. N.; Irkhin, V. Yu. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2017-02-15

    The size effects of magnetite and maghemite nanoparticles on their magnetic properties (magnetic moment, Curie temperature, blocking temperature, etc.) have been investigated. Magnetic separation and centrifugation of an aqueous solution of nanoparticles were used for their separation into fractions; their sizes were measured by atomic force microscopy, dynamic light scattering, and electron microscopy. A change in the size leads to a change in the Curie temperature and magnetic moment per formula unit. Both native nanoparticles and those covered with a bioresorbable layer have been considered. The magnetic properties have been calculated by the Monte Carlo method for the classical Heisenberg model with various bulk and surface magnetic moments.

  5. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    Sayed, Fatima; Labaye, Yvan; Sayed Hassan, Rodaina; El Haj Hassan, Fouad; Yaacoub, Nader; Greneche, Jean-Marc

    2016-01-01

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  6. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    Sayed, Fatima; Labaye, Yvan, E-mail: yvan.labaye@univ-lemans.fr [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France); Sayed Hassan, Rodaina; El Haj Hassan, Fouad [Université Libanaise, Faculté des Sciences Section I, MPLAB (Lebanon); Yaacoub, Nader, E-mail: nader.yaacoub@univ-lemans.fr; Greneche, Jean-Marc [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France)

    2016-09-15

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  7. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-01-01

    We present a study on the magnetic properties of naked and silica-coated Fe 3 O 4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO 2 shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO 2 functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe 3 O 4 nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  8. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  9. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  10. Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology

    Abbas, K; Alaie, S; Ghasemi Baboly, M; Elahi, M M M; Anjum, Dalaver H.; Chaieb, Saharoui; Leseman, Z C

    2015-01-01

    -1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.

  11. Grain size and nanoscale effects on the nonlinear pull-in instability and vibrations of electrostatic actuators made of nanocrystalline material

    Gholami, R.; Ansari, R.

    2018-01-01

    Presented herein is the study of grain size, grain surface energy and small scale effects on the nonlinear pull-in instability and free vibration of electrostatic nanoscale actuators made of nanocrystalline silicon (Nc-Si). A Mori-Tanaka micromechanical model is utilized to calculate the effective material properties of Nc-Si considering material structure inhomogeneity, grain size and grain surface energy. The small-scale effect is also taken into account using Mindlin’s strain gradient theory. Governing equations are derived in the discretized weak form using the variational differential quadrature method based on the third-order shear defamation beam theory in conjunction with the von Kármán hypothesis. The electrostatic actuation is modeled considering the fringing field effects based upon the parallel plate approximation. Moreover, the Casimir force effect is considered. The pseudo arc-length continuation technique is used to obtain the applied voltage-deflection curve of Nc-Si actuators. Then, a time-dependent small disturbance around the deflected configuration is assumed to solve the free vibration problem. By performing a numerical study, the influences of various factors such as length scale parameter, volume fraction of the inclusion phase, density ratio, average inclusion radius and Casimir force on the pull-in instability and free vibration of Nc-Si actuators are investigated.

  12. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  13. Symposium I: Nanoscale Magnetic Materials and Applications. Held in Boston, Massachusetts on November 25-30, 2007

    Liu, J. P

    2008-01-01

    .... These principles are illustrated by means of several examples drawn from the quests for ultrastrong permanent magnets, ultrahigh-density magnetic information storage, and biomedical applications...

  14. Nanoscale Origins of the Size Effect in the Compression Response of Single Crystal Ni-Base Superalloy Micro-Pillars

    Siqi Ying

    2018-04-01

    Full Text Available Nickel superalloys play a pivotal role in enabling power-generation devices on land, sea, and in the air. They derive their strength from coherent cuboidal precipitates of the ordered γ’ phase that is different from the γ matrix in composition, structure and properties. In order to reveal the correlation between elemental distribution, dislocation glide and the plastic deformation of micro- and nano-sized volumes of a nickel superalloy, a combined in situ nanoindentation compression study was carried out with a scanning electron microscope (SEM on micro- and nano-pillars fabricated by focused ion beam (FIB milling of Ni-base superalloy CMSX4. The observed mechanical response (hardening followed by softening was correlated with the progression of crystal slip that was revealed using FIB nano-tomography and energy-dispersive spectroscopy (EDS elemental mapping. A hypothesis was put forward that the dependence of material strength on the size of the sample (micropillar diameter is correlated with the characteristic dimension of the structural units (γ’ precipitates. By proposing two new dislocation-based models, the results were found to be described well by a new parameter-free Hall–Petch equation.

  15. A study of interaction effect theoretical with combination size grain on magnetics in of permanent magnet

    Tarihoran, Doansi; Manaf, Azwar

    2002-01-01

    Stoner-Wohlfarth theory, SW shows a deviation around 30-40% to the measurement result of a permanent magnetic material with nanometer-sized grains. This is caused by this theory neglecting the interacting grain factor. This research modifies SW theory by calculating the grain interacting effect. The modification is made by assuming the interacting energy of a mono-domain grain has ellipsoidal shaped focused at the edge of the grain. SW grain in this calculation model is a box-shaped in a grain with edges of the box placed in the skin's grain. The result shows that interacting effect make remanent polarization increasing drastically and coercive field value decreasing when grain's size reaches 20% of size of the first mono-domain grain. For material with ND 2 Fe 14 B phase, the optimum coercive field value and remanent polarization that producing maximum product energy, (BH) m ax obtained in a material with 5 nanometer-size grains. Qualitatively there is as appropriate result between the calculation and measurement

  16. Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology

    Abbas, K

    2015-12-10

    © 2016 IOP Publishing Ltd. The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.

  17. Fabrication of all diamond scanning probes for nanoscale magnetometry

    Appel Patrick; Neu Elke; Ganzhorn Marc; Barfuss Arne; Batzer Marietta; Gratz Micha; Tschoepe Andreas; Maletinsky Patrick

    2016-01-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes s...

  18. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    Jiemsakul, Thanakorn [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Manakasettharn, Supone, E-mail: supone@nanotec.or.th [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Kanharattanachai, Sivakorn; Wanna, Yongyuth [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Wangsuya, Sujint [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Pratontep, Sirapat [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)

    2017-01-15

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO{sub 2} laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs. - Highlights: • We demonstrate microfluidic switching valves based on aggregates of magnetic particles. • Maximum flow rate that the aggregate can withstand scales with the square of the external magnetic flux density. • Aggregates with smaller magnetic nanoparticle size can withstand higher flow rate. • Aggregate length exhibits a linear dependence with flow resistance of a viscous fluid.

  19. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  20. Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions (invited)

    Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.

    2012-04-01

    CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.

  1. Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film

    Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing

    2018-02-01

    Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.

  2. Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study

    Masrour, R. [Laboratory of Materials, Process, Environment and Quality, Cady Ayyad University, National School of Applied Sciences, Safi (Morocco); Laboratoire de Magnetisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Universite Mohammed V-Agdal, Faculte des Sciences, B.P. 1014 Rabat (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Laboratoire de Magnetisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Universite Mohammed V-Agdal, Faculte des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnetisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Universite Mohammed V-Agdal, Faculte des Sciences, B.P. 1014 Rabat (Morocco)

    2012-11-15

    In this paper we use the Monte Carlo simulations to investigate the magnetic properties of an Ising ferromagnetic-antiferromagnetic model. The system is based on a nano-graphene structure-like bilayer with two bloc sizes: N=24 and 42 spins. For each size N, the upper layer A is formed with spin -3/2, whereas the lower layer B is composed of spin -5/2. We only consider the first nearest-neighbor interactions between the sites i and j. The magnetic properties are studied, in the absence as well as in the presence of a crystal magnetic field, and an external magnetic field. The increasing temperature and crystal field as well as the inter-layer coupling constant, are also studied for this system sizes N=24 and 42 spins. The zero-field-cooled and the field cooled magnetization behaviors are investigated for different values of external magnetic field and a fixed value of exchange interaction between the two blocs. The magnetizations as well as the magnetic susceptibilities versus the temperature are used in order to obtain blocking temperature. The saturation magnetization and coercive field are also obtained for the two sizes of the studied system. It is found that the blocking temperature decreases on increasing the crystal magnetic field and/or the external magnetic field, for a fixed system size. On the other hand, it is found that the blocking temperature increases on increasing the system size from N=24 to 42 spins, for fixed values of external and the crystal magnetic fields. - Highlights: Black-Right-Pointing-Pointer Magnetic properties of an Ising ferromagnetic-antiferromagnetic bilayer is studied. Black-Right-Pointing-Pointer Monte Carlo simulations are used. Black-Right-Pointing-Pointer Zero-field-cooled (ZFC) and field cooled (FC) magnetization behaviors for nano-graphene are obtained.

  3. Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2014-01-01

    A numerical inversion method known from the analysis of light scattering by colloidal dispersions is now applied to magnetization curves of ferrofluids. The distribution of magnetic particle sizes or dipole moments is determined without assuming that the distribution is unimodal or of a particular shape. The inversion method enforces positive number densities via a non-negative least squares procedure. It is tested successfully on experimental and simulated data for ferrofluid samples with known multimodal size distributions. The created computer program MINORIM is made available on the web. - Highlights: • A method from light scattering is applied to analyze ferrofluid magnetization curves. • A magnetic size distribution is obtained without prior assumption of its shape. • The method is tested successfully on ferrofluids with a known size distribution. • The practical limits of the method are explored with simulated data including noise. • This method is implemented in the program MINORIM, freely available online

  4. sizing of wind powered axial flux permanent magnet alternator using

    user

    2016-10-04

    Oct 4, 2016 ... Keywords: Wind-Power, Axial flux, Axial Flux Permanent Machines (AFPM), Axial Flux Permanent Magnet ... energy for power generation, a high constraint is the .... arrangements as Single-Rotor Single-Stator Structure.

  5. Dependency of Tunneling-Magnetoresistance Ratio on Nanoscale Spacer Thickness and Material for Double MgO Based Perpendicular-Magnetic-Tunneling-Junction

    Lee, Du-Yeong; Hong, Song-Hwa; Lee, Seung-Eun; Park, Jea-Gun

    2016-12-01

    It was found that in double MgO based perpendicular magnetic tunneling junction spin-valves ex-situ annealed at 400 °C, the tunneling magnetoresistance ratio was extremely sensitive to the material and thickness of the nanoscale spacer: it peaked at a specific thickness (0.40~0.53 nm), and the TMR ratio for W spacers (~134%) was higher than that for Ta spacers (~98%). This dependency on the spacer material and thickness was associated with the (100) body-centered-cubic crystallinity of the MgO layers: the strain enhanced diffusion length in the MgO layers of W atoms (~1.40 nm) was much shorter than that of Ta atoms (~2.85 nm) and the shorter diffusion length led to the MgO layers having better (100) body-centered-cubic crystallinity.

  6. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  7. Size dependences of crystal structure and magnetic properties of DyMnO{sub 3} nanoparticles

    Tajiri, T., E-mail: tajiri@fukuoka-u.ac.jp [Faculty of Science, Fukuoka University, Fukuoka 814-0180 (Japan); Terashita, N.; Hamamoto, K.; Deguchi, H.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Morimoto, Y.; Konishi, K. [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Kohno, A. [Faculty of Science, Fukuoka University, Fukuoka 814-0180 (Japan)

    2013-11-15

    We synthesized DyMnO{sub 3} nanoparticles with particle sizes of about 7.5–15.3 nm in the pores of mesoporous silica and investigated their crystal structure and magnetic properties. As the particle size decreased, the lattice constants of the DyMnO{sub 3} nanoparticles deviated from those of the bulk crystal, and the Jahn–Teller distortion in the nanoparticle systems decreased. In addition, the estimated lattice strain increased with decreasing particle size. The DyMnO{sub 3} nanoparticles showed superparamagnetic behavior. The blocking temperature and the coercive field increased with decreasing particle size, and this behavior was contrary to the usual magnetic size effects. It is deduced that these unique size dependences of the magnetic properties for the DyMnO{sub 3} nanoparticles were derived from the changes in lattice constants and lattice strain. The anisotropic lattice deformation in the crystal structure of the nanoparticles induces an enhancement of the magnetic anisotropy, which results in the increase in blocking temperature and coercive field with decreasing particle size. - Highlights: • We successfully synthesized DyMnO{sub 3} nanoparticles with particle size of 7.5–15.3 nm. • Lattice strain increases with decreasing particle size. • Lattice constants exhibit anisotropic change with decreasing particle size. • Distortion of crystal structure leads to enhancement of magnetic anisotropy constant. • Blocking temperature and coercive field increases with decreasing particle size.

  8. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  9. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Kumari, Monika; Hirt, Ann M.; Widdrat, Marc; Faivre, Damien; Tompa, Éva; Pósfai, Mihály; Uebe, Rene; Schüler, Dirk

    2014-01-01

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  10. Effects of sample size on the second magnetization peak in ...

    8+ crystals are observed at low temperatures, above the temperature where the SMP totally disappears. In particular, the onset of the SMP shifts to lower fields as the sample size decreases - a result that could be interpreted as a size effect in ...

  11. Size-dependent magnetic properties of iron oxide nanoparticles

    Patsula, Vitalii; Moskvin, Maksym; Dutz, S.; Horák, Daniel

    2016-01-01

    Roč. 88, January (2016), s. 24-30 ISSN 0022-3697 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic materials * chemical synthesis * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.059, year: 2016

  12. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  13. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.

    Sahoo, M P K; Zhang, Yajun; Wang, Jie

    2016-07-27

    Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis.

  14. Magnetic properties of nano-scale hematite, α-Fe{sub 2}O{sub 3}, studied by time-of-flight inelastic neutron spectroscopy

    Hill, Adrian H. [The European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043 Grenoble Cedex 9 (France); Jacobsen, Henrik, E-mail: hjacobse@fys.ku.dk; Holm, Sonja L.; Lefmann, Kim [Nanoscience Centre, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Stewart, J. Ross [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 OQX (United Kingdom); Jiao, Feng [Department of Chemical Engineering, University of Delaware, Center for Catalytic Science and Technology, 150 Academy Street, Newark, Delaware 19716-3110 (United States); Jensen, Niels P. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Mutka, Hannu; Seydel, Tilo [The Institute Laue-Langevin, 6 rue Jules Horowitz, BP156, 38042 Grenoble Cedex 9 (France); Harrison, Andrew [The Institute Laue-Langevin, 6 rue Jules Horowitz, BP156, 38042 Grenoble Cedex 9 (France); EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, The King' s Buildings, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom)

    2014-01-28

    Samples of nanoscale hematite, α-Fe{sub 2}O{sub 3}, with different surface geometries and properties have been studied with inelastic time-of-flight neutron scattering. The 15 nm diameter nanoparticles previously shown to have two collective magnetic excitation modes in separate triple-axis neutron scattering studies have been studied in further detail using the advantage of a large detector area, high resolution, and large energy transfer range of the IN5 TOF spectrometer. A mesoporous hematite sample has also been studied, showing similarities to that of the nanoparticle sample and bulk α-Fe{sub 2}O{sub 3}. Analysis of these modes provides temperature dependence of the magnetic anisotropy coefficient along the c-axis, κ{sub 1}. This is shown to remain negative throughout the temperature range studied in both samples, providing an explanation for the previously observed suppression of the Morin transition in the mesoporous material. The values of this anisotropy coefficient are found to lie between those of bulk and nano-particulate samples, showing the hybrid nature of the mesoporous 3-dimensional structure.

  15. Magnetism, chemical bonding and hyperfine properties in the nanoscale antiferromagnet [Fe(O Me)2(O2 C C H2 Cl)]10

    Zeng, Z.; Duan, Y.; Guenzburger, Diana

    1996-09-01

    The electronic and magnetic properties of the nanometer-size antiferromagnet (the ferric wheel molecule) are investigated with the first-principles spin-polarized Discrete Variational Method, in the framework of Density Functional theory. Magnetic moments, densities of the states and charge and spin-density maps are obtained. The Moessbauer hyperfine parameters Isomer shift, Quadrupole Splitting and Hyperfine Field are obtained from the calculations and compared to reported experimental values when available. (author). 33 refs., 8 figs., 4 tabs

  16. Direct characterization of spin-transfer switching of nano-scale magnetic tunnel junctions using a conductive atomic force microscope

    Lee, Jia-Mou; Yang, Dong-Chin; Lee, Ching-Ming; Ye, Lin-Xiu; Chang, Yao-Jen; Wu, Te-ho; Lee, Yen-Chi; Wu, Jong-Ching

    2013-01-01

    We present an alternative method of spin-transfer-induced magnetization switching for magnetic tunnel junctions (MTJs) using a conductive atomic force microscope (CAFM) with pulsed current. The nominal MTJ cells' dimensions were 200 × 400 nm 2 . The AFM probes were coated with a Pt layer via sputtering to withstand up to several milliamperes. The pulsed current measurements, with pulse duration varying from 5 to 300 ms, revealed a magnetoresistance ratio of up to 120%, and an estimated intrinsic switching current density, based on the thermal activation model, of 3.94 MA cm −2 . This method demonstrates the potential skill to characterize nanometre-scale magnetic devices. (paper)

  17. Improvement of a magnetization method on a small-size superconducting bulk magnet system

    Yokoyama, K.; Oka, T.; Noto, K.

    2011-01-01

    This paper proposed an effective magnetizing method of high-T c bulk superconductors. The magnetic pass was artificially formed by field-cooling using a permanent magnet. The trapped field was increased by 20-25% as compared with the conventional method. We observed that the channel was formed partially in the trapped field distribution. A pulsed-filed magnetization (PFM) is an important technique for industrial applications of superconducting bulk magnets, and several advanced PFM methods are proposed to enhance the trapped field. In the well-known IMRA method, the channel through the magnetic flux is formed by the flux flow caused by heat generation when applying the strong pulsed-field, and the magnetic flux is made to penetrate into the bulk through the channel in the following pulse application. On the other hand, large applied field leads to large heat generation, and, therefore, the trapped field is decreased greatly. This paper proposes an effective magnetizing method in which the channel composed of magnetic field is artificially formed by field-cooling (FC) using a permanent magnet and the magnetic flux by PFM is induced to the channel. To confirm the validity of this method, the bulk was magnetized by FC using Nd-Fe-B magnets of the rectangular and the ring shapes, and thereafter, a pulsed-field of 6.2 T was applied. As a result, the trapped field of the bulk magnetized by FC using the ring magnet was increased by about 20-25% as compared with that of the conventional PFM, and, moreover, it was observed that the channel was formed partially by measurement of the magnetic field distribution.

  18. Effects of crystallite size on the structure and magnetism of ferrihydrite

    Wang, Xiaoming; Zhu, Mengqiang; Koopal, L.K.; Li, Wei; Xu, Wenqian; Liu, Fan; Zhang, Jing; Liu, Qingsong; Feng, Xionghan; Sparks, D.L.

    2016-01-01

    The structure and magnetic properties of nano-sized (1.6 to 4.4 nm) ferrihydrite samples are systematically investigated through a combination of X-ray diffraction (XRD), X-ray pair distribution function (PDF), X-ray absorption spectroscopy (XAS) and magnetic analyses. The XRD, PDF and Fe K-edge

  19. Modeling, design and experimental validation of a small-sized magnetic gear

    Zanis, R.; Borisavljevic, A.; Jansen, J.W.; Lomonova, E.A.

    2013-01-01

    A magnetostatic analytical model is created to analyze and design a small-sized magnetic gear for a robotic application. Through a parameter variation study, it is found that the inner rotor magnet height is highly influential to the torque, and based on which, the design is performed. Several

  20. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  1. Nanoscale device physics science and engineering fundamentals

    Tiwari, Sandip

    2017-01-01

    Nanoscale devices are distinguishable from the larger microscale devices in their specific dependence on physical phenomena and effects that are central to their operation. The size change manifests itself through changes in importance of the phenomena and effects that become dominant and the changes in scale of underlying energetics and response. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the inter-actions, and others. These interactions, with the limits placed on size, make not just electronic, but also magnetic, optical and mechanical behavior interesting, important and useful. Connecting these properties to the behavior of devices is the focus of this textbook. Description of the book series: This collection of four textbooks in the Electroscience series span the undergrad...

  2. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  3. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  4. Measuring Restriction Sizes Using Diffusion Weighted Magnetic Resonance Imaging: A Review

    Melanie Martin

    2013-01-01

    Full Text Available This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  5. Planetesimal Sizes and Mars Formation in the Magnetized Solar Nebula

    Hasegawa, Yasuhiro; Morishima, Ryuji

    2017-10-01

    The Hf-W chronology inferred from Martian meteorites suggests that Mars should be a stranded planetary embryo formed within a very short (about 2 Myr) accretion timescale. Previous studies show that such rapid growth can be realized when small (nebular evolution. Under this circumstance, impact velocity of planetesimals can be very high due to nebular density fluctuations caused by turbulence, and hence collisions between small planetesimals can become destructive, rather than mergers. Here, we investigate how Mars formed in the magnetized solar nebula, focusing on MHD turbulence. We demonstrate what mass of planetesimals can contribute to Mars formation and what value of the nebular mass is needed to satisfy the rapid accretion timescale. We therefore derive a more realistic condition of the solar nebula under which Mars formation took place. While this study is based on the standard picture of runaway and oligarchic growth, we also discuss other formation mechanisms in order to compare how our results would be consistent with the properties of the solar system. These mechanisms are a hypothesis that Mars formed from a narrow ring of planetesimals, and the pebble accretion scenario.

  6. Size-dependent avoidance of a strong magnetic anomaly in Caribbean spiny lobsters.

    Ernst, David A; Lohmann, Kenneth J

    2018-03-01

    On a global scale, the geomagnetic field varies predictably across the Earth's surface, providing animals that migrate long distances with a reliable source of directional and positional information that can be used to guide their movements. In some locations, however, magnetic minerals in the Earth's crust generate an additional field that enhances or diminishes the overall field, resulting in unusually steep gradients of field intensity within a limited area. How animals respond to such magnetic anomalies is unclear. The Caribbean spiny lobster, Panulirus argus , is a benthic marine invertebrate that possesses a magnetic sense and is likely to encounter magnetic anomalies during migratory movements and homing. As a first step toward investigating whether such anomalies affect the behavior of lobsters, a two-choice preference experiment was conducted in which lobsters were allowed to select one of two artificial dens, one beneath a neodymium magnet and the other beneath a non-magnetic weight of similar size and mass (control). Significantly more lobsters selected the control den, demonstrating avoidance of the magnetic anomaly. In addition, lobster size was found to be a significant predictor of den choice: lobsters that selected the anomaly den were significantly smaller as a group than those that chose the control den. Taken together, these findings provide additional evidence for magnetoreception in spiny lobsters, raise the possibility of an ontogenetic shift in how lobsters respond to magnetic fields, and suggest that magnetic anomalies might influence lobster movement in the natural environment. © 2018. Published by The Company of Biologists Ltd.

  7. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Granovsky, Alexander B.; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-01-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed

  8. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-03-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed.

  9. Magnetic properties of natural pyrrhotite Part I : Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework

    Dekkers, M.J.

    1988-01-01

    The grain-size dependence of the initial susceptibility, saturation magnetization, saturation remanence , coercive force, remanent coercive force and remanent acquisition coercive force, is reported for four natural pyrrhotites in a grain-size range from 250 µm down to <5 µm.

  10. Symposium I: Nanoscale Magnetic Materials and Applications. Held in Boston, Massachusetts on November 25-30, 2007

    2008-06-01

    on anodized aluminum oxide ( AAO ) templates[1,2] with further tailored nano-magnet configurations will also be discussed. For evaluation of ultra...North Carolina State University, Raleigh, North Carolina. Unlike other nanoporous membranes , nanoporous alumina (also known as anodized aluminum oxide ... oxide ( AAO ) membrane is used as the template with gallium indium (Gain) as a seed layer. After fabrication, the nanowires are removed from the template

  11. Evidence for nanoscale two-dimensional Co clusters in CoPt{sub 3} films with perpendicular magnetic anisotropy

    Cross, J O [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Newville, M [Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 (United States); Maranville, B B; Hellman, F [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States); Bordel, C [Department of Physics, University of California at Berkeley, CA 94720 (United States); Harris, V G, E-mail: cbordel@berkeley.ed [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2010-04-14

    The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt{sub 3} alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt{sub 3} films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt{sub 3} alloy films, and establish a length scale on the order of 10 A for the Co clusters.

  12. Synthesis and magnetic properties of size-selected CoPt nanoparticles

    Tournus, F.; Blanc, N.; Tamion, A.; Hillenkamp, M.; Dupuis, V.

    2011-01-01

    CoPt nanoparticles are widely studied, in particular for their potentially very high magnetic anisotropy. However, their magnetic properties can differ from the bulk ones and they are expected to vary with the particle size. In this paper, we report the synthesis and characterization of well-defined CoPt nanoparticle samples produced in ultrahigh vacuum conditions following a physical route: the mass-selected low energy cluster beam deposition technique. This approach relies on an electrostatic deviation of ionized clusters which allows us to easily adjust the particle size, independently from the deposited equivalent thickness (i.e. the surface or volume particle density in a sample). Diluted samples made of CoPt particles, with different diameters, embedded in amorphous carbon are studied by transmission electron microscopy and superconducting interference device magnetometry, which gives access to the magnetic anisotropy energy distribution. We then compare the magnetic properties of two different particle sizes. The results are found to be consistent with an anisotropy constant (including its distribution) which does not evolve with the particle size in the range considered. - Highlights: → Samples of mass-selected CoPt nanoparticles are synthesized by an original physical method. → The magnetic properties of two different particle sizes are compared. → The anisotropy constant (including its dispersion) does not evolve in the range considered. → These results illustrate some invariance properties of ZFC curves.

  13. Size-dependent structure and magnetic properties of DyMnO{sub 3} nanoparticles

    Cai, Xuan; Shi, Lei, E-mail: shil@ustc.edu.cn; Zhou, Shiming; Zhao, Jiyin; Guo, Yuqiao; Wang, Cailin [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-09-14

    The structure and magnetic properties of orthorhombic DyMnO{sub 3} nanoparticles with different particle sizes are investigated in this paper. With decreasing particle size, all the lattice parameters a, b, and c gradually decrease, whereas the orthorhombic distortion increases. Magnetic measurements reveal that the antiferromagnetic interaction of Mn ions is weakened due to the decrease in Mn-O-Mn bond angle. Above a critical field H*, DyMnO{sub 3} undergoes a field-induced metamagnetic transition at 4 K, which is related to the spin reversal of Dy moments. The critical field H* increases monotonically with size reduction, indicating an enhancement of the antiferromagnetic interaction of Dy ions due to the decreased distance between rare earth ions. The magnetization at 4 K and 5 T, i.e., M(4 K, 5 T) shows a non-monotonic variation with particle size d, i.e., M(4 K, 5 T) initially increases with size reduction but decreases again for d < 68 nm. A modified core-shell model, in which the ferromagnetic ordering (Dy magnetic structure) and antiferromagnetic ordering (Mn magnetic structure) coexist in the core, is proposed to explain this behavior.

  14. Size-dependent structure and magnetic properties of DyMnO3 nanoparticles

    Cai, Xuan; Shi, Lei; Zhou, Shiming; Zhao, Jiyin; Guo, Yuqiao; Wang, Cailin

    2014-01-01

    The structure and magnetic properties of orthorhombic DyMnO 3 nanoparticles with different particle sizes are investigated in this paper. With decreasing particle size, all the lattice parameters a, b, and c gradually decrease, whereas the orthorhombic distortion increases. Magnetic measurements reveal that the antiferromagnetic interaction of Mn ions is weakened due to the decrease in Mn-O-Mn bond angle. Above a critical field H*, DyMnO 3 undergoes a field-induced metamagnetic transition at 4 K, which is related to the spin reversal of Dy moments. The critical field H* increases monotonically with size reduction, indicating an enhancement of the antiferromagnetic interaction of Dy ions due to the decreased distance between rare earth ions. The magnetization at 4 K and 5 T, i.e., M(4 K, 5 T) shows a non-monotonic variation with particle size d, i.e., M(4 K, 5 T) initially increases with size reduction but decreases again for d < 68 nm. A modified core-shell model, in which the ferromagnetic ordering (Dy magnetic structure) and antiferromagnetic ordering (Mn magnetic structure) coexist in the core, is proposed to explain this behavior.

  15. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal

  16. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  17. Nanoscale thermal transport. II. 2003–2012

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2013-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of th...

  18. Size effect on local magnetic moments in ferrimagnetic molecular complexes: an XMCD investigation

    Champion, G.; Villain, F.; Cartier dit Moulin, C.; Arrio, M.-A.; Sainctavit, P.; Zacchigna, M.; Zangrando, M.; Finazzi, M.; Parmigiani, F.; Mathoniere, C.

    2003-01-01

    Molecular chemistry allows to synthesize new magnetic systems with controlled properties such as size, magnetization or anisotropy. The theoretical study of the magnetic properties of small molecules (from 2 to 10 metallic cations per molecule) predicts that the magnetization at saturation of each ion does not reach the expected value for uncoupled ions when the magnetic interaction is antiferromagnetic. The quantum origin of this effect is due to the linear combination of several spin states building the wave function of the ground state and clusters of finite size and of finite spin value exhibit this property. When single crystals are available, spin densities on each atom can be experimentally given by polarized neutron diffraction (PND) experiments. In the case of bimetallic MnCu powdered samples, we will show that x-ray magnetic circular dichroism (XMCD) spectroscopy can be used to follow the evolution of the spin distribution on the Mn II and Cu II sites when passing from a dinuclear MnCu unit to a one dimensional (MnCu) n compound. (author)

  19. An experimental comparison of path planning techniques applied to micro-sized magnetic agents

    Scheggi, Stefano; Misra, Sarthak; Haliyo, S.; Sill, A.; Regnier, S.; Fatikow, S.

    2016-01-01

    Micro-sized agents can be used in applications suchas microassembly, micromanipulation, and minimally invasive surgeries. Magnetic agents such as paramagnetic microparticles can be controlled to deliver pharmaceutical agents to difficult-toaccess regions within the human body. In order to

  20. Half Size Reduction of DC Output Filter Inductors With the Saturation-Gap Magnetic Bias Topology

    Aguilar, Andres Revilla; Munk-Nielsen, Stig

    2016-01-01

    Filter inductors are probably one of the heaviest and more voluminous components found in power supplies of most electronic devices. A known technique to reduce the inductor size in dc applications is the use of permanent magnet inductors (PMIs). One of the latest developed biasing topologies...

  1. Carbon-coated NiPt, CoPt nanoalloys: size control and magnetic properties

    El-Gendy, A.A. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Hampel, S.; Leonhardt, A.; Khavrus, V.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Klingeler, R. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-07-01

    Controlled synthesis of magnetic nanoparticles with well-defined size and composition is always a challenge in material-based nanoscience. Here, we apply the high pressure chemical vapour deposition technique (HPCVD) to obtain carbon-shielded magnetic alloy nanoparticles under control of the particle size. Carbon encapsulated NiPt, CoPt (NiPt rate at C, CoPt rate at C) nanoalloys were synthesized by means of HPCVD starting from sublimating appropriate metal-organic precursors. Structural characterization by means of high resolution transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction indicated the formation of coated bimetallic Ni{sub x}Pt{sub 100-x} and CoxPt{sub 100-x} nanoparticles. Adjusting the sublimation temperature of the different precursors allowed tuning the core sizes with small size distribution. In addition, detailed studies of the magnetic properties are presented. AC magnetic heating studies imply the potential of the coated nanoalloys for hyperthermia therapy.

  2. Geometric size effect on the extrinsic Gilbert damping in laterally confined magnetic structures

    Song, Hyon-Seok [Department of Emerging Materials Science, DGIST, Daegu 42988 (Korea, Republic of); Lee, Kyeong-Dong [Department of Materials Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of); You, Chun-Yeol [Department of Physics, Inha University, Incheon 22212 (Korea, Republic of); Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of); Hong, Jung-Il, E-mail: jihong@dgist.ac.kr [Department of Emerging Materials Science, DGIST, Daegu 42988 (Korea, Republic of); Research Centre for Emerging Materials, DGIST, Daegu 42988 (Korea, Republic of)

    2016-05-15

    We investigated spin dynamics in micron-length scale patterned thin films using the GPU-based micromagnetic simulation program. Spin precessional motion was induced by a Gaussian-pulse magnetic field. The effective Gilbert damping was examined by tracking the precessional motion of the spins, and we found that the damping constant depends on the size and shape of the pattern as well as the externally applied magnetic field. Additional extrinsic damping generated around the edge region was attributed to the dephasing effect between the fundamental spin wave and other spin wave modes. We find that the effect of extrinsic damping could be eliminated by proper adjustments of sample size, external bias field, position, and area of observation. - Highlights: • GPU based micromagnetic simulation of spin dynamics in the micropatterned ferromagnetic films. • Effect of edge regions of the pattern on the Gilbert damping behaviors. • Guide for the analyses of intrinsic magnetic damping in the micron scale patterned films.

  3. Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots

    Tomasello, R.; Guslienko, K. Y.; Ricci, M.; Giordano, A.; Barker, J.; Carpentieri, M.; Chubykalo-Fesenko, O.; Finocchio, G.

    2018-02-01

    Understanding the physical properties of magnetic skyrmions is important for fundamental research with the aim to develop new spintronic device paradigms where both logic and memory can be integrated at the same level. Here, we show a universal model based on the micromagnetic formalism that can be used to study skyrmion stability as a function of magnetic field and temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that magnetic skyrmions with a small radius—compared to the dot radius—are always metastable, while large radius skyrmions form a stable ground state. The change of energy profile determines the weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature and/or field.

  4. A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry

    Dolgovskiy, V. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Lebedev, V., E-mail: victor.lebedev@unifr.ch [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Colombo, S.; Weis, A. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Michen, B.; Ackermann-Hirschi, L. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Petri-Fink, A. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Chemistry Department, University of Fribourg, CH-1700 Fribourg (Switzerland)

    2015-04-01

    The discrimination of immobilised superparamagnetic iron oxide nanoparticles (SPIONs) against SPIONs in fluid environments via their magnetic relaxation behaviour is a powerful tool for bio-medical imaging. Here we demonstrate that a gradiometer of laser-pumped atomic magnetometers can be used to record accurate time series of the relaxing magnetic field produced by pre-polarised SPIONs. We have investigated dry in vitro maghemite nanoparticle samples with different size distributions (average radii ranging from 14 to 21 nm) and analysed their relaxation using the Néel–Brown formalism. Fitting our model function to the magnetorelaxation (MRX) data allows us to extract the anisotropy constant K and the saturation magnetisation M{sub S} of each sample. While the latter was found not to depend on the particle size, we observe that K is inversely proportional to the (time- and size-) averaged volume of the magnetised particle fraction. We have identified the range of SPION sizes that are best suited for MRX detection considering our specific experimental conditions and sample preparation technique. - Highlights: • We studied magnetorelaxation of magnetic nanoparticles using atomic magnetometers. • We show that atomic magnetometers yield high precision MRX data. • The observed magnetorelaxation is well described by the moment superposition model. • Model fits allow extraction of nanoparticle material parameters of six samples. • All samples exhibit an unexpected size-dependent anisotropy constant.

  5. The effect of magnet size on the levitation force and attractive force of single-domain YBCO bulk superconductors

    Yang, W M; Chao, X X; Bian, X B; Liu, P; Feng, Y; Zhang, P X; Zhou, L

    2003-01-01

    The levitation forces between a single-domain YBCO bulk and several magnets of different sizes have been measured at 77 K to investigate the effect of the magnet size on the levitation force. It is found that the levitation force reaches a largest (peak) value when the size of the magnet approaches that of the superconductor when the other conditions are fixed. The absolute maximum attractive force (in the field-cooled state) increases with the increasing of the magnet size, and is saturated when the magnet size approaches that of the superconductor. The maximum attractive force in the field-cooled (FC) state is much higher than that of the maximum attractive force in the zero field-cooled (ZFC) state. The results indicate that the effects of magnetic field distribution on the levitation force have to be considered during the designing and manufacturing of superconducting devices

  6. Iron oxide nanoparticles: the Influence of synthesis method and size on composition and magnetic properties

    Carvalho, M.D.; Henriques, F.; Ferreira, L.P.; Godinho, M.; Cruz, M.M.

    2013-01-01

    Iron oxide nanoparticles with mean diameter ranging from 7 to 20 nm were synthesized using two routes: the precipitation method in controlled atmosphere and a reduction–precipitation method under air, in some cases followed by a hydrothermal treatment. The smallest nanoparticles were obtained by the reduction–precipitation method. In order to establish the composition of the iron oxide nanoparticles and its relation with size, the morphological, structural and magnetic properties of the prepared samples were investigated using X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and SQUID magnetometry. The results allow to conclude that the nanoparticles can be essentially described as Fe 3−x O 4 , x decreasing with the particle size increase. The composition and magnetic behavior of the synthesized iron oxide nanoparticles are directly related with their size. The overall results are compatible with a core@shell structure model, where a magnetite core is surrounded by an oxidized magnetite layer (labeled as maghemite), the magnetite core dimension depending on the average particle size. - Graphical abstract: TEM images and Mössbauer spectroscopy spectra of Fe 3−x O 4 samples with different sizes. Highlights: ► Fe 3−x O 4 nanoparticles with a mean size between 7 and 20 nm were synthesized. ► The smallest nanoparticles were obtained by a reduction precipitation method, under air. ► The increase of particles size was succeeded using a hydrothermal treatment at 150 °C. ► The magnetic properties of the nanoparticles are directly related with their size

  7. Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study

    Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.

    2004-05-01

    The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.

  8. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  9. Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples

    Lisboa-Filho, P N; Deimling, C V; Ortiz, W A

    2010-01-01

    In this contribution superconducting specimens of YBa 2 Cu 3 O 7-δ were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.

  10. Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples

    Lisboa-Filho, P N [UNESP - Universidade Estadual Paulista, Grupo de Materiais Avancados, Departamento de Fisica, Bauru (Brazil); Deimling, C V; Ortiz, W A, E-mail: plisboa@fc.unesp.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos (Brazil)

    2010-01-15

    In this contribution superconducting specimens of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.

  11. Magnetic properties of nanocrystalline La1-xMnO3+δ manganites: size effects

    Markovich, V; Fita, I; Mogilyansky, D; Wisniewski, A; Puzniak, R; Titelman, L; Vradman, L; Herskowitz, M; Gorodetsky, G

    2007-01-01

    The magnetic properties of nanocrystalline manganites La 1-x MnO 3+δ with particle size of 20 (LMO20), 25 (LMO25), and 30 nm (LMO30), prepared by the citrate method, have been investigated in the temperature range 5-320 K, magnetic field up to 90 kOe and under quasi-hydrostatic pressures up to 14.5 kbar. The studies involve sequential zero-field-cooled magnetization (M) measurements followed by magnetization measurements during cooling in the same magnetic field (H) and complementary measurements of ac susceptibility. Additional measurements of M versus H were carried out at ambient and applied pressures. All nanoparticles exhibit a paramagnetic to ferromagnetic transition (PFT) at a Curie temperature T C >200 K. It was found that the relative volume of the ferromagnetic phase increases for larger particle size and approaches a value of about 93% for LMO30. The real part of the ac susceptibility of sample LMO20 exhibits strong frequency dependence in a wide temperature range below T C , whereas for sample LMO30 only relatively weak frequency dependence was observed. The magnetization of sample LMO30 exhibits a PFT of second order; the type of transition could not be established for the smaller particles. It was found that an applied pressure enhances the T C of La 1-x MnO 3+δ nanoparticles with a pressure coefficient of dT C /dP∼1.9 K kbar -1 for LMO20 and dT C /dP∼1.4 K kbar -1 for LMO25 and LMO30 samples. Peculiar magnetic memory effects observed for sample LMO20 are discussed

  12. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  13. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment

  14. Magnetophoresis behaviour at low gradient magnetic field and size control of nickel single core nanobeads

    Benelmekki, M., E-mail: benelmekki@fisica.uminho.p [Centro de Fisica, Universidade do Minho, Braga (Portugal); Montras, A. [Sepmag Tecnologies, Parc Tecnologic del Valles, Barcelona (Spain); Martins, A.J.; Coutinho, P.J.G. [Centro de Fisica, Universidade do Minho, Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Atlanta, GA (United States)

    2011-08-15

    Magnetic separation of organic compounds, proteins, nucleic acids and other biomolecules, and cells from complex reaction mixtures is becoming the most suitable solution for large production in bioindustrial purification and extraction processes. Optimal magnetic properties can be achieved by the use of metals. However, they are extremely sensitive to oxidation and degradation under atmospheric conditions. In this work Ni nanoparticles are synthesised by conventional solution reduction process with the addition of a non-ionic surfactant as a surface agent. The nanoparticles were surfacted in citric acid and then coated with silica to form single core Ni nanobeads. A magnetophoresis study at different magnetic field gradients and at the different steps of synthesis route was performed using Horizontal Low Gradient Magnetic Field (HLGMF) systems. The reversible aggregation times are reduced to a few seconds, allowing a very fast separation process. - Research highlights: Monodispersed single core Ni-silica core-shell structures were prepared. Control of Ni nanoparticles size was achieved using a non-ionic surfactant. Magnetophoresis at different magnetic field gradients was monitored. Magnetophoresis at different steps of synthesis route was performed. Attractive magnetic interactions overcome electrostatic repulsions.

  15. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies

    Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rosler, W. [University of Tubingen, Tubingen (Germany). Inst. of Geoscience

    2008-11-15

    Two fly ash samples from a black coal-fired power plant (Bexbach, Germany) were investigated for their magnetic properties, particle structure, grain-size distribution and chemical composition. Grain-size distribution was determined on bulk samples and on magnetic extracts. Magnetic susceptibility of different grain-size fractions was analyzed with respect to the according amount of fractions, high- and low-temperature dependence of magnetic susceptibility and thermal demagnetization of IRM identified magnetite and hematite as magnetic phases. Magnetic spherules were quantitatively extracted from bulk fly ash samples and examined using SEM/EDX analysis. Particle morphology and grain-size analysis on the magnetically extracted material were studied. Individual spherule types were identified and internal structures of selected polished particles were investigated by SEM and EDX analyses. Main element contents of the internal structures which consist of 'magnetite' crystals and 'glassy' matrix were systematically determined and statistically assessed. The chemical data of the micro-scale structures in the magnetic spherules were compared with XRF data from bulk material, revealing the relative element distribution in composed magnetic spherules. Comparison of the bulk sample grain-size (0.5-300 {mu}m) and grain-size spectra from magnetic extracts (1-186.5 {mu}m) shows that strongly magnetic particles mainly occur in the fine fractions of < 63 {mu}m. This study comprises a comprehensive characterization of coal-fired power plant fly ash, using magnetic, chemical, and microscopic methods. The results can serve as reference data for a variety of environmental magnetic studies.

  16. Halbach Effect at the Nanoscale from Chiral Spin Textures.

    Marioni, Miguel A; Penedo, Marcos; Baćani, Mirko; Schwenk, Johannes; Hug, Hans J

    2018-04-11

    Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 μm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 μm × 1 μm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.

  17. Modeling of magnetic fields on a cylindrical surface and associated parameter estimation for development of a size sensor

    Zhang, Song; Rajamani, Rajesh

    2016-01-01

    This paper develops analytical sensing principles for estimation of circumferential size of a cylindrical surface using magnetic sensors. An electromagnet and magnetic sensors are used on a wearable band for measurement of leg size. In order to enable robust size estimation during rough real-world use of the wearable band, three estimation algorithms are developed based on models of the magnetic field variation over a cylindrical surface. The magnetic field models developed include those for a dipole and for a uniformly magnetized cylinder. The estimation algorithms used include a linear regression equation, an extended Kalman filter and an unscented Kalman filter. Experimental laboratory tests show that the size sensor in general performs accurately, yielding sub-millimeter estimation errors. The unscented Kalman filter yields the best performance that is robust to bias and misalignment errors. The size sensor developed herein can be used for monitoring swelling due to fluid accumulation in the lower leg and a number of other biomedical applications. (paper)

  18. Film size-dependent voltage-modulated magnetism in multiferroic heterostructures

    Hu, J.-M.; Shu, L.; Li, Z.; Gao, Y.; Shen, Y.; Lin, Y. H.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    The electric-voltage-modulated magnetism in multiferroic heterostructures, also known as the converse magnetoelectric (ME) coupling, has drawn increasing research interest recently owing to its great potential applications in future low-power, high-speed electronic and/or spintronic devices, such as magnetic memory and computer logic. In this article, based on combined theoretical analysis and experimental demonstration, we investigate the film size dependence of such converse ME coupling in multiferroic magnetic/ferroelectric heterostructures, as well as exploring the interaction between two relating coupling mechanisms that are the interfacial strain and possibly the charge effects. We also briefly discuss some issues for the next step and describe new device prototypes that can be enabled by this technology. PMID:24421375

  19. FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)

    Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim

    2017-02-01

    Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.

  20. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors

    Larsen, Esben Kjær Unmack; Nielsen, T.; Wittenborn, T.

    2009-01-01

    following intravenous injection. Biocompatible iron oxide MNPs coated with PEG were prepared by replacing oleic acid with a biocompatible and commercially available silane-PEG to provide an easy and effective method for chemical coating. The colloidal stable PEGylated MNPs were magnetically separated...... into two distinct size subpopulations of 20 and 40 nm mean diameters with increased phagocytic uptake observed for the 40 nm size range in vitro. MRI detection revealed greater iron accumulation in murine tumors for 40 nm nanoparticles after intravenous injection. The enhanced MRI contrast of the larger...

  1. Investigation of doping and particle size effect on structural, magnetic and magnetoresistance properties of manganites

    M. Hakimi

    2008-06-01

    Full Text Available  In this paper after introduction of manganites, we have studied the effect of particle size and doping on structural, magnetic and magnetoresistance of LSMO manganite samples. The magnetoresistance measurements show that, by decreasing the particle size LFMR increases. Also the results show that the LFMR increases at low doping levels and decreases at high doping levels. The spin dependent tunneling and scattering at the grain boundaries is the origin of increasing the LFMR at low doping levels. Also the substitution of impurity ions at Mn sites and subsequently weaking of double exchange is responsible for decreasing of LFMR at high doping level.

  2. Experimental investigation of a small-sized betatron with superposed magnetization

    Kas'yanov, V.A.; Rychkov, M.V.; Filimonov, A.A.; Furman, Eh.G.; Chakhlov, V.L.; Chertov, A.S.; Shtejn, M.M.

    2001-01-01

    The aim of the paper is to study possibilities of small-sized betatrons (SSB) with direct current superposed magnetization (DSM). It is shown that DSM permits to decrease the SSB weight and cost of the electromagnet and capacitor storage and to shape the prolonged beam dump. It is noted that the DSM realization has the most expediency in SSB operating in a short-time mode [ru

  3. Systems engineering at the nanoscale

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  4. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Llera, María [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Codnia, Jorge [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF-CONICET, Buenos Aires (Argentina); Jorge, Guillermo A., E-mail: gjorge@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina)

    2015-06-15

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized.

  5. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-01-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized

  6. EXAFS and XANES analysis of oxides at the nanoscale

    Alexei Kuzmin

    2014-11-01

    Full Text Available Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.. As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs and iron oxide nanoparticles.

  7. Effect of weak magnetic field on the grain size of electrodeposited nickel

    Ansari, M.S.; Gul, N.

    2007-01-01

    Effect of weak magnetic field on the electro-deposition of nickel onto copper electrode has been investigated. The working conditions were optimized through adjustment of cathodic current density (CCD), deposition time, bath temperature and pH of the medium. For electro-deposition in the absence of magnetic field, the optimum conditions comprised of pH = 4.0+- 0.5, average CCD = 22.5 +- 0.5 mA cm/sup -2/ and bath temperature in the range from 25 to 30 degree C. The same conditions were maintained for the electrodeposition while applying magnetic field of 0.75 kG. The morphological features of the Ni-deposits on copper cathode were compared for the two cases. The applied magnetic field not only enhanced the amount of nickel deposition but also improved the quality of the deposit. Surface morphology of the electro-deposited nickel has been monitored using scanning electron microscopy (SEM); the preliminary investigation has shown that the grain size decreased with the applied magnetic field case. One possible explanation to this behavior is the convection flow of cations close to the electrode surface induced by the Lorentz force which also influences the ion-migration. (author)

  8. Variations in the size of focal nodular hyperplasia on magnetic resonance imaging.

    Ramírez-Fuentes, C; Martí-Bonmatí, L; Torregrosa, A; Del Val, A; Martínez, C

    2013-01-01

    To evaluate the changes in the size of focal nodular hyperplasia (FNH) during long-term magnetic resonance imaging (MRI) follow-up. We reviewed 44 FNHs in 30 patients studied with MRI with at least two MRI studies at least 12 months apart. We measured the largest diameter of the lesion (inmm) in contrast-enhanced axial images and calculated the percentage of variation as the difference between the maximum diameter in the follow-up and the maximum diameter in the initial study. We defined significant variation in size as variation greater than 20%. We also analyzed predisposing hormonal factors. The mean interval between the two imaging studies was 35±2 months (range: 12-94). Most lesions (80%) remained stable during follow-up. Only 9 of the 44 lesions (20%) showed a significant variation in diameter: 7 (16%) decreased in size and 2 (4%) increased, with variations that reached the double of the initial size. The change in size was not related to pregnancy, menopause, or the use of birth control pills or corticoids. Changes in the size of FNHs during follow-up are relatively common and should not lead to a change in the diagnosis. These variations in size seem to be independent of hormonal factors that are considered to predispose. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  9. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  10. Dynamics at the nanoscale

    Stoneham, A.M.; Gavartin, J.L.

    2007-01-01

    However fascinating structures may be at the nanoscale, time-dependent behaviour at the nanoscale has far greater importance. Some of the dynamics is random, with fluctuations controlling rate processes and making thermal ratchets possible. Some of the dynamics causes the transfer of energy, of signals, or of charge. Such transfers are especially efficiently controlled in biological systems. Other dynamical processes occur when we wish to control the nanoscale, e.g., to avoid local failures of gate dielectrics, or to manipulate structures by electronic excitation, to use spin manipulation in quantum information processing. Our prime purpose is to make clear the enormous range and variety of time-dependent nanoscale phenomena

  11. Finite-size, chemical-potential and magnetic effects on the phase transition in a four-fermion interacting model

    Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2017-04-15

    We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)

  12. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen

    Marín-Suárez, Marta; Arias-Martos, María C.; Fernández-Sánchez, Jorge F.; Fernández-Gutiérrez, Alberto; Galeano-Díaz, Teresa

    2013-01-01

    We report on a strategy to model both the size (d) and the polydispersity (PdI) of magnetic oxygen-sensitive nanoparticles with a typical size of 200 nm in order to increase the surface area. The strategy is based on experimental design and Response Surface Methodology. Nanoparticles were prepared by mini emulsion solvent evaporation of solutions of poly(styrene-co-maleic anhydride). Features of this strategy include (1) a quick selection of the most important variables that govern d and PdI; (2) a better understanding of the parameters that affect the performance of the polymer; and (3) optimized conditions for the synthesis of nanoparticles of targeted d and PdI. The results were used to produce nanoparticles in sizes that range from 100 to 300 nm and with small polydispersity. The addition of a platinum porphyrin complex that acts as a luminescent probe for oxygen and of magnetite (Fe 3 O 4 ) to the polymeric particles, did not affect d and PdI, thus demonstrating that this strategy simplifies their synthesis. The resulting luminescent and magnetic sensor nanoparticles respond to dissolved oxygen with sensitivity (Stern-Volmer constant) of around 35 bar −1 . (author)

  13. Nanoscale temperature sensing using single defects in diamond

    Philipp Neumann

    2014-01-01

    We experimentally demonstrate a novel nanoscale temperature sensing technique that is based on single atomic defects in diamonds, namely nitrogen vacancy color centers. Sample sizes range from millimeter down to a few tens of nanometers. In particular nanodiamonds were used as dispersed probes to acquire spatially resolved temperature profiles utilizing the sensitivity of the optically accessible electron spin level structure we achieve a temperature noise floor of 5mK/Mhz for bulk diamond and 130mK/Mhz for nanodiamonds and accuracies of 1mK. To this end we have developed a new decoupling technique in order to suppress to otherwise limiting effect of magnetic field fluctuations. In addition, high purity isotopically enriched 12C artificial diamonds is used. The high sensitivity to temperature changes adds to the well studied sensitivities to magnetic and electric fields and makes NV diamond a multipurpose nanoprobe. (author)

  14. Light extinction method for diagnostics of particles sizes formed in magnetic field

    Myshkin, Vyacheslav; Izhoykin, Dmitry; Grigoriev, Alexander; Gamov, Denis; Leonteva, Daria

    2018-03-01

    The results of laser diagnostics of dispersed particles formed upon cooling of Zn vapor are presented. The radiation attenuation in the wavelength range 420-630 nm with a step of 0.3 nm was registered. The attenuation coefficients spectral dependence was processed using known algorithms for integral equation solving. The 10 groups of 8 attenuation coefficients were formed. Each group was processed taking with considering of previous decisions. After processing of the 10th group of data, calculations were repeated from the first one. Data of the particles sizes formed in a magnetic field of 0, 44 and 76 mT are given. A model of physical processes in a magnetic field is discussed.

  15. Electrochemical magneto-immunosensing of Salmonella based on nano and micro-sized magnetic particles

    Brandão, D; Liébana, S; Alegret, S; Pividori, M I; Campoy, S; Cortés, P

    2013-01-01

    A very simple and rapid method for the detection of S. enterica is reported. In this approach, the bacteria were captured and preconcentrated with magnetic particles through an immunological reaction. A second polyclonal antibody labeled with peroxidase was used for the electrochemical immunosensing based on a magneto-electrode. Different nano and micro-sized magnetic particles were evaluated in this approach. The 'IMS/m-GEC electrochemical immunosensing' system shows a limit of detection of 5×10 4 and 1×10 4 CFU mL −1 in BHI culturing media when micro and nanoparticles are used respectively. These LOD were achieved in a total assay time of 1 h without any previous culturing preenrichment step. Moreover, this system was able to clearly distinguish between food pathogenic bacteria such as S. enterica and E. coli. The features of this approach were discussed and compared with conventional culture methods.

  16. Effect of Particle Size on the Magnetic Properties of Ni Nanoparticles Synthesized with Trioctylphosphine as the Capping Agent

    Toshitaka Ishizaki

    2016-09-01

    Full Text Available Magnetic cores of passive components are required to have low hysteresis loss, which is dependent on the coercive force. Since it is well known that the coercive force becomes zero at the superparamagnetic regime below a certain critical size, we attempted to synthesize Ni nanoparticles in a size-controlled fashion and investigated the effect of particle size on the magnetic properties. Ni nanoparticles were synthesized by the reduction of Ni acetylacetonate in oleylamine at 220 °C with trioctylphosphine (TOP as the capping agent. An increase in the TOP/Ni ratio resulted in the size decrease. We succeeded in synthesizing superparamagnetic Ni nanoparticles with almost zero coercive force at particle size below 20 nm by the TOP/Ni ratio of 0.8. However, the saturation magnetization values became smaller with decrease in the size. The saturation magnetizations of the Ni nanoparticles without capping layers were calculated based on the assumption that the interior atoms of the nanoparticles were magnetic, whereas the surface-oxidized atoms were non-magnetic. The measured and calculated saturation magnetization values decreased in approximately the same fashion as the TOP/Ni ratio increased, indicating that the decrease could be mainly attributed to increases in the amounts of capping layer and oxidized surface atoms.

  17. Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations

    Ortiz, Ada; Hansteen, Viggo H.; Van der Voort, Luc Rouppe [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Bellot Rubio, Luis R. [Instituto de Astrofísica de Andalucía (CSIC), Apdo. 3040, E-18080 Granada (Spain); De la Cruz Rodríguez, Jaime, E-mail: ada@astro.uio.no [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s{sup –1} and expands at a horizontal speed of 4 km s{sup –1}. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s{sup –1}. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log τ = –2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection

  18. Direct observation of enhanced magnetism in individual size- and shape-selected 3 d transition metal nanoparticles

    Kleibert, Armin; Balan, Ana; Yanes, Rocio; Derlet, Peter M.; Vaz, C. A. F.; Timm, Martin; Fraile Rodríguez, Arantxa; Béché, Armand; Verbeeck, Jo; Dhaka, R. S.; Radovic, Milan; Nowak, Ulrich; Nolting, Frithjof

    2017-05-01

    Magnetic nanoparticles are critical building blocks for future technologies ranging from nanomedicine to spintronics. Many related applications require nanoparticles with tailored magnetic properties. However, despite significant efforts undertaken towards this goal, a broad and poorly understood dispersion of magnetic properties is reported, even within monodisperse samples of the canonical ferromagnetic 3 d transition metals. We address this issue by investigating the magnetism of a large number of size- and shape-selected, individual nanoparticles of Fe, Co, and Ni using a unique set of complementary characterization techniques. At room temperature, only superparamagnetic behavior is observed in our experiments for all Ni nanoparticles within the investigated sizes, which range from 8 to 20 nm. However, Fe and Co nanoparticles can exist in two distinct magnetic states at any size in this range: (i) a superparamagnetic state, as expected from the bulk and surface anisotropies known for the respective materials and as observed for Ni, and (ii) a state with unexpected stable magnetization at room temperature. This striking state is assigned to significant modifications of the magnetic properties arising from metastable lattice defects in the core of the nanoparticles, as concluded by calculations and atomic structural characterization. Also related with the structural defects, we find that the magnetic state of Fe and Co nanoparticles can be tuned by thermal treatment enabling one to tailor their magnetic properties for applications. This paper demonstrates the importance of complementary single particle investigations for a better understanding of nanoparticle magnetism and for full exploration of their potential for applications.

  19. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.

  20. Analyzing Damping Vibration Methods of Large-Size Space Vehicles in the Earth's Magnetic Field

    G. A. Shcheglov

    2016-01-01

    Full Text Available It is known that most of today's space vehicles comprise large antennas, which are bracket-attached to the vehicle body. Dimensions of reflector antennas may be of 30 ... 50 m. The weight of such constructions can reach approximately 200 kg.Since the antenna dimensions are significantly larger than the size of the vehicle body and the points to attach the brackets to the space vehicles have a low stiffness, conventional dampers may be inefficient. The paper proposes to consider the damping antenna in terms of its interaction with the Earth's magnetic field.A simple dynamic model of the space vehicle equipped with a large-size structure is built. The space vehicle is a parallelepiped to which the antenna is attached through a beam.To solve the model problems, was used a simplified model of Earth's magnetic field: uniform, with intensity lines parallel to each other and perpendicular to the plane of the antenna.The paper considers two layouts of coils with respect to the antenna, namely: a vertical one in which an axis of magnetic dipole is perpendicular to the antenna plane, and a horizontal layout in which an axis of magnetic dipole lies in the antenna plane. It also explores two ways for magnetic damping of oscillations: through the controlled current that is supplied from the power supply system of the space vehicle, and by the self-induction current in the coil. Thus, four objectives were formulated.In each task was formulated an oscillation equation. Then a ratio of oscillation amplitudes and their decay time were estimated. It was found that each task requires the certain parameters either of the antenna itself, its dimensions and moment of inertia, or of the coil and, respectively, the current, which is supplied from the space vehicle. In each task for these parameters were found the ranges, which allow us to tell of efficient damping vibrations.The conclusion can be drawn based on the analysis of tasks that a specialized control system

  1. Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands

    Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.

    2018-06-01

    Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.

  2. Metallic Magnetic Nanoparticles

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  3. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer

    Gruber, Ines V; Rueckert, Miriam; Kagan, Karl O; Staebler, Annette; Siegmann, Katja C; Hartkopf, Andreas; Wallwiener, Diethelm; Hahn, Markus

    2013-01-01

    Tumour size in breast cancer influences therapeutic decisions. The purpose of this study was to evaluate sizing of primary breast cancer using mammography, sonography and magnetic resonance imaging (MRI) and thereby establish which imaging method most accurately corresponds with the size of the histological result. Data from 121 patients with primary breast cancer were analysed in a retrospective study. The results were divided into the groups “ductal carcinoma in situ (DCIS)”, invasive ductal carcinoma (IDC) + ductal carcinoma in situ (DCIS)”, “invasive ductal carcinoma (IDC)”, “invasive lobular carcinoma (ILC)” and “other tumours” (tubular, medullary, mucinous and papillary breast cancer). The largest tumour diameter was chosen as the sizing reference in each case. Bland-Altman analysis was used to determine to what extent the imaging tumour size correlated with the histopathological tumour sizes. Tumour size was found to be significantly underestimated with sonography, especially for the tumour groups IDC + DCIS, IDC and ILC. The greatest difference between sonographic sizing and actual histological tumour size was found with invasive lobular breast cancer. There was no significant difference between mammographic and histological sizing. MRI overestimated non-significantly the tumour size and is superior to the other imaging techniques in sizing of IDC + DCIS and ILC. The histological subtype should be included in imaging interpretation for planning surgery in order to estimate the histological tumour size as accurately as possible

  4. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  5. The role of pH on the particle size and magnetic consequence of cobalt ferrite

    Safi, Rohollah, E-mail: r.safi@gmx.com; Ghasemi, Ali; Shoja-Razavi, Reza; Tavousi, Majid

    2015-12-15

    Cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with various size distributions were prepared by a chemical co-precipitation method at different pH condition from 8 to 13. The structural characterizations of the prepared samples were carried out using powder X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope. The XRD results revealed that a single cubic CoFe{sub 2}O{sub 4} phase with the average crystallite sizes of about 5–24 nm were formed. Cation distribution occupancy in tetrahedral and octahedral sites were estimated by employing Rietveld refinement technique. The results showed that the whole series of samples contain a partial inverse spinel structure. FTIR measurements between 370 and 4000 cm{sup −1} confirmed the intrinsic cation vibrations of spinel structure of the samples. The room temperature magnetic properties of the samples have been examined using vibrating sample magnetometer. It is found that with increasing the pH of reaction, the magnetization and coercive field could be increased. The sample synthesized at pH~8 and 9 showed superparamagnetic behavior and highest coercive field up to 650 Oe is attributed to the sample synthesized with pH~13. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were prepared by co-precipitation method at different pH. • Τhe single cubic phase with the average crystallite sizes of 5–24 nm were formed. • Cation distribution in tetrahedral and octahedral sites was estimated using XRD data. • The sample synthesized at pH~8 and 9 showed superparamagnetic behavior. • The crystallinity and crystallite size were increased by increasing the pH.

  6. The role of pH on the particle size and magnetic consequence of cobalt ferrite

    Safi, Rohollah; Ghasemi, Ali; Shoja-Razavi, Reza; Tavousi, Majid

    2015-01-01

    Cobalt ferrite (CoFe 2 O 4 ) nanoparticles with various size distributions were prepared by a chemical co-precipitation method at different pH condition from 8 to 13. The structural characterizations of the prepared samples were carried out using powder X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope. The XRD results revealed that a single cubic CoFe 2 O 4 phase with the average crystallite sizes of about 5–24 nm were formed. Cation distribution occupancy in tetrahedral and octahedral sites were estimated by employing Rietveld refinement technique. The results showed that the whole series of samples contain a partial inverse spinel structure. FTIR measurements between 370 and 4000 cm −1 confirmed the intrinsic cation vibrations of spinel structure of the samples. The room temperature magnetic properties of the samples have been examined using vibrating sample magnetometer. It is found that with increasing the pH of reaction, the magnetization and coercive field could be increased. The sample synthesized at pH~8 and 9 showed superparamagnetic behavior and highest coercive field up to 650 Oe is attributed to the sample synthesized with pH~13. - Highlights: • CoFe 2 O 4 nanoparticles were prepared by co-precipitation method at different pH. • Τhe single cubic phase with the average crystallite sizes of 5–24 nm were formed. • Cation distribution in tetrahedral and octahedral sites was estimated using XRD data. • The sample synthesized at pH~8 and 9 showed superparamagnetic behavior. • The crystallinity and crystallite size were increased by increasing the pH

  7. Magnetic properties of different grain-sized particles of sediments from the Okinawa Trough and their relationships to sedimentary environment

    LI Ping; LI Peiying; ZHANG Xiaolong; CAO Chengxiao; XU Xingyong; DU Jun; LIU Lejun

    2005-01-01

    Multiple magnetic parameters were measured for nine different grain-sized fractions separated from the sediment samples that are representatives of four different sedimentary environments of the Okinawa Trough. Based on the measured results, the contributions of different grain-sized particles to total magnetic susceptibility of bulk sediments, the magnetic mineral assemblage and magnetic domain state as well as their relationships to sedimentary environment were discussed. Our research shows that the magnetic mineral is dominated by magnetite with a small amount of hematite and is primarily in pseudo-single-domain state. That indicates that the different sedimentary environments in the Okinawa Trough have certain correlation in material provenance. The magnetic minerals enrich in different grain-sized particles in response to different sedimentary environments. The contribution of the grain sizes from coarse to fine to coarse and fine to the magnetic susceptibility from the west to the east is in accordance with terrigenous material transportation from continental shelf of the East China Sea to the Okinawa Trough. It also shows difference in magnetic properties as a result of some environmental factors.

  8. Nanoscale Magnetism in Next Generation Magnetic Nanoparticles

    2018-03-17

    reaction catalyzed by glucose oxidase as shown in the following chemical equations:13-14 glucose + glucose oxidase(ox) → gluconic acid + glucose...Hanyang University (HYU) - Mailing Address : Room 404, Dept. of Material Science & Engineering , Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul... chemical and biological detection and conformal and flexible interfaces with biological systems. DISTRIBUTION A. Approved for public release

  9. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    Yong Yang

    2017-10-01

    Full Text Available The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δz or Δx, for example, 1 or 2 mm, can be generally caused a large deviation.

  10. Enhancement of grain size and crystallinity of thin layers of pentacene grown under magnetic field

    Tabata, Kenichi [Division of Materials Science, Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamamoto, Yohei, E-mail: yamamoto@ims.tsukuba.ac.jp [Division of Materials Science, Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Center for Integrated Research in Fundamental Science and Technology (CiRfSE), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2016-03-31

    Field-effect mobilities (μ) of pentacene films, prepared by a thermal deposition under a magnetic field (H-field), were largely enhanced, in comparison with that prepared without an H-field. Under a perpendicular H-field with respect to the substrate surface, the crystallinity of the edge-on pentacene orientation is enhanced, resulting in the 9-fold enhancement of μ. Furthermore, under parallel H-field with respect to the substrate surface, μ of the pentacene films were 23-fold greater than that prepared without the H-field. The surface morphology studies by atomic force microscopy of the ultra thin films of pentacene clarified that the grain size of the pentacene at the interface with the substrate is larger for films under parallel H-field than that prepared without an H-field. The simple and effective method for enhancing the semiconducting properties of the organic thin films gives high technological impact in its application to organic electronics. - Highlights: • Magnetic-field effect on the crystallinity of pentacene thin films • Magnetic-field effect on the morphology of pentacene thin films • Enhanced field-effect charge carrier mobility of pentacene thin films.

  11. Enhancement of grain size and crystallinity of thin layers of pentacene grown under magnetic field

    Tabata, Kenichi; Yamamoto, Yohei

    2016-01-01

    Field-effect mobilities (μ) of pentacene films, prepared by a thermal deposition under a magnetic field (H-field), were largely enhanced, in comparison with that prepared without an H-field. Under a perpendicular H-field with respect to the substrate surface, the crystallinity of the edge-on pentacene orientation is enhanced, resulting in the 9-fold enhancement of μ. Furthermore, under parallel H-field with respect to the substrate surface, μ of the pentacene films were 23-fold greater than that prepared without the H-field. The surface morphology studies by atomic force microscopy of the ultra thin films of pentacene clarified that the grain size of the pentacene at the interface with the substrate is larger for films under parallel H-field than that prepared without an H-field. The simple and effective method for enhancing the semiconducting properties of the organic thin films gives high technological impact in its application to organic electronics. - Highlights: • Magnetic-field effect on the crystallinity of pentacene thin films • Magnetic-field effect on the morphology of pentacene thin films • Enhanced field-effect charge carrier mobility of pentacene thin films

  12. Nanoscale effects in interdiffusion

    Erdelyi, Z.; Langer, G.A.; Beke, D.L.; Csik, A.

    2007-01-01

    composition profile develops highly asymmetrically but also the stress profile. Moreover, we have also seen that the stress effects usually slow down the intermixing process, and the slowing down is more pronounced in case of asymmetric diffusion. Computer simulations also have shown that on the nanoscale, for strongly composition dependent diffusion coefficients, diffuse interfaces can sharpen rather broaden in completely miscible binary systems during annealing independently of the different kind of stress effects considered. The stress effects influence only the timescale of the process. This phenomenon could provide a useful tool for the improvement of interfaces and offer a way to fabricate of e.g. better Xray or neutron mirrors, microelectronic devices or multilayers with giant magnetic resistance. These phenomena predicted by computer simulations have been proved experimentally as well

  13. Creating nanoscale emulsions using condensation.

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  14. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  15. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  16. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.

    Yang, Kai; Wan, Jianmei; Zhang, Shuai; Tian, Bo; Zhang, Youjiu; Liu, Zhuang

    2012-03-01

    Photothermal therapy as a physical treatment approach to destruct cancer has emerged as an alternative of currently used cancer therapies. Previously we have shown that polyethylene glycol (PEG) functionalized nano-graphene oxide (nGO-PEG) with strong optical absorption in the near-infrared (NIR) region was a powerful photothermal agent for in vivo cancer treatment. In this work, by using ultra-small reduced graphene oxide (nRGO) with non-covalent PEG coating, we study how sizes and surface chemistry affect the in vivo behaviors of graphene, and remarkably improve the performance of graphene-based in vivo photothermal cancer treatment. Owing to the enhanced NIR absorbance and highly efficient tumor passive targeting of nRGO-PEG, excellent in vivo treatment efficacy with 100% of tumor elimination is observed after intravenous injection of nRGO-PEG and the followed 808 nm laser irradiation, the power density (0.15 W/cm(2), 5 min) of which is an order of magnitude lower than that usually applied for in vivo tumor ablation using many other nanomaterials. All mice after treatment survive over a period of 100 days without a single death or any obvious sign of side effect. Our results highlight that both surface chemistry and sizes are critical to the in vivo performance of graphene, and show the promise of using optimized nano-graphene for ultra-effective photothermal treatment, which may potentially be combined with other therapeutic approaches to assist our fight against cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Structure and magnetism of SmCo5 nanoflakes prepared by surfactant-assisted ball milling with different ball sizes

    Nie, Junwu; Han, Xianghua; Du, Juan; Xia, Weixing; Zhang, Jian; Guo, Zhaohui; Yan, Aru; Li, Wei; Ping Liu, J.

    2013-01-01

    Anisotropic magnetic SmCo 5 nanoflakes have been fabricated by surfactant-assisted ball milling (SABM) using hardened steel balls of one of the following sizes: 4, 6.5, 9.5 and 12.7 mm in diameters. The magnetic properties of SmCo 5 particles prepared by SABM with different milling ball sizes in diameters were investigated systematically. It was showed that the nanoflakes milled by amount of small size balls had a higher coercivity and lower anisotropy, i.e., worse grain orientation although in a short milling time while the nanoflakes prepared with same weight of big balls tend to have a lower coercivity, better grain orientation. The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning. The SEM analysis shows that the morphology of nanoflakes prepared with different ball sizes are almost the same when the balls to powder weight ratio is fixed. The different magnetic properties caused by different ball sizes are mainly due to the different microstructure changes, i.e, grain refinement and c-axis orientation, which are demonstrated by X-ray diffraction (XRD) analysis and transmission electron microscope (TEM). Based on the experiments above, a combined milling process was suggested and done to improve magnetic properties as your need. - Highlights: • We fabricated anisotropic magnetic SmCo 5 nanoflakes by surfactant-assisted ball milling (SABM). • We investigated the magnetic properties of SmCo 5 particles systematically. It was showed that the coercivity, high or low, and grain orientation, good or bad, were influenced strongly by balls size. The different magnetisms caused by different ball sizes is mainly due to the different microstructure changes. • The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning

  18. Nanoscale Ionic Liquids

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  19. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Wang, Li; Li, Hongxia; Xiao, Kai; Zhong, Zhihui

    2014-01-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating. (paper)

  20. Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles

    Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Gorodetsky, G.

    2010-09-01

    Magnetic properties of electron-doped La1/3Ca2/3MnO3 manganite nanoparticles with average particle size ranging from 12 to 42 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. Reduction in the particle size suppresses antiferromagnetism and decreases the Néel temperature. In contrast to bulk crystals, the charge ordering does not occur in all studied nanoparticles, while a weak ferromagnetism appears above 200 K. Low temperature magnetic hysteresis loops indicate upon exchange bias effect displayed by horizontal and vertical shifts in field cooled processes. The spontaneous and remanent magnetization at low temperature shows a relatively complex variation with particle size. The size-induced structural/magnetic disorder drives the La1/3Ca2/3MnO3 nanoparticles to a pronounced glassy behavior for the smallest 12 nm particles, as evidenced by large difference between zero field cooled and field cooled magnetization, frequency dependent ac-susceptibility, as well as characteristic slowing down in the spin dynamics. Time evolution of magnetization recorded in magnetic fields after field cooling to low temperatures exhibits pronounced relaxation and a very noisy behavior that may be caused by formation of some collective states. Magnetic properties of the nanoparticle samples are compared with those of La0.2Ca0.8MnO3 nanoparticles. These results shed some light on the coupling between charges and spin degrees of freedom in antiferromagnetic manganite nanoparticles.

  1. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  2. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Chen-Chen Kuo

    2015-08-01

    Full Text Available We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  3. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-01-01

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:26307983

  4. Hysteresis losses of magnetic nanoparticle powders in the single domain size range

    Dutz, S.; Hergt, R.; Muerbe, J.; Mueller, R.; Zeisberger, M.; Andrae, W.; Toepfer, J.; Bellemann, M.E.

    2007-01-01

    Magnetic iron oxide nanoparticle powders were investigated in order to optimise the specific hysteresis losses for biomedical heating applications. Different samples with a mean particle size in the transition range from superparamagnetic to ferromagnetic behaviour (i.e. 10-100 nm) were prepared by two different chemical precipitation routes. Additionally, the influence of milling and annealing on hysteresis losses of the nanoparticles was investigated. Structural investigations of the samples were carried out by X-ray diffraction, measurement of specific surface area, and scanning and transmission electron microscopy. The dependence of hysteresis losses of minor loops on the field amplitude was determined using vibrating sample magnetometry and caloric measurements. For small field amplitudes, a power law was found which changes into saturation at amplitudes well above the coercive field. Maximum hysteresis losses of 6.6 J/kg per cycle were observed for milled powder. For field amplitudes below about 10 kA/m, which are especially interesting for medical and technical applications, hysteresis losses of all investigated powders were at least by one order of magnitude lower than reported for magnetosomes of comparable size

  5. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO{sub 3}

    Hasan, Mehedi, E-mail: mhrizvi@gce.buet.ac.bd; Hakim, M. A.; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Basith, M. A., E-mail: mabasith@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Hossain, Md. Sarowar [S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata, West Bengal 700098 (India); Ahmmad, Bashir [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2016-03-15

    Improvement in magnetic and electrical properties of multiferroic BiFeO{sub 3} in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe{sup 2+} state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO{sub 3} nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO{sub 3}.

  6. The synthesis and properties of nanoscale ionic materials

    Rodriguez, Robert Salgado; Herrer, Rafael; Bourlinos, Athanasios B.; Li, Ruipeng; Amassian, Aram; Archer, Lynden A.; Giannelis, Emmanuel P.

    2010-01-01

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached

  7. Particle size optimization of SrFe12O19 magnetic nanoparticles

    Ahlburg, Jakob

    2015-01-01

    , magnets have been a keystone in the electric era in which we live. Nowadays people carry around magnets in every small electronic device or gadget and magnets are being used as a diagnostic in medicine. [1] This puts a high demand on controlling the magnetic properties. Since the discovery of quantum...

  8. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays

    Nakaiwa, K; Yamada, A; Tashiro, K; Wakiwaka, H

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  9. All-in-all-out magnetic domain size in pyrochlore iridate thin films as probed by local magnetotransport

    Fujita, T. C.; Uchida, M., E-mail: uchida@ap.t.u-tokyo.ac.jp; Kozuka, Y.; Ogawa, S. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Arima, T. [Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2016-01-11

    Pyrochlore iridates have attracted growing attention because of a theoretical prediction of a possible topological semimetal phase originating from all-in-all-out spin ordering. Related to the topological band structure, recent findings of the magnetic domain wall conduction have stimulated investigations of magnetic domain distribution in this system. Here, we investigate the size of magnetic domains in Eu{sub 2}Ir{sub 2}O{sub 7} single crystalline thin films by magnetoresistance (MR) using microscale Hall bars. Two distinct magnetic domains of the all-in-all-out spin structure are known to exhibit linear MR but with opposite signs, which enables us to estimate the ratio of the two domains in the patterned channel. The linear MR for 80 × 60 μm{sup 2} channel is nearly zero after zero-field cooling, suggesting random distribution of domains smaller than the channel size. In contrast, the wide distribution of the value of the linear MR is detected in 2 × 2 μm{sup 2} channel, reflecting the detectable domain size depending on each cooling-cycle. Compared to simulation results, we estimate the average size of a single all-in-all-out magnetic domain as 1–2 μm.

  10. Static and high-frequency magnetic properties of stripe domain structure in a plate of finite sizes

    Mal'ginova, S.D.; Doroshenko, R.A.; Shul'ga, N.V.

    2006-01-01

    A model that enables to carry out self-consistent calculations of the main parameters of stripe domain structure (DS) and at the same time those of properties of domain walls (DW) of a multiple-axis finite (in all directions) ferromagnet depending on the sizes of a sample, material parameters and intensity of a magnetic field is offered. The calculations of the properties of DS (direction of magnetization in domains, widths, ferromagnetic resonance, etc.) are carried out on a computer for plates (1 1 0), rectangular shapes of a cubic ferromagnet with axes of light magnetization along trigonal directions in a magnetic field [-1 1 0]. It is shown, that in plates of different shapes there can be a structure with Neel DW alongside with DS with Bloch DW. Their features are noticeably exhibited, in particular, in different dependence of the number of domains, and also frequencies of a ferromagnetic resonance from a magnetic field

  11. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  12. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  13. Magnetism, chemical bonding and hyperfine properties in the nanoscale antiferromagnet [Fe(O Me){sub 2}(O{sub 2} C C H{sub 2} Cl)]{sub 10}

    Zeng, Z.; Duan, Y.; Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-09-01

    The electronic and magnetic properties of the nanometer-size antiferromagnet (the ferric wheel molecule) are investigated with the first-principles spin-polarized Discrete Variational Method, in the framework of Density Functional theory. Magnetic moments, densities of the states and charge and spin-density maps are obtained. The Moessbauer hyperfine parameters Isomer shift, Quadrupole Splitting and Hyperfine Field are obtained from the calculations and compared to reported experimental values when available. (author). 33 refs., 8 figs., 4 tabs.

  14. The use of magnetic resonance imaging to study the brain size of young children with autism

    Farah Ashrafzadeh

    2016-07-01

    Full Text Available Introduction: Autism spectrum disorder (ASD is a syndrome of social communication deficits and repetitive behaviors or restricted interests. While the impairments associated with ASD tend to deteriorate from childhood into adulthood, it is of critical importance that the syndrome is diagnosed at an early age. One means of facilitating this is through understanding how the brain of people with ASD develops from early childhood. Magnetic resonance imaging (MRI is the method of choice for in vivo and non-invasive investigations of the morphology of the human brain, especially when the subjects are children. In this study, we conducted a systematic review of existing structural MRI studies that have investigated brain size in ASD children of up to 5 years old. Methods: In this study, we systematically reviewed published papers that describe research studies in which the brain size of ASD children has been examined. PubMed and Scopus databases were searched for all relevant original articles that described the use of MRI techniques to study ASD patients who were between 1 and 5 years old. To be included in the review, all studies needed to be cohort and case series that involved at least 10 patients. No time limitations were placed on the searched articles within the inclusion criteria. The exclusion criteria were non-English articles, case reports, and articles that described research involving subjects that were not within the qualifying age range of 1-5 years old.Result: After an initial screening process through which the title, abstracts, and full text of the articles were reviewed to confirm they met the inclusion criteria, a total of 10 relevant articles were studied in depth. All studies found that children with ASD who were within the selected age range had a larger brain size than children without ASD.Discussion: The findings of recent studies indicate that the vast majority of ASD patients exhibit an enlarged brain; however, the extent of

  15. An optimization of robust SMES with specified structure H∞ controller for power system stabilization considering superconducting magnetic coil size

    Ngamroo, Issarachai

    2011-01-01

    Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.

  16. Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-06-01

    Dextran-coated magnetite (Fe3O4) nanoparticles with average particle sizes of 4 and 19 nm were synthesized through in situ and semi-two-step co-precipitation methods, respectively. The experimental results confirm the formation of pure phase of magnetite as well as the presence of dextran layer on the surface of modified magnetite nanoparticles. The results also reveal that both samples have the superparamagnetic behavior. Furthermore, calorimetric measurements show that the dextran-coated Fe3O4 nanoparticles with an average size of 4 nm cannot produce any appreciable heat under a biologically safe alternating magnetic field used in hyperthermia therapy; whereas, the larger ones (average size of 19 nm) are able to increase the temperature of their surrounding medium up to above therapeutic range. In addition, measured specific absorption rate (SAR) values confirm that magnetite nanoparticles with an average size of 19 nm are very excellent candidates for application in magnetic hyperthermia therapy.

  17. Micromagnetic simulation on the dynamic permeability spectrum of micrometer sized magnetic elements

    Liu, Huanhuan; Wang, Qi; Zhang, Huaiwu; Zhong, Zhiyong

    2014-01-01

    The inductance of a thin film inductor with magnetic core is much less than μ'(magnetic core's permeability) times that of inductor without magnetic core due to the complicated magnetic structure in the scaled-down magnetic elements. Therefore, it is very important to optimize the micro-scale magnetic structure for improving the inductance value of the thin film inductor with magnetic core. In this paper, the magnetization dynamics and magnetic structure have been investigated using micromagnetic simulation method, in which the additional internal boundaries are considered. The simulated results show that the permeability of structured micromagnetic core is promoted 32.5% than that of magnetic element without slits. It opens a new way to improve the dynamic high frequency characteristics of micro-scale magnetic element, which can be used in a thin film inductor. - Highlights: • Simulate the magnetic element with dimensions of 2 μm×1 μm×100 nm with slits using micromagnetic simulation method. • The dynamic characteristics of micro-scale magnetic element can be improved when adding appropriate slits. • Give the corresponding area for different resonance frequency

  18. Reproducibility of Ultrasound and Magnetic Resonance Imaging Measurements of Tendon Size

    Brushoej, C.; Henriksen, B.M.; Albrecht-Beste, E.; Hoelmich, P.; Larsen, K.; Bachmann Nielsen, M.

    2006-01-01

    Purpose: To investigate the intra- and inter-tester reproducibility of measurements of the Achilles tendon, tibialis anterior tendon, and the tibialis posterior tendon in football players using ultrasound (US) and magnetic resonance imaging (MRI). Material and Methods: Eleven asymptomatic football players were examined. Using a standardized US scanning protocol, the tendons were examined by two observers with US for thickness, width, and cross-sectional area. One observer conducted the procedure twice. The subjects also underwent an MRI examination, and the assessment of tendon size was conducted twice by two observers. Results: The best reproducibility judged by coefficient of variation (CV) and 95% confidence interval was determined for the Achilles tendon on both US and MRI. The variability of US on measurements on the tibialis anterior and tibialis posterior tendons was less than that when using MRI. In 12 out of 18 measurements, there were systematic differences between observers as judged by one-sided F-test. Conclusion: The reproducibility of the three tendons was limited. Precaution should be taken when looking for minor quantitative changes, i.e., training-induced hypertrophy, and when doing so, the Achilles tendon should be used

  19. Phase diagrams of magnetic state transformations in multiferroic composites controlled by size, shape and interfacial coupling strain

    Qiang Sheng

    2017-10-01

    Full Text Available This work aims to give a comprehensive view of magnetic state stability and transformations in PZT-film/FeGa-dot multiferroic composite systems due to the combining effects of size, shape and interfacial coupling strain. It is found that the stable magnetic state of the FeGa nanodots is not only a function of the size and shape of the nanodot but also strongly sensitive to the interfacial coupling strain modified by the polarization state of PZT film. In particular, due to the large magnetostriction of FeGa, the phase boundaries between different magnetic states (i.e., in-plane/out-of-plane polar states, and single-/multi-vortex states of FeGa nanodots can be effectively tuned by the polarization-mediated strain. Fruitful strain-mediated transformation paths of magnetic states including those between states with different orderings (i.e., one is polar and the other is vortex, as well as those between states with the same ordering (i.e., both are polar or both are vortex have been revealed in a comprehensive view. Our result sheds light on the potential of utilizing electric field to induce fruitful magnetic state transformation paths in multiferroic film-dot systems towards a development of novel magnetic random access memories.

  20. A novel system for rapid measurement of high-frequency magnetic properties of toroidal cores of different sizes

    Derebasi, N; Moses, A J; Fox, D

    2000-01-01

    A novel system for power loss and B-H measurements on toroidal magnetic cores was built to operate up to 200 kHz. Measurement data taken using sophisticated software at 10 MHz sampling rate and 16-bit resolution shows the system is versatile and can be used to test a wide range of core sizes and materials with an error <+-3%.

  1. Comparison of Selvester QRS score with magnetic resonance imaging measured infarct size in patients with ST elevation myocardial infarction

    Carlsen, Esben A; Bang, Lia E; Ahtarovski, Kiril A

    2012-01-01

    Recent studies have shown that the Selvester QRS score is significantly correlated with delayed enhancement-magnetic resonance imaging (DE-MRI) measured myocardial infarct (MI) size in reperfused ST elevation MI (STEMI). This study further tests the hypothesis that Selvester QRS score correlates...

  2. Effects of sub-domain structure on initial magnetization curve and domain size distribution of stacked media

    Sato, S.; Kumagai, S.; Sugita, R.

    2015-01-01

    In this paper, in order to confirm the sub-domain structure in stacked media demagnetized with in-plane field, initial magnetization curves and magnetic domain size distribution were investigated. Both experimental and simulation results showed that an initial magnetization curve for the medium demagnetized with in-plane field (MDI) initially rose faster than that for the medium demagnetized with perpendicular field (MDP). It is inferred that this is because the MDI has a larger number of domain walls than the MDP due to the existence of the sub-domains, resulting in an increase in the probability of domain wall motion. Dispersion of domain size for the MDI was larger than that for the MDP. This is because sub-domains are formed not only inside the domain but also at the domain boundary region, and they change the position of the domain boundary to affect the domain size. - Highlights: • An initial magnetization curve for MDI initially rose faster than that for MDP. • Dispersion of domain size for the MDI was larger than that for the MDP. • Experimental and simulation results can be explained by existence of sub-domains

  3. Traceable nanoscale measurement at NML-SIRIM

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-01-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  4. Traceable nanoscale measurement at NML-SIRIM

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  5. Traceable nanoscale measurement at NML-SIRIM

    Dahlan, Ahmad M.; Abdul Hapip, A. I. [National Metrology Laboratory SIRIM Berhad (NML-SIRIM), Lot PT 4803, Bandar Baru Salak Tinggi, 43900 Sepang (Malaysia)

    2012-06-29

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  6. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul [Department of Chemistry, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Koo, Yong Sung; Jung, Jong Hoon [Department of Physics, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Son, Youn-Suk [Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Jo-Chun [Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of); Department of Environmental Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, HyeKyoung [Department of Chemistry, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Ro, Chul-Un, E-mail: curo@inha.ac.kr [Department of Chemistry, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We examined chemical species of floor dusts and airborne magnetic subway particles collected at underground subway stations. Black-Right-Pointing-Pointer XRD, SEM/EDX, and VSM measurements provided information on their major iron species, which is relatively harmless iron metal. Black-Right-Pointing-Pointer PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. - Abstract: Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 {mu}m size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 {mu}m size fractions collected on railroad ties appeared to be smaller than 10 {mu}m, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 {mu}m, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi

  7. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-01-01

    Highlights: ► We examined chemical species of floor dusts and airborne magnetic subway particles collected at underground subway stations. ► XRD, SEM/EDX, and VSM measurements provided information on their major iron species, which is relatively harmless iron metal. ► PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. - Abstract: Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail–wheel–brake and catenaries–pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount

  8. Optimal Control of Objects on the Micro- and Nano-Scale by Electrokinetic and Electromagnetic Manipulation: for Bio-Sample Preparation, Quantum Information Devices and Magnetic Drug Delivery

    2010-01-01

    frequencies) thus the magneto - static equations are appropriate. These are H j∇ × =   (31) 0B∇ ⋅ =  (32) ( ) ( ) ,o oB H M H Hµ µ χ...degree rotations of 1H  . Let 1u , 2u , 3u and 4u be the applied voltage of each of the four magnets. Then, by the linearity of the magneto -static...Hepatocellular Carcinoma: Regional Therapy with a Magnetic Targeted Carrier Bound to Doxorubicin in a Dual MR Imaging/ Conventional Angiography Suite

  9. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method

    Nejati Kamellia

    2012-03-01

    Full Text Available Abstract Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, vibrating sample magnetometer (VSM and inductively coupled plasma atomic emission spectrometer (ICP-AES techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of

  10. High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling

    Aono, Hiromichi; Ebara, Hiroki; Senba, Ryota; Naohara, Takashi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Watanabe, Yuji

    2012-01-01

    Nano-sized magnetic Y 3 Fe 5 O 12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y 3 Fe 5 O 12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y 3 Fe 5 O 12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mmφ beads). The heat generation ability of the excessively milled Y 3 Fe 5 O 12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mmφ beads, the heat generation ability (W g −1 ) was estimated using a 3.58×10 −4 fH 2 frequency (f/kHz) and the magnetic field (H/kA m −1 ), which is the highest reported value of superparamagnetic materials. - Highlights: ► The nano-sized Y 3 Fe 5 O 12 powder prepared by bead-milling has the highest heat generation ability in an AC magnetic field. ► The heat generation properties are ascribed to an increase in the Néel relaxation of the superparamagnetic material. ► The heat ability (W g −1 ) can be estimated using 3.58×10 −4 fH 2 (f=kHz, H=kA m −1 ). ► This is an expectable material for use in a drug delivery system for the thermal coagulation therapy of cancer tumors.

  11. Size-dependent magnetism in nanocrystals of spin-chain α-CoV2O6

    Shu, H.; Ouyang, Z.W.; Sun, Y.C.; Ruan, M.Y.; Li, J.J.; Yue, X.Y.; Wang, Z.X.; Xia, Z.C.; Rao, G.H.

    2016-01-01

    Magnetization and high-field ESR measurements have been performed to study the magnetism of nanocrystals of α-CoV 2 O 6 , an Ising spin-chain system without triangular lattice but presenting interesting 1/3 magnetization step. The results demonstrated the antiferromagnetic (AFM) enhancement and gradual suppression of the 1/3 magnetization step in nanoparticle samples. Within the framework of core–shell model consisting of the AFM core spins and the uncompensated/disordered shell spins, the AFM enhancement below T N =13 K is a result of enhanced shell disorder with weak ferromagnetism. This AFM enhancement, along with the suppression of saturation magnetization, results in the suppression of 1/3 magnetization step. Furthermore, the paramagnetism of the shell was confirmed by our high-field ESR measurements. The time-dependent magnetization suggests the presence of spin-glass-like freezing. This is expected for nanoparticles with surface shell disorder with ferromagnetic correlations, but is not expected for bulk material of α-CoV 2 O 6 without spin frustration. These findings demonstrate that size tuning is an effective parameter for controlling the ground state of α-CoV 2 O 6 .

  12. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Grain size dependent potential for self generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite

    Kletetschka, Günther; Ness, F. N.; Connerney, J. E. P.; Acuna, M. H.; Wasilewski, P. J.

    2005-01-01

    Roč. 148, 2-4 (2005), s. 149-156 ISSN 0031-9201 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetic mineralogy * self-magnetization * blocking temperature * Martian crust Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.420, year: 2005

  14. Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions.

    Papatriantafyllopoulou, Constantina; Moushi, Eleni E; Christou, George; Tasiopoulos, Anastasios J

    2016-03-21

    In this review, aspects of the syntheses, structures and magnetic properties of giant 3d and 3d/4f paramagnetic metal clusters in moderate oxidation states are discussed. The term "giant clusters" is used herein to denote metal clusters with nuclearity of 30 or greater. Many synthetic strategies towards such species have been developed and are discussed in this paper. Attempts are made to categorize some of the most successful methods to giant clusters, but it will be pointed out that the characteristics of the crystal structures of such compounds including nuclearity, shape, architecture, etc. are unpredictable depending on the specific structural features of the included organic ligands, reaction conditions and other factors. The majority of the described compounds in this review are of special interest not only for their fascinating nanosized structures but also because they sometimes display interesting magnetic phenomena, such as ferromagnetic exchange interactions, large ground state spin values, single-molecule magnetism behaviour or impressively large magnetocaloric effects. In addition, they often possess the properties of both the quantum and the classical world, and thus their systematic study offers the potential for the discovery of new physical phenomena, as well as a better understanding of the existing ones. The research field of giant clusters is under continuous evolution and their intriguing structural characteristics and magnetism properties that attract the interest of synthetic Inorganic Chemists promise a brilliant future for this class of compounds.

  15. Role of grain size on magnetic properties of La0.7Sr0.3MnO3

    Yadav, Priyanka A.; Adhi, K.P.; Patil, S.I.; Deshmukh, Alka V.

    2012-01-01

    The perovskite compound has the form ABO 3 , where A site is rare earth element and B site is occupied by Mn ions. Undoped perovskite Manganites like LaMnO 3 is antiferromagnetic insulator. While divalent doped Manganites of the form R (1-x) A x MnO 3 (where R: Trivalent rare earth ion, A: divalent alkali ion) exhibit properties like insulator to metal and paramagnetic to ferromagnetic transitions, colossal magnetoresistance, charge ordered behaviour, phase separation etc. Divalent doping (e.g. Ca, Sr, Ba) causes Mn 3+ to change in Mn 4+ state far charge compensation, depending on the doping concentration. During last decade, lot of work has been carried out on single crystal and polycrystalline perovskite Manganites. But very few reports have been found on nanoparticles of hole doped Manganites. Hence to study the effect of particle size on the properties of perovskite Manganites, we have synthesized the nanosized powder of La 0.7 Sr 0.3 MnO 3 (LSMO) by using citrate-gel method. The samples are sintered from 600-1200 ° C by the step of 50° C for four hours. The size of particles was determined using X-ray diffraction and Field Emission Scanning Electron Microscopy technique. The average particle size is in the range 17-20 nm for sample prepared at 600° C. It was found that size of nanoparticles increased with increasing sintering temperature. Magnetization measurements of the sample were carried out with the help of Vibrating Sample Magnetometer (VSM) at room temperature. Saturation magnetization was found to be increased with increasing particle size giving evidence of formation of dead magnetic layer on the surface. The coercivity of nanoparticles follows the same trend as explained by Cullity. A.C. susceptibility measurements for these samples show systematic increase in magnetic transition temperature and approach the bulk value with increase in the particle size. (author)

  16. Nanoscale thermal transport. II. 2003-2012

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  17. Nanoscale thermal transport. II. 2003–2012

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  18. Nanoscale cryptography: opportunities and challenges.

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  19. Grain size dependent magnetic discrimination of Iceland and South Greenland terrestrial sediments in the northern North Atlantic sediment record

    Hatfield, Robert G.; Stoner, Joseph S.; Reilly, Brendan T.; Tepley, Frank J.; Wheeler, Benjamin H.; Housen, Bernard A.

    2017-09-01

    We use isothermal and temperature dependent in-field and magnetic remanence methods together with electron microscopy to characterize different sieved size fractions from terrestrial sediments collected in Iceland and southern Greenland. The magnetic fraction of Greenland silts (3-63 μm) and sands (>63 μm) is primarily composed of near-stoichiometric magnetite that may be oxidized in the finer clay (samples, in contrast to coarser PSD and multi-domain (MD) discrete magnetites from southern Greenland. We demonstrate the potential of using magnetic properties of the silt fraction for source unmixing by creating known endmember mixtures and by using naturally mixed marine sediments from the Eirik Ridge south of Greenland. We develop a novel approach to ferrimagnetic source unmixing by using low temperature magnetic susceptibility curves that are sensitive to the different crystallinity and cation substitution characteristics of the different source regions. Covariation of these properties with hysteresis parameters suggests sediment source changes have driven the magnetic mineral variations observed in Eirik Ridge sediments since the last glacial maximum. These observations assist the development of a routine method and interpretative framework to quantitatively determine provenance in a geologically realistic and meaningful way and assess how different processes combine to drive magnetic variation in the North Atlantic sediment record.

  20. Size effect in the spin glass magnetization of thin AuFe films as studied by polarized neutron reflectometry.

    Saoudi, M; Fritzsche, H; Nieuwenhuys, G J; Hesselberth, M B S

    2008-02-08

    We used polarized neutron reflectometry to determine the temperature dependence of the magnetization of thin AuFe films with 3% Fe concentration. We performed the measurements in a large magnetic field of 6 T in a temperature range from 295 to 2 K. For the films in the thickness range from 500 to 20 nm we observed a Brillouin-type behavior from 295 K down to 50 K and a constant magnetization of about 0.9 micro(B) per Fe atom below 30 K. However, for the 10 nm thick film we observed a Brillouin-type behavior down to 20 K and a constant magnetization of about 1.3 micro(B) per Fe atom below 20 K. These experiments are the first to show a finite-size effect in the magnetization of single spin-glass films in large magnetic fields. Furthermore, the ability to measure the deviation from the paramagnetic behavior enables us to prove the existence of the spin-glass state where other methods relying on a cusp-type behavior fail.

  1. Classroom-sized geophysical experiments: magnetic surveying using modern smartphone devices

    Tronicke, Jens; Trauth, Martin H.

    2018-05-01

    Modern mobile devices (i.e. smartphones and tablet computers) are widespread, everyday tools, which are equipped with a variety of sensors including three-axis magnetometers. Here, we investigate the feasibility and the potential of using such mobile devices to mimic geophysical experiments in the classroom in a table-top setup. We focus on magnetic surveying and present a basic setup of a table-top experiment for collecting three-component magnetic data across well-defined source bodies and structures. Our results demonstrate that the quality of the recorded data is sufficient to address a number of important basic concepts in the magnetic method. The shown examples cover the analysis of magnetic data recorded across different kinds of dipole sources, thus illustrating the complexity of magnetic anomalies. In addition, we analyze the horizontal resolution capabilities using a pair of dipole sources placed at different horizontal distances to each other. Furthermore, we demonstrate that magnetic data recorded with a mobile device can even be used to introduce filtering, transformation, and inversion approaches as they are typically used when processing magnetic data sets recorded for real-world field applications. Thus, we conclude that such table-top experiments represent an easy-to-implement experimental procedure (as student exercise or classroom demonstration) and can provide first hands-on experience in the basic principles of magnetic surveying including the fundamentals of data acquisition, analysis and processing, as well as data evaluation and interpretation.

  2. Descriptipn of giant changes of domain sizes in ultrathin magnetic films

    Kisielewski, M.; Maziewski, A.; Zablotskyy, Vitaliy A.

    2004-01-01

    Roč. 282, - (2004), s. 39-43 ISSN 0304-8853 Grant - others:SCSR(PL) 4T11B 006 24 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetic domains * ultrathin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  3. Sensing at the nanoscale

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  4. Spin dynamics in micron-sized magnetic elements using time-resolved XMCD-PEEM

    Fukumoto, K.; Kinoshita, T.

    2011-01-01

    Ultrafast dynamics of magnetic spin structures in ultrasmall ferromagnets is now a prominent topic concerning the next generation of memory devices. In particular, the unique dynamics of vortex spin structures in disk-shaped magnets has attracted much attention. To understand the mechanism and to explore even more unique features, we constructed a time-resolved X-ray magnetic circular dichroism (XMCD) with a photoelectron emission microscopy (PEEM) system onto the soft X-ray beamline BL25SU in SPring-8. We observed oscillatory motions of vortex cores after magnetic field pulses as reported in other articles. The time evolution of spin structures the fast magnetic field pulse was also successfully observed. We found that for disks with a larger radius, displacement of the vortex core was not linear with the field amplitude, and there was a delay of the core motion. At the same time, deformation of the vortex structures was observed. (author)

  5. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution.

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2011-09-06

    Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society

  6. Nanoscale thermal transport: Theoretical method and application

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  7. Ellipsometry at the nanoscale

    Hingerl, Kurt

    2013-01-01

    This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics...

  8. Nanoscale Organic Hybrid Electrolytes

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanoscale Organic Hybrid Electrolytes

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-09-01

    In this paper, size-dependent free vibration analysis of a sandwich nanoplate is presented. The sandwich nanoplate is including an elastic nano core and two piezo-electro-magnetic face-sheets as sensor and actuator actuated by electric and magnetic potentials. The sandwich nanoplate is resting on visco-Pasternak's foundation. Hamilton's principle is employed to derive the governing equations of motion based on Kirchhoff plate and nonlocal elasticity theory. The numerical results are presented to study the influence of important parameters of the problem such as applied electric and magnetic potentials, nonlocal parameter and visco-Pasternak's parameters. Furthermore, the influence of various boundary conditions is discussed on the vibration characteristics of the sandwich nanoplate.

  11. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  12. Nanoscale piezoelectric vibration energy harvester design

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  13. Trends in nanoscale mechanics mechanics of carbon nanotubes, graphene, nanocomposites and molecular dynamics

    2014-01-01

    This book contains a collection of the state-of-the-art reviews written by the leading researchers in the areas of nanoscale mechanics, molecular dynamics, nanoscale modeling of nanocomposites and mechanics of carbon nanotubes. No other book has reviews of the recent discoveries such as a nanoscale analog of the Pauli’s principle, i.e., effect of the spatial exclusion of electrons or the SEE effect, a new Registry Matrix Analysis for the nanoscale interfacial sliding and new data on the effective viscosity of interfacial electrons in nanoscale stiction at the interfaces. This volume is also an exceptional resource on the well tested nanoscale modeling of carbon nanotubes and nanocomposites, new nanoscale effects, unique evaluations of the effective thickness of carbon nanotubes under different loads, new data on which size of carbon nanotubes is safer and many other topics. Extensive bibliography concerning all these topics is included along with the lucid short reviews. Numerous illustrations are provided...

  14. Design and suspension experiments of the full-size active magnetic bearing test rig for the HTR-10GT

    Lu Qiyue; Shi Lei; Zhao Lei; Yu Suyuan

    2005-01-01

    In this paper, we introduce the fundamental properties of the full-size active magnetic bearing experimental set system (AMB-F), including control unit, data I/O channel, feedback unit and executor. Besides, the 72-hours continuously running experiment of the AMB-F, with special attention to the vibration of stators' shell, is presented. This experiment is designed mainly for validating the total system's stability. It is the basis of further characteristic experiments. (authors)

  15. Hydrothermal synthesis of HoMn{sub 2}O{sub 5} nanorods and their size-dependent magnetic properties

    Lv, Yichao; Wu, Songping, E-mail: chwsp@scut.edu.cn; Xu, Rui

    2017-03-01

    The HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal process. The length of nanorods is readily controllable with basically constant diameter. HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC curve due to the contribution of the magnetic ordering of holmium. Size-dependent magnetic properties (i.e. a critical length for magnetization) of HoMn{sub 2}O{sub 5} nanorods can be ascribed to the competition between surface strain and uncompensated spin at the surface. - Highlights: • HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal route. • HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC. • Size-dependent magnetic properties of HoMn{sub 2}O{sub 5} nanorods can be observed.

  16. Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications

    Wu, Xiaohan; Yan, Shuoqing; Liu, Weihu [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Feng, Zekun, E-mail: fengzekun@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2016-03-01

    The effect of ferrite particle size on the magnetic spectra (1 MHz to 1 GHz) of NiCuZn polycrystalline ferrites doped with Co{sub 2}O{sub 3} and Bi{sub 2}O{sub 3} were systematically investigated. The experiments indicate that the ferrite particle size tailored by grinding time and corresponding sintering temperatures is crucial to achieving high permeability, high Q-factor and low magnetic loss, at 13.56 MHz for electromagnetic shielding applications especially in the near field communication (NFC) field. It is evident that high-performance NiZnCu ferrite materials are strongly tailored by morphology and microstructure. It is conclusive that fine ferrite particles and relatively low sintering temperatures are favorable to lowering magnetic loss and enhancing permeability. This work has built a foundation for improvement of the ferrite slurry used for fabrication of large area tape-casting ferrite sheets. - Highlights: • Fine particles are favorable to lowering magnetic loss and enhancing permeability.

  17. Synthesis of Magnetic Rattle-Type Silica with Controllable Magnetite and Tunable Size by Pre-Shell-Post-Core Method.

    Chen, Xue; Tan, Longfei; Meng, Xianwei

    2016-03-01

    In this study, we have developed the pre-shell-post-core route to synthesize the magnetic rattle-type silica. This method has not only simplified the precursor's process and reduced the reacting time, but also ameliorated the loss of magnetite and made the magnetite content and the inner core size controllable and tunable. The magnetite contents and inner core size can be easily controlled by changing the type and concentration of alkali, reaction system and addition of water. The results show that alkali aqueous solution promotes the escape of the precursor iron ions from the inner space of rattle-type silica and results in the loss of magnetite. In this case, NaOH ethanol solution is better for the formation of magnetite than ammonia because it not only offers an appropriate alkalinity to facilitate the synthesis of. magnetic particles, but also avoids the escape of the iron ions from the mesopores of rattle-type silica. The synthesis process is very simple and efficient, and it takes no more than 2 hours to complete the total preparation and handling of the magnetic rattle-type silica. The end-product Fe3O4@SiO2 nanocomposites also have good magnetic properties which will perform potential application in biomedical science.

  18. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  19. Nanoscale thermal transport

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  20. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  1. Size-dependent magnetic transitions in CoFe0.1Cr1.9O4 nanoparticles studied by magnetic and neutron-polarization analysis.

    Kumar, D; Galivarapu, J K; Banerjee, A; Nemkovski, K S; Su, Y; Rath, Chandana

    2016-04-29

    Multiferroic, CoCr2O4 bulk material undergoes successive magnetic transitions such as a paramagnetic to collinear and non-collinear ferrimagnetic state at the Curie temperature (TC) and spiral ordering temperature (TS) respectively and finally to a lock-in-transition temperature (Tl). In this paper, the rich sequence of magnetic transitions in CoCr2O4 after mixing the octahedral site with 10% of iron are investigated by varying the size of the particle from 10 to 50 nm. With the increasing size, while the TC increases from 110 to 119 K which is higher than the TC (95 K) of pure CoCr2O4, the TS remains unaffected. In addition, a compensation of magnetization at 34 K and a lock-in transition at 10 K are also monitored in 50 nm particles. Further, we have examined the magnetic-ordering temperatures through neutron scattering using a polarized neutron beam along three orthogonal directions after separating the magnetic scattering from nuclear-coherent and spin-incoherent contributions. While a sharp long-range ferrimagnetic ordering down to 110 K and a short-range spiral ordering down to 50 K are obtained in 50 nm particles, in 10 nm particles, the para to ferrimagnetic transition is found to be continuous and spiral ordering is diffused in nature. Frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Neel-Arrhenius, Vogel-Fulcher and power law, while ruling out the canonical spin-glass, cluster-glass and interacting superparamagnetism, reveal that both particles show spin-glass behavior with a higher relaxation time in 10 nm particles than in 50 nm. The smaller spin flip time in 50 nm particles confirms that spin dynamics does not slow down on approaching the glass transition temperature (Tg).

  2. Study of two medium size 'C' core electromagnets generating low magnetic fields

    Bhatia, M.S.; Dass, S.; Chatterjee, U.K.

    1987-01-01

    Magnetic field requirements of laboratories may impose constraints that often call for a variety of non-standard designs. The designer has to fulfil these demands without letting the design to become too inefficient. Since no ready design procedures are available he has to resort to intuition calculation and modelling. In spite of this there may be wide discrepancy between the design values and the actual results. This report describes the experience gained on two 'C' core electromagnets being used by authors. These magnets generate low magnetic fields over reasonably large volumes, a requirement that runs opposite to that of most other magnets. The study reveals the dependence of overall performance efficiency, field uniformity etc. on the design parameters. 31 figures. (author)

  3. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    Brambilla, A [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Biagioni, P [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Rougemaille, N [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Schmid, A K [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lanzara, A [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Duo, L [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy)

    2006-10-25

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.

  4. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    Brambilla, A.; Biagioni, P.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Duo, L.; Ciccacci, F.; Finazzi, M.

    2006-01-01

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models

  5. Recovery of Small-Sized Blood Vessels in Ischemic Bone under Static Magnetic Field

    Shenzhi Xu

    2007-01-01

    Full Text Available Effects of static magnetic field (SMF on the vascularization in bone were evaluated using an ischemic bone model, where rat femoral artery was ligated. Magnetized and unmagnetized samarium–cobalt rods were implanted transcortically into the middle diaphysis of the ischemic femurs. Collateral circulation was evaluated by injection of microspheres into the abdominal aorta at the third week after ligation. It was found that the bone implanted with a magnetized rod showed a larger amount of trapped microspheres than that with an unmagnetized rod at the proximal and the distal region (P < 0.05 proximal region. There were no significant differences at the middle and the distal region. This tendency was similar to that of the bone mineral density in the SMF-exposed ischemic bone.

  6. Dopant atoms as quantum components in silicon nanoscale devices

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  7. Static electric field enhancement in nanoscale structures

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  8. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.

  9. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

    Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong

    2016-04-15

    Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be

  10. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  11. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  12. Nanoscale magnetoreceptors in birds

    Solov'yov, Ilia; Greiner, Walter

    2012-01-01

    The Earth's magnetic field provides an important source of directional information for many living organisms, especially birds, but the sensory receptor responsible for magnetic field detection still has to be identified. Recently, magnetic iron oxide particles were detected in dendritic endings...... field, by a bird....

  13. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas

    Liu Zongming; Duan Wenshan; He Guangjun

    2008-01-01

    A Zakharov-Kuznetsov (ZK) equation, a modified ZK (mZK) equation, and a coupled ZK (cZK) equation for small but finite amplitude dust acoustic waves in a magnetized two-ion-temperature dusty plasma with dust size distribution have been investigated in this paper. The variations of the linear dispersion relation and group velocity, nonlinear solitary wave amplitude, and width with an arbitrary dust size distribution function are studied numerically. We conclude that they all increase as the total number density of dust grains increases, and they are greater for unusual dusty plasma (the number density of larger dust grains is greater than that of smaller dust grains) than that of usual dusty plasma (the number density of smaller dust grains is greater than that of larger dust grains). It is noted that the frequency of the linear wave increases as the wave number along the magnetic direction increases. Furthermore, the width of the nonlinear waves increases but its amplitude decreases as the wave number along the magnetic direction increases

  14. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. II. NON-LTE CHROMOSPHERIC DIAGNOSTICS AND INVERSIONS

    Rodríguez, Jaime de la Cruz [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Hansteen, Viggo; Ortiz, Ada [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Bellot-Rubio, Luis, E-mail: jaime@astro.su.se [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain)

    2015-09-10

    Magnetic flux emergence into the outer layers of the Sun is a fundamental mechanism for releasing energy into the chromosphere and the corona. In this paper, we study the emergence of granular-sized flux concentrations and the structuring of the corresponding physical parameters and atmospheric diagnostics in the upper photosphere and in the chromosphere. We make use of a realistic 3D MHD simulation of the outer layers of the Sun to study the formation of the Ca ii 8542 line. We also derive semi-empirical 3D models from non-LTE inversions of our observations. These models contain information on the line-of-sight stratifications of temperature, velocity, and the magnetic field. Our analysis explains the peculiar Ca ii 8542 Å profiles observed in the flux emerging region. Additionally, we derive detailed temperature and velocity maps describing the ascent of a magnetic bubble from the photosphere to the chromosphere. The inversions suggest that, in active regions, granular-sized bubbles emerge up to the lower chromosphere where the existing large-scale field hinders their ascent. We report hints of heating when the field reaches the chromosphere.

  15. Influence of crystallite size on the magnetic properties of Fe{sub 3}O{sub 4} nanoparticles

    Upadhyay, Sneha [Dept of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412 115 (India); Parekh, Kinnari [K C Patel R & D Center, Charotar University of Science & Technology, Changa 388421 (India); Pandey, Brajesh, E-mail: bpandey@gmail.com [Dept of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412 115 (India)

    2016-09-05

    Structural and magnetic properties of chemically synthesized magnetite nanoparticles have been studied using X-ray diffraction, Transmission Electron Microscopy and Vibrating Sample Magnetometer. Magnetically the synthesized nanoparticles are ranging from superparamagnetic to multi domain state. Average crystallite size of the synthesized magnetite nanoparticles were determined using X-ray line broadening and are found to be in the range of 9–53 nm. On the other hand, the TEM images show that the size is ranging between 7.9 and 200 nm with the transition from spherical superparamagnetic particles to faceted cubic multi domain particles. Magnetic parameters of the samples show a strong dependence on average crystallite size. The ratio of coercive field at 20 K to that at 300 K (H{sub c} (20 K)/H{sub c} (300 K)) increased sharply with decrease in crystallite size. A critical crystallite diameter of order 36 nm may be inferred as boundary between single domain to multi domain transition. Zero-field-cooled (ZFC) and field-cooled (FC) measurements at 10 Oe field validate the same for smallest and largest size samples, confirming that the anisotropy energy is greater than thermal energy upto 300 K temperature. For 9 nm sample broad ZFC curve with overlapping of FC curve is observed just at 300 K, indicating the effect of strong dipolar field in superparamagnetic system. - Graphical abstract: We present our study on magnetite nanoparticles. We observed that the synthesized nanoparticles behave like single domain particles in the range of 14 nm–36 nm. They show superparamagnetic properties if particles are smaller than 14 nm and multi-domain properties when the particles are bigger than 36 nm. - Highlights: • Magnetite nanoparticles have been synthesized using chemical precipitation method. • Smaller magnetite particles below 14 nm in size are in super-paramagnetic state. • Bigger particles show multi-domain character. • Magnetite in the size range 14–36 is

  16. Dispersible cobalt chromite nanoparticles: facile synthesis and size driven collapse of magnetism

    Zákutná, D.; Matulková, I.; Kentzinger, E.; Medlín, R.; Su, Y.; Nemkovski, K.; Disch, S.; Vejpravová, Jana; Nižňanský, D.

    2016-01-01

    Roč. 6, č. 109 (2016), s. 107659-107668 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : cobalt chromite * nanoparticle * multiferoic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.108, year: 2016

  17. Energy barriers in nanometer sized magnetic islands prepared from alloyed and multilayered Co/Pt films

    Abelmann, Leon; de Vries, Jeroen; Bolhuis, Thijs; Kikuchi, Nobuaki

    2014-01-01

    By means of Anomalous Hall Effect measurements, we investigated the thermal switching field distribution of individual magnetic thin film circular elements with out-of-plane easy axis in a temperature range from 10K to 300K. We compared this behavior for elements prepared from either Co80Pt20

  18. Size Reduction of a DC Link Choke Using Saturation Gap and Biasing with Permanent Magnets

    Aguilar, Andres Revilla; Munk-Nielsen, Stig; Zuccherato, Marco

    2014-01-01

    This document describes the design procedure of permanent magnet biased DC inductors using the Saturation-gap technique [1]. This biasing configuration can provide a 50% reduction in either the core volume or the number of turns, while meeting its current and inductance requirements. A design exa...

  19. Effect of Particle Size on the Structural and Magnetic Properties of ...

    The obtained ZnFe2O4 nano powders were thermally annealed from 300 to 600 °C. The structural and magnetic characterization were measured using X-ray diffraction (XRD), scanning electron microscope (SEM), IR measurements and vibrating sample magnetometer (VSM). XRD patterns clearly showed the formation of ...

  20. Structural and magnetic properties of size-controlled Mn0.5Zn0 ...

    Abstract. Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation ... netic fluid is synthesized and magnetic characterization is reported. The monolayer ... the synthesis method – largely affects the macroscopic properties, giving rise to a wide variety of ..... available in sample C. TGA technique ...

  1. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  2. Room temperature ferromagnetism in magic-sized Cr-doped CdS diluted magnetic semiconducting quantum dots

    Srivastava, Punita; Kumar, Pushpendra; Singh, Kedar

    2011-01-01

    Manipulation of carrier spins in semiconductors for spintronics applications has received great attention driven by improved functionalities and higher speed operation. Doping of semiconductor nanocrystals by transition-metal ions pronounced as diluted magnetic semiconductors (DMS) has attracted tremendous attention. Such doping is, however, difficult to achieve in low-dimensional strongly quantum-confined nanostructures by conventional growth procedures. In the present case, magic-sized, pure, and Cr-doped CdS DM-QDs have been synthesized by solution phase chemistry (lyothermal method). Structural, optical, and magnetic investigation suggest an intrinsic nature of ferromagnetism with highly quantum-confined system. Optical and magnetic results of pure and doped QDs reveal major physical consequences of dopant localization within the capacity to engineer dopant-carrier exchange interactions introducing magnetic functionalities within the host semiconductor lattice. Unpaired Cr ions in Cd substitutional sites could create spin ordering and ferromagnetic coupling. The results presented herein illustrate some of the remarkable and unexpected complexities that can arise in doped QDs.

  3. Ferroelectric crystals for photonic applications including nanoscale fabrication and characterization techniques

    Ferraro, Pietro; De Natale, Paolo

    2015-01-01

    This book details the latest achievements in ferroelectric domain engineering and characterization at micro- and nano-scale dimensions and periods. It combines basic research of magnetic materials with device and production orientation.

  4. Rapid heating effects on grain-size, texture and magnetic properties ...

    Administrator

    oriented electrical steels (Kumar et ... through changes in recovery and recrystallization beha- viour during the final annealing treatment (Duan et .... recovery, recrystallization and grain coarsening (Doherty et al 1988). The size of recrystallized grain is ...

  5. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  6. The ITER magnets: Preparation for full size construction based on the results of the model coil programme

    Huguet, M.

    2003-01-01

    The ITER magnets are long-lead time items and the preparation of their construction is the subject of a major and coordinated effort of the ITER International Team and Participant Teams. The results of the ITER model coil programme constitute the basis and the main source of data for the preparation of the technical specifications for the procurement of the ITER magnets. A review of the salient results of the ITER model coil programme is given and the significance of these results for the preparation of full size industrial production is explained. The model coil programme has confirmed the validity of the design and the manufacturer's ability to produce the coils with the required quality level. The programme has also allowed the optimisation of the conductor design and the identification of further development which would lead to cost reductions of the toroidal field coil case. (author)

  7. Rocket Science at the Nanoscale.

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  8. Amendment of saturation magnetization, blocking temperature and particle size homogeneity in Mn-ferrite nanoparticles using Co-Zn substitution

    Eltabey, M.M. [Basic Engineering Science Department, Faculty of Engineering, Menoufiya University (Egypt); Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Massoud, A.M., E-mail: Amassouda1@yahoo.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo (Egypt); Radu, Cosmin [Lake Shore Cryotronics, Inc., Westerville, OH (United States)

    2017-01-15

    Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method from stoichiometric aqueous solutions, where x varies from 0 to 0.3 in steps of 0.05. The synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FT-IR). A vibrating sample magnetometer (VSM) was used to measure the hysteresis parameters at 300 and 6 K. Zero field cooling (ZFC) and field cooling (FC) curves were obtained at the temperature range 6–400 K and the blocking temperature values were determined. XRD analysis confirmed the formation of the obtained powder in a single cubic spinel phase and it showed also that the lattice parameter is decreasing with the increase of (Co-Zn) content. FT-IR measurements between 160 and 650 cm{sup −1} also confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements showed that the saturation magnetization, coercivity and the values of blocking temperatures were increased with the (Co-Zn) content. TEM micrographs declared the improvement of particle size homogeneity with the increase of (Co-Zn) content without remarkable change in the average particle size. The obtained results were discussed in view of A-B sublattices interaction and superparamagnetic phenomenon. - Highlights: • Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1-x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method. • XRD analysis showed that the lattice parameter is decreased with the increase of (Co,Zn) content. • The saturation magnetization is improved with the (Co,Zn) content. • Particle size homogeneity is enhanced with (Co,Zn) content. • The values of blocking temperatures are enhanced with increasing (Co,Zn) content.

  9. Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

    V. Fallahi

    2012-06-01

    Full Text Available The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls can be controlled through the domain walls separation. Also, we have represented another alternative way that enables us to handle easily the magnetoresistance of such a system as well as its conductance by utilizing the Rashba-type spin-orbit interaction induced by the external gates.

  10. The magnetized sheath of a dusty plasma with grains size distribution

    Ou, Jing; Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-01-01

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance

  11. Simulation of capillary bridges between nanoscale particles.

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  12. A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities

    Tambe, Nikhil S; Bhushan, Bharat

    2005-01-01

    Tribological studies on the micro/nanoscale conducted using an atomic force microscope (AFM) have been limited to low sliding velocities ( -1 ) due to inherent instrument limitations. Studies of tribological properties of materials, coatings and lubricants that find applications in micro/nanoelectromechanical systems and magnetic head-media in magnetic storage devices that operate at high sliding velocities have thus been rendered inadequate. We have developed a new technique to study nanotribological properties at high sliding velocities (up to 10 mm s -1 ) by modifying the commercial AFM set-up. A custom calibrated nanopositioning piezo stage is used for mounting samples and scanning is achieved by providing a triangular input voltage pulse. A capacitive sensor feedback control system is employed to ensure a constant velocity profile during scanning. Friction data are obtained by processing the AFM laser photo-diode signals using a high sampling rate data acquisition card. The utility of the modified set-up for nanoscale friction studies at high sliding velocities is demonstrated using results obtained from various tests performed to study the effect of scan size, rest time, acceleration and velocity on the frictional force for single crystal silicon (100) with native oxide

  13. Effects of crystalline grain size and packing ratio of self-forming core/shell nanoparticles on magnetic properties at up to GHz bands

    Suetsuna, Tomohiro; Suenaga, Seiichi; Sakurada, Shinya; Harada, Koichi; Tomimatsu, Maki; Takahashi, Toshihide

    2011-01-01

    Self-forming core/shell nanoparticles of magnetic metal/oxide with crystalline grain size of less than 40 nm were synthesized. The nanoparticles were highly concentrated in an insulating matrix to fabricate a nanocomposite, whose magnetic properties were investigated. The crystalline grain size of the nanoparticles strongly influenced the magnetic anisotropy field, magnetic coercivity, relative permeability, and loss factor (tan δ=μ''/μ') at high frequency. The packing ratio of the magnetic metallic phase in the nanocomposite also influenced those properties. High permeability with low tan δ of less than 1.5% at up to 1 GHz was obtained in the case of the nanoparticles with crystalline grain size of around 15 nm with large packing ratio of the nanoparticles. - Research highlights: → Self-forming core/shell nanoparticles of magnetic metal/oxide were synthesized. → Crystalline grain size of the nanoparticle and its packing ratio were controlled. → Magnetic properties changed according to the size and packing ratio.

  14. Finite-size effects on the static properties of a single-chain magnet

    Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.

    2005-08-01

    We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.

  15. Ionic cluster size distributions of swollen nafion/sulfated beta-cyclodextrin membranes characterized by nuclear magnetic resonance cryoporometry.

    Jeon, Jae-Deok; Kwak, Seung-Yeop

    2007-08-16

    Nafion/sb-CD membranes were prepared by mixing 5 wt% Nafion solution with H+-form sulfated beta-cyclodextrin (sb-CD), and their water uptakes, ion exchange capacities (IECs), and ionic cluster size distributions were measured. Gravimetric and thermogravimetric measurements showed that the water uptake of the membranes increased with increases in their sb-CD content. The IECs of the membrane were measured with acid-base titration and found to increase with increases in the sb-CD content, reaching 0.96 mequiv/g for NC5 ("NCx" denotes a Nafion/sb-CD composite membrane containing x wt% of sb-CD). The cluster-correlation peaks and ionic cluster size distributions of the water-swollen membranes were determined using small-angle X-ray scattering (SAXS) and 1H nuclear magnetic resonance (NMR) cryoporometry, respectively. The SAXS experiments confirmed that increases in the sb-CD content of the membranes shifted the maximum SAXS peaks to lower angles, indicating an increase in the cluster correlation peak. NMR cryoporometry is based on the theory of the melting point depression, Delta Tm, of a liquid confined within a pore, which is dependent on the pore diameter. The melting point depression was determined by analyzing the variation of the NMR signal intensity with temperature. Our analysis of the intensity-temperature (IT) curves showed that the ionic cluster size distribution gradually became broader with increases in the membrane sb-CD content due to the increased water content, indicating an increase in the ionic cluster size. This result indicates that the presence of sb-CD with its many sulfonic acid sites in the Nafion membranes results in increases in the ionic cluster size as well as in the water uptake and the IEC. We conclude that NMR cryoporometry provides a method for determining the ionic cluster size on the nanometer scale in an aqueous environment, which cannot be obtained using other methods.

  16. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  17. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm 0.65 Ca 0.35 MnO 3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario

  18. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  19. PREFACE: Nanoscale science and technology

    Bellucci, Stefano

    2008-11-01

    , nanopowders) were discussed. Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches were illustrated by Yu F Zhukovskii. M B Muradov talked about nanoparticles of cadmium selenide and cadmium sulfide, which yield one of the perspective materials for application to solar cell elements, high-speed computing systems, catalyses and biomarkers in medicine. In the presentation, the process of transformation of nanoparticles cadmium of sulfide to nanoparticles of cadmium selenide by an ionic exchange from solutions of electrolytes was considered. The size of particles was controlled by the quantity of growth cycles. After manufacturing, the structures were investigated by atomic force microscope (AFM). Structures CdS:polymer transformed into CdSe:polymer with the help of ion-exchange. For the realization of the process of ionic exchange, solutions were prepared containing bivalent ions of selenium as follows: NaBH4 and Se in a weight parity 2:1 added in water 4NaBH4+2Se+7H2O→2NaHSe+Na2B4O7+14H2 In the prepared solution nanostructures CdS:polymer were immersed. Time of endurance was 2 h. After an ionic exchange the obtained structures were investigated by means of EDAX on a chemical composition. Results of analyses have shown that atoms of sulfur are completely replaced by selenium. The band gap of nanoparticles in comparison with initial samples is displaced in the long-wave area. It is connected with the fact that the width of the band gap of bulk crystals CdSe (1.74 eV) is smaller than the band gap of CdS (2.42 eV). Optical microscopy with spatial resolution beyond the diffraction limit obtained by using near field techniques was the subject of S Prato's talk. Scanning near field optical microscopy (SNOM) has developed into a powerful tool to investigate local optical properties that depend on heterogeneity of materials at nanoscale and to study nanoenvironment of biosystems. Crucial topics in SNOM are: force sensitivity and

  20. Size effect on the magnetic properties of antiferromagnetic La0.2Ca0.8MnO3 nanoparticles

    Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Martin, C.; Gorodetsky, G.

    2010-03-01

    Magnetic properties of electron-doped La0.2Ca0.8MnO3 manganite nanoparticles with average particle size ranging from 15 to 37 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. A monotonous enhancement of weak ferromagnetism linked to the reduction in the particle size was observed for all nanoparticles. Magnetic hysteresis loops also indicate size-dependent exchange bias effect displayed by horizontal and vertical shifts in field-cooled processes. The magnetization data reveal two ferromagnetic components: first one appears at T˜200K and may be attributed to surface magnetization and second one appears as a result of spin canting of antiferromagnetic core or is developed at some interfaces inside nanoparticles. Time evolution of magnetization recorded in magnetic fields after the field cooling to low temperatures exhibits a very noisy behavior that may be caused by formation of collective state of nanoparticles with no clear tendency to reach equilibrium state. Magnetic properties of the nanoparticle samples are compared with those of the bulk La0.2Ca0.8MnO3 .

  1. Magnetic susceptibility of road deposited sediments at a national scale – Relation to population size and urban pollution

    Jordanova, Diana; Jordanova, Neli; Petrov, Petar

    2014-01-01

    Magnetic properties of road dusts from 26 urban sites in Bulgaria are studied. Temporal variations of magnetic susceptibility (χ) during eighteen months monitoring account for approximately 1/3rd of the mean annual values. Analysis of heavy metal contents and magnetic parameters for the fraction d  2  = −0.84) is observed between the ratio ARM/χ and Pb content. It suggests that Pb is related to brake/tyre wear emissions, releasing larger particles and higher Pb during slow driving – braking. Bulk χ values of road dusts per city show significant correlation with population size and mean annual NO 2 concentration on a log-normal scale. The results demonstrate the applicability of magnetic measurements of road dusts for estimation of mean NO 2 levels at high spatial density, which is important for pollution modelling and health risk assessment. - Highlights: • temporal variations of road dust magnetic susceptibility comprise 1/3 of the signal. • high negative correlation between Pb content and magnetic ratio ARM/χ is obtained. • brake- and tyre ware emissions are the main pollution sources of the road dusts. • road dust magnetic susceptibility rises parallel with logarithm of population size. • linear correlation is found between mean NO 2 concentrations and susceptibility. - Magnetic susceptibility of road dusts on a national scale increases proportionally to the population size and mean NO 2 concentrations due to the effect of traffic related pollution

  2. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas

    2012-01-01

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed...... polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333–20 000 Da PEG coatings that resulted in larger hydrodynamic size...

  3. Influence of grain size and upper critical magnetic field on global pinning force of bronze-processed Nb/sub 3/Sn compound

    Ochiai, S.; Osamura, K.

    1986-01-01

    In order to know the dependency of global pinning force of Nb/sub 3/Sn compound on grain size and upper critical magnetic field, the global pinning force was measured at 3-15 T using bronze-processed multifilamentary composites. The grain size and upper critical magnetic field were varied by two types of annealing treatment: one is the isothermal annealing at 873, 973 and 1073 K up to 1730 ks and another is the two-stage annealing (low temperature annealing to form fine grains at 873 K for 1730 ks + high temperature annealing to raise upper critical magnetic field at 1073 K up to 18 ks). In the case of isothermal annealing treatment, both of grain size and upper critical magnetic field increased with increasing annealing temperature and time except for the annealing treatments at high temperature for prolonged times. In the case of two-stage annealing, both of them increased with second stage annealing time. The increase in grain size led to decrease in the pinning force but the increase in upper critical magnetic field to increase in it. From the analysis of the present data based on the Suenaga's speculation concerning with the density of pinning site and the Kramer's equation, it was suggested that the pinning force is, to a first approximation, proportional to the product of inverse grain size and (1-h)/sup 2/h/sup 1/2/ where h is the reduced magnetic field

  4. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2016-01-01

    of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates...... whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25 pM with the same sample-to-answer time (15 min...

  5. Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si

    Lee, K.M.; Park, S.Y. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, R and D Center Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2014-03-15

    In an attempt to differentiate the impact of grain size and crystallographic texture on magnetic properties of non-oriented (NO) electrical steel sheets, samples with different grain sizes and textures were produced and analyzed regarding magnetic flux density B and core loss W. The textures of the NO electrical steel samples could be precisely quantified with the help of elliptical Gaussian distributions. In samples with identical textures, small grain sizes resulted in about 15% higher core loss W than larger grains, whereas grain size only moderately affected the magnetic flux density B. In samples having nearly the same grain size, a correlation of the magneto-crystalline anisotropic properties of B and W with texture was obtained via the anisotropy parameter A(h{sup →}). With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. - Highlights: • We produced electrical steel sheets having different grain size and texture. • Magnetic flux density B and core loss W were varied with grain size and texture. • Correlation of B and W with texture was established via anisotropy parameter A(h{sup →}). • With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. • Grain size mainly affected W with only minor impact on B.

  6. Nanoscale technology in biological systems

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  7. Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel

    PremKumar, R.; Samajdar, I.; Viswanathan, N.N.; Singal, V.; Seshadri, V.

    2003-01-01

    Hot rolled low Si (silicon) non-grain oriented electrical steel was cold rolled to different reductions. Cold rolled material was subsequently recrystallized, 650 deg. C and 2 h, and then temper rolled (to 7% reduction) for the final grain growth annealing and decarburization treatment at 850 deg. C for 2-24 h. The development of texture, grain size and magnetic properties were characterized at different stages of processing. Effect of texture on magnetic properties (watt loss and permeability) was observed to be best represented by the ratio of volume fractions of (1 1 1) /(0 0 1) fibers, as estimated by convoluting X-ray ODFs (orientation distribution functions) with respective model functions. Such a ratio was termed as generalized texture factor (tf) for the non-grain oriented electrical steel. An effort was made to delink effects of grain size and texture, as represented by respective tf, on watt loss and permeability by careful analysis of experimental data. In general, low tf and/or high grain size were responsible for low watt loss and high permeability. However, individual effect of grain size or tf on magnetic properties was less significant at low tf or large grain size, respectively. An attempt was made to fit regression equations, namely--linear, exponential and power, relating magnetic properties with tf and grain size, limiting the fitting parameters to 3. Least standard deviations, between experimental and predicted values, were obtained by power regression equations for both magnetic properties

  8. Generation of auroral kilometric radiation by a finite-size source in a dipole magnetic field

    Burinskaya, T. M., E-mail: tburinsk@iki.rssi.ru; Shevelev, M. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-10-15

    Generation, amplification, and propagation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron beam propagates is studied in the geometrical optics approximation. It is shown that the waves that start with a group velocity directed earthward and have optimal relation between the wave vector components determining the linear growth rate and the wave residence time inside the amplification region undergo the largest amplification. Taking into account the longitudinal velocity of fast electrons results in the shift of the instability domain toward wave vectors directed to the Earth and leads to a change in the dispersion relation, due to which favorable conditions are created for the generation of waves with frequencies above the cutoff frequency for the cold background plasma at the wave generation altitude. The amplification factor for these waves is lower than for waves that have the same wave vectors but are excited by the electron beams with lower velocities along the magnetic field. For waves excited at frequencies below the cutoff frequency of the background plasma at the generation altitude, the amplification factor increases with increasing longitudinal electron velocity, because these waves reside for a longer time in the amplification region.

  9. Size Effects on Magnetic Properties of Ni0.5Zn0.5Fe2O4 Prepared by Sol-Gel Method

    Min Zhang

    2013-01-01

    Full Text Available Ni0.5Zn0.5Fe2O4 particles with different particle sizes have been synthesized by sol-gel method. X-ray diffraction results show that all the samples are pure cubic spinel structure with their sizes ranging from 9 to 96 nm. The lattice constant significantly decreases with further increasing annealing temperature. The magnetic measurements show superparamagnetic nature below the particle size of 30 nm, while others show ferrimagnetic nature above the corresponding blocking temperature. The blocking temperature increases with the increase in particle size, which can be explained by Stoner-Wohlfarth theory. The saturation magnetization increases as the particle size increases, which can be explained by the cation redistribution on tetrahedral A and octahedral B sites and the domain wall motion. The variation of coercivity as a function of particle size is based on the domain structure.

  10. Friction laws at the nanoscale.

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  11. Size-Controlled Synthesis of Fe3O4 Magnetic Nanoparticles in the Layers of Montmorillonite

    Katayoon Kalantari

    2014-01-01

    Full Text Available Iron oxide nanoparticles (Fe3O4-NPs were synthesized using chemical coprecipitation method. Fe3O4-NPs are located in interlamellar space and external surfaces of montmorillonite (MMT as a solid supported at room temperature. The size of magnetite nanoparticles could be controlled by varying the amount of NaOH as reducing agent in the medium. The interlamellar space changed from 1.24 nm to 2.85 nm and average diameter of Fe3O4 nanoparticles was from 12.88 nm to 8.24 nm. The synthesized nanoparticles were characterized using some instruments such as transmission electron microscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and Fourier transform infrared spectroscopy.

  12. Nanoscale waveguiding methods

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  13. Structural Modification and Self-Assembly of Nanoscale Magnetite Synthesised in the Presence of an Anionic Surfactant

    Malik S.

    2014-07-01

    Full Text Available The earliest reported medical use of magnetite powder for internal applications was in the 10th century A.D. by the Persian physician and philosopher Avicenna of Bokhara [1,2]. Today magnetic nanoparticles are used for magnetic resonance imaging (MRI and are potential colloidal mediators for cancer magnetic hyperthermia [3]. Twenty years ago magnetite (Fe3O4 was found to be present in the human brain [4] and more recently it has been reported that nanoscale biogenic magnetite (origin and formation uncertain is associated with neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s [5]. Here we show that the synthesis of magnetite in the presence of the surfactant sodium dodecyl sulphate (SDS gives rise to a variety of nanoscale morphologies, some of which look remarkably similar to magnetite found in organisms, suggesting that similar processes may be involved. Furthermore, these 1D materials with diameters of quantum confined size are of interest in the areas of biosensors [6] and biomedical imaging [7].

  14. Size-dependent magnetization dynamics in individual Ni80Fe20 disk using micro-focused Brillouin Light Scattering spectroscopy

    G. Shimon

    2015-09-01

    Full Text Available A direct and systematic investigation of the magnetization dynamics in individual circular Ni80Fe20 disk of diameter (D in the range from 300 nm to 1 μm measured using micro-focused Brillouin Light Scattering (μ-BLS spectroscopy is presented. At high field, when the disks are in a single domain state, the resonance frequency of the uniform center mode is observed to reduce with reducing disk’s diameter. For D = 300 nm, additional edge and end-domains resonant modes are observed due to size effects. At low field, when the disks are in a vortex state, a systematic increase of resonant frequency of magnetostatic modes in a vortex state with the square root of the disks’ aspect ratio (thickness divided by radius is observed. Such dependence diminishes for disks with larger aspect ratio due to an increasing exchange energy contribution. Micromagnetic simulations are in excellent agreement with the experiments.

  15. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    Saxena, Ajay [Government College, Garoth, Dist. Mandsaur (M P) (India); Sharma, Giriraj, E-mail: grsharma@gmail.com [SRJ Government Girls’ College, Neemuch (M P) (India); Jat, K. L. [Swami Vivekanand Government P G College, Neemuch (M P) (India); Rishi, M. P. [Shahid Bhagat Singh Government P G College, Jaora, Dist Ratlam (M P) (India)

    2015-07-31

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases.

  16. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    Saxena, Ajay; Sharma, Giriraj; Jat, K. L.; Rishi, M. P.

    2015-01-01

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases

  17. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    Visser, Ilona, E-mail: ilona.visser@unilever.com [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands); Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands)

    2009-11-03

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  18. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    Visser, Ilona; Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van

    2009-01-01

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  19. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. III. THE PATH TO THE TRANSITION REGION

    Ortiz, Ada; Hansteen, Viggo H.; Pontieu, Bart De; Carlsson, Mats; Voort, Luc Rouppe van der [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Rubio, Luis Ramón Bellot [Instituto de Astrofísica de Andalucía (CSIC), Apdo. 3040, E-18080 Granada (Spain); Rodríguez, Jaime de la Cruz, E-mail: ada@astro.uio.no [Institute for Solar Physics, Dept. of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden)

    2016-07-10

    We study, for the first time, the ascent of granular-sized magnetic bubbles from the solar photosphere through the chromosphere into the transition region and above. Such events occurred in a flux emerging region in NOAA 11850 on 2013 September 25. During that time, the first co-observing campaign between the Swedish 1-m Solar Telescope (SST) and the Interface Region Imaging Spectrograph (IRIS) spacecraft was carried out. Simultaneous observations of the chromospheric H α 656.28 nm and Ca ii 854.2 nm lines, plus the photospheric Fe i 630.25 nm line, were made with the CRISP spectropolarimeter at the Spitzer Space Telescope ( SST ) reaching a spatial resolution of 0.″14. At the same time, IRIS was performing a four-step dense raster of the emerging flux region, taking slit jaw images at 133 (C ii, transition region), 140 (Si iv, transition region), 279.6 (Mg ii k, core, upper chromosphere), and 283.2 nm (Mg ii k, wing, photosphere). Spectroscopy of several lines was performed by the IRIS spectrograph in the far- and near-ultraviolet, of which we have used the Si iv 140.3 and the Mg ii k 279.6 nm lines. Coronal images from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory were used to investigate the possible coronal signatures of the flux emergence events. The photospheric and chromospheric properties of small-scale emerging magnetic bubbles have been described in detail in Ortiz et al. Here we are able to follow such structures up to the transition region. We describe the properties, including temporal delays, of the observed flux emergence in all layers. We believe this may be an important mechanism of transporting energy and magnetic flux from subsurface layers to the transition region and corona.

  20. Self-assembly from milli- to nanoscales: methods and applications

    Mastrangeli, M; Celis, J-P; Abbasi, S; Varel, C; Böhringer, K F; Van Hoof, C

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. (topical review)

  1. Creation of nanoscale objects by swift heavy ion track manipulations

    Fink, D.; Petrov, A.; Stolterfoht, N.

    2003-01-01

    In this work we give an overview of the possibilities to create new objects with nanoscale dimensions with ion tracks, for future applications. This can be realized in two ways: by manipulation of latent swift heavy ion (SHI) tracks, or by embedding specific structures within etched SHI tracks. In the first case one can make use of irradiation effects such as phase transitions and chemical or structural changes along the tracks. In the latter case, one can fill etched SHI tracks with metals, semiconductors, insulating and conducting polymers, fullerite, or colloides. Wires and tubules with outer diameters, between about 50 nm and 5 μm and lengths of up to about 100 μm can be obtained. The most important production techniques are galvanic and chemical depositions. Ion Transmission Spectrometry has turned out to be an especially useful tool for the characterisation of the produced objects. Present studies aim at the construction of condensers, magnets, diodes, and sensors in etched tracks. An obstacle for the practical realization of smallest-size polymeric ion track devices is the statistical distribution of the ion tracks on the target areas, which yields some pixels without any track, and other pixels even with overlapping tracks on a given sample. In a first test experiment we demonstrate that one can, in principle, overcome that problem by taking self-ordered porous foils as masks for subsequent high-fluence SHI irradiation. (author)

  2. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  3. An experimental study of the dynamic properties of nanoparticle colloids with identical magnetization but different particle size

    Fannin, P.C.; Marin, C.N.; Raj, K.; Couper, C.; Barvinschi, P.

    2012-01-01

    Measurements of the frequency dependent complex magnetic susceptibility, χ(ω)=χ′(ω)−iχ″(ω), have been used to determine the dynamic properties of three specially prepared 400 G (0.04 T) magnetic fluids. The samples, denoted by sample 1, sample 2 and sample 3, consisted of magnetite particles of mean diameter 6.4 nm, 7.5 nm and 9 nm respectively and were identical in terms of carrier liquid, surfactant and particle material. From polarized ferromagnetic measurements, the anisotropy field, H A , the Landau–Lifshitz damping parameter, α, and the precessional decay time, τ 0 of the particles were determined. The results show that the H A value for sample 3 was almost twice that of sample 1 and 2, thus confirming that the smaller the particle size, the lower the value of H A . The damping parameter, α, was found to be 0.174 (for sample 1), 0.18 (for sample 2) and 0.16 (for sample 3). The values determined for the precessional decay time, τ 0 were 1.197×10 −9 s, 1.157×10 −9 s and 0.789×10 −9 s, for samples 1, 2 and 3 respectively.

  4. Development of novel FePt/nanodiamond hybrid nanostructures: L1{sub 0} phase size-growth suppression and magnetic properties

    Douvalis, A. P., E-mail: adouval@uoi.gr; Bourlinos, A. B. [University of Ioannina, Physics Department (Greece); Tucek, J.; Čépe, K. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic); Bakas, T. [University of Ioannina, Physics Department (Greece); Zboril, R. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic)

    2016-05-15

    A new type of hybrid nanomaterial composed of magnetic FePt nanoparticles grown on the surface of nanodiamond nanotemplate assemblies is described for the first time. Post annealing in vacuum of the as-made nanomaterial bearing cubic A1 soft magnetic FePt nanoparticles leads to the development of FePt nanoparticles with tetragonal L1{sub 0} hard, magnetic-phase characteristics, leaving untouched the nanodiamond nanotemplate assemblies. X-ray diffraction, high-resolution transmission electron microscopy including chemical mapping (HRTEM/HAADF), magnetization measurements, and {sup 57}Fe Mössbauer spectroscopy data show that the magnetic FePt nanoparticles, with average sizes of 3 and 8 nm in the as-made and annealed hybrids, respectively, are homogenously distributed within the nanodiamond template in both nanomaterials. As a consequence, their structural, morphological, and magnetic properties differ significantly from the corresponding properties of the nonsupported (free) as-made and annealed FePt nanoparticles with average sizes of 6 and 32 nm, respectively, developed by the same methods. This spatial isolation suppresses the size-growth of the FePt nanoparticles during the post-annealing procedure, triggering superparamagnetic relaxation phenomena, which are exposed as a combination of hard and soft magnetic-phase characteristics.

  5. Structural Magnetic Resonance Imaging Correlates of Aggression in Psychosis: A Systematic Review and Effect Size Analysis

    Sonja Widmayer

    2018-06-01

    Full Text Available Background: Aggression in psychoses is of high clinical importance, and volumetric MRI techniques have been used to explore its structural brain correlates.Methods: We conducted a systematic review searching EMBASE, ScienceDirect, and PsycINFO through September 2017 using thesauri representing aggression, psychosis, and brain imaging. We calculated effect sizes for each study and mean Hedge's g for whole brain (WB volume. Methodological quality was established using the PRISMA checklist (PROSPERO: CRD42014014461.Results: Our sample consisted of 12 studies with 470 patients and 155 healthy controls (HC. After subtracting subjects due to cohort overlaps, 314 patients and 96 HC remained. Qualitative analyses showed lower volumes of WB, prefrontal regions, temporal lobe, hippocampus, thalamus and cerebellum, and higher volumes of lateral ventricles, amygdala, and putamen in violent vs. non-violent people with schizophrenia. In quantitative analyses, violent persons with schizophrenia exhibited a significantly lower WB volume than HC (p = 0.004, and also lower than non-violent persons with schizophrenia (p = 0.007.Conclusions: We reviewed evidence for differences in brain volume correlates of aggression in persons with schizophrenia. Our results point toward a reduced whole brain volume in violent as opposed to non-violent persons with schizophrenia. However, considerable sample overlap in the literature, lack of reporting of potential confounding variables, and missing research on affective psychoses limit our explanatory power. To permit stronger conclusions, further studies evaluating structural correlates of aggression in psychotic disorders are needed.

  6. Structural Magnetic Resonance Imaging Correlates of Aggression in Psychosis: A Systematic Review and Effect Size Analysis.

    Widmayer, Sonja; Sowislo, Julia F; Jungfer, Hermann A; Borgwardt, Stefan; Lang, Undine E; Stieglitz, Rolf D; Huber, Christian G

    2018-01-01

    Background: Aggression in psychoses is of high clinical importance, and volumetric MRI techniques have been used to explore its structural brain correlates. Methods: We conducted a systematic review searching EMBASE, ScienceDirect, and PsycINFO through September 2017 using thesauri representing aggression, psychosis, and brain imaging. We calculated effect sizes for each study and mean Hedge's g for whole brain (WB) volume. Methodological quality was established using the PRISMA checklist (PROSPERO: CRD42014014461). Results: Our sample consisted of 12 studies with 470 patients and 155 healthy controls (HC). After subtracting subjects due to cohort overlaps, 314 patients and 96 HC remained. Qualitative analyses showed lower volumes of WB, prefrontal regions, temporal lobe, hippocampus, thalamus and cerebellum, and higher volumes of lateral ventricles, amygdala, and putamen in violent vs. non-violent people with schizophrenia. In quantitative analyses, violent persons with schizophrenia exhibited a significantly lower WB volume than HC ( p = 0.004), and also lower than non-violent persons with schizophrenia ( p = 0.007). Conclusions: We reviewed evidence for differences in brain volume correlates of aggression in persons with schizophrenia. Our results point toward a reduced whole brain volume in violent as opposed to non-violent persons with schizophrenia. However, considerable sample overlap in the literature, lack of reporting of potential confounding variables, and missing research on affective psychoses limit our explanatory power. To permit stronger conclusions, further studies evaluating structural correlates of aggression in psychotic disorders are needed.

  7. Topology optimization for nano-scale heat transfer

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...... in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano-scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic...

  8. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  9. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

  10. Ion concentration in micro and nanoscale electrospray emitters.

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  11. Size-dependent magnetic and structural properties of CoCrFeO4 nano-powder prepared by solution self-combustion

    Sijo, A. K.; Dutta, Dimple P.

    2018-04-01

    The study reports the tuning of magnetic and structural properties of nano-sized CoCrFeO4 via post-annealing treatment. CoCrFeO4 nano-powder has been prepared by solution self-combustion method. The structural and magnetic properties have been studied over a range of annealing temperatures (300-900 °C). The formation of the phase pure CoCrFeO4 spinel has been confirmed from powder XRD analysis. The crystallite size is observed to increase with an increase in annealing temperature. On annealing, the value of magnetic parameters-remanence, coercivity and saturation magnetization have enhanced. All the samples exhibit irreversibility at low-temperature measurements.

  12. Magnets

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  13. Particle size effect on magnetic and transport properties of La/sub 0.7/Ca/sub 0.3/MnO/sub 3/ nanoparticles

    Qaseem, S.; Mumtaz, A.; Hasanain, S.K.; Maaz, K.

    2010-01-01

    La/sub 0.7/Ca/sub 0.3/MnO/sub 3/ nanoparticles have been synthesized by modified citrate route with particle sizes of 20, 26 and 32 +- 3 nm respectively. The structural characterization has been performed by XRD and TEM analyses while magnetic characterization has been performed by vibrating sample magnetometer (VSM). This work presents the study of size effects on magnetic and electrical properties of Ca-doped CMR nanoparticles (La/sub 0.7/Ca/sub 0.3.MnO/sub 3/). Different particle sizes have been prepared by a wet chemical route. Magnetic characterization reveals that magnetization increases with the increase in the particle size and the magnetic transition temperature for larger particles is the same as in the bulk (258K). The ferromagnetic and resistive transitions are however broad compared to the case of bulk presumably due to the role of the surface. The metal-insulator transition temperature is found to be at 158K while the resistivity shows anomalous low temperature behavior with an upturn at low temperatures presu due to coulomb blockade effects. Furthermore, the field dependence of the resistivity displays nonmonotonic behavior and is explained in terms of the field assisted tunneling between grains. (author)

  14. Role of grain size on the magnetic properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}

    Yadav, P.A. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Deshmukh, A.V. [Department of Physics, Fergusson College, Pune 411004 (India); Adhi, K.P. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Kale, B.B. [Centre for Materials for Electronics Technology, Pune 411008 (India); Basavaih, N. [Indian Institute of Geomagnetism, New Mumbai 410218 (India); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India)

    2013-02-15

    Nanophasic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} samples were synthesized using the citrate-gel method. The samples were annealed at different temperatures ranging from 600 to 1200 Degree-Sign C. Grain size was observed to increase with the increase in annealing temperature. Furthermore, the magnetization data of these samples show well defined hysteresis. Saturation magnetization was observed to increase with increase in particle size. This gives evidence of formation of a magnetically dead layer at the surface. The thickness of the dead layer has also been calculated. The coercivity of nanoparticles follows the same trend as predicted theoretically and particles below 22 nm are found to be single domain. The ferromagnetic to paramagnetic transition temperature also increases with increase in particle size. - Highlights: Black-Right-Pointing-Pointer Synthesis of nanocrystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} by the citrate-gel method. Black-Right-Pointing-Pointer Saturation magnetization increases with increase in particle size. Black-Right-Pointing-Pointer Formation of dead magnetic layer.

  15. Experimental method to reveal the effect of rotor magnet size and air gap on artificial heart driving motor torque and efficiency.

    Qian, K X; Yuan, H Y; Ru, W M; Zeng, P

    2002-01-01

    To investigate experimentally the effect of rotor magnet design on artificial heart driving motor performance, seven rotors with different magnet lengths or thicknesses, as well as different peripheral angles, were manufactured and tested in the same motor stator with different rotating speeds. The input power (voltage and current) and output torque were measured and the motor efficiency was computed. The results demonstrated that the reduction of rotor magnet size and the enlargement of the air gap between the rotor magnets and the stator coil core have no significant effect on motor efficiency, but will reduce the torque value on which the motor achieves the highest efficiency; it could be remedied however by increasing the rotating speed, because the torque at the high efficiency point will increase along with the rotating speed. These results may provide a basis for developing small rotor magnets, large air gap and high efficiency motors for driving an artificial heart pump.

  16. The role of MFM signal in mark size measurement in probe-based magnetic recording on CoNi/Pt multilayers

    Zhang Li; Bain, James A.; Zhu Jiangang; Abelmann, Leon; Onoue, Takahiro

    2007-01-01

    A method of heat-assisted magnetic recording (HAMR) potentially suitable for probe-based storage systems is characterized. Magnetic marks were formed by a scanning tunneling microscopy (STM)-based thermal magnetic mechanism on a perpendicular CoNi/Pt multilayered film. Magnetic force microscopy (MFM) was applied to display those marks. The MFM signal is dependent of the lift-height during MFM scanning: smaller lift-height leads to higher resolution of the MFM image and a double-peak signal line, while higher lift-height leads to lower resolution and a single-peak signal line. Theoretical calculation of the magnetic field from the mark was executed. It agrees well with experiments, and demonstrates the method of mark size measurement in perpendicular media: full-width half-maximum (FWHM) of the measured MFM signal

  17. Nanoscale phase change memory materials.

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  18. Influence of the particle size reduction on magnetic properties of electron-doped Ca1-xYxMnO3

    Alqat Aboalqasim; Gebrel Zohra; Spasojević Vojislav; Kusigerski Vladan; Bošković Snežana; Blanuša Jovan

    2012-01-01

    The electron-doped magnetic nanoparticles of Ca1-xYxMnO3 (x = 0, 0.05, 0.10, 0.15, 0.20, and 0.30) manganite with an average particle size of 50 nm are analyzed and discussed in relation to their bulk counterparts. Nanoparticle samples show dominant anti-ferromagnetic ordering with a significant increase of coercivity, with the maximum value of 0.9 T for x = 0. Particle size reduction in Ca1-xYxMnO3 retains the bulk-like magnetic behavior of samples having up to 15% of Y3+, with the sma...

  19. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  20. Nanoscale Electrochemical Sensing and Processing in Microreactors

    Odijk, Mathieu; van den Berg, Albert

    2018-01-01

    In this review, we summarize recent advances in nanoscale electrochemistry, including the use of nanoparticles, carbon nanomaterials, and nanowires. Exciting developments are reported for nanoscale redox cycling devices, which can chemically amplify signal readout. We also discuss promising

  1. Nanoscale spin-dependent transport of electrons and holes in Si-ferromagnet structures

    Ul Haq, E.

    Given the rapid development of magnetic data storage and spin-electronics into the realm of nanotechnology, the understanding of the spin-dependent electronic transport and switching behavior of magnetic structures at the nanoscale is an important issue. We have developed spin-sensitive techniques

  2. Nanoscale memory devices

    Chung, Andy; Deen, Jamal; Lee, Jeong-Soo; Meyyappan, M

    2010-01-01

    This article reviews the current status and future prospects for the use of nanomaterials and devices in memory technology. First, the status and continuing scaling trends of the flash memory are discussed. Then, a detailed discussion on technologies trying to replace flash in the near-term is provided. This includes phase change random access memory, Fe random access memory and magnetic random access memory. The long-term nanotechnology prospects for memory devices include carbon-nanotube-based memory, molecular electronics and memristors based on resistive materials such as TiO 2 . (topical review)

  3. Microstrain engineered magnetic properties in Bi1-x Ca x Fe1-y Ti y O3-δ nanoparticles: deviation from Néel’s 1/d size-dependent magnetization behaviour

    Mocherla, Pavana S. V.; Sahana, M. B.; Gopalan, R.; Ramachandra Rao, M. S.; Nanda, B. R. K.; Sudakar, C.

    2017-10-01

    Magnetization of antiferromagnetic nanoparticles is known to generally scale up inversely to their diameter (d) according to Néel’s model. Here we report a deviation from this conventional linear 1/d dependence, altered significantly by the microstrain, in Ca and Ti substituted BiFeO3 nanoparticles. Magnetic properties of microstrain-controlled Bi1-x Ca x Fe1-y Ti y O3-δ (y  =  0 and x  =  y) nanoparticles are analyzed as a function of their size ranging from 18 nm to 200 nm. A complex interdependence of doping concentration (x or y), annealing temperature (T), microstrain (ɛ) and particle size (d) is established. X-ray diffraction studies reveal a linear variation of microstrain with inverse particle size, 1/d nm-1 (i.e. ɛ · d  =  16.5 nm·%). A rapid increase in the saturation magnetization below a critical size d c ~ 35 nm, exhibiting a (1/d) α (α  ≈  2.6) dependence, is attributed to the influence of microstrain. We propose an empirical formula M \\propto (1/d)ɛ β (β  ≈  1.6) to highlight the contributions from both the size and microstrain towards the total magnetization in the doped systems. The magnetization observed in nanoparticles is thus, a result of the competing magnetic contribution from the terminated spin cycloid on the surface and counteracting microstrain present at a given size.

  4. Visualizing copper assisted graphene growth in nanoscale

    Rosmi, Mohamad Saufi; Yusop, Mohd Zamri; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-01-01

    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp2 hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction. PMID:25523645

  5. Comparative study of magnetic ordering in bulk and nanoparticles of Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3}: Magnetization and electron magnetic resonance measurements

    Goveas, Lora Rita, E-mail: loragoveas@gmail.com [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); St. Joseph' s College of Arts and Science, Bangalore 560027 (India); Anuradha, K. N. [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); Bhagyashree, K. S.; Bhat, S. V. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-05-07

    To explore the effect of size reduction to nanoscale on the hole doped Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3} compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  6. Comparison of muscle sizes and moment arms of two rotator cuff muscles measured by ultrasonography and magnetic resonance imaging

    Juul-Kristensen, B.; Bojsen-Møller, Finn; Holst, E.

    2000-01-01

    Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound......Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound...

  7. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    He, Ting [Idaho National Laboratory

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinary collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the

  8. Large superconducting conductors and joints for fusion magnets: From conceptual design to test at full size scale

    Ciazynski, D.; Duchateau, J.L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-01-01

    A new kind of superconducting conductor, using the so-called cable-in-conduit concept, is emerging mainly involving fusion activity. It is to be noted that at present time no large Nb 3 Sn magnet in the world is operating using this concept. The difficulty of this technology which has now been studied for 20 years, is that it has to integrate major progresses in multiple interconnected new fields such as: large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb 3 Sn technology, low loss conductors in pulsed operation, high current connections, high voltage insulation (10 kV), economical and industrial feasibility. CEA was very involved during these last 10 years in this development which took place in the frame of the NET and ITER technological programs. One major milestone was reached in 1998-1999 with the successful tests by our Association of three full size conductor and connection samples in the Sultan facility (Villigen, Switzerland). (author)

  9. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms

    Futami, Kazuya; Nambu, Iku; Kitabayashi, Tomohiro; Sano, Hiroki; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi

    2017-01-01

    Prediction of the rupture risk is critical for the identification of unruptured cerebral aneurysms (UCAs) eligible for invasive treatments. The size ratio (SR) is a strong morphological predictor for rupture. We investigated the relationship between the inflow hemodynamics evaluated on four-dimensional (4D) flow magnetic resonance (MR) imaging and the SR to identify specific characteristics related to UCA rupture. We evaluated the inflow jet patterns and inflow hemodynamic parameters of 70 UCAs on 4D flow MR imaging and compared them among 23 aneurysms with an SR ≥2.1 and 47 aneurysms with an SR ≤2.0. Based on the shape of inflow streamline bundles with a velocity ≥75% of the maximum flow velocity in the parent artery, the inflow jet patterns were classified as concentrated (C), diffuse (D), neck-limited (N), and unvisualized (U). The incidence of patterns C and N was significantly higher in aneurysms with an SR ≥2.1. The rate of pattern U was significantly higher in aneurysms with an SR ≤2.0. The maximum inflow rate and the inflow rate ratio were significantly higher in aneurysms with an SR ≥2.1. The SR affected the inflow jet pattern, the maximum inflow rate, and the inflow rate ratio of UCAs. In conjunction with the SR, inflow hemodynamic analysis using 4D flow MR imaging may contribute to the risk stratification for aneurysmal rupture. (orig.)

  10. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms

    Futami, Kazuya [Matto-Ishikawa Central Hospital, Department of Neurosurgery, Hakusan, Ishikawa (Japan); Nambu, Iku; Kitabayashi, Tomohiro; Sano, Hiroki; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi [Kanazawa University School of Medicine, Department of Neurosurgery, Kanazawa, Ishikawa (Japan)

    2017-04-15

    Prediction of the rupture risk is critical for the identification of unruptured cerebral aneurysms (UCAs) eligible for invasive treatments. The size ratio (SR) is a strong morphological predictor for rupture. We investigated the relationship between the inflow hemodynamics evaluated on four-dimensional (4D) flow magnetic resonance (MR) imaging and the SR to identify specific characteristics related to UCA rupture. We evaluated the inflow jet patterns and inflow hemodynamic parameters of 70 UCAs on 4D flow MR imaging and compared them among 23 aneurysms with an SR ≥2.1 and 47 aneurysms with an SR ≤2.0. Based on the shape of inflow streamline bundles with a velocity ≥75% of the maximum flow velocity in the parent artery, the inflow jet patterns were classified as concentrated (C), diffuse (D), neck-limited (N), and unvisualized (U). The incidence of patterns C and N was significantly higher in aneurysms with an SR ≥2.1. The rate of pattern U was significantly higher in aneurysms with an SR ≤2.0. The maximum inflow rate and the inflow rate ratio were significantly higher in aneurysms with an SR ≥2.1. The SR affected the inflow jet pattern, the maximum inflow rate, and the inflow rate ratio of UCAs. In conjunction with the SR, inflow hemodynamic analysis using 4D flow MR imaging may contribute to the risk stratification for aneurysmal rupture. (orig.)

  11. Nanoscale organic ferroelectric resistive switches

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  12. Nanoscale Characterization for the Classroom

    Carroll, D.L.

    1999-01-01

    This report describes the development of a semester course in 'nano-scale characterization'. The interdisciplinary course is opened to both advanced undergraduate and graduate students with a standard undergraduate preparation in Materials Science, Chemistry, or Physics. The approach is formal rather than the typical 'research seminar' and has a laboratory component

  13. Nanometer size 3d–4d and 3d–5d substitutional clusters: Promising candidates for magnetic storageapplications

    Mokkath, Junais Habeeb

    2013-01-01

    Spin-polarized density-functional calculations including spin-orbit coupling (SOC) have been performed for FemRhn and FemPtn clusters having N=m+n,N≤19 atoms. The spin magnetic moments, orbital magnetic moments, and the magnetic anisotropy energies

  14. Isolation of nanoscale exosomes using viscoelastic effect

    Hu, Guoqing; Liu, Chao

    2017-11-01

    Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).

  15. Island shape, size and interface dependency on electronic and magnetic properties of graphene hexagonal-boron nitride (h-BN) in-plane hybrids

    Akman, Nurten; Özdoğan, Cem

    2018-04-01

    We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.

  16. Magneto-optics of nanoscale Bi:YIG films.

    Berzhansky, Vladimir; Mikhailova, Tatyana; Shaposhnikov, Alexander; Prokopov, Anatoly; Karavainikov, Andrey; Kotov, Viacheslav; Balabanov, Dmitry; Burkov, Vladimir

    2013-09-10

    Magnetic circular dichroism in the spectral region from 270 to 850 nm and Faraday rotation at the wavelength of 655 nm in ultrathin (1.5-92.8 nm) films prepared by reactive ion beam sputtering of target of nominal composition Bi2.8Y0.2Fe5O12 were studied. The observed effects of the "blue shift," inversion of the signs and change in the intensity of magneto-optical transitions, are discussed. It is demonstrated that all studied nanoscale films reveal magnetic properties-and their composition depends on the method of substrate surface pretreatment.

  17. γ-Fe{sub 2}O{sub 3} by sol–gel with large nanoparticles size for magnetic hyperthermia application

    Lemine, O.M., E-mail: leminej@yahoo.com [Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh (Saudi Arabia); Omri, K. [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes (Tunisia); Iglesias, M.; Velasco, V. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC (Spain); Crespo, P.; Presa, P. de la [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC (Spain); Dpto. Física de Materiales, Universidad Complutense de Madrid (Spain); El Mir, L. [Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh (Saudi Arabia); Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes (Tunisia); Bouzid, Houcine [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Laboratoire des Matériaux Ferroélectriques, Faculté des Sciences de Sfax, Route Soukra Km 3 5, B.P. 802, F-3018 Sfax (Tunisia); Yousif, A. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Code 123, Al Khoud (Oman); Al-Hajry, Ali [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia)

    2014-09-01

    Highlights: • Iron oxides nanoparticles with different sizes are successfully synthesized using sol–gel method. • The obtained nanoparticles are mainly composed of maghemite phase (γ-Fe{sub 2}O{sub 3}). • A non-negligible coercive field suggests that the particles are ferromagnetic. • A mean heating efficiency of 30 W/g is obtained for the smallest particles at 110 kHz and 190 Oe. - Abstract: Iron oxides nanoparticles with different sizes are successfully synthesized using sol–gel method. X-ray diffraction (XRD) and Mössbauer spectroscopy show that the obtained nanoparticles are mainly composed of maghemite phase (γ-Fe{sub 2}O{sub 3}). XRD and transmission electron microscopy (TEM) results suggest that the nanoparticles have sizes ranging from 14 to 30 nm, which are indeed confirmed by large magnetic saturation and high blocking temperature. At room temperature, the observation of a non-negligible coercive field suggests that the particles are ferro/ferrimagnetic. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of size, frequency and amplitude of the applied magnetic field. A mean heating efficiency of 30 W/g is obtained for the smallest particles at 110 kHz and 190 Oe, whereas further increase of particle size does not improve significantly the heating efficiency.

  18. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    Lee, K.M. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Lee, H.J.; Park, J.T.; Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Shin, E.J. [Korea Atomic Energy Research Institute, Neutron Science Division, Daejeon 305-353 (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, Research and Development Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2015-12-15

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in 〈001〉//ND and 〈113〉//ND which were beneficial for developing superior magnetic properties. - Highlights: • We produced hot bands of electrical steel with different grain size but same texture. • Hot band grain size strongly affected cold rolling and subsequent annealing textures. • Homogeneous recrystallized microstructure caused normal continuous grain growth. • Irregular recrystallized microstructure led to selective growth of <001>//ND grains. • Hot band with large grains was beneficial for superior magnetic properties.

  19. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  20. Size-regulated group separation of CoFe2O4 nanoparticles using centrifuge and their magnetic resonance contrast properties

    Kang, Jongeun; Lee, Hyunseung; Kim, Young-Nam; Yeom, Areum; Jeong, Heejeong; Lim, Yong Taik; Hong, Kwan Soo

    2013-09-01

    Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former has the advantage of being able to control the particle size more effectively; however, the resulting particles require a hydrophilic coating in order to be rendered water soluble. The MNPs produced using the latter method are intrinsically water soluble, but they have a relatively wide particle size distribution. Size-controlled water-soluble MNPs have great potential as MRI CAs and in cell sorting and labeling applications. In the present study, we synthesized CoFe2O4 MNPs using an aqueous solution coprecipitation method. The MNPs were subsequently separated into four groups depending on size, by the use of centrifugation at different speeds. The crystal shapes and size distributions of the particles in the four groups were measured and confirmed by transmission electron microscopy and dynamic light scattering. Using X-ray diffraction analysis, the MNPs were found to have an inverse spinel structure. Four MNP groups with well-selected semi-Gaussian-like diameter distributions were obtained, with measured T2 relaxivities ( r 2) at 4.7 T and room temperature in the range of 60 to 300 mM-1s-1, depending on the particle size. This size regulation method has great promise for applications that require homogeneous-sized MNPs made by an aqueous solution coprecipitation method. Any group of the CoFe2O4 MNPs could be used as initial base cores of MRI T2 CAs, with almost unique T2 relaxivity owing to size regulation. The methodology reported here opens up many possibilities for biosensing applications and disease diagnosis.

  1. Quantum Transport Simulations of Nanoscale Materials

    Obodo, Tobechukwu Joshua

    2016-01-07

    two dipyrimidinyl-diphenyl molecules improves the rectification ratio, and tuning the asymmetry of the tandem set-up by rearranging the molecular blocks greatly enhances it. It has been recently demonstrated that the large band gap of boronitrene can be significantly reduced by carbon functionalization. We show that specific defect configurations can result in metallicity, raising interest in the material for electronic applications. In particular, we demonstrate negative differential conductance with high peak-to-valley ratios, depending on the details of the material, and identify the finite bias effects that are responsible for this behavior. Also, we studied the spin polarized transport through Mn-decorated topological line defects in graphene. Strong preferential bonding is found, which overcomes the high mobility of transition metal atoms on graphene and results in stable structures. Despite a large distance between the magnetic centers, we find a high magnetoresistance and attribute this unexpected property to very strong induced π magnetism. Finally, the results obtained herein advance the field of quantum electronic transport and provide significant insight on switches, rectification, negative differential conductance, magnetoresistance, and current-induced forces of novel nanoscale materials.

  2. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  3. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-01-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P_d_i_s_s=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  4. Hybrid superconducting-magnetic memory device using competing order parameters.

    Baek, Burm; Rippard, William H; Benz, Samuel P; Russek, Stephen E; Dresselhaus, Paul D

    2014-05-28

    In a hybrid superconducting-magnetic device, two order parameters compete, with one type of order suppressing the other. Recent interest in ultra-low-power, high-density cryogenic memories has spurred new efforts to simultaneously exploit superconducting and magnetic properties so as to create novel switching elements having these two competing orders. Here we describe a reconfigurable two-layer magnetic spin valve integrated within a Josephson junction. Our measurements separate the suppression in the superconducting coupling due to the exchange field in the magnetic layers, which causes depairing of the supercurrent, from the suppression due to the stray magnetic field. The exchange field suppression of the superconducting order parameter is a tunable and switchable behaviour that is also scalable to nanometer device dimensions. These devices demonstrate non-volatile, size-independent switching of Josephson coupling, in magnitude as well as phase, and they may enable practical nanoscale superconducting memory devices.

  5. The effect of nanocrystalline magnetite size on arsenic removal

    J.T. Mayo et al

    2007-01-01

    Full Text Available Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III and As(V. Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4 nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III and As(V. The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III and As(V increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.

  6. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  7. Direct Probing of Polarization Charge at Nanoscale Level

    Kwon, Owoong [Sungkyunkwan Univ., Suwon (Republic of Korea). School of Advanced Materials and Engineering; Seol, Daehee [Sungkyunkwan Univ., Suwon (Republic of Korea). School of Advanced Materials and Engineering; Lee, Dongkyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Han, Hee [Korea Research Inst. of Standards and Science (KRISS), Daejeon (South Korea); Lindfors-Vrejoiu, Ionela [Univ. of Cologne (Germany). Physics Inst.; Lee, Woo [Korea Research Inst. of Standards and Science (KRISS), Daejeon (South Korea); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences; Lee, Ho Nyung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences; Alexe, Marin [Univ. of Warwick, Coventry (United Kingdom). Dept. of Physics; Kim, Yunseok [Sungkyunkwan Univ., Suwon (Republic of Korea). School of Advanced Materials and Engineering

    2017-11-14

    Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection is unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm-2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.

  8. Magnetic properties of nanocrystalline CoFe{sub 2}O{sub 4} powders prepared at room temperature: variation with crystallite size

    Rajendran, M.; Pullar, R.C.; Bhattacharya, A.K. E-mail: ashokbhattacharya@warwick.ac.uk; Das, D.; Chintalapudi, S.N.; Majumdar, C.K

    2001-06-01

    The magnetic properties of nanocrystalline CoFe{sub 2}O{sub 4} powders prepared by a redox process at room temperature have been studied by vibrating sample magnetometer (VSM). The average crystallite size of the powders varied from 6 to 20 nm by changing the synthesis conditions and the corresponding saturation magnetisation (M{sub s}) value ranged from 9 to 38 emu g{sup -1}. On heating, the crystallite size increased with corresponding increase in M{sub s} values. At 1073 K all samples achieved M{sub s} values close to 73 emu g{sup -1}. On increasing the crystallite size, the coercivity (H{sub c}) increased passed through a maximum and dropped. Cobalt ferrite powder with an average crystallite size of 6 nm prepared at room temperature achieved desirable values of M{sub s}=60 emu g{sup -1} and H{sub c}=1.42 kOe after thermal annealing at 973 K. The Moessbauer spectra were recorded for CoFe{sub 2}O{sub 4} having a range of crystallite sizes at room temperature and at low temperatures down to 40 K. The magnetic and Moessbauer results are provided for nanocrystalline CoFe{sub 2}O{sub 4} as a function of crystallite size and measurement temperature.

  9. Influence of grain size and additions of Al and Mn on the magnetic properties of non-oriented electrical steels with 3 wt. (% Si

    Rodrigo Felix de Araujo Cardoso

    2008-03-01

    Full Text Available The influence of hot-band grain size and additions of aluminum and manganese on the magnetic properties of non-oriented grain (NOG low-carbon electrical steel with about 3 wt. (% Si were investigated using optical microscopy and X ray diffraction. The addition of manganese resulted in larger grains after final annealing. Coarse grains in the hot-band and addition of Mn led to a Goss orientation component after final annealing, which resulted in an increase in the magnetic permeability.

  10. MAGNET

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  11. Conceptual design of a permanent ring magnet based helicon plasma source module intended to be used in a large size fusion grade ion source

    Pandey, Arun; Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@iter-india.org; Chakraborty, A.

    2016-02-15

    A conceptual design of a permanent magnet based single driver helicon plasma source module along with its design approach is described in this paper. The module unit is intended to be used in a large size ion source. The conceptual design of the helicon source module has been carried out using a computer code, HELIC. The magnetic field topology for the ring magnet is simulated with another code, BFieldM and the magnetic field values obtained from the calculation are further used as input in HELIC calculation for the conceptual design. The module is conceptualized based on a cylindrical glass vessel to produce plasma of diameter ∼50 mm, height ∼50 mm. The inner diameter of the permanent ring magnets is also of the same dimension with thickness ∼10 mm each, placed slightly above the backplate to maintain the required magnetic field. The simulated results show that for hydrogen gas, expected plasma density can be achieved as high as ∼10{sup 12}–10{sup 13} cm{sup −3} in the proposed helicon source configuration using 1 kW 13.56 MHz RF generator. An experimental setup to characterize a Helicon source module unit, consisting of a cylindrical glass (plasma) chamber along with the vacuum system, RF power supplies, probes and data acquisition system is being installed.

  12. Nanometer size 3d–4d and 3d–5d substitutional clusters: Promising candidates for magnetic storageapplications

    Mokkath, Junais Habeeb

    2013-05-01

    Spin-polarized density-functional calculations including spin-orbit coupling (SOC) have been performed for FemRhn and FemPtn clusters having N=m+n,N≤19 atoms. The spin magnetic moments, orbital magnetic moments, and the magnetic anisotropy energies have been determined. A significant enhancement of magnetic anisotropy energies is found by the substitutional nanoalloying of Fe with Rh and Pt atoms. We obtained a remarkable non-monotonous dependence of the MAE as a function of Fe content, i.e., upon going from pure Fe to pure Rh and Pt. The substitutional nanoalloying boost the magnetic anisotropy energies by creating significant cluster symmetry lowerings. © 2013 Elsevier B.V.

  13. Single-molecule magnets on a polymeric thin film as magnetic quantum bits

    Ruiz-Molina, Daniel; Gomez, Jordi; Mas-Torrent, Marta; Balana, Ana Isabel; Domingo, Nues; Tejada, Javier; Martinez, Maria Teresa; Rovira, Concepcio; Veciana, Jaume

    2003-04-01

    Single-molecule magnets (SMM) have a large-spin ground state with appreciable magnetic anisotropy, resulting in a barrier for the spin reversal As a consequence, interesting magnetic properties such as out-of-phase ac magnetic susceptibility signals and stepwise magnetization hysteresis loops are observed. In addition to resonant magnetization tunnelling, during the last few years several other interesting phenomena have also been reported. The origin of the slow magnetization relaxation rates as well as of other phenomena are due to individual molecules rather than to long-range ordering; as confirmed by magnetization relaxation and heat capacity studies. Therefore, SMM represent nanoscale magnetic particles of a sharply defined size that offer the potential access to the ultimate high-density information storage devices as well as for quantum computing applications. However, if a truly molecular computational device based on SMM is to be achieved, new systematic studies that allow us to find a proper way to address properly oriented individual molecules or molecular aggregates onto the surface of a thin film, where each molecule or molecular aggregate can be used as a bit of information, are highly required. Here we report a new soft, reliable and simple methodology to address individual Mn12 molecules onto a film surface, as revealed by Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) images. Moreover, the advantageous properties of polymeric matrices, such as flexibility, transparency and low density, make this type of materials very interesting for potential applications.

  14. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T.

    2012-01-01

    Nanoscale magnetite (Fe 3 O 4 ) ( 12 O 19 , BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 ± 0.52 nm synthesized by thermolysis method at 320 °C do not show hexagonal phase, however, subsequent annealing at 750 °C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  15. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  16. Curie temperature and magnetic phase transition of nanostructured ultrathin Fe/GaAs (001). Size dependence and relevance of dipolar coupling

    Meier, Roland

    2009-07-01

    In the present work the impact of lateral patterning of ultrathin ferromagnetic films down to the nanometer range on the magnetic phase transition has been investigated. In this respect on the one hand a size effect on the Curie temperature and, referring to that, the relevance of dipolar coupling were a matter of particular interest. On the other hand the characteristics of the critical behavior itself, becoming apparent by the accurate evaluation of the curvature shape of the magnetization as a function of temperature at T{sub c}, were analyzed with regard to potential and expected size effects. The investigation of similar nanostructures with respect to an effect on Curie temperature respectively phase transition may draw up a correlation. Therefore more than hundred samples were fabricated for this work extensively by means of MBE (Molecular Beam Epitaxy) and ESL (Electron Beam Epitaxy) methods, measured by MOKE (Magneto-Optical Kerr Effect) technique and systematically evaluated. (orig.)

  17. Effects of Glucopone 215 CSUP Concentration on Size and Magnetic Property of Co-Ni-Cu Nanoparticles Prepared by Electrodeposition Method

    Abdul Razak Daud; Setia Budi; Shahidan Radiman

    2011-01-01

    Co-Ni-Cu nanoparticles were prepared by electrodeposition method at co-deposition potential of -925 mV (SCE) from sulphate solution (0.018 M Co 2+ + 0.180 M Ni 2+ + 0.002 M Cu 2+ ), both in the presence and in the absence of surfactant, Glucopone 215 CSUP. The effect of surfactant concentration on size and magnetic properties of Co-Ni-Cu nanoparticles produced was investigated. Surface morphology was analyzed using a field emission scanning electron microscope (FESEM) while its magnetic properties were investigated by a vibrating sampel magnetometer (VSM). Co-Ni-Cu nanoparticles prepared from the Glucopone 215 CSUP- containing solution were spherical with nanometer size. The finest particles were about 50 nm obtained when 5 v% of surfactant was used which was the highest surfactant concentration studied in this work. Coercivity (H c ) of the samples prepared from electrolytes containing surfactant was higher than those of prepared without surfactant. (author)

  18. Association between the resolution of the ST with microvascular obstruction and the size of the infarction assessed by cardiac magnetic resonance imaging

    Lluveras, N.; Parma, G.; Florio, L; Zamoro, J

    2012-01-01

    The absence of ST-segment resolution (STR) in patients with an ST-elevation myocardial infarction (STEMI) after reperfusion strategy has been related to impaired myocardial perfusion. This is likely due to extensive microvascular obstruction (MVO) and reperfusion tissue injury. The aim of the study was to analyze the value of STR in the prediction of infarct size, perfusion impairment and left ventricular function assessed with cardiac magnetic resonance (CMR) in acute STEMI

  19. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  20. MAGNET

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  1. MAGNET

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  2. MAGNET

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  3. Size effect on the structural, magnetic, and magnetotransport properties of electron doped manganite La0.15Ca0.85MnO3

    Thomas, Rini; Das, Gangadhar; Mondal, Rajib; Pradheesh, R.; Mahato, R. N.; Geetha Kumary, T.; Nirmala, R.; Morozkin, A. V.; Lamsal, J.; Yelon, W. B.; Nigam, A. K.; Malik, S. K.

    2012-04-01

    Nanocrystalline La0.15Ca0.85MnO3 samples of various grain sizes ranging from ˜17 to 42 nm have been prepared by sol-gel technique. Phase purity and composition were verified by room temperature x-ray diffraction and SEM-EDAX analysis. The bulk La0.15Ca0.85MnO3 is known to order antiferromagnetically around 170 K and to undergo a simultaneous crystal structural transition. DC magnetization measurements on 17 nm size La0.15Ca0.85MnO3 show a peak at ˜130 K (TN) in zero-field-cooled (ZFC) state. Field-cooled magnetization bifurcates from ZFC data around 200 K hinting a weak ferromagnetic component near room temperature due to surface moments of the nanoparticle sample. Low temperature powder neutron diffraction experiments reveal that the incomplete structural transition from room temperature orthorhombic to low temperature orthorhombic-monoclinic state also occurs in the nanoparticle sample as in the bulk. Magnetization in the ordered state decreases as particle size increases, thus indicating the reduction of the competing ferromagnetic surface moments.

  4. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  5. Nanoscale thermoelectric materials

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in the

  6. Correlation between tumor size and surveillance of lymph node metastasis for IB and IIA cervical cancer by magnetic resonance images

    Kim, See Hyung; Lee, Hee Jung; Kim, Young Whan

    2012-01-01

    Purpose: To assess the feasibility of preoperative MRI based measurement of tumor size with regard to lymph node (LN) metastasis in early uterine cervical cancer. Material and Methods: A retrospective review of patients with FIGO stage IB–IIA cervical cancer who underwent lymphadenectomy was performed. Diagnostic accuracy of MRI in detecting LN metastasis and rate of LN recurrence in terms of tumor size (≤4 cm versus >4 cm) were analyzed. ROC curve analysis was used to determine LN size for differentiating LN metastasis in terms of tumor size. P 4 cm revealed higher diagnostic accuracy of MRI in detecting LN metastasis (85.4% versus 50.6%, P = 0.023) and rate of LN recurrence (20.0% versus 6.4%, P = 0.031) in than those with size with ≤4 cm, the differences were statistically significant. Discriminant analysis of LN size for the differentiation of metastasis from non-metastasis resulted in cut-off values (11.8 mm; size with >4 cm versus 8.3 mm; size with ≤4 cm) and diagnostic accuracy (84.0% of size with >4 cm versus 72.0% of size with ≤4 cm). Conclusion: MRI has limited sensitivity, but high specificity in predicting surveillance of LN metastasis in the preoperative early cervical cancer, especially useful tool for patients with tumor size with >4 cm.

  7. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

    Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.; Schatz, George C.; Mirkin , Chad A. (NWU)

    2016-06-15

    The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

  8. Heat transfer across the interface between nanoscale solids and gas.

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  9. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode

    Chung, Yong-Ho; Lee, Taek; Choi, Jeong-Woo; Park, Hyung Ju; Yun, Wan Soo; Min, Junhong

    2013-01-01

    We fabricate a nanoscale biomemory device composed of recombinant azurin on nanogap electrodes. For this, size-controllable nanogap electrodes are fabricated by photolithography, electron beam lithography, and surface catalyzed chemical deposition. Moreover, we investigate the effect of gap distance to optimize the size of electrodes for a biomemory device and explore the mechanism of electron transfer from immobilized protein to a nanogap counter-electrode. As the distance of the nanogap electrode is decreased in the nanoscale, the absolute current intensity decreases according to the distance decrement between the electrodes due to direct electron transfer, in contrast with the diffusion phenomenon of a micro-electrode. The biomemory function is achieved on the optimized nanogap electrode. These results demonstrate that the fabricated nanodevice composed of a nanogap electrode and biomaterials provides various advantages such as quantitative control of signals and exclusion of environmental effects such as noise. The proposed bioelectronics device, which could be mass-produced easily, could be applied to construct a nanoscale bioelectronics system composed of a single biomolecule. (paper)

  10. MAGNET

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  11. MAGNET

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  12. MAGNET

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  13. MAGNET

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  14. Size control of MnFe2O4 nanoparticles in electric double layered magnetic fluid synthesis

    Aquino, R.; Tourinho, F.A.; Itri, R.; E Lara, M.C.F.L.; Depeyrot, J.

    2002-01-01

    We propose a method based on the pH of the synthesis to control the nanoparticle size during the ferrofluid elaboration. The particle diameter is determined by means of X-ray diffraction experiments. The measured mean size depends on the type of buffer used during the coprecipitation process. The results therefore confirm that the nanoparticle size can be monitored by the hydroxide concentration and suggest to consider the induced interplay between nucleation and crystal growth

  15. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    Borkar, Hitesh; Singh, V N; Kumar, Ashok; Choudhary, R J; Tomar, M; Gupta, Vinay

    2015-01-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr 0.52 Ti 0.48 ) 0.60 (Fe 0.67 W 0.33 ) .40 ]O 3 ] 0.80 –[CoFe 2 O 4 ] 0.20 (PZTFW–CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4–350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (∼0.4–0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (T B ). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite. (paper)

  16. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  17. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications

    Wang, Wenjun; Li, Peng; Jin, Feng

    2016-09-01

    A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.

  18. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications

    Haddad, Paula S. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)], E-mail: pferreira@lnls.br; Martins, Tatiana M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil); Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); D' Souza-Li, Lilia [Laboratorio de Endocrinologia Pediatrica da Faculdade de Ciencias Medicas (FCM), UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Li, Li M. [Departamento de Neurologia da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Metze, Konradin; Adam, Randall L. [Grupo interdisciplinar ' Patologia Analitica Celular' , Departamento de Anatomia Patologica da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Knobel, Marcelo [Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); Zanchet, Daniela [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)

    2008-05-01

    The present work reports the synthesis, characterization and properties of magnetic iron oxide nanoparticles for biomedical applications, correlating the nanoscale tunabilities in terms of size, structure, and magnetism. Magnetic nanoparticles in different conditions were prepared through thermal decomposition of Fe(acac){sub 3} in the presence of 1,2 hexadecanodiol (reducing agent) and oleic acid and oleylamine (ligands) in a hot organic solvent. The 2,3-dimercaptosuccinic acid (DMSA) was exchanged onto the nanocrystal surface making the particles stable in water. Nanoparticles were characterized by X-ray diffraction (XRD) measurements, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Preliminary tests of incorporation of these nanoparticles in cells and their magnetic resonance image (MRI) were also carried out. The magnetization characterizations were made by isothermal magnetic measurements.

  19. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques...... of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent...... magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information....

  20. Manipulating cluster size of polyanion-stabilized Fe3O4 magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior

    Yeap, Swee Pin; Ahmad, Abdul Latif; Ooi, Boon Seng; Lim, JitKang

    2015-01-01

    We report in this article an approach for manipulating the size of magnetic nanoparticle clusters (MNCs) via electrostatic-mediated assembly technique using an electrolyte as a clustering agent. The clusters were surface-tethered with poly(sodium 4-styrenesulfonate) (PSS) through electrostatic compensation to enhance their colloidal stability. Dynamic light scattering was employed to trace the evolution of cluster size. Simultaneously, electrophoretic mobility and Fourier transform infrared spectroscopy analyses were conducted to investigate the possible schemes involved in both cluster formation and PSS grafting. Results showed that the average hydrodynamic cluster size of the PSS/MNCs and their corresponding size distributions were successfully shifted by means of manipulating the suspension pH, the ionic nature of the electrolyte, and the electrolyte concentration. More specifically, the electrokinetic behavior of the particles upon interaction with the electrolyte plays a profound role in the formation of the PSS/MNCs. Nonetheless, the solubility of the polymer in electrolyte solution and the purification of the particles from residual ions should not be omitted in determining the effectiveness of this clustering approach. The PSS adlayer makes the resultant entities highly water-dispersible and provides electrosteric stabilization to shield the PSS/MNCs from aggregation. In this study, the experimental observations were analyzed and discussed on the basis of existing fundamental colloidal theories. The strategy of cluster size manipulation proposed here is simple and convenient to implement. Furthermore, manipulating the size of the MNCs also facilitates the tuning of magnetophoresis kinetics on exposure to low magnetic field gradient, which makes this nano-entity useful for engineering applications, specifically in separation processes.

  1. Manipulating cluster size of polyanion-stabilized Fe{sub 3}O{sub 4} magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior

    Yeap, Swee Pin, E-mail: sweepin0727@hotmail.com; Ahmad, Abdul Latif; Ooi, Boon Seng; Lim, JitKang, E-mail: chjitkangl@usm.my [Universiti Sains Malaysia, School of Chemical Engineering (Malaysia)

    2015-10-15

    We report in this article an approach for manipulating the size of magnetic nanoparticle clusters (MNCs) via electrostatic-mediated assembly technique using an electrolyte as a clustering agent. The clusters were surface-tethered with poly(sodium 4-styrenesulfonate) (PSS) through electrostatic compensation to enhance their colloidal stability. Dynamic light scattering was employed to trace the evolution of cluster size. Simultaneously, electrophoretic mobility and Fourier transform infrared spectroscopy analyses were conducted to investigate the possible schemes involved in both cluster formation and PSS grafting. Results showed that the average hydrodynamic cluster size of the PSS/MNCs and their corresponding size distributions were successfully shifted by means of manipulating the suspension pH, the ionic nature of the electrolyte, and the electrolyte concentration. More specifically, the electrokinetic behavior of the particles upon interaction with the electrolyte plays a profound role in the formation of the PSS/MNCs. Nonetheless, the solubility of the polymer in electrolyte solution and the purification of the particles from residual ions should not be omitted in determining the effectiveness of this clustering approach. The PSS adlayer makes the resultant entities highly water-dispersible and provides electrosteric stabilization to shield the PSS/MNCs from aggregation. In this study, the experimental observations were analyzed and discussed on the basis of existing fundamental colloidal theories. The strategy of cluster size manipulation proposed here is simple and convenient to implement. Furthermore, manipulating the size of the MNCs also facilitates the tuning of magnetophoresis kinetics on exposure to low magnetic field gradient, which makes this nano-entity useful for engineering applications, specifically in separation processes.

  2. Use of mineral magnetic concentration data as a particle size proxy: a case study using marine, estuarine and fluvial sediments in the Carmarthen Bay area, South Wales, U.K.

    Booth, C A; Walden, J; Neal, A; Smith, J P

    2005-07-15

    Compositional (non-magnetic) data can correlate strongly with particle size, which deems it appropriate as a particle size proxy and, therefore, a reliable means of normalising analytical data for particle size effects. Previous studies suggest magnetic concentration parameters represent an alternative means of normalising for these effects and, given the speed, low-cost and sensitivity of the measurements may, therefore, offer some advantages over other compositional signals. In this work, contemporary sediments from a range of depositional environments have been analysed with regard to their mineral magnetic concentration and textural characteristics, to observe if the strength and nature of the relationship identified in previous studies is universal. Our data shows magnetic parameters (chi(LF), chi(ARM) and SIRM) possess contrasting relationships with standard textural parameters for sediment samples collected from marine (Carmarthen Bay), estuarine (Gwendraeth Estuary) and fluvial (Rivers Gwendraeth Fach and Gwendraeth Fawr) settings. Magnetic concentrations of sediments from both the marine and estuarine environments are highly influenced by the magnetic contribution of finer particle sizes; Gwendraeth Fawr River sediments are influenced by the magnetic contribution of coarser particle sizes, while sediments from the Gwendraeth Fach River are not influenced significantly by any variations in textural properties. These results indicate mineral magnetic measurements have considerable potential as a particle size proxy for particular sedimentary environments, which in certain instances could be useful for geochemical, sediment transport, and sediment provenance studies. However, the data also highlight the importance of fully determining the nature of the relationship between sediment particle size and magnetic properties before applying mineral magnetic data as a particle size proxy.

  3. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins.

    Faas, Ramona; Pohle, Annelie; Moß, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-12-01

    Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl- sn -glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.

  4. Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite

    Abdellatif, M.H., E-mail: Mohamed.abdellatif@iit.it [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Innocenti, Claudia [INSTM—Department of Chemistry, University of Florence, via della Lastruccia 3, I-50019 Sesto Fiorentino, FI (Italy); Liakos, Ioannis [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Scarpellini, Alice; Marras, Sergio [Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Salerno, Marco [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-02-15

    Copper ferrite of spinel crystal structure was synthesized in the form of nano-particles using citrate-gel auto-combustion method. The sample morphology and composition were identified using scanning electron microscopy, X-ray diffraction, and X-ray spectroscopy. The latter technique reveals an inverse spinel structure with Jahn-Teller tetragonal distortion. The static magnetization was measured using vibrating sample magnetometer. Magnetic force microscopy was used in combination with the magnetization data to demonstrate the finite size effect of the magnetic spins and their casting behavior due to the introduction of copper ions in the tetrahedral magnetic sub-lattices, which results in tetragonal distorting the spinel structure of the copper ferrite. The magnetic properties of materials are a result of the collective behavior of the magnetic spins, and magnetic force microscopy can probe the collective behavior of the magnetic spins in copper ferrite, yet providing a sufficient resolution to map the effects below the micrometer size scale, such as the magnetic spin canting. A theoretical study was done to clarify the finite size effect of Jahn-Teller distortion on the magnetic properties of the material. When the particles are in the nano-scale, below the single domain size, their magnetic properties are very sensitive to their size change. - Highlights: • The spin canting due to Jahn-Teller distortion in Copper ferrite can be detected using magnetic force microscope. • The contrast in the magnetic AFM image can be analyzed to give information not only about the surface spins but also about the canting of the core spins inside the aggregated cluster of magnetic nanoparticle.

  5. Canopy Dynamics in Nanoscale Ionic Materials

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  6. Canopy Dynamics in Nanoscale Ionic Materials

    Jespersen, Michael L.; Mirau, Peter A.; Meerwall, Ernst von; Vaia, Richard A.; Rodriguez, Robert; Giannelis, Emmanuel P.

    2010-01-01

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  7. MAGNET

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  8. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Daqiq, Reza; Ghobadi, Nader

    2016-01-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  9. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  10. Magnetism and magnetic materials probed with neutron scattering

    Velthuis, S.G.E. te; Pappas, C.

    2014-01-01

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains

  11. Magnetism and magnetic materials probed with neutron scattering

    Velthuis, S.G.E. te, E-mail: tevelthuis@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, IL 60439 (United States); Pappas, C. [Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629JB Delft (Netherlands)

    2014-01-15

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains.

  12. Microscopic Investigation of Reversible Nanoscale Surface Size Dependent Protein Conjugation

    Michael A. Carpenter

    2009-05-01

    Full Text Available Aβ1-40 coated 20 nm gold colloidal nanoparticles exhibit a reversible color change as pH is externally altered between pH 4 and 10. This reversible process may contain important information on the initial reversible step reported for the fibrillogenesis of Aβ (a hallmark of Alzheimer’s disease. We examined this reversible color change by microscopic investigations. AFM images on graphite surfaces revealed the morphology of Aβ aggregates with gold colloids. TEM images clearly demonstrate the correspondence between spectroscopic features and conformational changes of the gold colloid.

  13. Effects of nanoscale size dependent parameters on lattice thermal ...

    diameter dependence also indicates a strong control of surface effect in surface to bulk ratio for the 22 nm wire diameter. ... dimensional systems of variable transverse dimension using a large scale numerical transverse .... include unharmonic interaction (three-phonon Umklapp scattering,τU ), mass difference scat-.

  14. Influence of Y and La substitution on particle size, structural and magnetic properties of nanosized nickel ferrite prepared by using citrate precursor method

    Anh, Luong Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Loan, To Thanh, E-mail: totloan@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Duong, Nguyen Phuc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Vietnam-Japan International Institute for Science of Technology (VJIIST), Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Soontaranon, Siriwat [Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000 (Thailand); Viet Nga, Tran Thi; Hien, Than Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam)

    2015-10-25

    The compounds with the formulas NiFe{sub 2}O{sub 4}, NiFe{sub 1.9}Y{sub 0.1}O{sub 4} and NiFe{sub 1.9}La{sub 0.1}O{sub 4} were prepared by citrate precursor method and followed by heat treatment in air at 600 °C for 5 h. Crystal structure, valence state, chemical bonding and composition of the samples were studied rigorously by XRD, SXRD, XANES, FTIR and ICP–AES. Rietveld refinement of XRD and SXRD patterns reveals that the samples crystallize in single spinel phase with almost inverted structure in which the substituted ions Y{sup 3+} and La{sup 3+} locate in the octahedral sites and about ten percents of nickel atoms were found at the tetrahedral sites. Morphology and particle size were studied by SEM and TEM. The results show that the samples are composed of clustered nanoparticles with mean particle size decreases approximately from 20 nm in NiFe{sub 2}O{sub 4} sample to 10 nm in the substituted ones. The magnetic measurements were carried out by means of a VSM. Spontaneous magnetization, magnetic coercivity, Curie temperature, superparamagnetic transition temperature, interparticle interaction energy and effective anisotropy were determined and explained on the basis of the surface and finite–size effects and cation distribution. - Highlights: • Y{sup 3+} and La{sup 3+} substituted NiFe{sub 2}O{sub 4} nanoparticles are synthesized by citrate precursor method involving less energy. • XRD, SXRD and FTIR spectra reveal the crystallographic site occupancy of Y{sup 3+} and La{sup 3+}. • Compositions and valence states of cations are verified by ICP-AES and XANES. • Y{sup 3+} and La{sup 3+} substitution decreases the mean particle size to about 10 nm. • Influence of rare earth substitution and finite size in magnetic properties are investigated.

  15. The effect of the size of the system, aspect ratio and impurities concentration on the dynamic of emergent magnetic monopoles in artificial spin ice systems

    León, Alejandro, E-mail: alejandro.leon@udp.cl

    2013-08-15

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a “frustrated celular autómata” (FCA), based in the charge model and dipolar model. The FCA simulations allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work. - Highlights: • The dynamics of magnetic monopoles in spin ice systems strongly dependent on the size of the system. • Number of emerging magnetic monopoles, in the phase of magnetic reversal, depend of the aspect. • Different systems can be created based on this idea, for information technology.

  16. Magnetic fluid with high dispersion and heating performance using nano-sized Fe{sub 3}O{sub 4} platelets

    Kishimoto, Mikio, E-mail: kishimoto.mikio.gb@u.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Miyamoto, Ryoichi; Oda, Tatsuya [Department of Surgery, Division of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Yanagihara, Hideto [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Ohkohchi, Nobuhiro [Department of Surgery, Division of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kita, Eiji [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-01-15

    Magnetic fluid with high dispersion and heating performance was developed using 30 to 50 nm platelet Fe{sub 3}O{sub 4} particles. This fluid was prepared by mechanical dispersion in ethyl alcohol with a silane coupling agent, bonding with polyethylene glycol (PEG), and removal of aggregates formed by precipitation. The peak diameter of the resulting Fe{sub 3}O{sub 4} particles, measured by dynamic light scattering, was approximately 150 nm. The fluid exhibited a 300 W/g specific loss power (measured at 114 kHz by a 50.9 kA/m magnetic field). Distribution of the Fe{sub 3}O{sub 4} particles in tissues was observed by intravenously administrating the fluid in mice. The Fe{sub 3}O{sub 4} particles passed through the lungs, and were uniformly distributed throughout the liver and spleen. High dispersion and high heating performance were simultaneously achieved in the magnetic fluid using platelet Fe{sub 3}O{sub 4} particles surface modified with PEG. - Highlights: • Magnetic fluid with high dispersion and heating performance using Fe{sub 3}O{sub 4} particles. • Fluid prepared by mechanical dispersion, bonding with polyethylene glycol. • TEM observation and measurements of particle size distribution and specific loss power of fluid. • Observation of distribution of particles in mice tissues intravenously administrated fluid.

  17. The effects of aging time on the size, morphology, oriented attachment and magnetic behavior of hematite nanocrystals synthesized by forced hydrolysis of FeIII solutions

    Luna, C.; Barriga-Castro, E.D.; Mendoza-Reséndez, R.

    2014-01-01

    Graphical abstract: -- Abstract: Three-dimensional (3-D) nanoarchitectures composed of self-organized hematite nanocrystals were successfully prepared by thermally induced hydrolysis of iron (III) solutions in the presence of urea and without additional stabilizers. The size, morphology and microstructure of these nanocrystal aggregates were investigated as a function of aging time using X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The evolution of the microstructural parameters, including crystallite size, root mean square strain and lattice parameters, was analyzed by the Rietveld method using the MAUD software program and adopting the size–strain–shape Popa model. In addition, vibrating-sample magnetometry measurements were carried out to examine the magnetic behavior of the nanoarchitectures. These studies suggested that the formation mechanism of the observed nanoarchitectures consisted of several self-organization processes linked in hierarchical levels. The nanocrystals within these nanoarchitectures grew in size by Ostwald ripening and subsequent grain growth when they were aged at 98 °C in tightly capped tubes for an aging time that varied from 2 h up to 45 days. The crystal morphology evolved favoring a rhombohedral shape until intergrowth between the densely packed nanocrystals occurred. Consequently, the morphology of the nanoarchitectures, their effective magnetic anisotropy, the occurrence of the Morin transition and the exchange bias effect were also strongly dependent on the aging time

  18. Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles

    Jia, Zhiyong; Kang, Shishou; Shi, Shifan; Nikles, David E.; Harrell, J. W.

    2005-05-01

    There is growing evidence that FePt nanoparticles become increasingly difficult to chemically order as the size approaches a few nanometers. We have studied the chemical ordering of FePt and FePtAu nanoparticle arrays as a function of particle size. Monodisperse Fe49Pt51 and Fe48Pt44Au8 nanoparticles with a size about 6nm were synthesized by the simultaneous decomposition of iron pentacarbonyl and reduction of platinum acetylacetonate and gold (III) acetate in a mixture of phenyl ether and hexadecylamine (HDA), with 1-adamantanecarboxylic acid and HDA as stabilizers. The nanoparticles were dispersed in toluene, films of the particles were cast onto silicon wafers from the dispersion, and the films were annealed in a tube furnace with flowing Ar +5%H2. The magnetic anisotropy and switching volumes were determined from time- and temperature-dependent coercivity measurements. By comparing with 3-nm FePt and FePtAu nanoparticles of comparable composition, the phase transformation is easier for the larger particles. Under the same annealing conditions, the larger particles have higher anisotropy and order parameter. Additive Au is very effective in enhancing the chemical ordering in both small and large particles, with x-ray diffraction superlattice peaks appearing after annealing at 350°C. Dynamic remnant coercivity measurements and magnetic switching volumes suggest particle aggregation at the higher annealing temperatures in both small and large particles.

  19. Nanoscale constrictions in superconducting coplanar waveguide resonators

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando, E-mail: fluis@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Sesé, Javier [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Atkinson, James; Barco, Enrique del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sánchez-Azqueta, Carlos [Dpto. de Ingeniería Electrónica y Telecomunicaciones, Universidad de Zaragoza, 50009 Zaragoza (Spain); Majer, Johannes [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna (Austria)

    2014-10-20

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  20. Symmetric and Asymmetric Magnetic Tunnel Junctions with Embedded Nanoparticles: Effects of Size Distribution and Temperature on Tunneling Magnetoresistance and Spin Transfer Torque.

    Useinov, Arthur; Lin, Hsiu-Hau; Lai, Chih-Huang

    2017-08-21

    The problem of the ballistic electron tunneling is considered in magnetic tunnel junction with embedded non-magnetic nanoparticles (NP-MTJ), which creates additional conducting middle layer. The strong temperature impact was found in the system with averaged NP diameter d av  tunneling magnetoresistance (TMR) voltage behaviors. The low temperature approach also predicts step-like TMR and quantized in-plane spin transfer torque (STT) effects. The robust asymmetric STT respond is found due to voltage sign inversion in NP-MTJs with barrier asymmetry. Furthermore, it is shown how size distribution of NPs as well as quantization rules modify the spin-current filtering properties of the nanoparticles in ballistic regime. Different quantization rules for the transverse component of the wave vector are considered to overpass the dimensional threshold (d av  ≈ 1.8 nm) between quantum well and bulk-assisted states of the middle layer.

  1. MAGNET

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  2. MAGNET

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  3. MAGNET

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  4. MAGNET

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  5. Role of field-induced nanostructures, zippering and size polydispersity on effective thermal transport in magnetic fluids without significant viscosity enhancement

    Vinod, Sithara; Philip, John

    2017-12-01

    Magnetic nanofluids or ferrofluids exhibit extraordinary field dependant tunable thermal conductivity (k), which make them potential candidates for microelectronic cooling applications. However, the associated viscosity enhancement under an external stimulus is undesirable for practical applications. Further, the exact mechanism of heat transport and the role of field induced nanostructures on thermal transport is not clearly understood. In this paper, through systematic thermal, rheological and microscopic studies in 'model ferrofluids', we demonstrate for the first time, the conditions to achieve very high thermal conductivity to viscosity ratio. Highly stable ferrofluids with similar crystallite size, base fluid, capping agent and magnetic properties, but with slightly different size distributions, are synthesized and characterized by X-ray diffraction, small angle X-ray scattering, transmission electron microscopy, dynamic light scattering, vibrating sample magnetometer, Fourier transform infrared spectroscopy and thermo-gravimetry. The average hydrodynamic diameters of the particles were 11.7 and 10.1 nm and the polydispersity indices (σ), were 0.226 and 0.151, respectively. We observe that the system with smaller polydispersity (σ = 0.151) gives larger k enhancement (130% for 150 G) as compared to the one with σ = 0.226 (73% for 80 G). Further, our results show that dispersions without larger aggregates and with high density interfacial capping (with surfactant) can provide very high enhancement in thermal conductivity, with insignificant viscosity enhancement, due to minimal interfacial losses. We also provide experimental evidence for the effective heat conduction (parallel mode) through a large number of space filling linear aggregates with high aspect ratio. Microscopic studies reveal that the larger particles act as nucleating sites and facilitate lateral aggregation (zippering) of linear chains that considerably reduces the number density of space

  6. Oleate-based hydrothermal preparation of CoFe{sub 2}O{sub 4} nanoparticles, and their magnetic properties with respect to particle size and surface coating

    Repko, Anton, E-mail: anton@a-repko.sk [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic); Vejpravová, Jana, E-mail: vejpravo@fzu.cz [Department of Magnetic Nanosystems, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Vacková, Taťana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Zákutná, Dominika [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic); Nižňanský, Daniel, E-mail: daniel.niznansky@natur.cuni.cz [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic)

    2015-09-15

    We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co–Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6–10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe{sub 2}O{sub 4}@TiO{sub 2} nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel–Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were prepared by facile hydrothermal method from Co–Fe oleate. • Blocking temperature (T{sub B}) is 180–330 K for 6–10.5 nm oleate-coated particles. • The apparent T{sub B} changes with oleic acid, citrate or TiO{sub 2} coating.

  7. Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel

    Xu, H. J.; Xu, Y. B.; Jiao, H. T.; Cheng, S. F.; Misra, R. D. K.; Li, J. P.

    2018-05-01

    Fe-6.5 wt% Si steel hot bands with different initial grain size and texture were obtained through different annealing treatment. These bands were then warm rolled and annealed. An analysis on the evolution of microstructure and texture, particularly the formation of recrystallization texture was studied. The results indicated that initial grain size and texture had a significant effect on texture evolution and magnetic properties. Large initial grains led to coarse deformed grains with dense and long shear bands after warm rolling. Such long shear bands resulted in growth advantage for {1 1 3} 〈3 6 1〉 oriented grains during recrystallization. On the other hand, sharp {11 h} 〈1, 2, 1/h〉 (α∗-fiber) texture in the coarse-grained sample led to dominant {1 1 2} 〈1 1 0〉 texture after warm rolling. Such {1 1 2} 〈1 1 0〉 deformed grains provided massive nucleation sites for {1 1 3} 〈3 6 1〉 oriented grains during subsequent recrystallization. These {1 1 3} 〈3 6 1〉 grains were confirmed to exhibit an advantage on grain growth compared to γ-fiber grains. As a result, significant {1 1 3} 〈3 6 1〉 texture was developed and unfavorable γ-fiber texture was inhibited in the final annealed sheet. Both these aspects led to superior magnetic properties in the sample with largest initial grain size. The magnetic induction B8 was 1.36 T and the high frequency core loss P10/400 was 17.07 W/kg.

  8. Measurements of Pulmonary Artery Size for Assessment of Pulmonary Hypertension by Cardiovascular Magnetic Resonance and Clinical Application

    Fan YANG

    2017-02-01

    Full Text Available Background and objective Pulmonary hypertension (PH often leads to dilatation of main pulmonary artery (MPA. MPA measurements can be used to predict PH. This aim of this study is to investigate power of MPA vessel indices, which are acquired from cardiovascular magnetic resonance, to evaluate PH. Methods Cardiovascular-magnetic-resonance-determined parameters of MPA were acquired and calculated in 83 PH patients, whose diagnosis were confirmed with right heart catheterization and 49 healthy volunteers; these parameters included MPA diameter (DPA, ratio of DPA and ascending aorta diameter (DPA/DAo, max mean diameter (MDmax, min mean diameter (MDmin, fraction transverse diameter (fTD, fraction longitudinal diameter (fLD, and distensibility. Results Compared with control group, DPA, DPA/DAo, MDmax, and MDmin were significantly higher in patients with PH (P28.4 mm, and MDmax>32.4 mm (area under the curve, AUC=0.979, 0.981 showed best performance in predicting PH, yielding highest specificity at 100%. Conclusion Noninvasive cardiovascular-magnetic-resonance-derived MPA measurements provide excellent and practical reference in clinical settings for detecting PH.

  9. The role of sub-micron grain size in the development of rare earth hard magnetic alloys

    Davies, H.A.; Wang, Z.C.

    2004-01-01

    The magnetic properties of nanocrystalline melt spun rare earth-iron-boron alloys based on Nd or Pr and on Nd-Pr mixtures are compared for a wide range of RE:Fe ratio. Their magnetic properties are compared with those of corresponding alloy ribbons based on Nd. The Pr containing alloys have generally higher coercivity than their Nd counterparts because of the higher anisotropy constant of the Pr 2 Fe 14 B phase. Co substitution for Fe increases the Curie temperature and thermal stability for the nanophase alloys. Excellent magnetic property combinations were achieved for single phase Pr 12 (Fe 100-x Co x ) 82 B 6 (x=0-20) alloys, processed by overquenching and devitrification annealing. In contrast, in the case of nanocomposite Pr 10 (Fe 100-x Co x ) 84 B 6 alloys, based on Pr 2 Fe 14 B/α-Fe mixtures, only for 30% substitution of Fe by Co could useful enhancement of (BH) max be achieved, due to generally rather coarse α-Fe crystallites

  10. Nanoscale biophysics of the cell

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  11. Nanoscale Mixing of Soft Solids

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2011-01-01

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C 30 H 62 ) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ( 1 H and 2 H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  12. Nanoscale strontium titanate photocatalysts for overall water splitting.

    Townsend, Troy K; Browning, Nigel D; Osterloh, Frank E

    2012-08-28

    SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  13. Nanoscale hydroxyapatite particles for bone tissue engineering.

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Effect of field size on determination of mean free path of a magnetized mortar irradiated with energy photons between 65 and 1250 keV

    Andrade, M. Paes de; Vieira, J.W.; Filho, Joao Antonio

    2011-01-01

    The size effect of the radiation field in determining the half value layer (HVL) and the relaxation length of a magnetized mortar was evaluated for photon beams of energy between 65 and 1250 keV. The mortar consists of water, cement, limonite and magnetite has been shaped and constructed a computer simulation of photon beam attenuation for different radiation fields with diameters between 3 and 20 cm using the Monte Carlo code Penelope. For the same energy and different sizes of the radiation field, the ratio of HVL and μx showed a deviation of up to 21% when the radiation beam was attenuated 99%. It was concluded that the experimental determination of the magnitudes of the HVL and μx for the mortar and the irradiation conditions used in this study were made with narrow radiation fields. (author)

  15. How environmental magnetism can enhance the interpretational value of grain-size analysis: A time-slice study on sediment export to the NW African margin in Heinrich Stadial 1 and Mid Holocene

    Razik, S.; Dekkers, M.J.; Von Dobeneck, T.

    2014-01-01

    Sediment dynamics in limnic, fluvial and marine environments can be assessed by granulometric and rock-magnetic methodologies. While classical grain-size analysis by sieving or settling mainly bears information on composition and transport, the magnetic mineral assemblages reflect to a larger extent

  16. Size dependent magnetic and magneto-optical properties of Ni{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} nanoparticles

    Li, Oksana A., E-mail: log85@mail.ru [Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan (China); Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); Lin, Chun-Rong, E-mail: crlin@mail.nptu.edu.tw [Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan (China); Chen, Hung-Yi; Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan (China); Shih, Kun-Yauh [Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan (China); Edelman, Irina S. [L.V. Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Wu, Kai-Wun; Tseng, Yaw-Teng [Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan (China); Ovchinnikov, Sergey G. [Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); L.V. Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Lee, Jiann-Shing [Department of Applied Physics, National Pingtung University, Pingtung 90003, Taiwan (China)

    2016-06-15

    Ni{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} spinel nanoparticles have been synthesized by combustion method. Average particles size varies from 15.5 to 50.0 nm depending on annealing temperature. Correlations between particles size and magnetic and magneto-optical properties are investigated. Magnetization dependences on temperature and external magnetic field correspond to the sum of paramagnetic and superparamagnetic response. Critical size of single-domain transition is found to be 15.9 nm. Magnetic circular dichroism (MCD) studies of nickel zinc spinel are presented here for the first time. The features in magnetic circular dichroism spectrum are assigned to the one-ion d–d transitions in Fe{sup 3+} and Ni{sup 2+} ions, as well to the intersublattice and intervalence charge transfer transitions. The MCD spectrum rearrangement was revealed with the change of the nanoparticles size. - Highlights: • Ni{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} nanoparticles were synthesized by combustion method. • Structure and magnetic properties are studied. • Magnetic circular dichroism (MCD) of nickel zinc spinel was measured for the first time. • The MCD spectrum rearrangement was revealed with the change of the nanoparticles size.

  17. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  18. Particle size dependence of the Young's modulus of filled polymers: 2. Annealing and solid-state nuclear magnetic resonance experiments

    Vollenberg, P.H.T.; Haan, de J.W.; Ven, van de L.J.M.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  19. Magnetic characterization of radio frequency heat affected micron size Fe3O4 powders: a bio-application perspective

    Roul, BK

    2009-05-01

    Full Text Available in oxygen plasma and noted to be dependent on average particle size. Microscopic rise in electron temperature during RF heating may likely to enhance the electron-hopping rate between Fe(+2) and Fe(+3) in the octahedral site of Fe3O4 molecular crystal...

  20. Automated breast volume scanner (ABVS) in assessing breast cancer size. A comparison with conventional ultrasound and magnetic resonance imaging

    Girometti, Rossano; Zanotel, Martina; Londero, Viviana; Linda, Anna; Lorenzon, Michele; Zuiani, Chiara [University of Udine, Azienda Sanitaria Universitaria Integrata di Udine, Institute of Radiology, Department of Medicine, Udine (Italy)

    2018-03-15

    To compare automated breast volume scanner (ABVS), ultrasound (US) and MRI in measuring breast cancer size, and evaluate the agreement between ABVS and US in assessing lesion location and sonographic features. We retrospectively included 98 women with 100 index cancers who had undergone US and ABVS followed by 1.5T MRI. Images were interpreted by a pool of readers reporting lesion size, location and breast imaging reporting and data system (BI-RADS) features. Bland-Altman analysis (with logarithmic data transformation), intraclass correlation coefficient (ICC) and Cohen's kappa statistic were used for statistical analysis. MRI showed the best absolute agreement with histology in measuring cancer size (ICC 0.93), with LOA comparable to those of ABVS (0.63-1.99 vs. 0.52-1.73, respectively). Though ABVS and US had highly concordant measurements (ICC 0.95), ABVS showed better agreement with histology (LOA 0.52-1.73 vs. 0.45-1.86, respectively), corresponding to a higher ICC (0.85 vs. 0.75, respectively). Except for posterior features (k=0.39), the agreement between US and ABVS in attributing site and BI-RADS features ranged from substantial to almost perfect (k=0.68-0.85). ABVS performs better than US and approaches MRI in predicting breast cancer size. ABVS performs comparably to US in sonographic assessment of lesions. (orig.)

  1. MAGNET

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  2. MAGNET

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  3. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    Hou, Zhipeng; Zhang, Qiang; Xu, Guizhou; Gong, Chen; Ding, Bei; Wang, Yue; Li, Hang; Liu, Enke; Xu, Feng; Zhang, Hongwei; Yao, Yuan; Wu, Guangheng; Zhang, Xixiang; Wang, Wenhong

    2018-01-01

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  4. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    Hou, Zhipeng

    2018-01-04

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  5. Nanoscale strain engineering of graphene and graphene-based devices

    N-C Yeh; C-C Hsu; M L Teague; J-Q Wang; D A Boyd; C-C Chen

    2016-01-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simula-tions and nano-fabrication technology.

  6. Optic nerve size evaluated by magnetic resonance imaging in children with optic nerve hypoplasia, multiple pituitary hormone deficiency, isolated growth hormone deficiency, and idiopathic short stature.

    Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis

    2004-10-01

    To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P imaging of the ONs with cross-sectional area short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.

  7. The synthesis and properties of nanoscale ionic materials

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Nanoscale science and nanotechnology education in Africa ...

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  9. Patterning high explosives at the nanoscale

    Nafday, Omkar A.; Pitchimani, Rajasekar; Weeks, Brandon L. [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Haaheim, Jason [NanoInk Inc., 8025 Lamon Ave., Skokie, IL 60077 (United States)

    2006-10-15

    For the first time, we have shown that spin coating and Dip pen nanolithography (DPN trademark) are simple methods of preparing energetic materials such as PETN and HMX on the nanoscale, requiring no heating of the energetic material. Nanoscale patterning has been demonstrated by the DPN method while continuous thin films were produced using the spin coating method. Results are presented for preparing continuous PETN thin films of nanometer thickness by the spin coating method and for controlling the architecture of arbitrary nanoscale patterns of PETN and HMX by the DPN method. These methods are simple for patterning energetic materials and can be extended beyond PETN and HMX, opening the door for fundamental studies at the nanoscale. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Quantum Transport Simulations of Nanoscale Materials

    Obodo, Tobechukwu Joshua

    2016-01-01

    -performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high

  11. Nanoscale drug delivery for targeted chemotherapy.

    Xin, Yong; Huang, Qian; Tang, Jian-Qin; Hou, Xiao-Yang; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan

    2016-08-28

    Despite significant improvements in diagnostic methods and innovations in therapies for specific cancers, effective treatments for neoplastic diseases still represent major challenges. Nanotechnology as an emerging technology has been widely used in many fields and also provides a new opportunity for the targeted delivery of cancer drugs. Nanoscale delivery of chemotherapy drugs to the tumor site is highly desirable. Recent studies have shown that nanoscale drug delivery systems not only have the ability to destroy cancer cells but may also be carriers for chemotherapy drugs. Some studies have demonstrated that delivery of chemotherapy via nanoscale carriers has greater therapeutic benefit than either treatment modality alone. In this review, novel approaches to nanoscale delivery of chemotherapy are described and recent progress in this field is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Study of system-size effects on the emergent magnetic monopoles and Dirac strings in artificial kagome spin ice

    Leon, Alejandro

    2012-02-01

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a ``frustrated celular aut'omata'' (FCA), based in the charge model. In this model, each dipole is replaced by a dumbbell of two opposite charges, which are situated at the neighbouring vertices of the honeycomb lattice. The FCA simulations, allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work.

  13. Spin dynamics in mesoscopic size magnetic systems: A 1HNMR study in rings of iron (III) ions

    Lascialfari, A.; Gatteschi, D.; Borsa, F.; Cornia, A.

    1997-01-01

    Two magnetic molecular clusters containing almost coplanar rings of iron (III) ions with spinS=5/2 have been investigated by 1 H NMR and relaxation measurements. The first system, which will be referred to as Fe6, is a molecule of general formula [NaFe 6 (OCH 3 ) 12 (C 17 O 4 H 15 ) 6 ] + ClO 4 - or [NaFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - or [LiFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - while the second type of ring, denoted Fe10, corresponds to the molecule [Fe 10 (OCH 3 ) 20 (C 2 H 2 O 2 Cl) 10 ]. The 1 H NMR linewidth is broadened by the nuclear dipolar interaction and by the dipolar coupling of the protons with the iron (III) paramagnetic moment. It is found that the nuclear spin-lattice relaxation rate, T 1 -1 , of the proton is a sensitive probe of the Fe spin dynamics. In both clusters, T 1 -1 decreases with decreasing temperatures from room temperature, goes through a peak just below about 30 K in Fe6 and 10 K in Fe10, and it drops exponentially to very small values at helium temperature. The temperature dependence of the relaxation rate is discussed in terms of the fluctuations of the local spins within the allowed total spin configurations in the framework of the weak collision theory to describe the nuclear relaxation. We use the calculated energy levels for the Fe6 ring based on a Heisenberg Hamiltonian and the value of J obtained from the fit of the magnetic susceptibility to describe semiquantitatively the behavior of T 1 -1 vs T. The exponential drop of T 1 -1 at low temperature is consistent with a nonmagnetic singlet ground state separated by an energy gap from the first excited triplet state. (Abstract Truncated)

  14. Fast heat flux modulation at the nanoscale

    van Zwol, P. J.; Joulain, K.; Abdallah, P. Ben; Greffet, J. J.; Chevrier, J.

    2011-01-01

    We introduce a new concept for electrically controlled heat flux modulation. A flux contrast larger than 10 dB is expected with switching time on the order of tens of nanoseconds. Heat flux modulation is based on the interplay between radiative heat transfer at the nanoscale and phase change materials. Such large contrasts are not obtainable in solids, or in far field. As such this opens up new horizons for temperature modulation and actuation at the nanoscale.

  15. Magnetic properties of nanocrystalline KNbO3

    Golovina, I. S.; Shanina, B. D.; Kolesnik, S. P.; Geifman, I. N.; Andriiko, A. A.

    2013-01-01

    Newly synthesized undoped and iron-doped nanoscale powders of KNbO 3 are investigated using magnetic resonance and static magnetization methods in order to determine how the crystal size and doping affect the structure of magnetic defects and material properties. Although the bulk crystals of KNbO 3 are nonmagnetic, the undoped KNbO 3 powder with average particle size of 80 nm exhibits magnetic properties. The ferromagnetic resonance signal and the magnetization curve registered on the powder are thoroughly analyzed. It is concluded that the appearance of the defect driven ferromagnetism in the undoped powder is due to the nano-size of the particles. This effect disappears in the iron-doped KNbO 3 powder with particle sizes above 300 nm. In case of low doping ( eff  = 4.21 is found out in the KNbO 3 :Fe powder. Such a signal has not been observed in the bulk crystals of KNbO 3 :Fe. We suppose that this signal corresponds to individual paramagnetic Fe 3+ ions having rhombic symmetry

  16. Magnetic properties of nanocrystalline KNbO{sub 3}

    Golovina, I. S., E-mail: golovina@isp.kiev.ua; Shanina, B. D.; Kolesnik, S. P. [Institute of Semiconductor Physics of NAS of Ukraine, Pr. Nauky 41, 03028 Kyiv (Ukraine); Geifman, I. N. [Quality Engineering Education, Inc., Buffalo Grove, Illinois 60089 (United States); Andriiko, A. A. [National Technical University of Ukraine “KPI”, pr. Peremogy 37, 03056 Kyiv (Ukraine)

    2013-11-07

    Newly synthesized undoped and iron-doped nanoscale powders of KNbO{sub 3} are investigated using magnetic resonance and static magnetization methods in order to determine how the crystal size and doping affect the structure of magnetic defects and material properties. Although the bulk crystals of KNbO{sub 3} are nonmagnetic, the undoped KNbO{sub 3} powder with average particle size of 80 nm exhibits magnetic properties. The ferromagnetic resonance signal and the magnetization curve registered on the powder are thoroughly analyzed. It is concluded that the appearance of the defect driven ferromagnetism in the undoped powder is due to the nano-size of the particles. This effect disappears in the iron-doped KNbO{sub 3} powder with particle sizes above 300 nm. In case of low doping (<1 mol. % Fe), a new electron paramagnetic resonance signal with g{sub eff} = 4.21 is found out in the KNbO{sub 3}:Fe powder. Such a signal has not been observed in the bulk crystals of KNbO{sub 3}:Fe. We suppose that this signal corresponds to individual paramagnetic Fe{sup 3+} ions having rhombic symmetry.

  17. Magnetic comparison of abiogenic and biogenic alteration products of lepidocrocite

    Till, J. L.; Guyodo, Y.; Lagroix, F.; Ona-Nguema, G.; Brest, J.

    2014-06-01

    Lepidocrocite is a potentially important Fe-bearing precursor phase for the production of nanoscale Fe-oxide particles in the environment. We present a detailed magnetic characterization of various alteration products of lepidocrocite resulting from thermal dehydroxylation reactions and bacterially induced bioreduction and remineralization, accompanied by characterization with x-ray diffraction (XRD) and transmission electron microscopy. Dehydroxylation during annealing at moderate temperatures produces a topotactic transformation from lepidocrocite to maghemite when heated in an oxidizing atmosphere, or to magnetite when heated in a reducing atmosphere. The abiotic Fe-oxide products form an oriented framework of strongly interacting superparamagnetic crystallites and are characterized by a distinctive porous nanostructure observed by electron microscopy. Lepidocrocite bioreduction by the iron-reducing bacterium Shewanella putrefaciens ATCC 8071 produces nanoscale particles of a strongly magnetic phase. This Fe(II)-bearing mineral produced by bioreduction is highly crystalline and euhedral in shape, with a broad grain size distribution and is indicated by magnetic and XRD measurements to be a cation-excess magnetite. We highlight the distinguishing microscopic characteristics of magnetite from both abiotic and bacterially induced mineralization that should allow them to be identified in natural settings. Moreover, both mechanisms of alteration represent potential pathways for the direct formation of strongly magnetic fine-grained Fe-oxide particles in sedimentary environments.

  18. Size of the intracranial optic nerve and optic tract in neonates at term-equivalent age at magnetic resonance imaging

    Oyama, Jun; Mori, Kouichi [Tsuchiura Kyodo General Hospital, Department of Radiology, Tsuchiura, Ibaraki (Japan); Imamura, Masatoshi [Tsuchiura Kyodo General Hospital, Department of Neonatology, Tsuchiura, Ibaraki (Japan); Mizushima, Yukiko [Tsuchiura Kyodo General Hospital, Department of Ophthalmology, Tsuchiura, Ibaraki (Japan); Tateishi, Ukihide [Tokyo Medical and Dental University, Departments of Diagnostic Radiology and Nuclear Medicine, Tokyo (Japan)

    2016-04-15

    The expected MRI-based dimensions of the intracranial optic nerve and optic tract in neonates are unknown. To evaluate the sizes of the intracranial optic nerve and optic tract in neonates at term-equivalent age using MRI. We retrospectively analyzed brain MRI examinations in 62 infants (28 boys) without intracranial abnormalities. The images were obtained in infants at term-equivalent age with a 1.5-tesla MRI scanner. We measured the widths and heights of the intracranial optic nerve and optic tract and calculated the cross-sectional areas using the formula for an ellipse. The means ± standard deviation of the width, height and cross-sectional area of the intracranial optic nerve were 2.7 ± 0.2 mm, 1.7 ± 0.2 mm and 3.5 ± 0.5 mm{sup 2}, respectively. The width, height and cross-sectional area of the optic tract were 1.5 ± 0.1 mm, 1.6 ± 0.1 mm and 2.0 ± 0.2 mm{sup 2}, respectively. Using univariate and multivariate analyses, we found that postmenstrual age showed independent intermediate positive correlations with the width (r = 0.48, P < 0.01) and cross-sectional area (r = 0.40, P < 0.01) of the intracranial optic nerve. The lower bounds of the 95% prediction intervals for the width and cross-sectional area of the intracranial optic nerve were 0.07 x (postmenstrual age in weeks) - 0.46 mm, and 0.17 x (postmenstrual age in weeks) - 4.0 mm{sup 2}, respectively. We identified the sizes of the intracranial optic nerve and optic tract in neonates at term-equivalent age. The postmenstrual age at MRI independently positively correlated with the sizes. (orig.)

  19. Passive films at the nanoscale

    Maurice, Vincent; Marcus, Philippe

    2012-01-01

    Highlights: ► Nanoscale data on growth, structure and local properties of passive films reviewed. ► Preferential role of defects of passive films on the corrosion resistance emphasized. ► Effect of grain boundaries on local electronic properties shown by new data. ► Use of atomistic modeling to test mechanistic hypotheses illustrated. - Abstract: The nanometer scale chemical and structural aspects of ultrathin oxide passive films providing self-protection against corrosion to metals and alloys in aqueous environments are reviewed. Data on the nucleation and growth of 2D anodic oxide films, details on the atomic structure and nanostructure of 3D passive films, the preferential role of surface step edges in dissolution in the passive state and the preferential role of grain boundaries of the passive films in passivity breakdown are presented. Future perspectives are discussed, and exemplified by new data obtained on the relationship between the nanostructure of oxide passive films and their local electronic properties. Atomistic corrosion modeling by ab initio density functional theory (DFT) is illustrated by the example of interactions of chloride ions with hydroxylated oxide surfaces, including the role of surface step edges. Data obtained on well-defined substrate surfaces with surface analytical techniques are emphasized.

  20. Magnetic

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  1. MAGNET

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  2. MAGNET

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  3. MAGNET

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  4. Preparation of Nano-sized Bismuth-Doped Fe3O4 as an Excellent Magnetic Material for Supercapacitor Electrodes

    Aghazadeh, Mustafa; Karimzadeh, Isa; Ganjali, Mohammad Reza

    2018-03-01

    Nano-sized Bi3+-doped iron oxide (n-Bi-IO) particles were prepared through a one-pot electrochemical procedure, and the product was evaluated using x-ray diffraction, field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy. Based on the analyses, the average size of the n-Bi-IO was determined to be 10 nm. Galvanostatic charge-discharge (GCD) evaluations revealed that the specific capacitance of the material reached 235 F g-1 at a discharge condition of 0.2 A g-1. n-Bi-IO had a 94.2% capacity retention after 2000 GCD cycles. Further vibrating sample magnetometery analyses showed that the product has enhanced superparamagnetic qualities (i.e. M r = 0.15 emu g-1 and H Ci = 2.71 G) in comparison to iron oxide nanoparticles (i.e. M r = 0.95 emu g-1 and H Ci = 14.62 G). Given the results, the product is considered to be a promising material for developing high performance supercapacitor electrodes.

  5. Development of Nanoscale Graphitic Devices and The Transport Characterization

    Gunasekaran, Venugopal

    2011-02-01

    This dissertation describes the development of graphitic based nanoscale devices with its fabrication and transport characterization results. It covers graphite nano-scale stacked-junctions fabricated using focused ion beam (FIB) 3-D etching technique, a single layer graphite layer (graphene) preparation and its electrical transport characterization results and the synthesis and investigation of electrical transport behavior of graphene oxide based thin film devices. The first chapter describes the basic information about the carbon family in detail in which the electronic properties and structure of graphite, graphene and graphene oxide are discussed. In addition, the necessity of developing nanoscale graphitic devices is given. The second chapter explains the experimental techniques used in this research for fabricating nanoscale devices which includes focused ion beam 3-D fabrication procedures, mechanical exfoliation technique and photolithographic methods. In third chapter, we have reported the results on temperature dependence of graphite planar-type structures fabricated along ab-plane. In the fourth and fifth chapters, the fabrication and electrical transport characteristics of large in-plane area graphite planar-type structures (fabricated along ab-plane and c-axis) were discussed and their transport anisotropy properties were investigated briefly. In the sixth chapter, we focused the fabrication of the submicron sized graphite stacked junctions and their electrical transport characterization studies. In which, FIB was used to fabricated the submicron junctions with various in-plane area (with same stack height) are and their transport characteristics were compared. The seventh chapter reports investigation of electrical transport results of nanoscale graphite stacked-junctions in which the temperature dependent transport (R-T) studies, current-voltage measurements for the various in-plane areas and for various stack height samples were analyzed. The

  6. Ballistic hole magnetic microscopy

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  7. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.

    Unterweger, Harald; Janko, Christina; Schwarz, Marc; Dézsi, László; Urbanics, Rudolf; Matuszak, Jasmin; Őrfi, Erik; Fülöp, Tamás; Bäuerle, Tobias; Szebeni, János; Journé, Clément; Boccaccini, Aldo R; Alexiou, Christoph; Lyer, Stefan; Cicha, Iwona

    2017-01-01

    Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial-monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size contrast agent.

  8. Particle size, spin wave and surface effects on magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir [Department of Physics, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Varvaro, G.; Peddis, D. [Istituto di Struttura della Materia, National Research Council, Monterotondo Scalo, Roma 00015 (Italy); Kameli, P. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-01-15

    Magnesium ferrite, MgFe{sub 2}O{sub 4}, nanoparticles with a mean diameter varying from ∼6 to ∼17 nm were successfully synthesized using a simple thermal decomposition method at different annealing temperatures ranging in between 400 and 600 °C. Pure spinel ferrite nanoparticles were obtained at temperatures lower than 500 °C, while the presence of hematite (α-Fe{sub 2}O{sub 3}) impurities was observed at higher temperatures. Single-phase samples show a superparamagnetic behavior at 300 K, the saturation magnetization (M{sub s}) becoming larger with the increase of particles size. The temperature dependence of M{sub s} was explained in terms of surface spin-canting as well as spin wave excitations in the core. Using a modified Bloch law, [M{sub s}(T)=M{sub s}(0)(1−βT{sup α})], we observed a size dependent behavior of the Bloch constant β and the exponent α, whose values increase and decrease, respectively, as the particle size reduces. - Highlights: • MgFe{sub 2}O{sub 4} nanoparticles were synthesized using a thermal decomposition method. • Pure ferrite nanoparticles were obtained at temperatures lower than 500 °C. • Samples show a superparamagnetic behavior at room temperatures. • Spin wave excitations were studied using a modified Bloch law.

  9. Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles

    Cheang, U. Kei; Kim, Min Jun, E-mail: mkim@coe.drexel.edu [Drexel University, Department of Mechanical Engineering & Mechanics (United States)

    2015-03-15

    Micro- and nanoscale robotic swimmers are very promising to significantly enhance the performance of particulate drug delivery by providing high accuracy at extremely small scales. Here, we introduce micro- and nanoswimmers fabricated using self-assembly of nanoparticles and control via magnetic fields. Nanoparticles self-align into parallel chains under magnetization. The swimmers exhibit flexibility under a rotating magnetic field resulting in chiral structures upon deformation, thereby having the prerequisite for non-reciprocal motion to move about at low Reynolds number. The swimmers are actuated wirelessly using an external rotating magnetic field supplied by approximate Helmholtz coils. By controlling the concentration of the suspended magnetic nanoparticles, the swimmers can be modulated into different sizes. Nanoscale swimmers are largely influenced by Brownian motion, as observed from their jerky trajectories. The microswimmers, which are roughly three times larger, are less vulnerable to the effects from Brownian motion. In this paper, we demonstrate responsive directional control of micro- and nanoswimmers and compare their respective diffusivities and trajectories to characterize the implications of Brownian disturbance on the motions of small and large swimmers. We then performed a simulation using a kinematic model for the magnetic swimmers including the stochastic nature of Brownian motion.

  10. Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles

    Cheang, U. Kei; Kim, Min Jun

    2015-03-01

    Micro- and nanoscale robotic swimmers are very promising to significantly enhance the performance of particulate drug delivery by providing high accuracy at extremely small scales. Here, we introduce micro- and nanoswimmers fabricated using self-assembly of nanoparticles and control via magnetic fields. Nanoparticles self-align into parallel chains under magnetization. The swimmers exhibit flexibility under a rotating magnetic field resulting in chiral structures upon deformation, thereby having the prerequisite for non-reciprocal motion to move about at low Reynolds number. The swimmers are actuated wirelessly using an external rotating magnetic field supplied by approximate Helmholtz coils. By controlling the concentration of the suspended magnetic nanoparticles, the swimmers can be modulated into different sizes. Nanoscale swimmers are largely influenced by Brownian motion, as observed from their jerky trajectories. The microswimmers, which are roughly three times larger, are less vulnerable to the effects from Brownian motion. In this paper, we demonstrate responsive directional control of micro- and nanoswimmers and compare their respective diffusivities and trajectories to characterize the implications of Brownian disturbance on the motions of small and large swimmers. We then performed a simulation using a kinematic model for the magnetic swimmers including the stochastic nature of Brownian motion.

  11. Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles

    Cheang, U. Kei; Kim, Min Jun

    2015-01-01

    Micro- and nanoscale robotic swimmers are very promising to significantly enhance the performance of particulate drug delivery by providing high accuracy at extremely small scales. Here, we introduce micro- and nanoswimmers fabricated using self-assembly of nanoparticles and control via magnetic fields. Nanoparticles self-align into parallel chains under magnetization. The swimmers exhibit flexibility under a rotating magnetic field resulting in chiral structures upon deformation, thereby having the prerequisite for non-reciprocal motion to move about at low Reynolds number. The swimmers are actuated wirelessly using an external rotating magnetic field supplied by approximate Helmholtz coils. By controlling the concentration of the suspended magnetic nanoparticles, the swimmers can be modulated into different sizes. Nanoscale swimmers are largely influenced by Brownian motion, as observed from their jerky trajectories. The microswimmers, which are roughly three times larger, are less vulnerable to the effects from Brownian motion. In this paper, we demonstrate responsive directional control of micro- and nanoswimmers and compare their respective diffusivities and trajectories to characterize the implications of Brownian disturbance on the motions of small and large swimmers. We then performed a simulation using a kinematic model for the magnetic swimmers including the stochastic nature of Brownian motion

  12. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts

    Castellini, O. M.; Walejko, G. K.; Holladay, C. E.; Theim, T. J.; Zenner, G. M.; Crone, W. C.

    2007-01-01

    Researchers are faced with challenges when addressing the public on concepts and applications associated with nanotechnology. The goal of our work was to understand the public's knowledge of nanotechnology in order to identify appropriate starting points for dialog. Survey results showed that people lack true understanding of concepts associated with atoms and the size of the nanoscale regime. Such gaps in understanding lead to a disappointing lack of communication between researchers and the public concerning fundamental concepts in nanoscale science and engineering. Strategies are offered on how scientists should present their research when engaging the public on nanotechnology topics

  13. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  14. Reconstruction of Mid-Holocene sedimentary environments in the central part of the Thessaloniki Plain (Greece), based on microfaunal identification, magnetic susceptibility and grain-size analyses

    Ghilardi, Matthieu; Kunesch, Stéphane; Styllas, Mixalis; Fouache, Eric

    2008-05-01

    The study aims to estimate the relative contributions of the two drainage basins of the Aliakmon and Axios rivers which, since the Mid-Holocene, have been responsible for building the largest deltaic area in Greece. Sediments from five cores located in the central part of the Thessaloniki Plain have been studied for their environmental changes using paleontological and sedimentological methods. Chronostratigraphical evidence was obtained from 14C AMS dating of marine shells, peat and organic sediment samples. During the Holocene marine transgression, this large coastal plain was a shallow marine bay reaching approx. 35 km inland circa the 4th millennium BC, from which the sea subsequently regressed to the east. Around the middle of the 3rd millennium BC, strong fluvial deposition of Aliakmon, to the east, and of Axios, to the north, occurred and was responsible of a gradual change to lagoonal and limnic environmental conditions. Around the 5th Century BC, a freshwater lake occupied the westernmost part of the plain. Microfaunal identification, together with magnetic susceptibility measurements, and grain-size analysis reveal three main environments of sediment deposition that reflect combinations of both concentrated and dispersed sources of magnetic/source minerals. Using remote sensing and a combination of spectral bands (LANDSAT TM imagery), we identify former fluvial levees and a freshwater lake, and give a spatial interpretation of the rivers' influences in building this deltaic complex. The mechanisms of edification of the plain as well as the roles played by Aliakmon and Axios sedimentation are described.

  15. Nanoscale structural order from the atomic pair distribution function (PDF): There's plenty of room in the middle

    Billinge, Simon J.L.

    2008-01-01

    Emerging materials of scientific and technological interest are generally complex and often nanostructured: they have atomic orderings that extend on nanometer length-scales. These can be discrete nanoparticles; bulk crystals with nanoscale chemical or displacive order within them; mesoporous materials that are bulk materials containing nanoscale holes; and nanocomposites that are intimate heterogeneous mixtures of nano-sized constituents. As always, a quantitative knowledge of the atomic structure within these materials is a prerequisite to understanding and engineering their properties. Traditional crystallographic methods for obtaining this information break down at the nanoscale, sometimes referred to as 'the nanostructure problem'. We describe here some emerging methods for studying nanoscale structure. We present some examples of recent successes. Finally, we discuss future directions and opportunities and draw attention to limitations and potential problems. -

  16. Detection Limits for Nanoscale Biosensors

    Sheehan, Paul E; Whitman, Lloyd J

    2005-01-01

    We examine through analytical calculations and finite element simulations how the detection efficiency of disk and wire-like biosensors in unmixed fluids varies with size from the micrometer to nanometer scales...

  17. Enhancing the magnetic properties of magnetic nanoparticles

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  18. Reply to the comment on the paper 'Grain size dependent potential for self generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite'

    Kletetschka, Günther

    2006-01-01

    Roč. 159, 1-2 (2006), s. 127-128 ISSN 0031-9201 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetization * modeling * modeled data Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.440, year: 2006

  19. Computational materials science: Nanoscale plasticity

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  20. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.