WorldWideScience

Sample records for nanoscale porous structures

  1. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    Science.gov (United States)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  2. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.

    Science.gov (United States)

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C

    2015-02-03

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  3. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    OpenAIRE

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  4. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  5. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  6. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  7. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  8. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  9. Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance

    Science.gov (United States)

    Kwon, Dohyoung; Ryu, Jaegeon; Shin, Myungsoo; Song, Gyujin; Hong, Dongki; Kim, Kwang S.; Park, Soojin

    2018-01-01

    Dual-porous Ge nanostructures are synthesized via two straightforward steps. Compared with conventional approaches related to porous Ge materials, different types of pores can be readily generated by adjusting the relative ratio of the precursor amounts for GeO2 and SiO2. Unlike using hard templates with different sizes for introducing secondary pores, this system makes a uniformly blended structure of porogen and active sites in the nanoscale range. When GeO2 is subjected to zincothermic reduction, it is selectively converted to pure Ge still connected to unreacted SiO2. During the reduction process, primary pores (larger than 50 nm) are formed by eliminating zinc oxide by-products, while inactive SiO2 with respect to zinc metal could contribute to retaining the overall structure. Finally, the HF treatment completely leaches remaining SiO2 and formed secondary pores (micro/mesopores) to complete the dual-porous Ge structure. The resulting Ge structure is tested as an anode material for lithium-ion batteries. The Ge electrode exhibits an outstanding reversibility and an exceptional cycling stability corresponding to a capacity retention of 100% after 100 cycles at C/5 and of 94.4% after 300 cycles at C/2. Furthermore, multi-scale pores facilitate a facile Li-ion accessibility, resulting in an excellent rate capability delivering ∼740 mAh g-1 at 5C.

  10. Dynamic structural disorder in supported nanoscale catalysts

    International Nuclear Information System (INIS)

    Rehr, J. J.; Vila, F. D.

    2014-01-01

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale

  11. Dynamic structural disorder in supported nanoscale catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  12. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  13. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  14. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  15. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  16. Carbon Nanotube Templated Microfabrication of Porous Silicon-Carbon Materials

    Science.gov (United States)

    Song, Jun; Jensen, David; Dadson, Andrew; Vail, Michael; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2010-10-01

    Carbon nanotube templated microfabrication (CNT-M) of porous materials is demonstrated. Partial chemical infiltration of three dimensional carbon nanotube structures with silicon resulted in a mechanically robust material, precisely structured from the 10 nm scale to the 100 micron scale. Nanoscale dimensions are determined by the diameter and spacing of the resulting silicon/carbon nanotubes while the microscale dimensions are controlled by lithographic patterning of the CNT growth catalyst. We demonstrate the utility of this hierarchical structuring approach by using CNT-M to fabricate thin layer chromatography (TLC) separations media with precise microscale channels for fluid flow control and nanoscale porosity for high analyte capacity.

  17. Nanoscale electrochemical metallization memories based on amorphous (La, Sr)MnO3 using ultrathin porous alumina masks

    International Nuclear Information System (INIS)

    Liu, Dongqing; Zhang, Chaoyang; Wang, Nannan; Cheng, Haifeng; Wang, Guang; Shao, Zhengzheng; Zhu, Xuan

    2014-01-01

    Nanoscale electrochemical metallization (ECM) memories based on amorphous La 1−x Sr x MnO 3 (a-LSMO) were fabricated using ultrathin porous alumina masks. The ultrathin alumina masks, with thicknesses of about 200 nm and pore diameters of about 80 nm, were fabricated through a typical two-step anodization electrochemical procedure and transferred onto conductive Pt/Ti/SiO 2 /Si substrates. Resistive switching (RS) properties of the individual Ag/a-LSMO/Pt ECM cell were directly measured using a conductive atomic force microscope. The cells exhibited typical RS characteristics and the OFF/ON resistance ratio is as high as 10 2 . Reproducible RS behaviours on the same ECM cell and the I–V cycles obtained from different ECM cells ensured that the RS properties in nanoscale Ag/a-LSMO/Pt cells are reproducible and reliable. This work provides an effective approach for the preparation of nanostructured large-scale ordered ECM memories or memristors. (paper)

  18. Investigation of Short Channel Effect on Vertical Structures in Nanoscale MOSFET

    Directory of Open Access Journals (Sweden)

    Munawar A. Riyadi

    2009-12-01

    Full Text Available The recent development of MOSFET demands innovative approach to maintain the scaling into nanoscale dimension. This paper focuses on the physical nature of vertical MOSFET in nanoscale regime. Vertical structure is one of the promising devices in further scaling, with relaxed-lithography feature in the manufacture. The comparison of vertical and lateral MOSFET performance for nanoscale channel length (Lch is demonstrated with the help of numerical tools. The evaluation of short channel effect (SCE parameters, i.e. threshold voltage roll-off, subthreshold swing (SS, drain induced barrier lowering (DIBL and leakage current shows the considerable advantages as well as its thread-off in implementing the structure, in particular for nanoscale regime.

  19. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  20. Computer design of porous active materials at different dimensional scales

    Science.gov (United States)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  1. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  2. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  3. POROUS STRUCTURE OF ROAD CONCRETE

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such structural components as crystal intergrowth, tobermorite gel, incompletely hydrated cement grains and porous space. The most important technological factors that influence on formation of cement stone microstructure are chemical and mineralogical cement composition, its grinding fineness, water-cement ratio and curing condition. Specific cement stone microstructure is formed due to interrelation of these factors. Cement stone is a capillary-porous body that consists of various solid phases represented predominantly by sub-microcrystals of colloidal dispersion. The sub-microcrystals are able adsorptively, osmotically and structurally to withhold (to bind some amount of moisture. Protection of road concrete as a capillary-porous body is considered as one of the topical issues. The problem is solved with the help of primary and secondary protection methods. Methods of primary protection are used at the stage of designing, preparation and placing of concrete. Methods of secondary protection are applied at the operational stage of road concrete pavement. The paper considers structures of concrete solid phase and characteristics of its porous space. Causes of pore initiation, their shapes, dimensions and arrangement in the concrete are presented in the paper. The highest hazard for road concrete lies in penetration of aggressive liquid in it and moisture transfer in the cured concrete. Water permeability of concrete characterizes its filtration factor which

  4. Nanoscale structure and atomic disorder in the iron-based chalcogenides

    Directory of Open Access Journals (Sweden)

    Naurang Lal Saini

    2013-01-01

    Full Text Available The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,S1−xTex (11-type and K0.8Fe1.6Se2 (122-type systems, discussing their local structure obtained by extended x-ray absorption fine structure. Local structure studies on the Fe(Se,S1−xTex system reveal clear nanoscale phase separation characterized by coexisting components of different atomic configurations, similar to the case of random alloys. In fact, the Fe–Se/S and Fe–Te distances in the ternary Fe(Se,S1−xTex are found to be closer to the respective distances in the binary FeSe/FeS and FeTe systems, showing significant divergence of the local structure from the average one. The observed features are characteristic of ternary random alloys, indicating breaking of the local symmetry in these materials. On the other hand, K0.8Fe1.6Se2 is known for phase separation in an iron-vacancy ordered phase and an in-plane compressed lattice phase. The local structure of these 122-type chalcogenides shows that this system is characterized by a large local disorder. Indeed, the experiments suggest a nanoscale glassy phase in K0.8Fe1.6Se2, with the superconductivity being similar to the granular materials. While the 11-type structure has no spacer layer, the 122-type structure contains intercalated atoms unlike the 1111-type REFeAsO (RE = rare earth oxypnictides, having well-defined REO spacer layers. It is clear that the interlayer atomic correlations in these iron-based superconducting structures play an important role in structural stability as well as superconductivity and magnetism.

  5. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  6. Programmed assembly of nanoscale structures using peptoids.

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jianhua (University of the Pacific, Stockton, CA); Russell, Scott (California State University, Stanislaus, Turlock, CA); Morishetti, Kiran (University of the Pacific, Stockton, CA); Robinson, David B.; Zuckermann, Ronald N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Buffleben, George M.; Hjelm, Rex P. (Los Alamos National Laboratory, Los Alamos, NM); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM)

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  7. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  8. Current-voltage characteristics of porous-silicon structures

    International Nuclear Information System (INIS)

    Diligenti, A.; Nannini, A.; Pennelli, G.; Pieri, F.; Fuso, F.; Allegrini, M.

    1996-01-01

    I-V DC characteristics have been measured on metal/porous-silicon structures. In particular, the measurements on metal/free-standing porous-silicon film/metal devices confirmed the result, already obtained, that the metal/porous-silicon interface plays a crucial role in the transport of any device. Four-contacts measurements on free-standing layers showed that the current linearly depends on the voltage and that the conduction process is thermally activated, the activation energy depending on the porous silicon film production parameters. Finally, annealing experiments performed in order to improve the conduction of rectifying contacts, are described

  9. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  10. Potential of silicon nanowires structures as nanoscale piezoresistors in mechanical sensors

    International Nuclear Information System (INIS)

    Messina, M; Njuguna, J

    2012-01-01

    This paper presents the design of a single square millimeter 3-axial accelerometer for bio-mechanics measurements that exploit the potential of silicon nanowires structures as nanoscale piezoresistors. The main requirements of this application are miniaturization and high measurement accuracy. Nanowires as nanoscale piezoresistive devices have been chosen as sensing element, due to their high sensitivity and miniaturization achievable. By exploiting the electro-mechanical features of nanowires as nanoscale piezoresistors, the nominal sensor sensitivity is overall boosted by more than 30 times. This approach allows significant higher accuracy and resolution with smaller sensing element in comparison with conventional devices without the need of signal amplification.

  11. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  12. Fabrication of polystyrene porous films with gradient pore structures

    International Nuclear Information System (INIS)

    Yan Hongwei; Zhang Lin; Li Bo; Yin Qiang

    2010-01-01

    Silica opals and multilayer heterostructures were fabricated by vertical deposition technique. Polystyrene inverse opals and gradient porous structures were obtained by colloidal templating, in order to control the pore microstructure of polymer porous materials. As shown in the scanning electron microscopy images, the polystyrene porous structures are precise replicas of inverse structures of the original templates. After being infiltrated with the polystyrene, the photonic stop-band position of the opal composite is redshifted compared with the original template, and it is blueshifted after the opal template being removed. The filling ratio of polystyrene was calculated according to the Bragg formula. (authors)

  13. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Flaibani, Marina; Elvassore, Nicola, E-mail: nicola.elvassore@unipd.it

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity ({approx} 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: Black-Right-Pointing-Pointer Gas anti-solvent precipitation and salt leaching for scaffold fabrication. Black-Right-Pointing-Pointer Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. Black-Right-Pointing-Pointer Gas anti-solvent precipitation

  14. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    International Nuclear Information System (INIS)

    Flaibani, Marina; Elvassore, Nicola

    2012-01-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10–15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177–0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (∼ 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: ► Gas anti-solvent precipitation and salt leaching for scaffold fabrication. ► Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. ► Gas anti-solvent precipitation induces nano-porous structures. ► Scaffolds are biocompatible and

  15. Infill Optimization for Additive Manufacturing - Approaching Bone-like Porous Structures

    DEFF Research Database (Denmark)

    Wu, Jun; Aage, Niels; Westermann, Ruediger

    2018-01-01

    Porous structures such as trabecular bone are widely seen in nature. These structures exhibit superior mechanical properties whilst being lightweight. In this paper, we present a method to generate bone-like porous structures asl ightweight infill for additive manufacturing. Our method builds upon...

  16. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  17. Cost-Effective Fabrication of Inner-Porous Micro/Nano Carbon Structures.

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Tang, Zirong; Xi, Shuang

    2018-03-01

    This paper reports the fabrication of a new micro/nano carbon architecture array which owns the characteristics of inner-porous, desired conductivity and large effective surface area. The micro/nano inner-porous carbon structures were fabricated for the first time, with ordinary and cost-effective processes, including photolithography, oxygen plasma etching and pyrolysis. Firstly, micro/nano hierarchical photoresist structures array was generated through photolithography and oxygen plasma etching processes. By introducing a critical thin-film spin-coating step, and followed with carefully pyrolyzing process, the micro/nano photoresist structures were converted into innerporous carbon architectures with good electric connection which connected the carbon structures array together. Probably the inner-porous property can be attributed to the shrinkage difference between positive thin film and negative photoresist structures during pyrolyzing process. It is demonstrated that the simple method is effective to fabricate inner-porous carbon structures with good electric connection and the carbon structures can be used as electrochemical electrodes directly and without the addition of other pyrolysis or film coating processes. The electrochemical property of the carbon structures has been explored by cyclic voltammetric measurement. Compared with solid carbon microstructures array, the cyclic voltammetry curve of inner-porous carbon structures shows greatly enhanced current and improved charge-storage capability, indicating great potential in micro energy storage devices and bio-devices.

  18. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  19. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    Science.gov (United States)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  20. Confocal imaging of protein distributions in porous silicon optical structures

    International Nuclear Information System (INIS)

    De Stefano, Luca; D'Auria, Sabato

    2007-01-01

    The performances of porous silicon optical biosensors depend strongly on the arrangement of the biological probes into their sponge-like structures: it is well known that in this case the sensing species do not fill the pores but instead cover their internal surface. In this paper, the direct imaging of labelled proteins into different porous silicon structures by using a confocal laser microscope is reported. The distribution of the biological matter in the nanostructured material follows a Gaussian behaviour which is typical of the diffusion process in the porous media but with substantial differences between a porous silicon monolayer and a multilayer such as a Bragg mirror. Even if semi-quantitative, the results can be very useful in the design of the porous silicon based biosensing devices

  1. Investigations on the porous resistance coefficients for fishing net structures

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2016-01-01

    The porous media model has been successfully applied to numerical simulation of current and wave interaction with traditional permeable coastal structures such as breakwaters. Recently this model was employed to simulate flow through and around fishing net structures, where the unknown porous...

  2. Porous γ-TiAl Structures Fabricated by Electron Beam Melting Process

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2016-01-01

    Full Text Available Porous metal structures have many benefits over fully dense structures for use in bio-implants. The designs of porous structures can be made more sophisticated by altering their pore volume and strut orientation. Porous structures made from biocompatible materials such as titanium and its alloys can be produced using electron-beam melting, and recent reports have shown the biocompatibility of titanium aluminide (γ-TiAl. In the present work, we produced porous γ-TiAl structures by electron-beam melting, incorporating varying pore volumes. To achieve this, the individual pore dimensions were kept constant, and only the strut thickness was altered. Thus, for the highest pore volume of ~77%, the struts had to be as thin as half a millimeter. To accomplish such fine struts, we used various beam currents and scan strategies. Microscopy showed that selecting a proper scan strategy was most important in producing these fine struts. Microcomputed tomography revealed no major gaps in the struts, and the fine struts displayed compressive stiffness similar to that of natural bone. The characteristics of these highly-porous structures suggest their promise for use in bio-implants.

  3. Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities

    Directory of Open Access Journals (Sweden)

    Sylvain Deville

    2010-03-01

    Full Text Available The freeze-casting of porous materials has received a great deal of attention during the past few years. This simple process, where a material suspension is simply frozen and then sublimated, provides materials with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. This review focuses on the recent results on the process and the derived porous structures with regards to the biomaterials applications. Of particular interest is the architecture of the materials and the versatility of the process, which can be readily controlled and applied to biomaterials applications. A careful control of the starting formulation and processing conditions is required to control the integrity of the structure and resulting properties. Further in vitro and in vivo investigations are required to validate the potential of this new class of porous materials.

  4. Imaging the Nanoscale Band Structure of Topological Sb

    OpenAIRE

    Soumyanarayanan, Anjan; Yee, Michael M.; He, Yang; Lin, Hsin; Gardner, Dillon R.; Bansil, Arun; Lee, Young S.; Hoffman, Jennifer E.

    2013-01-01

    Many promising building blocks of future electronic technology - including non-stoichiometric compounds, strongly correlated oxides, and strained or patterned films - are inhomogeneous on the nanometer length scale. Exploiting the inhomogeneity of such materials to design next-generation nanodevices requires a band structure probe with nanoscale spatial resolution. To address this demand, we report the first simultaneous observation and quantitative reconciliation of two candidate probes - La...

  5. Dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Gavartin, J.L.

    2007-01-01

    However fascinating structures may be at the nanoscale, time-dependent behaviour at the nanoscale has far greater importance. Some of the dynamics is random, with fluctuations controlling rate processes and making thermal ratchets possible. Some of the dynamics causes the transfer of energy, of signals, or of charge. Such transfers are especially efficiently controlled in biological systems. Other dynamical processes occur when we wish to control the nanoscale, e.g., to avoid local failures of gate dielectrics, or to manipulate structures by electronic excitation, to use spin manipulation in quantum information processing. Our prime purpose is to make clear the enormous range and variety of time-dependent nanoscale phenomena

  6. Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7 at.%Cu solidification structures

    International Nuclear Information System (INIS)

    Patterson, B.M.; Henderson, K.C.; Gibbs, P.J.; Imhoff, S.D.; Clarke, A.J.

    2014-01-01

    X-ray computed tomography across multiple length scales provides an opportunity to non-destructively visualize and quantify the micro- to nano-scale microstructural features of solidification structures in three dimensions. Aluminum–7 at.%copper samples were directionally solidified at three cooling rates (0.44, 0.67, and 1.33 °C/s), resulting in systematic changes in the as-solidified microstructure, which are difficult to quantify using traditional microscopic techniques. The cooling rate of a material affects its ultimate microstructure, and characterizing that microstructure is key to predicting and understanding its bulk properties. Here, two different laboratory X-ray computed tomography instruments were used to characterize as-solidified microstructures, including micro-scale computed tomography with approximately 1 mm field-of-view, ∼ 1.7 μm resolution, and nano-scale X-ray computed tomography ∼ 65 μm FOV, 150 nm resolution. Micro-scale X-ray radiography and computed tomography enabled a quantitative investigation of changes in the primary dendritic solidification structure with increasing cooling rate. Nano-scale absorption contrast X-ray computed tomography resolved the distinct phases of the lamellar eutectic structure and three dimensional measurements of the ∼ 1 μm interlamellar spacing. It is found that the lamella eutectic structure thickness is inversely proportional to the cooling rate. Nano-scale Zernike phase contrast was also used to image voids at eutectic colony boundaries. The application and resolution of these two instruments are discussed with respect to the resolvable features of the solidification structures. - Highlights: • Al–Cu eutectic is a model system for studying solidification microstructure. • X-ray computed tomography provides a 3D picture of these complex structures. • Micro-scale tomography images the primary and secondary dendritic structures. • Nano-scale tomography images the eutectic lamella and

  7. Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7 at.%Cu solidification structures

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, B.M., E-mail: bpatterson@lanl.gov; Henderson, K.C.; Gibbs, P.J.; Imhoff, S.D.; Clarke, A.J.

    2014-09-15

    X-ray computed tomography across multiple length scales provides an opportunity to non-destructively visualize and quantify the micro- to nano-scale microstructural features of solidification structures in three dimensions. Aluminum–7 at.%copper samples were directionally solidified at three cooling rates (0.44, 0.67, and 1.33 °C/s), resulting in systematic changes in the as-solidified microstructure, which are difficult to quantify using traditional microscopic techniques. The cooling rate of a material affects its ultimate microstructure, and characterizing that microstructure is key to predicting and understanding its bulk properties. Here, two different laboratory X-ray computed tomography instruments were used to characterize as-solidified microstructures, including micro-scale computed tomography with approximately 1 mm field-of-view, ∼ 1.7 μm resolution, and nano-scale X-ray computed tomography ∼ 65 μm FOV, 150 nm resolution. Micro-scale X-ray radiography and computed tomography enabled a quantitative investigation of changes in the primary dendritic solidification structure with increasing cooling rate. Nano-scale absorption contrast X-ray computed tomography resolved the distinct phases of the lamellar eutectic structure and three dimensional measurements of the ∼ 1 μm interlamellar spacing. It is found that the lamella eutectic structure thickness is inversely proportional to the cooling rate. Nano-scale Zernike phase contrast was also used to image voids at eutectic colony boundaries. The application and resolution of these two instruments are discussed with respect to the resolvable features of the solidification structures. - Highlights: • Al–Cu eutectic is a model system for studying solidification microstructure. • X-ray computed tomography provides a 3D picture of these complex structures. • Micro-scale tomography images the primary and secondary dendritic structures. • Nano-scale tomography images the eutectic lamella and

  8. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  9. Electromechanical Response of Conductive Porous Structure

    Directory of Open Access Journals (Sweden)

    Hye-Mi So

    2015-01-01

    Full Text Available Porous conductors with large surface-volume ratios have been applied to a variety of fields, including absorbents, flexible heaters, and electrodes for supercapacitors. In this study, we implemented sensitive pressure sensors using the mechanical and electrical characteristics of conductive porous structures manufactured by immersing sponges into a carbon nanotube solution and then measured the change in resistance. When pressure was applied to conductive sponges, carbon nanotubes were attached to each other and the resistance was reduced by up to 20%. The carbon nanotube sponges, which were soft and had superior elasticity, were quickly stabilized without any changes taking place in their shape, and they showed consistent change in resistance during experiments of repetitive pressure. The pressure devices based on conductive porous sponges were connected to single-walled carbon nanotube field effect transistors (SWCNT-FETs and changes in their characteristics were investigated according to external pressure.

  10. Infill Optimization for Additive Manufacturing-Approaching Bone-Like Porous Structures.

    Science.gov (United States)

    Wu, Jun; Aage, Niels; Westermann, Rudiger; Sigmund, Ole

    2018-02-01

    Porous structures such as trabecular bone are widely seen in nature. These structures are lightweight and exhibit strong mechanical properties. In this paper, we present a method to generate bone-like porous structures as lightweight infill for additive manufacturing. Our method builds upon and extends voxel-wise topology optimization. In particular, for the purpose of generating sparse yet stable structures distributed in the interior of a given shape, we propose upper bounds on the localized material volume in the proximity of each voxel in the design domain. We then aggregate the local per-voxel constraints by their p-norm into an equivalent global constraint, in order to facilitate an efficient optimization process. Implemented on a high-resolution topology optimization framework, our results demonstrate mechanically optimized, detailed porous structures which mimic those found in nature. We further show variants of the optimized structures subject to different design specifications, and we analyze the optimality and robustness of the obtained structures.

  11. Structural and optical properties of vapor-etched porous GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Smida, A.; Laatar, F. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M., E-mail: mhdhassen@yahoo.fr [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-08-15

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO{sub 3} as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  12. Structural and optical properties of vapor-etched porous GaAs

    International Nuclear Information System (INIS)

    Smida, A.; Laatar, F.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO 3 as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  13. Pore size distribution effect on rarefied gas transport in porous media

    Science.gov (United States)

    Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2017-11-01

    Gas transport phenomena in porous media are known to strongly influence the performance of devices such as gas separation membranes and fuel cells. Knudsen diffusion is a dominant flow regime in these devices since they have nanoscale pores. Many experiments have shown that these porous media have complex structures and pore size distributions; thus, the diffusion coefficient in these media cannot be easily assessed. Previous studies have reported that the characteristic pore diameter of porous media can be defined in light of the pore size distribution; however, tortuosity factor, which is necessary for the evaluation of diffusion coefficient, is still unknown without gas transport measurements or simulations. Thus, the relation between pore size distributions and tortuosity factors is required to obtain the gas transport properties. We perform numerical simulations to prove the relation between them. Porous media are numerically constructed while satisfying given pore size distributions. Then, the mean-square displacement simulation is performed to obtain the tortuosity factors of the constructed porous media.. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).

  14. Porous silicon nanoparticles for target drag delivery: structure and morphology

    International Nuclear Information System (INIS)

    Spivak, Yu M; Belorus, A O; Somov, P A; Bespalova, K A; Moshnikov, V A; Tulenin, S S

    2015-01-01

    Nanoparticles of porous silicon were obtained by electrochemical anodic etching. Morphology and structure of the particles was investigated by means dynamic light scattering and scanning electron microscopy. The influence of technological conditions of preparation on geometrical parameters of the porous silicon particles (particle size distribution, pore shape and size, the specific surface area of the porous silicon) is discussed. (paper)

  15. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    International Nuclear Information System (INIS)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-01-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC) n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC) n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  16. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Science.gov (United States)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-06-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called "interphase" between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC-TiC)n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC-TiC)n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  17. Topology optimization of 3D shell structures with porous infill

    DEFF Research Database (Denmark)

    Clausen, Anders; Andreassen, Erik; Sigmund, Ole

    2017-01-01

    This paper presents a 3D topology optimization approach for designing shell structures with a porous or void interior. It is shown that the resulting structures are significantly more robust towards load perturbations than completely solid structures optimized under the same conditions. The study...... indicates that the potential benefit of using porous structures is higher for lower total volume fractions. Compared to earlier work dealing with 2D topology optimization, we found several new effects in 3D problems. Most notably, the opportunity for designing closed shells significantly improves...

  18. Probing defect and magnetic structures on the nanoscale

    OpenAIRE

    Kallis, Alexis

    2010-01-01

    This thesis reports on experimental research on structural defects and magnetic species on the nanoscale. The latter project involved considerable development work on the production of a spin-polarised mono-energetic positron beam. The construction of the system is described through various trial steps with emphasis on the methods of maximum practical polarization of the positron beam and of electrons in the sample with the smallest possible loss of beam intensity. A new sodium-22 source caps...

  19. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    Science.gov (United States)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  20. Nanoscale structural order from the atomic pair distribution function (PDF): There's plenty of room in the middle

    International Nuclear Information System (INIS)

    Billinge, Simon J.L.

    2008-01-01

    Emerging materials of scientific and technological interest are generally complex and often nanostructured: they have atomic orderings that extend on nanometer length-scales. These can be discrete nanoparticles; bulk crystals with nanoscale chemical or displacive order within them; mesoporous materials that are bulk materials containing nanoscale holes; and nanocomposites that are intimate heterogeneous mixtures of nano-sized constituents. As always, a quantitative knowledge of the atomic structure within these materials is a prerequisite to understanding and engineering their properties. Traditional crystallographic methods for obtaining this information break down at the nanoscale, sometimes referred to as 'the nanostructure problem'. We describe here some emerging methods for studying nanoscale structure. We present some examples of recent successes. Finally, we discuss future directions and opportunities and draw attention to limitations and potential problems. -

  1. Boiling phenomenon and heat transfer in bead-packed porous structure

    International Nuclear Information System (INIS)

    Zhang Xiaojie; ZHu Yanlei; Bai Bofeng; Yan Xiao; Xiao Zejun

    2009-01-01

    A visual study on pool boiling behavior and phase distribution was conducted on the porous structures made of staggered glass beads at atmospheric pressure. The bead-packed structure was heated on the bottom. The investigations were carried out respectively at different glass bead diameters which were 4 mm, 6 mm and 8 mm. The results show that during subcooled boiling, small isolated bubbles are formed on the heated surface and combine into main-bubbles, the dispersion frequency of the main-bubbles is low and the small bubbles scatter in the bead-packed porous structures. At the initial stage of saturated boiling, the bubble growth rate, the volume of main-bubbles and the range of continuous vapor phase increase. The dispersion frequency of main-bubbles increases with the increasing of heat flux. During film boiling, the heated surface is absolutely covered with vapor film and the porous structure is full of liquid. The larger the diameter of beads is, the higher heat flux is needed for the same phenomenon, and the higher maximum value of heat transfer coefficient will be. During the whole saturated boiling, and the heat transfer enhanced firstly and then weakened. Being opposite to that of the diameters of 4 mm and 8 mm, the heat transfer coefficient in the 6 mm-bead-packed porous structure decreases with the increasing of the heat flux. (authors)

  2. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  3. Structure Optimization of Porous Dental Implant Based on 3D Printing

    Science.gov (United States)

    Ji, Fangqiu; Zhang, Chunyu; Chen, Xianshuai

    2018-03-01

    In this paper, selective laser melting (SLM) technology is used to process complex structures. In combination with the theory of biomedicine, a porous implant with a porous structure is designed to induce bone cell growth. The mechanical strength advantage of SLM was discussed by observing the metallographic structure of SLM specimen with mechanical microscope and mechanical tensile test. The osseointegration of porous implants was observed and analyzed by biological experiments. By establishing a mechanical model, the mechanical properties of the bone implant combined with the jaw bone were studied by the simple mechanical analysis under static multi loading and the finite element mechanical analysis. According to the experimental observation and mechanical research, the optimization suggestions for the structure design of the implant made by SLM technology were put forward.

  4. Interpretation of electrokinetic measurements with porous films: role of electric conductance and streaming current within porous structure.

    Science.gov (United States)

    Yaroshchuk, Andriy; Luxbacher, Thomas

    2010-07-06

    It is shown that in tangential electrokinetic measurements with porous films the porous structure makes contribution not only to the cell electric conductance (as demonstrated previously) but also to the observed streaming current. Both of these contributions give rise to dependences of streaming-potential and streaming-current coefficients on the channel height. However, due to the combined contribution of two phenomena, the dependence of streaming-potential coefficient on the channel height may be rather complicated and not allow for simple extrapolation. At the same time, the dependences of streaming-current coefficient and cell electric conductance on the channel height turn out linear and can be easily extrapolated to zero channel heights. This enables one to determine separately the contributions of external surface of porous film and of its porous structure to the streaming current and of the channel and porous structure to the cell electric conductance. This procedure is illustrated by the measurements of tangential electrokinetic phenomena and electric conductance with Millipore mixed-cellulose membrane filters of various average pore sizes (from 0.025 to 5 mum) in the so-called adjustable-gap cell of SurPASS electrokinetic instrument (Anton Paar GmbH). The design of this cell allows for easy and quasi-continuous variation of channel height as well as accurate determination of cell electric conductance, streaming-current coefficient, and channel height (from the cell hydraulic permeability). The quality of linear fits of experimental data has been found to be very good, and thus, the extrapolation procedures were quite reliable and accurate. Zeta-potentials could be determined of both external film and internal pore surfaces. It is demonstrated that the porous structures make considerable contributions to both streaming-current coefficient and cell electric conductance especially in the case of filters with larger pores. It is also found that, rather

  5. Optical and structural properties of porous zinc oxide fabricated via electrochemical etching method

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ooi, P.K.; Ng, S.S.; Hassan, Z.; Hassan, H. Abu; Abdullah, M.J.

    2013-01-01

    Highlights: • Hillock like porous structure zinc oxide was obtained via electrochemical etching. • Anisotropic dominance etching process by KOH etchant. • Reststrahlen features are sensitive to multilayer porous structure. • Determination of porosity from IR reflectance spectrum. -- Abstract: We investigated the optical and structural properties of porous zinc oxide (ZnO) thin film fabricated by ultraviolet light-assisted electrochemical etching. This fabrication process used 10 wt% potassium hydroxide solution as an electrolyte. Hillock-like porous ZnO films were successfully fabricated according to the field emission scanning electron microscopy results. The cross-sectional study of the sample indicated that anisotropic-dominated etching process occurred. However, the atomic force microscopic results showed an increase in surface roughness of the sample after electrochemical etching. A resonance hump induced by the porous structure was observed in the infrared reflectance spectrum. Using theoretical modeling technique, ZnO porosification was verified, and the porosity of the sample was determined

  6. Methods and devices for fabricating three-dimensional nanoscale structures

    Science.gov (United States)

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  7. Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-06

    Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.

  8. Simplified method to solve sound transmission through structures lined with elastic porous material.

    Science.gov (United States)

    Lee, J H; Kim, J

    2001-11-01

    An approximate analysis method is developed to calculate sound transmission through structures lined with porous material. Because the porous material has both the solid phase and fluid phase, three wave components exist in the material, which makes the related analysis very complicated. The main idea in developing the approximate method is very simple: modeling the porous material using only the strongest of the three waves, which in effect idealizes the material as an equivalent fluid. The analysis procedure has to be conducted in two steps. In the first step, sound transmission through a flat double panel with a porous liner of infinite extents, which has the same cross sectional construction as the actual structure, is solved based on the full theory and the strongest wave component is identified. In the second step sound transmission through the actual structure is solved modeling the porous material as an equivalent fluid while using the actual geometry of the structure. The development and validation of the method are discussed in detail. As an application example, the transmission loss through double walled cylindrical shells with a porous core is calculated utilizing the simplified method.

  9. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    Science.gov (United States)

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  10. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    Science.gov (United States)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  11. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-04-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  12. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-05-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  13. Characterization of the porous anodic alumina nanostructures with a metal interlayer on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chia-Hui; Chen, Hung-Ing; Hsiao, Jui-Ju; Wang, Jen-Cheng; Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw

    2014-04-15

    Porous anodic alumina (PAA) films produced by the anodization technique have made possible the mass production of porous nano-scale structures where the pore height and diameter are controllable. A metal interlayer is observed to have a significant influence on the characteristics of these PAA nanostructures. In this study, we investigate in-depth the effect of the current density on the properties of porous anodic alumina nanostructures with a metal interlayer. A thin film layer of tungsten (W) and titanium (Ti) was sandwiched between a porous anodic alumina film and a silicon (Si) substrate to form PAA/W/Si and PAA/Ti/Si structures. The material and optical characteristics of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates were studied using the scanning electron microscopy, X-ray diffraction (XRD), and temperature-dependent photoluminescence (PL) measurements. The current densities of the porous anodic alumina nanostructures with the metal interlayer are higher than for the PAA/Si, resulting in an increase of the growth rate of the oxide layer. It can be observed from the X-ray diffraction curves that there is more aluminum oxide inside the structure with the metal interlayer. Furthermore, it has been found that there is a reduction in the photoluminescence intensity of the oxygen vacancy with only one electron due to the formation of oxygen vacancies inside the aluminum oxide during the re-crystallization process. This leads to competition between the two kinds of different oxygen-deficient defect centers (F+ and F centers) in the carrier recombination mechanism from the PL spectra of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates. -- Highlights: • Study of porous anodic alumina (PAA) films with metal interlayers on silicon. • The highly ordered PAA film with a fairly regular nano-porous structure. • The luminescence properties of PAA films were

  14. Monolithic integration of nanoscale tensile specimens and MEMS structures

    International Nuclear Information System (INIS)

    Yilmaz, Mehmet; Kysar, Jeffrey W

    2013-01-01

    Nanoscale materials often have stochastic material properties due to a random distribution of material defects and an insufficient number of defects to ensure a consistent average mechanical response. Current methods to measure the mechanical properties employ MEMS-based actuators. The nanoscale specimens are typically mounted manually onto the load platform, so the boundary conditions have random variations, complicating the experimental measurement of the intrinsic stochasticity of the material properties. Here we show methods for monolithic integration of a nanoscale specimen co-fabricated with the loading platform. The nanoscale specimen is gold with dimensions of ∼40 nm thickness, 350 ± 50 nm width, and 7 μm length and the loading platform is an interdigitated electrode electrostatic actuator. The experiment is performed in a scanning electron microscope and digital image correlation is employed to measure displacements to determine stress and strain. The ultimate tensile strength of the nanocrystalline nanoscale specimen approaches 1 GPa, consistent with measurements made by other nanometer scale sample characterization methods on other material samples at the nanometer scale, as well as gold samples at the nanometer scale. The batch-compatible microfabrication method can be used to create nominally identical nanoscale specimens and boundary conditions for a broad range of materials. (paper)

  15. Surface structure and adsorption properties of ultrafine porous carbon fibers

    International Nuclear Information System (INIS)

    Song Xiaofeng; Wang Ce; Zhang Dejiang

    2009-01-01

    Ultrafine porous carbon fibers (UPCFs) were successfully synthesized by chemical activation of electrospun polyacrylonitrile fibers. In the current approach, potassium hydroxide was adopted as activation reagent. UPCFs were systematically evaluated by scanning electron microscope and nitrogen adsorption. The mass ratio of potassium hydroxide to preoxidized fibers, activation temperature and activation time are crucial for producing high quality UPCFs. The relationships between porous structure and process parameters are explored. UPCFs were applied as adsorbent for nitrogen monoxide to be compared with commercial porous carbon fibers.

  16. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    Science.gov (United States)

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with size<10 μm are demonstrated. Possible applications in filtering, sensing, electro-optical modulation, solar cells, and photocatalysis are envisioned.

  17. Tuning the cathodoluminescence of porous silicon films

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A.; Fonseca, L.F.; Resto, O.; Balberg, I.

    2008-01-01

    We have obtained intense cathodoluminescence (CL) emission from electron beam modified porous silicon films by excitation with electrons with kinetic energies below 2 keV. Two types of CL emissions were observed, a stable one and a non-stable one. The first type is obtained in well-oxidized samples and is characterized by a spectral peak that is red shifted with respect to the photoluminescence (PL) peak. The physically interesting and technologically promising CL is however the CL that correlates closely with the PL. Tuning of this CL emission was achieved by controlling the average size of the nanostructure thus showing that the origin of this CL emission is associated with the quantum confinement and the surface chemistry effects that are known to exist in the porous silicon system. We also found that the electron bombardment causes microscale morphological modifications of the films, but the nanoscale features appear to be unchanged. The structural changes are manifested by the increase in the density of the nanoparticles which explains the significant enhancement of the PL that follows the electron irradiation

  18. Topological representation of the porous structure and its evolution of reservoir sandstone under excavation-induced loads

    Directory of Open Access Journals (Sweden)

    Ju Yang

    2017-01-01

    Full Text Available The porous structure of a reservoir rock greatly influences its evolutive deformation and fracture behavior during excavation of natural resources reservoirs. Most numerical models for porous structures have been used to predict the quasi-static mechanical properties, but few are available to accurately characterize the evolution process of the porous structure and its influence on the macroscopic properties of reservoir rocks. This study reports a novel method to characterize the porous structure of sandstone using its topological parameters and to determine the laws that govern the evolutive deformation and failure of the topological structure under various uniaxial compressive loads. A numerical model of the porous sandstone was established based on the pore characteristics that were acquired using computed tomography imaging techniques. The analytical method that integrates the grassfire algorithm and the maximum inscribed sphere algorithm was proposed to create the 3-D topological model of the deformed porous structure, through which the topological parameters of the structure were measured and identified. The evolution processes of the porous structure under various loads were characterized using its equivalent topological model and parameters. This study opens a new way to characterize the dynamic evolution of the pore structure of reservoir sandstone under excavation disturbance.

  19. Nanoscale spin-dependent transport of electrons and holes in Si-ferromagnet structures

    NARCIS (Netherlands)

    Ul Haq, E.

    Given the rapid development of magnetic data storage and spin-electronics into the realm of nanotechnology, the understanding of the spin-dependent electronic transport and switching behavior of magnetic structures at the nanoscale is an important issue. We have developed spin-sensitive techniques

  20. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  1. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  2. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  3. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-01

    Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f

  4. Structural and elastic properties of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Matthai, C C [Department of Physics and Astronomy, University of Wales College of Cardiff, Cardiff CF2 3YB (United Kingdom); Gavartin, J L [Department of Physics and Astronomy, University of Wales College of Cardiff, Cardiff CF2 3YB (United Kingdom); Cafolla, A A [Department of Physics, Dublin City University, Dublin (Ireland)

    1995-01-15

    We have implemented a modified diffusion-limited aggregation model to simulate the porous silicon structure obtained by electrochemical dissolution. The resulting fractal structures were fully equilibrated using the molecular dynamics method. An analysis of the relaxed structure shows it to be quite stable with the presence of one-, two- and three-coordinated atoms as well as the four-coordinated atoms found in bulk silicon. It is suggested that the different substructures or nanocrystals might be responsible for the observed photoluminescence. ((orig.))

  5. Mechanical Properties of Porous Titanium Structure Fabricated by Investment Casting with Pressurization/Depressurization System

    International Nuclear Information System (INIS)

    Kang, San; Lee, Ji-Woon; Hyun, Soong-Keun; Lee, Byong-Pil; Kim, Myoung-Gyun; Kim, Young-Jig

    2014-01-01

    A porous titanium structure was fabricated by investment casting with a pressurization/depressurization system, and its mechanical properties were studied. A Micro-Vickers hardness profile revealed that hardness gradually increased from the matrix to the metal/mold interface. A compression test was conducted on a single cell of the porous Ti structure. The theoretical and experimental values of yield strength were in good agreement. Such agreement suggested that the reaction layer did not affect the macro-mechanical properties of the porous Ti structure.

  6. Fabrication of complex nanoscale structures on various substrates

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Lee, Heon

    2007-09-01

    Polymer based complex nanoscale structures were fabricated and transferred to various substrates using reverse nanoimprint lithography. To facilitate the fabrication and transference of the large area of the nanostructured layer to the substrates, a water-soluble polyvinyl alcohol mold was used. After generation and transference of the nanostructured layer, the polyvinyl alcohol mold was removed by dissolving in water. A residue-free, UV-curable, glue layer was formulated and used to bond the nanostructured layer onto the substrates. As a result, nanometer scale patterned polymer layers were bonded to various substrates and three-dimensional nanostructures were also fabricated by stacking of the layers.

  7. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing

    Science.gov (United States)

    Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2013-01-01

    Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318

  8. Porous structured niobium pentoxide/carbon complex for lithium-ion intercalation pseudocapacitors

    International Nuclear Information System (INIS)

    Luo, Guoming; Li, Heshun; Gao, Lixin; Zhang, Daquan; Lin, Tong

    2016-01-01

    Highlights: • A simple one-pot in situ hydrothermal method to prepare T-Nb_2O_5/C. • The composite has well-dispersed C among nano-scale Nb_2O_5. • The composite has excellent large-current discharge property. • The composite has no obvious drop after 1000 cycles at 5 A g"−"1. - Abstract: A facile soft-templated synthesis of the niobium pentoxide/carbon (Nb_2O_5/C) from the polymerization of resorcinol with formaldehyde under the hydrothermal condition is introduced. This material has been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS) techniques. The carbon is well-dispersed in the nanostructure along with Nb_2O_5 and the material is porous. The intimate contact between Nb_2O_5 and carbon improves its conductivity. The electrochemical studies revealed that the porous Nb_2O_5/C displayed good pseudocapacitive response. The specific capacitance of the Nb_2O_5/C was 387 F g"−"1 at 0.1 A g"−"1 and 210 F g"−"1 at 5 A g"−"1. The Nb_2O_5/C exhibits superior cycling performance, which can remain about 96% of its initial capacitance after 1000 cycles at 5 A g"−"1.

  9. Characteristics of Wave Reflection for Vertical and Slit Caissons with Porous Structures

    Directory of Open Access Journals (Sweden)

    Tae-Hwa Jung

    2012-01-01

    Full Text Available Offshore structures are occasionally located at a relatively deep water region, the outside of breakwater. In this case, these structures may be damaged by the supposition of incident and reflected waves from a vertical breakwater. To prevent the damage, the reflected waves are controlled by installing porous structures at the face of the vertical breakwater. In this study, numerical experiments are carried out to identify the characteristics of wave reflection from the porous structures installing in front of a vertical or slit caisson.

  10. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...

  11. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  12. Structural studies of ZnS:Cu (5 at %) nanocomposites in porous Al{sub 2}O{sub 3} of different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Valeev, R. G., E-mail: rishatvaleev@mail.ru; Trigub, A. L.; Chukavin, A. I.; Beltiukov, A. N. [Physical-Technical Institute, Russian Academy of Sciences (Ural Branch) (Russian Federation)

    2017-02-15

    We present EXAFS, XANES, and X-ray diffraction data on nanoscale ZnS:Cu (5 at %) structures fabricated by the thermal deposition of a ZnS and Cu powder mixture in porous anodic alumina matrices with a pore diameter of 80 nm and thicknesses of 1, 3, and 5 μm. The results obtained are compared with data on ZnS:Cu films deposited onto a polycor surface. According to X-ray diffraction data, the samples contain copper and zinc compounds with sulfur (Cu{sub 2}S and ZnS, respectively); the ZnS compound is in the cubic (sphalerite) and hexagonal (wurtzite) modifications. EXAFS and XANES studies at the K absorption edges of zinc and copper showed that, in samples deposited onto polycor and alumina with thicknesses of 3 and 5 μm, most copper atoms form the Cu{sub 2}S compound, while, in the sample deposited onto a 1-μm-thick alumina layer, copper atoms form metallic particles on the sample surface. Copper crystals affect the Zn–S interatomic distance in the sample with a 1-μm-thick porous Al{sub 2}O{sub 3} layer; this distance is smaller than in the other samples.

  13. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    Science.gov (United States)

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. PIV study of flow through porous structure using refractive index matching

    Science.gov (United States)

    Häfeli, Richard; Altheimer, Marco; Butscher, Denis; Rudolf von Rohr, Philipp

    2014-05-01

    An aqueous solution of sodium iodide and zinc iodide is proposed as a fluid that matches the refractive index of a solid manufactured by rapid prototyping. This enabled optical measurements in single-phase flow through porous structures. Experiments were also done with an organic index-matching fluid (anisole) in porous structures of different dimensions. To compare experiments with different viscosities and dimensions, we employed Reynolds similarity to deduce the scaling laws. One of the target quantities of our investigation was the dissipation rate of turbulent kinetic energy. Different models for the dissipation rate estimation were evaluated by comparing isotropy ratios. As in many other studies also, our experiments were not capable of resolving the velocity field down to the Kolmogorov length scale, and therefore, the dissipation rate has to be considered as underestimated. This is visible in experiments of different relative resolutions. However, being near the Kolmogorov scale allows estimating a reproducible, yet underestimated spatial distribution of dissipation rate inside the porous structure. Based on these results, the model was used to estimate the turbulent diffusivity. Comparing it to the dispersion coefficient obtained in the same porous structure, we conclude that even at the turbulent diffusivity makes up only a small part of mass transfer in axial direction. The main part is therefore attributed to Taylor dispersion.

  15. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  16. Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    2015-01-01

    Nanoscale zero-valent iron (nZVI), with its reductive potentials and wide availability, offers degradative remediation of environmental contaminants. Rapid aggregation and deactivation hinder its application in real-life conditions. Here, we show that by caging nZVI into the micropores of porous ...

  17. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  18. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  19. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.

    Science.gov (United States)

    Su, Yan; Zhao, Yong S; Li, Lu L; Qin, Chuan Y; Wu, Fan; Geng, Nan N; Lei, Jian S

    2014-01-01

    This study investigated the transport properties of nanoscale zero-valent iron (Fe(0)) (nZVI) carried by three vehicles: water, sodium dodecyl sulfate (SDS) solution, and SDS foam. Batch experiments were conducted to assess the sedimentation capability of nZVI particles in these three vehicles. Column experiments were conducted to investigate the transport properties of nZVI in porous media formed with different sizes of sand (0.25 mm to 0.5 mm, 0.5 mm to 0.9 mm, and 0.9 mm to 1.4 mm). Three main results were obtained. First, the batch experiments revealed that the stabilities of nZVI particles in SDS solution and SDS foam were improved, compared with that of nZVI particles in water. Moreover, the sedimentation of nZVI in foam was closely associated with the foam drainage volume. The nZVI content in foam was similar to that in the original foaming suspension, and the nZVI particle distribution in foam became significantly more uniform at a stirring speed of 3000 r/min. Second, the transport of nZVI was enhanced by foam compared with water and SDS solution for 0.25 mm to 0.5 mm diameter sand. For sand with diameters of 0.5 mm to 0.9 mm and 0.9 mm to 1.4 mm, the mobility of nZVI carried by SDS solution was optimal, followed by that of nZVI carried by foam and water. Thus, the mobility of nZVI in finer sand was significantly enhanced by foam, compared with that in coarse sand. In contrast, compared with the bare nZVI suspension and nZVI-laden foam, the spatial distribution of nZVI particles carried by SDS solution was significantly uniform along the column length. Third, the SDS concentration significantly influenced the migration of nZVI in porous media. The enhancement in the migration of nZVI carried by SDS solution was greater at an SDS dose of 0.25% compared with that at the other three doses (0.2%, 0.5%, and 1%) for sand with a 0.25 mm to 0.5 mm diameter. Increased SDS concentrations positively affected the transport of nZVI by foam for sand with a

  20. Organisation and Control of Nanoscale Structures on Au(111)

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Andersen, Jens Enevold Thaulov

    2001-01-01

    system is IDe arnino acid cystine in the adsorbed state. Af ter dissociation of its disulfide band cystine farms a highly ordered pattem controlled by adsorption via IDe liberated sulfur atoms and intermolecular hydrogen bonding. Further organisation at three different leveis by lateral interactions can...... constitutes a new case for the lise of in situ STM as a tool for manufacturing nanoscale pit structures on IDe Au(lll) surface at small bias voltage. Individually and in combination these data hold perspectives for preparation of atornically planar electrochernical surfaces willi controlled functionalisation...

  1. An agent-based method for simulating porous fluid-saturated structures with indistinguishable components

    Science.gov (United States)

    Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle

    2017-10-01

    Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.

  2. Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures

    International Nuclear Information System (INIS)

    Targui, N.; Kahalerras, H.

    2008-01-01

    A numerical study of flow and heat transfer characteristics is made in a double pipe heat exchanger with porous structures inserted in the annular gap in two configurations: on the inner cylinder (A) and on both the cylinders in a staggered fashion (B). The flow field in the porous regions is modelled by the Darcy-Brinkman-Forchheimer model and the finite volume method is used to solve the governing equations. The effects of several parameters such as Darcy number, porous structures thickness and spacing and thermal conductivity ratio are considered in order to look for the most appropriate properties of the porous structures that allow optimal heat transfer enhancement. It is found that the highest heat transfer rates are obtained when the porous structures are attached in configuration B especially at small spacing and high thicknesses

  3. Porous structure analysis of radioactive spent resin cementation matrix

    International Nuclear Information System (INIS)

    Zhou Yaozhong; Yun Guichun

    2004-01-01

    According to a cement product microstructure, a radioactive spent resin cementation matrix has the properties of porous matters. The distributing of the pore size and the pore microstructure stability are closely related to many crucial macro properties, including strength and permeability of the matrixes. By using a new computer-controlled Hg pressure test, a experiment methods of the matrix micro-properties was studied. By using porous structure analyses, it was found that the experimental method is useful for the future cementation research. In this test, it was also found that ASC cement matrixes of spent resin have superior microstructure to the OPC's. They have better pore size distribution, more stable structure and higher ability to hold the Hg in the matrixes than OPC's, and these properties are the important factors that make ASC cement matrixes have more stable macro-structure and lower leaching of nuclides. (authors)

  4. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  5. Sound transmission through stiffened double-panel structures lined with elastic porous materials

    Science.gov (United States)

    Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming

    This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.

  6. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  7. Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers

    Directory of Open Access Journals (Sweden)

    J. Y. Xie

    2013-01-01

    Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.

  8. Porous structured niobium pentoxide/carbon complex for lithium-ion intercalation pseudocapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guoming; Li, Heshun; Gao, Lixin [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Daquan, E-mail: zhangdaquan@shiep.edu.cn [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Lin, Tong [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia)

    2016-12-15

    Highlights: • A simple one-pot in situ hydrothermal method to prepare T-Nb{sub 2}O{sub 5}/C. • The composite has well-dispersed C among nano-scale Nb{sub 2}O{sub 5}. • The composite has excellent large-current discharge property. • The composite has no obvious drop after 1000 cycles at 5 A g{sup −1}. - Abstract: A facile soft-templated synthesis of the niobium pentoxide/carbon (Nb{sub 2}O{sub 5}/C) from the polymerization of resorcinol with formaldehyde under the hydrothermal condition is introduced. This material has been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS) techniques. The carbon is well-dispersed in the nanostructure along with Nb{sub 2}O{sub 5} and the material is porous. The intimate contact between Nb{sub 2}O{sub 5} and carbon improves its conductivity. The electrochemical studies revealed that the porous Nb{sub 2}O{sub 5}/C displayed good pseudocapacitive response. The specific capacitance of the Nb{sub 2}O{sub 5}/C was 387 F g{sup −1} at 0.1 A g{sup −1} and 210 F g{sup −1} at 5 A g{sup −1}. The Nb{sub 2}O{sub 5}/C exhibits superior cycling performance, which can remain about 96% of its initial capacitance after 1000 cycles at 5 A g{sup −1}.

  9. CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2015-01-01

    Full Text Available WO3 hierarchical porous structures were successfully synthesized via cetyltrimethylammonium bromide- (CTAB- assisted hydrothermal method. The structure and morphology were investigated using scanning electron microscope, X-ray diffractometer, transmission electron microscopy, X-ray photoelectron spectra, Brunauer-Emmett-Teller nitrogen adsorption-desorption, and thermogravimetry and differential thermal analysis. The result demonstrated that WO3 hierarchical porous structures with an orthorhombic structure were constructed by a number of nanoparticles about 50–100 nm in diameters. The H2 gas sensing measurements showed that well-defined WO3 hierarchical porous structures with a large specific surface area exhibited the higher sensitivity compared with products without CTAB at all operating temperatures. Moreover, the reversible and fast response to H2 gas and good selectivity were obtained. The results indicated that the WO3 hierarchical porous structures are promising materials for gas sensors.

  10. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Science.gov (United States)

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  11. Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, Alireza, E-mail: alireza_nouri@yahoo.com [CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus Universitario da Penteada, 9000-390 Funchal (Portugal); Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Hodgson, Peter D. [Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Wen Cuie [IRIS, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 543-454 Burwood Road, Hawthorn, Victoria 3122 Australia (Australia)

    2011-07-20

    The structural characteristics of biomedical porous materials are crucial for bone tissue to grow into a porous structure and can also influence the fixation and remodeling between the implant and the human tissues. The current study has been investigating the effect of the ball-milling variable of time on the structural characteristics and pore morphology of a biomedical porous Ti-16Sn-4Nb (wt.%) alloy. The alloy was synthesized using high-energy ball milling for different periods of time, and the porous Ti-16Sn-4Nb alloy was fabricated by using a space holder sintering process. The resultant powder particles, bulk, and porous samples were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, chemical analysis, X-ray diffraction analysis (XRD), and the Vickers hardness test. The results indicated that the inner pore surface, pore wall architecture, degree of porosity, pore size and the inter-pore connectivity of the sintered porous alloy are all considerably affected by ball-milling time.

  12. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  13. A novel approach to fabrication of three-dimensional porous titanium with controllable structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Li, Qiuyan; Xu, Mingqin; Jiang, Guofeng; Zhang, Yunxia [Shanghai Key Laboratory of Materials Laser Processing and Modification, and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); He, Guo, E-mail: ghe@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2017-02-01

    A new approach to fabrication of porous titanium by using the molybdenum wire as space holder was developed, in which titanium liquid was cast into the entangled molybdenum wires in a vacuum environment, and followed by etching off the space holder material in an aqua regia solution. This infiltration casting and acid corrosion method fabricated the porous titanium with different porosities with a pore diameter of 0.4 mm. The porous titanium with the porosity of 32–47% exhibited the Young's modulus in the range of 23–62 GPa and the yielding strength in the range of 76–192 MPa. The adhesion and spreadability of the bovine osteoblast cells on the porous titanium were also evaluated in vitro. The porous titanium with 47% porosity has great potential for implant applications. - Highlights: • A new approach to fabrication of porous titanium was developed. • The 3D morphology of the interconnected porous structure can be exactly controlled. • The as-prepared porous titanium exhibits adequate yielding strength. • The elastic modulus of the porous titanium matches well with that of cortical bone. • The as-prepared porous titanium has great potential for implant applications.

  14. Influence of the volume ratio of solid phase on carrying capacity of regular porous structure

    Directory of Open Access Journals (Sweden)

    Monkova Katarina

    2017-01-01

    Full Text Available Direct metal laser sintering is spread technology today. The main advantage of this method is the ability to produce parts which have a very complex geometry and which can be produced only in very complicated way by classical conventional methods. Special category of such components are parts with porous structure, which can give to the product extraordinary combination of properties. The article deals with some aspects that influence the manufacturing of regular porous structures in spite of the fact that input technological parameters at various samples were the same. The main goal of presented research has been to investigate the influence of the volume ratio of solid phase on carrying capacity of regular porous structure. Realized tests have indicated that the unit of regular porous structure with lower volume ratio is able to carry a greater load to failure than the unit with higher volume ratio.

  15. Diffusion in porous structures containing three fluid phases

    International Nuclear Information System (INIS)

    Galani, A.N.; Kainourgiakis, M.E.; Stubos, A.K.; Kikkinides, E.S.

    2005-01-01

    In the present study, the tracer diffusion in porous media filled by three fluid phases (a non-wetting, an intermediate wetting and a wetting phase) is investigated. The disordered porous structure of porous systems like random sphere packing and the North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk matrix by a stochastic reconstruction technique. Physically sound spatial distributions of the three phases filling the pore space are determined by the use of a simulated annealing algorithm, where those phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The acceptance rule for a trial move during the annealing is modified properly improving the efficiency of the technique. The diffusivities of the resulting domains are computed by a random walk method. A parametric study with respect to the pore volume fraction occupied by each fluid phase and the ratio of the diffusivities in the fluid phases is performed. (authors)

  16. Structural modification of silicon during the formation process of porous silicon

    International Nuclear Information System (INIS)

    Martin-Palma, R.J.; Pascual, L.; Landa-Canovas, A.R.; Herrero, P.; Martinez-Duart, J.M.

    2005-01-01

    Direct examination of porous silicon (PS) by the use of high resolution transmission electron microscopy (HRTEM) allowed us to perform a deep insight into the formation mechanisms of this material. In particular, the structure of the PS/Si interface and that of the silicon nanocrystals that compose porous silicon were analyzed in detail. Furthermore, image processing was used to study in detail the structure of PS. The mechanism of PS formation and lattice matching between the PS layer and the Si substrate is analyzed and discussed. Finally, a formation mechanism for PS based on the experimental observations is proposed

  17. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  18. Micro- and nano-scale damage on the surface of W divertor component during exposure to high heat flux loads with He

    International Nuclear Information System (INIS)

    Li, C.; Greuner, H.; Zhao, S.X.; Böswirth, B.; Luo, G.N.; Zhou, X.; Jia, Y.Z.; Liu, X.; Liu, W.

    2015-01-01

    Micro- and nano-scale surface damage on a W divertor component sample exposed to high heat flux loads generated with He atoms has been investigated through SEM, EBSD, AFM and FIB-SEM. The component sample was supplied by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) and AT&M company, China, and the loading experiment was performed in the GLADIS facility at IPP Garching, Germany. Two typical damage structures were observed on the surface: the first one is characterized by obvious blisters and some grooves formed from ruptured blisters, and the other one is a kind of porous structure accompanying with at least ∼25 nm surface material loss. As the grain orientation is further away from , the damage morphology gradually changes from the former structure to the latter. The possible damage mechanism is discussed. - Highlights: • Two damage structures were observed on W component surface under He beam heating. • Blistering was more obvious in near grains. • Porous structure appeared in the grains away from . • A loose layer caused by He aggregation was formed in near-surface region.

  19. Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes.

    Science.gov (United States)

    Silvestri, Cinzia; Riccio, Michele; Poelma, René H; Jovic, Aleksandar; Morana, Bruno; Vollebregt, Sten; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina M

    2018-04-17

    The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behavior can be achieved. The effect of nanoscale coatings, aluminum oxide (Al 2 O 3 ) and nonstoichiometric amorphous silicon carbide (a-SiC), on the thermal transport efficiency of high aspect ratio vertically aligned CNTs, is reported herein. The thermal performance of the CNT-based nanostructure strongly depends on the achieved porosity, the coating material and its infiltration within the nanotube network. An unprecedented enhancement in terms of effective thermal conductivity in a-SiC coated CNTs has been obtained: 181% compared to the as-grown CNTs and Al 2 O 3 coated CNTs. Furthermore, the integration of coated high aspect ratio CNTs in an epoxy molding compound demonstrates that, next to the required thermal conductivity, the mechanical compliance for thermal interface applications can also be achieved through coating infiltration into foam-like CNT forests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Numerical analysis of micro-/nanoscale gas-film lubrication of sliding surface with complicated structure

    International Nuclear Information System (INIS)

    Kawagoe, Yoshiaki; Isono, Susumu; Takeno, Takanori; Yonemura, Shigeru; Takagi, Toshiyuki; Miki, Hiroyuki

    2014-01-01

    It has been reported that the friction between a partially polished diamond-coated surface and a metal surface was drastically reduced to zero when they are slid at a few m/s. Since the sliding was noiseless, it seems that the diamond-coated surface was levitated over the counter surface and the sliding mechanism was the gas film lubrication. Recently, the mechanism of levitation of a slider with a micro/nanoscale surface structure on a rotating disk was theoretically clarified [S. Yonemura et al., Tribol. Lett., (2014), doi:10.1007/s11249-014-0368-2]. Probably, the partially polished diamond-coated surface may be levitated by high gas pressure generated by the micro/nanoscale surface structure on it. In this study, in order to verify our deduction, we performed numerical simulations of sliding of partially polished diamond-coated surface by reproducing its complicated surface structure using the data measured by an atomic force microscope (AFM). As a result, we obtained the lift force which is large enough to levitate the slider used in the experiment

  1. Numerical analysis of micro-/nanoscale gas-film lubrication of sliding surface with complicated structure

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Yoshiaki; Isono, Susumu; Takeno, Takanori [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yonemura, Shigeru; Takagi, Toshiyuki [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Miki, Hiroyuki [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2014-12-09

    It has been reported that the friction between a partially polished diamond-coated surface and a metal surface was drastically reduced to zero when they are slid at a few m/s. Since the sliding was noiseless, it seems that the diamond-coated surface was levitated over the counter surface and the sliding mechanism was the gas film lubrication. Recently, the mechanism of levitation of a slider with a micro/nanoscale surface structure on a rotating disk was theoretically clarified [S. Yonemura et al., Tribol. Lett., (2014), doi:10.1007/s11249-014-0368-2]. Probably, the partially polished diamond-coated surface may be levitated by high gas pressure generated by the micro/nanoscale surface structure on it. In this study, in order to verify our deduction, we performed numerical simulations of sliding of partially polished diamond-coated surface by reproducing its complicated surface structure using the data measured by an atomic force microscope (AFM). As a result, we obtained the lift force which is large enough to levitate the slider used in the experiment.

  2. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  3. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Directory of Open Access Journals (Sweden)

    Patrik Nemec

    2014-01-01

    Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.

  4. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.

    Science.gov (United States)

    Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia

    2018-02-14

    On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.

  5. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  6. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  7. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  8. Formation of Porous Structure with Subspot Size under the Irradiation of Picosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2013-01-01

    Full Text Available A study was presented in this paper on porous structure with microsize holes significantly smaller than laser spot on the stainless steel 304 target surface induced by a picosecond Nd:van regenerative amplified laser, operating at 1064 nm. The target surface variations were studied in air ambience. The estimated surface damage threshold was 0.15 J/cm2. The target specific surface changes and phenomena observed supported a complementary study on the formation and growth of the subspot size pit holes on metal surface with dependence of laser pulse number of 50–1000 and fluences of 0.8 and 1.6 J/cm2. Two kinds of porous structures were presented: periodic holes are formed from Coulomb Explosion during locally spatial modulated ablation, and random holes are formed from the burst of bubbles in overheated liquid during phase explosion. It can be concluded that it is effective to fabricate a large metal surface area of porous structure by laser scanning regime. Generally, it is also difficult for ultrashort laser to fabricate the microporous structures compared with traditional methods. These porous structures potentially have a number of important applications in nanotechnology, industry, nuclear complex, and so forth.

  9. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology

    KAUST Repository

    Marinaro, Giovanni; La Rocca, Rosanna; Toma, Andrea; Barberio, Marianna; Cancedda, Laura; Di Fabrizio, Enzo M.; Decuzzi, Paolo C W; Gentile, Francesco T.

    2015-01-01

    The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is

  10. Manufacturing a Porous Structure According to the Process Parameters of Functional 3D Porous Polymer Printing Technology Based on a Chemical Blowing Agent

    Science.gov (United States)

    Yoo, C. J.; Shin, B. S.; Kang, B. S.; Yun, D. H.; You, D. B.; Hong, S. M.

    2017-09-01

    In this paper, we propose a new porous polymer printing technology based on CBA(chemical blowing agent), and describe the optimization process according to the process parameters. By mixing polypropylene (PP) and CBA, a hybrid CBA filament was manufactured; the diameter of the filament ranged between 1.60 mm and 1.75 mm. A porous polymer structure was manufactured based on the traditional fused deposition modelling (FDM) method. The process parameters of the three-dimensional (3D) porous polymer printing (PPP) process included nozzle temperature, printing speed, and CBA density. Porosity increase with an increase in nozzle temperature and CBA density. On the contrary, porosity increase with a decrease in the printing speed. For porous structures, it has excellent mechanical properties. We manufactured a simple shape in 3D using 3D PPP technology. In the future, we will study the excellent mechanical properties of 3D PPP technology and apply them to various safety fields.

  11. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    International Nuclear Information System (INIS)

    Du Yucheng; Yan Jing; Meng Qi; Wang Jinshu; Dai Hongxing

    2012-01-01

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: ► Sb-doped SnO 2 (ATO)-coated diatomite materials with porous structures are prepared. ► Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. ► Porous ATO-coated diatomite materials show excellent conductive performance. ► The lowest resistivity of the porous ATO-coated diatomite sample is 10 Ω cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N 2 adsorption–desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 Ω cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 °C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  12. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  13. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants.

    Science.gov (United States)

    Moiduddin, Khaja

    2018-02-01

    The traditional methods of metallic bone implants are often dense and suffer from adverse reactions, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. The objective of this study is to evaluate the customized porous cranial implant with mechanical properties closer to that of bone and to improve the aesthetic outcome in cranial surgery with precision fitting for a better quality of life. Two custom cranial implants (bulk and porous) are digitally designed based on the Digital Imaging and Communications in Medicine files and fabricated using additive manufacturing. Initially, the defective skull model and the implant were fabricated using fused deposition modeling for the purpose of dimensional validation. Subsequently, the implant was fabricated using titanium alloy (Ti6Al4V extra low interstitial) by electron beam melting technology. The electron beam melting-produced body diagonal node structure incorporated in cranial implant was evaluated based on its mechanical strength and structural characterization. The results show that the electron beam melting-produced porous cranial implants provide the necessary framework for the bone cells to grow into the pores and mimic the architecture and mechanical properties closer to the region of implantation. Scanning electron microscope and micro-computed tomography scanning confirm that the produced porous implants have a highly regular pattern of porous structure with a fully interconnected network channel without any internal defect and voids. The physical properties of the titanium porous structure, containing the compressive strength of 61.5 MPa and modulus of elasticity being 1.20 GPa, represent a promising means of reducing stiffness and stress-shielding effect on the surrounding bone. This study reveals that the use of porous structure in cranial reconstruction satisfies the need of lighter implants with an adequate mechanical strength and structural characteristics

  14. Pool boiling with high heat flux enabled by a porous artery structure

    Science.gov (United States)

    Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.

    2016-06-01

    A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.

  15. Multiscale global identification of porous structures

    Science.gov (United States)

    Hatłas, Marcin; Beluch, Witold

    2018-01-01

    The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.

  16. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  17. Temperature induced development of porous structure of bituminous coal chars at high pressure

    Directory of Open Access Journals (Sweden)

    Natalia Howaniec

    2016-01-01

    Full Text Available The porous structure of chars affects their reactivity in gasification, having an impact on the course and product distribution of the process. The shape, size and connections between pores determine the mechanical properties of chars, as well as heat and mass transport in thermochemical processing. In the study the combined effects of temperature in the range of 973–1273 °K and elevated pressure of 3 MPa on the development of porous structure of bituminous coal chars were investigated. Relatively low heating rate and long residence time characteristic for the in-situ coal conversion were applied. The increase in the temperature to 1173 °K under pressurized conditions resulted in the enhancement of porous structure development reflected in the values of the specific surface area, total pore volume, micropore area and volume, as well as ratio of the micropore volume to the total pore volume. These effects were attributed to the enhanced vaporization and devolatilization, as well as swelling behavior along the increase of temperature and under high pressure, followed by a collapse of pores over certain temperature value. This proves the strong dependence of the porous structure of chars not only on the pyrolysis process conditions but also on the physical and chemical properties of the parent fuel.

  18. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  19. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  20. Structure and properties of porous films based on aliphatic copolyamide developed for cellular technologies

    Czech Academy of Sciences Publication Activity Database

    Dobrovol`skaya, I.P.; Popryadukhin, P.V.; Yudin, V. E.; Ivankova, E.M.; Elokhovskiy, V.Y.; Weishauptová, Zuzana; Balík, Karel

    2015-01-01

    Roč. 26, č. 1 (2015), article number 46 ISSN 0957-4530 Institutional support: RVO:67985891 Keywords : porous film * aliphatic copolyamide * structure * properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.272, year: 2015 http://www.stem-art.com/Library/Science/Structure%20and%20properties%20of%20porous%20films%20based%20on%20aliphatic%20copolyamide%20developed%20for%20cellular%20technologies.pdf

  1. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  2. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Du Yucheng, E-mail: ychengdu@bjut.edu.cn [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yan Jing; Meng Qi; Wang Jinshu [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Dai Hongxing, E-mail: hxdai@bjut.edu.cn [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-04-16

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: Black-Right-Pointing-Pointer Sb-doped SnO{sub 2} (ATO)-coated diatomite materials with porous structures are prepared. Black-Right-Pointing-Pointer Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. Black-Right-Pointing-Pointer Porous ATO-coated diatomite materials show excellent conductive performance. Black-Right-Pointing-Pointer The lowest resistivity of the porous ATO-coated diatomite sample is 10 {Omega} cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N{sub 2} adsorption-desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 {Omega} cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 Degree-Sign C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  3. Systems and strippable coatings for decontaminating structures that include porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  4. Sound Transmission Through Multi-Panel Structures Lined with Elastic Porous Materials

    Science.gov (United States)

    Bolton, J. S.; Shiau, N.-M.; Kang, Y. J.

    1996-04-01

    Theory and measurements related to sound transmission through double panels lined with elastic porous media are presented. The information has application to the design of noise control barriers and to the optimization of aircraft fuselage transmission loss, for example. The major difference between the work described here and earlier research in this field relates to the treatment of the porous material that is used to line the cavity between the two panels of the double panel structure. Here we have used the porous material theory proposed by Biot since it takes explicit account of all the wave types known to propagate in elastic porous materials. As a result, it is possible to use the theory presented here to calculate the transmission loss of lined double panels at arbitrary angles of incidence; results calculated over a range of incidence angles may then be combined to yield the random incidence transmission loss. In this paper, the equations governing wave propagation in an elastic porous material are first considered briefly and then the general forms for the stresses and displacements within the porous material are given. Those solutions are expressed in terms of a number of constants that can be determined by application of appropriate boundary conditions. The boundary conditions required to model double panels having linings that are either directly attached to the facing panels or separated?!from them by air gaps are presented and discussed. Measurements of the random incidence transmission loss of aluminium double-panel structures lined with polyurethane foam are presented and have been found to be in good agreement with theoretical predictions. Both the theoretical predictions and the measured results have shown that the method by which an elastic porous lining material is attached to the facing panels can have a profound influence on the transmission loss of the panel system. It has been found, for example, that treatments in which the lining material

  5. Manufacturing of metallic porous structures to be used in capillary pumping systems

    Directory of Open Access Journals (Sweden)

    Eduardo Gonçalves Reimbrecht

    2003-12-01

    Full Text Available Sintered metallic porous structures have an application as capillary structures in two-phase heat transfer loops. In this work the manufacturing procedure of tubular porous structures for capillary pump application is discussed. The application of porous structures on capillary pumping systems requires porosity higher than 40% and pore size diameter lower than 20 µm. Carbonyl nickel powder with particle diameter between 3 and 7 µm and stainless steel AISI316L powder with particle diameter between 1 and 22 µm were used as raw material. Sintering under hydrogen atmosphere was performed both in a resistive furnace and in a plasma reactor. Temperature and time were the modified parameters to obtain suitable porosity and roundness on the samples. The porosity was measured using the Arquimedes Principle (MPIF-42, the roundness was evaluated using a simplified measurement technique of the sample diameter and the pore size distribution was determined by image analysis techniques. Images obtained by Scanning Electronic Microscopy were employed on the image analysis. The sintering parameters selected to manufacture nickel samples were 700 °C and 30 min resulting in a porosity of about 44%. The sintering parameters selected to manufacture stainless steel samples were 1000 °C and 30 min resulting in a porosity of about 40%.

  6. Utilizing of inner porous structure in injection moulds for application of special cooling method

    International Nuclear Information System (INIS)

    Seidl, M; Bobek, J; Habr, J; Běhálek, L; Šafka, J; Nováková, I

    2016-01-01

    The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO 2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO 2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO 2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses. (paper)

  7. Relationship between microstructure and optical properties of a novel perovskite C12PbI4 embedded in matrix of porous alumina

    Science.gov (United States)

    Zaghdoudi, W.; Bardaoui, A.; Khalifa, N.; Chtourou, R.

    2013-01-01

    In this study, organic-inorganic hybrid perovskite multiple quantum wells (PbI QWs) embedded in porous anodic alumina (PAA) thin films on glass and aluminum substrates are investigated in detail. The pore height and diameter of the nanoscale structure of porous anodic alumina (PAA) film produced by the anodization technique are controllable. The synthesized films are characterized morphologically using the atomic force microscopy (AFM). Scanning electron microscopy (SEM) study showed granular surface. The structural and optical properties were investigated by X-ray diffraction (XRD), photoluminescence (PL) and UV-Vis-NIR spectrophotometer. The effect of the two different substrates on the impregnation of the PbI QW in the PAA is presented. Both PL and AFM studies show a better penetration of the PbI QW in the case of the Al substrate providing a wider pore diameter. Remarkable enhancement of quantum confinement is demonstrated.

  8. 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Elke M. F. Lemos

    2016-05-01

    Full Text Available Porous synthetic substrates are developed through tissue engineering technologies to grow new tissue, restoring the function of tissue or an organ. For bone regeneration, these scaffolds must support the dynamic load exerted on this tissue, achieved primarily by increasing their compression strength, as established in the literature. The aim of this paper was to incorporate an inorganic composite bioactive glass (60%SiO2 - 36%CaO - 4%P2O5 as a reinforcing agent in mechanical 3D scaffolds that must remain porous. Two strategies were adopted: a co-precipitation method to obtain a nanoparticulate dispersion of bioactive glass (BGNP and a sol-gel method to combine a bioactive glass solution (BG with a previously prepared chitosan polymer solution. Moreover, a lyophilization process was also used, generating highly porous scaffolds. Various aspects of the scaffold were evaluated, including the morphology, orientation and size of the pores, and mechanical strength, as obtained using the two synthetic methods. The data for compressive strength revealed increased strength after the incorporation of bioactive glass, which was more pronounced when utilizing the nanoscale bioactive glass.

  9. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    International Nuclear Information System (INIS)

    Holt, J.K.; Herberg, J.L.; Wu, Y.; Schwegler, E.; Mehta, A.

    2009-01-01

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  10. Enhanced Transdermal Permeability via Constructing the Porous Structure of Poloxamer-Based Hydrogel

    Directory of Open Access Journals (Sweden)

    Wen-Yi Wang

    2016-11-01

    Full Text Available A major concern for transdermal drug delivery systems is the low bioavailability of targeted drugs primarily caused by the skin’s barrier function. The resistance to the carrier matrix for the diffusion and transport of drugs, however, is routinely ignored. This study reports a promising and attractive approach to reducing the resistance to drug transport in the carrier matrix, to enhance drug permeability and bioavailability via enhanced concentration-gradient of the driving force for transdermal purposes. This approach simply optimizes and reconstructs the porous channel structure of the carrier matrix, namely, poloxamer 407 (P407-based hydrogel matrix blended with carboxymethyl cellulose sodium (CMCs. Addition of CMCs was found to distinctly improve the porous structure of the P407 matrix. The pore size approximated to normal distribution as CMCs were added and the fraction of pore number was increased by over tenfold. Transdermal studies showed that P407/CMCs saw a significant increase in drug permeability across the skin. This suggests that P407/CMC with improved porous structure exhibits a feasible and promising way for the development of transdermal therapy with high permeability and bioavailability, thereby avoiding or reducing use of any chemical enhancers.

  11. Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao-Hua; Bai, Yu; Cao, Yue; Xu, Zhen-Liang [East China University of Science and Technology, Shanghai (China)

    2014-08-15

    Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3x10{sup 5} L·m{sup -2}·h{sup -1}·Pa{sup -1}). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.

  12. Optical performance of hybrid porous silicon-porous alumina multilayers

    Science.gov (United States)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  13. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set

    International Nuclear Information System (INIS)

    Guan, Dong; Wu, Jiu Hui; Jing, Li

    2015-01-01

    Highlights: • A random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. • Effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. • This method could be utilized to guide the design and fabrication of the sound-absorption porous metal materials. - Abstract: In this paper, a statistical method for predicting sound absorption properties of porous metal materials is presented. To reflect the stochastic distribution characteristics of the porous metal materials, a random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. Then by using the transfer-function approach along with the QSGS tool, we investigate the sound absorbing performance of porous metal materials with complex stochastic geometries. The statistical method has been validated by the good agreement among the numerical results for metal rubber from this method and a previous empirical model and the corresponding experimental data. Furthermore, the effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. Therefore, the present method is a reliable and robust method for predicting the sound absorption performance of porous metal materials, and could be utilized to guide the design and fabrication of the sound-absorption porous metal materials

  14. Pore structure, mechanical properties and polymer characteristics of porous materials impregnated with methylmethacrylate

    International Nuclear Information System (INIS)

    Hastrup, K.

    1976-05-01

    The pore structure of porous materials plays a decisive role with regard to many properties of the materials. One therefore expects property improvement due to impregnation to be mostly brought about as a result of pore structure modification. This supposition formed the basis for the project here presented, which had the main aim of investigating polymer impregnation in relation to pore structure. Objectives were: 1) to examine the pore structure of hardened cement paste, beech wood and porous glass before and after gas-phase impregnation with methyl-methacrylate monomer and in situ polymerization, 2) to investigate the influence of the pore structure on the molecular weight of the polymer, 3) to investigate the influence of the degree of pore filling on the elastic modulus, damping coefficient and bending strength. (author)

  15. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

    for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...... The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...

  16. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.

    Science.gov (United States)

    Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming

    2007-06-15

    This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.

  17. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  18. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application

    Science.gov (United States)

    Gu, Jiatai; Gu, Haihong; Cao, Jin; Chen, Shaojie; Li, Ni; Xiong, Jie

    2018-05-01

    In this work, novel nanofibrous membranes with waterproof and breathable (W&B) performance were successfully fabricated by the combination of electrospinning and surface modification technology. This fibrous membranes consisted of polyurethane (PU), NaCl, and fluoroalkylsilane (FAS). Firstly, The fibrous construction and porous structure of fibrous membranes were regulated by tuning the NaCl concentrations in PU solutions. Then, the obtained PU/NaCl fibrous membranes were further modified with fluoroalkylsilane (FAS) to improve hydrophobic property. The synergistic effect of porous structure and hydrophobicity on waterproof and breathable performance was investigated. Furthermore, the mechanical property of fibrous membranes was deeply analysed on the basis of macromolecule orientation and adhesive structure. Benefiting from the optimized porous structure and hydrophobic modification, the resultant fibrous membranes exhibited excellent waterproof (hydrostatic pressure of 1261 Mbar), breathable (water vapor transmission (WVT) rate of 9.06 kg m-2 d-1 and air permeability of 4.8 mm s-1) performance, as well as high tensile strength (breakage stress of 10.4 MPa), suggesting a promising candidate for various applications, especially in protective clothing.

  19. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials

    International Nuclear Information System (INIS)

    Chen, Hao; Liu, Duo; Shen, Zhehong; Bao, Binfu; Zhao, Shuyan; Wu, Limin

    2015-01-01

    Highlights: • We successfully prepared bamboo-derived porous carbon with B and N co-doping. • This novel carbon exhibits significantly enhanced specific capacitance and energy density. • The highest specific capacitance exceeds those of most similar carbon materials. • Asymmetric supercapacitor based on this carbon shows satisfactory capacitive performance. - Abstract: This paper presents nitrogen and boron co-doped KOH-activated bamboo-derived carbon as a porous biomass carbon with utility as a supercapacitor electrode material. Owing to the high electrochemical activity promoted by the hierarchical porous structure and further endowed by boron and nitrogen co-doping, electrodes based on the as-obtained material exhibit significantly enhanced specific capacitance and energy density relative to those based on most similar materials. An asymmetric supercapacitor based on this novel carbon material demonstrated satisfactory energy density and electrochemical cycling stability.

  20. Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy.

    Science.gov (United States)

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Goodwin, Andrew P

    2016-08-23

    Ultrasound is widely applied in medical diagnosis and therapy due to its safety, high penetration depth, and low cost. In order to improve the contrast of sonographs and efficiency of the ultrasound therapy, echogenic gas bodies or droplets (with diameters from 200 nm to 10 µm) are often used, which are not very stable in the bloodstream and unable to penetrate into target tissues. Recently, it was demonstrated that nanobubbles stabilized by nanoparticles can nucleate ultrasound responsive microbubbles under reduced acoustic pressures, which is very promising for the development of nanoscale (ultrasound agents. However, there is still very little understanding about the effects of nanoparticle properties on the stabilization of nanobubbles and nucleation of acoustic cavitation by these nanobubbles. Here, a series of mesoporous silica nanoparticles with sizes around 100 nm but with different morphologies were synthesized to understand the effects of nanoparticle porosity, surface roughness, hydrophobicity, and hydrophilic surface modification on acoustic cavitation inception by porous nanoparticles. The chemical analyses of the nanoparticles showed that, while the nanoparticles were prepared using the same silica precursor (TEOS) and surfactant (CTAB), they revealed varying amounts of carbon impurities, hydroxyl content, and degrees of silica crosslinking. Carbon impurities or hydrophobic modification with methyl groups is found to be essential for nanobubble stabilization by mesoporous silica nanoparticles. The acoustic cavitation experiments in the presence of ethanol and/or bovine serum albumin (BSA) demonstrated that acoustic cavitation is predominantly nucleated by the nanobubbles stabilized at the nanoparticle surface not inside the mesopores. Finally, acoustic cavitation experiments with rough and smooth nanoparticles were suggested that a rough nanoparticle surface is needed to largely preserve surface nanobubbles after coating the surface with hydrophilic

  1. THE STRUCTURE ANALYTICAL RESEARCH OF POROUS PERMEABLE WIRE MATERIAL (in Russian

    Directory of Open Access Journals (Sweden)

    Andrzej JAKUBOWSKI

    2016-04-01

    Full Text Available The details of making technology of porous permeable material with use of wire are allowed to carry out the analytical research of structure and structural characteristics of wire winding body. Its permit for prognostication the final proper-ties of material, that is produced by the following deformation treatment (diameter reduction. Due to the regular orga-nized arrangement of wire, the coil of winding body is considered as a multispan continuous beam, but a contact of coils – as interaction of two cylinders. Possibility of exactly calculation of the contacts between coils is allowed to go over the single fragment displacements into deformation of whole winding body. During research of deformation processes in regards of winding body geometry and used wire mechanical properties, the structural characteristics of porous permea-ble wire material are expected. The optimal number of winding layers, eliminating the distortion of organized final struc-ture, is established. The material pressure–compactness relation is obtained in order to control the technological condi-tions of winding and drafting for guarantee the product required properties.

  2. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    Science.gov (United States)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  3. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    JU Yang; YANG YongMing; SONG ZhenDuo; XU WenJing

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were In-vestigated by means of CT scanning tests of sandstones. The centroidal coordl-nares of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob-ability density functions upon which the random distribution of pore position, dis-tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex-amine the stress distribution, the pattern of element failure and the inoaculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  4. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  5. Partial wave spectroscopy based nanoscale structural disorder analysis for cancer diagnosis and treatment

    Science.gov (United States)

    Almabadi, Huda; Sahay, Peeyush; Nagesh, Prashanth K. B.; Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.; Pradhan, Prabhakar

    Mesoscopic physics based partial wave spectroscopy (PWS) was recently introduced to quantify nanoscale structural disorder in weakly disordered optical media such as biological cells. The degree of structural disorder (Ld) , defined as Ld = 〈 dn2 〉 ×lc is quantified in terms of strength of refractive index fluctuation (〈 dn2 〉) in the system and its correlation length (lc) .With nanoscale sensitivity,Ldhas been shown to have potential to be used in cancer diagnostics. In this work, we analyze the hierarchy of different stages of prostate cancer cells by quantifying their intracellular refractive index fluctuations in terms of Ld parameter. We observe that the increase in tumorigenicity levels inside these prostate cancer cells results in proportionally higherLdvalues. For a weakly disordered optical media like biological cells, this result suggests that the progression of carcinogenesis or the increase in the tumorigenicity level is associated with increased 〈 dn2 〉 and/or lcvalues for the samples. Furthermore, we also examined the applicability of Ld parameter in analyzing the effect of drug on these prostate cancer cells. In accordance with the hypothesis that the cancer cells which survives the drug, becomes more aggressive, we found increased Ldvalues for all the drug resistant prostate cells studied.

  6. Structural analysis of porous rock reservoirs subjected to conditions of compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Friley, J.R.

    1980-01-01

    Investigations are described which were performed to assess the structural behavior of porous rock compressed air energy storage (CAES) reservoirs subjected to loading conditions of temperature and pressure felt to be typical of such an operation. Analyses performed addressed not only the nominal or mean reservoir response but also the cyclic response due to charge/discharge operation. The analyses were carried out by assuming various geometrical and material related parameters of a generic site. The objective of this study was to determine the gross response of a generic porous reservoir. The site geometry for this study assumed a cylindrical model 122 m in dia and 57 m high including thicknesses for the cap, porous, and base rock formations. The central portion of the porous zone was assumed to be at a depth of 518 m and at an initial temperature of 20/sup 0/C. Cyclic loading conditions of compressed air consisted of pressure values in the range of 4.5 to 5.2 MPa and temperature values between 143 and 204/sup 0/C.Various modes of structural behavior were studied. These response modes were analyzed using loading conditions of temperature and pressure (in the porous zone) corresponding to various operational states during the first year of simulated site operation. The results of the structural analyses performed indicate that the most severely stressed region will likely be in the wellbore vicinity and hence highly dependent on the length of and placement technique utilized in the well production length. Analyses to address this specific areas are currently being pursued.

  7. Bulk nanoscale materials in steel products

    International Nuclear Information System (INIS)

    Chehab, B; Wang, X; Masse, J-P; Zurob, H; Embury, D; Bouaziz, O

    2010-01-01

    Although a number of nanoscale metallic materials exhibit interesting mechanical properties the fabrication paths are often complex and difficult to apply to bulk structural materials. However a number of steels which exhibit combinations of plasticity and phase transitions can be deformed to produce ultra high strength levels in the range 1 to 3 GPa. The resultant high stored energy and complex microstructures allow new nanoscale structures to be produced by combinations of recovery and recrystallisation. The resultant structures exhibit totally new combinations of strength and ductility to be achieved. In specific cases this also enables both the nature of the grain boundary structure and the spatial variation in structure to be controlled. In this presentation both the detailed microstructural features and their relation to the strength, work-hardening capacity and ductility will be discussed for a number of martensitic and austenitic steels.

  8. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.

    Science.gov (United States)

    Yan, Leiming; Wu, Jisi; Zhang, Lei; Liu, Xinli; Zhou, Kechao; Su, Bo

    2017-06-01

    Porous titanium scaffolds with long-range lamellar structure were fabricated using a novel bidirectional freeze casting method. Compared with the ordinarily porous titanium materials made by traditional freeze casting, the titanium walls can offer the structure of ordered arrays with parallel to each other in the transverse cross-sections. And titanium scaffolds with different pore width, wall size and porosity can be synthesized in terms of adjusting the fabrication parameters. As the titanium content was increased from 15vol.% to 25vol.%, the porosity and pore width decreased from 67±3% to 50±2% and 80±10μm to 67±7μm, respectively. On the contrary, as the wall size was increased from 18±2μm to 30±3μm, the compressive strength and stiffness were increased from 58±8MPa to 162±10MPa and from 2.5±0.7GPa to 6.5±0.9GPa, respectively. The porous titanium scaffolds with long-range lamellar structure and controllable pore structure produced in present work will be capable of having potential application as bone tissue scaffold materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT

    Science.gov (United States)

    Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna

    2008-09-01

    Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.

  10. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    Science.gov (United States)

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  11. Nonlinear interaction and wave breaking with a submerged porous structure

    Science.gov (United States)

    Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.

    2016-12-01

    Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.

  12. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    International Nuclear Information System (INIS)

    Wirth, Brian

    2015-01-01

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the ''selfhealing'' or radiation resistance in advanced

  13. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the “selfhealing” or radiation resistance in advanced materials containing

  14. Nano-scale patterns of polymers and their structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yushu [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1998-03-01

    Nano-scale patterns formed by polymers and their related soft materials were investigated by measuring neutron scattering from them. Two apparatuses installed at cold neutron guides in JRR-3M, a small angle neutron scattering (SANS) apparatus and a neutron reflectometer, which give out elastic scattering intensities, were used. Chain dimensions of polystyrenes diluted with low molecular weight homologous polystyrenes, orientation behaviour of microphase-separated block copolymer in concentrated solutions under shear, shrinkage and recovery of polyvinylalcohol gel with temperature and structural phase transition of microemulsion under high-pressure and so on were measured by SANS, while microphase-separated polystyrene(S)/poly(2-vinylpyridine)(P) interfaces of a PSP triblock copolymer was observed by specular neutron reflectivity measurements. (author)

  15. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  16. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.

    Science.gov (United States)

    Olami, Hilla; Zilberman, Meital

    2016-02-01

    Interest in the development of new bioresorbable structures for various tissue engineering applications is on the rise. In the current study, we developed and studied novel soy protein-based porous blends as potential new scaffolds for such applications. Soy protein has several advantages over the various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the present study, blends of soy protein with other polymers (gelatin, pectin and alginate) were added and chemically cross-linked using the cross-linking agents carbodiimide or glyoxal, and the porous structure was obtained through lyophilization. The resulting blend porous structures were characterized using environmental scanning microscopy, and the cytotoxicity of these scaffolds was examined in vitro. The biocompatibility of the scaffolds was also evaluated in vitro by seeding and culturing human fibroblasts on these scaffolds. Cell growth morphology and adhesion were examined histologically. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical cross-linking with freeze-drying. The achieved blend structures combine suitable porosity with a large pore size (100-300 µm). The pore structure in the soy-alginate scaffolds possesses adequate interconnectivity compared to that of the soy-gelatin scaffolds. However, porous structure was not observed for the soy-pectin blend, which presented a different structure with significantly lower porosities than all other groups. The in vitro evaluation of these porous soy blends demonstrated that soy-alginate blends are advantageous over soy-gelatin blends and exhibited adequate cytocompatibility along with better cell infiltration and stability. These soy protein scaffolds may be potentially useful as a cellular/acellular platform for skin regeneration applications. © The Author(s) 2015.

  17. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  18. Choosing mineral carrier of nanoscale additives for asphalt concrete

    Directory of Open Access Journals (Sweden)

    Inozemtsev Sergey Sergeevich

    2014-03-01

    Full Text Available At present time the operation life of the majority of roads is essentially shorter than required. The reason for it is the increase in traffic intensity and axle loads of automobile transport. The obvious reasons for early wear of roads are the low quality of the components used and low industrial standards while producing asphalt pavement. In this paper the mineral material was selected as a carrier of nanoscale additives for asphalt. The optimal modes for grinding mineral materials were identified, which provide correspondence of their structure parameters with the developed model. The influence of different mineral nanomodifier carriers on the structure formation processes was estimated. It is shown that among a number of mineral materials diatomite has high activity in relation to the bitumen, because it has a highly porous structure. It is also shown that as a result of lighter fractions of bitumen adsorption on the border of phase interface, diatomite and bitumen changes from the free state to the film, and solvate shell of bitumen is saturated with asphaltenes. With the help of IR spectroscopy the authors defined the nature of the diatomite and bitumen interaction and proved that in the process of their interaction there occurs physical adsorption with additional absorption of bitumen components into the pore space of diatomite grains.

  19. Stabilization and operation of porous silicon photonic structures from near-ultraviolet to near-infrared using high-pressure water vapor annealing

    International Nuclear Information System (INIS)

    Gelloz, Bernard; Koshida, Nobuyoshi

    2010-01-01

    The effects of high-pressure water vapor annealing (HWA), electrochemical oxidation, and substrate resistivity on the properties of porous silicon Bragg mirrors and photoluminescent cavities have been investigated. The photonic structures treated by HWA show very good stability upon ageing in air whereas as-formed structures exhibit significant drifts in their optical properties. Using HWA with lightly doped porous silicon, the structure transparency is enhanced sufficiently to enable the possible photonic operation in the near-ultraviolet. However, the index contrast achievable with these structures is very low in the visible and near-infrared. Useful index contrasts in this range can be achieved with either lightly doped porous silicon treated by electrochemical oxidation and HWA or heavily doped porous silicon treated by HWA.

  20. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.

    Science.gov (United States)

    Kelly, Cambre N; Miller, Andrew T; Hollister, Scott J; Guldberg, Robert E; Gall, Ken

    2018-04-01

    3D printing is now adopted for use in a variety of industries and functions. In biomedical engineering, 3D printing has prevailed over more traditional manufacturing methods in tissue engineering due to its high degree of control over both macro- and microarchitecture of porous tissue scaffolds. However, with the improved flexibility in design come new challenges in characterizing the structure-function relationships between various architectures and both mechanical and biological properties in an assortment of clinical applications. Presently, the field of tissue engineering lacks a comprehensive body of literature that is capable of drawing meaningful relationships between the designed structure and resulting function of 3D printed porous biomaterial scaffolds. This work first discusses the role of design on 3D printed porous scaffold function and then reviews characterization of these structure-function relationships for 3D printed synthetic metallic, polymeric, and ceramic biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures

    Directory of Open Access Journals (Sweden)

    Martine Wevers

    2013-10-01

    Full Text Available Additive manufacturing (AM is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.

  2. Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures.

    Science.gov (United States)

    Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine

    2013-10-22

    Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.

  3. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  4. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  5. Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mei; Lin, Han [Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Yilong [College of Quartermaster Technology, Jilin University, Changchun, 130062 (China); Yang, Guang [Norman Bethune First Hospital, Jilin University, Changchun 130021 (China); Zhao, He [Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012 (China); Sun, Dahui, E-mail: sundahui1971@sina.com [Norman Bethune First Hospital, Jilin University, Changchun 130021 (China)

    2017-08-31

    Highlights: • Ranachensinensis skin collagen (RCSC) was used with molecular weight 105∼250KDa. • Wet electrospinning was successfully improved and was used to produce 3D porous structure materials with about 90% porosity. • AgNPs was loaded in AgNPs dispersion liquid. - Abstract: Electrospunnanofibers are used as three-dimensional (3D) scaffold materials that can alter cell attachment and cell proliferation, change the antibacterial properties of materials, and can be used as wound dressings. But the fabrication of porous 3D scaffold structure and the antibacterial properties enhancing are challenges remained to improve. With the states here, a Ranachensinensis skin collagen (RCSC)/poly(ε-caprolactone) (PCL)AgNP-loaded3D nanofiber scaffold is fabricated as a wound dressing material by using an improved wet electrospinning method (blending). The nanoscale of the AgNPs is proved. The 3D porous morphologies of the materials with different AgNP loadings, are determined with field emission scanning electron microscopy (FESEM) and the presence and uniformity distribution of AgNPs is confirmed by Energy dispersive X-ray (EDX) spectroscopy. The silver-ion release rates, antibacterial properties, and cytotoxicities of dressing materials with different AgNP contents are evaluated using ICP-AES, the zone inhibition method, and MTT testing. These results showed that the improved wet electrospun is an effective way to fabricate AgNP loaded 3D scaffold materials with porous structure and nearly 90% porosity and the presence of AgNPs in dressing materials strengthen the antibacterial properties. The RCSC/PCL 3D scaffold materials containing 2.0%AgNP would be promising for dressing materials application nearly without cytotoxicities.

  6. Improved Modeling Approaches for Constrained Sintering of Bi-Layered Porous Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Esposito, Vincenzo

    2012-01-01

    Shape instabilities during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been analyzed. An analytical and a numerical model based on the continuum theory of sintering has been implemented to describe the evolution of bow and densificat...

  7. A novel approach for the fabrication of carbon nanofibre/ceramic porous structures

    KAUST Repository

    Walter, Claudia

    2013-11-01

    This paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting is used to fabricate a porous, lamellar ceramic (Al2O3) structure with aligned pores whose width can be controlled between 10 and 90μm. Subsequently, a two step chemical vapour deposition process that uses iron as a catalyst is used to grow the carbon nanostructures inside the scaffold. This catalyst remains in the scaffold after the growth process. The formation of the alumina scaffold and the influence of its structure on the growth of nanofibres and tubes are investigated. A set of growth conditions is determined to produce a dense covering of the internal walls of the porous ceramic with the carbon nanostructures. The limiting pore size for this process is located around 25μm. © 2013 Elsevier Ltd.

  8. Characterization of the porous structures of the green body and sintered biomedical titanium scaffolds with micro-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arifvianto, B., E-mail: b.arifvianto@tudelft.nl; Leeflang, M.A.; Zhou, J.

    2016-11-15

    The present research was aimed at gaining an understanding of the porous structure changes from the green body through water leaching and sintering to titanium scaffolds. Micro-computed tomography (micro-CT) was performed to generate 3D models of titanium scaffold preforms containing carbamide space-holding particles and sintered scaffolds containing macro- and micro-pores. The porosity values and structural parameters were determined by means of image analysis. The result showed that the porosity values, macro-pore sizes, connectivity densities and specific surface areas of the titanium scaffolds sintered at 1200 °C for 3 h did not significantly deviate from those of the green structures with various volume fractions of the space holder. Titanium scaffolds with a maximum specific surface area could be produced with an addition of 60–65 vol% carbamide particles to the matrix powder. The connectivity of pores inside the scaffold increased with rising volume fraction of the space holder. The shrinkage of the scaffolds prepared with > 50 vol% carbamide space holder, occurring during sintering, was caused by the reductions of macro-pore sizes and micro-pore sizes as well as the thickness of struts. In conclusion, the final porous structural characteristics of titanium scaffolds could be estimated from those of the green body. - Highlights: •Porous structures of green body and sintered titanium scaffolds was studied. •Porous structures of both samples were quantitatively characterized with micro-CT. •Porous structures of scaffolds could be controlled from the green body. •Shrinkage mechanisms of titanium scaffolds during sintering was established.

  9. Effects of Artificial Ligaments with Different Porous Structures on the Migration of BMSCs

    Directory of Open Access Journals (Sweden)

    Chun-Hui Wang

    2015-01-01

    Full Text Available Polyethylene terephthalate- (PET- based artificial ligaments (PET-ALs are commonly used in anterior cruciate ligament (ACL reconstruction surgery. The effects of different porous structures on the migration of bone marrow mesenchymal stem cells (BMSCs on artificial ligaments and the underlying mechanisms are unclear. In this study, a cell migration model was utilized to observe the migration of BMSCs on PET-ALs with different porous structures. A rabbit extra-articular graft-to-bone healing model was applied to investigate the in vivo effects of four types of PET-ALs, and a mechanical test and histological observation were performed at 4 weeks and 12 weeks. The BMSC migration area of the 5A group was significantly larger than that of the other three groups. The migration of BMSCs in the 5A group was abolished by blocking the RhoA/ROCK signaling pathway with Y27632. The in vivo study demonstrated that implantation of 5A significantly improved osseointegration. Our study explicitly demonstrates that the migration ability of BMSCs can be regulated by varying the porous structures of the artificial ligaments and suggests that this regulation is related to the RhoA/ROCK signaling pathway. Artificial ligaments prepared using a proper knitting method and line density may exhibit improved biocompatibility and clinical performance.

  10. Real time nanoscale structural evaluation of gold structures on Si (100) surface using in-situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Rath, A.; Juluri, R. R.; Satyam, P. V.

    2014-01-01

    Transport behavior of gold nanostructures on Si(100) substrate during annealing under high vacuum has been investigated using in-situ real time transmission electron microscopy (TEM). A comparative study has been done on the morphological changes due to annealing under different vacuum environments. Au thin films of thickness ∼2.0 nm were deposited on native oxide covered silicon substrate by using thermal evaporation system. In-situ real time TEM measurements at 850 °C showed the isotropic growth of rectangular/square shaped gold-silicon alloy structures. During the growth, it is observed that the alloying occurs in liquid phase followed by transformation into the rectangular shapes. For similar system, ex-situ annealing in low vacuum (10 −2 millibars) at 850 °C showed the spherical gold nanostructures with no Au-Si alloy formation. Under low vacuum annealing conditions, the rate of formation of the oxide layer dominates the oxide desorption rate, resulting in the creation of a barrier layer between Au and Si, which restricts the inter diffusion of Au in to Si. This work demonstrates the important role of interfacial oxide layer on the growth of nanoscale Au-Si alloy structures during the initial growth. The time dependent TEM images are presented to offer a direct insight into the fundamental dynamics of the sintering process at the nanoscale

  11. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  12. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  13. Nanoscale characterization of martensite structures in copper based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adiguzel, O, E-mail: oadiguzel@firat.edu.t [Firat University Department of Physics, 23169 Elazig (Turkey)

    2010-11-01

    Martensitic transformations are first order displacive transitions and occur in the materials on cooling from high temperature. Shape memory effect is an unusual property exhibited by certain alloy systems, and leads to martensitic transition. Copper-based alloys exhibit this property in beta phase field which possess simple bcc- structures, austenite structure at high-temperatures. As temperature is lowered the austenite undergoes martensitic transition following two ordering reactions, and structural changes in nanoscale govern this transition. Atomic movements are also confined to interatomic lengths in sub-{mu}m or angstrom scale in martensitic transformation. The formation of the layered structures in copper based alloys consists of shears and shear mechanism. Martensitic transformations occur in a few steps with the cooperative movement of atoms less than interatomic distances by means of lattice invariant shears on a {l_brace}110{r_brace} - type plane of austenite matrix which is basal plane or stacking plane of martensite. The lattice invariant shears occurs, in two opposite directions, <110> -type directions on the {l_brace}110{r_brace}-type plane. These shears gives rise to the formation of layered structure.

  14. Porous carbons

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and ...

  15. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels

    International Nuclear Information System (INIS)

    Cornide, J.; Garcia-Mateo, C.; Capdevila, C.; Caballero, F.G.

    2013-01-01

    A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), leads to a nano-scale microstructure, known as NANOBAIN. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). These advanced steels present the highest strength/toughness combinations ever recorded in bainitic steels. Their properties are mainly a consequence of the formation of nanoscale bainitic ferrite plates at very low temperatures. Transmission electron microscopy observations have shown that plastic relaxation in the austenite adjacent to the bainite plates may control the final size of the bainitic ferrite plates. The dislocation debris generated in this process resists the advance of the bainitic ferrite–austenite interface, the resistance being greatest for strong austenite. The yield strength of the austenite must then feature in any assessment of plate size. In this scenario, the plates are expected to become thicker at high temperatures because the yield strength of the austenite will then be lower. The goal of this study is to evaluate the influence of yield strength of austenite to the nanoscale structural refinement of advanced bainitic steels. In this sense, in situ measurements of austenite strength before bainite formation using a deformation dilatometer Bähr 805D have been performed in a medium carbon high silicon steel transforming at intermediate temperatures (325–400 °C) to a submicron structure of bainite and in a high carbon high silicon steel transforming at low temperatures (200–350 °C) to nanostructured bainite. The role of the transformation driving force on the bainite plate thickness will be also discussed

  16. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Cornide, J., E-mail: jca@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Garcia-Mateo, C., E-mail: cgm@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Capdevila, C., E-mail: ccm@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Caballero, F.G., E-mail: fgc@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain)

    2013-11-15

    A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), leads to a nano-scale microstructure, known as NANOBAIN. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). These advanced steels present the highest strength/toughness combinations ever recorded in bainitic steels. Their properties are mainly a consequence of the formation of nanoscale bainitic ferrite plates at very low temperatures. Transmission electron microscopy observations have shown that plastic relaxation in the austenite adjacent to the bainite plates may control the final size of the bainitic ferrite plates. The dislocation debris generated in this process resists the advance of the bainitic ferrite–austenite interface, the resistance being greatest for strong austenite. The yield strength of the austenite must then feature in any assessment of plate size. In this scenario, the plates are expected to become thicker at high temperatures because the yield strength of the austenite will then be lower. The goal of this study is to evaluate the influence of yield strength of austenite to the nanoscale structural refinement of advanced bainitic steels. In this sense, in situ measurements of austenite strength before bainite formation using a deformation dilatometer Bähr 805D have been performed in a medium carbon high silicon steel transforming at intermediate temperatures (325–400 °C) to a submicron structure of bainite and in a high carbon high silicon steel transforming at low temperatures (200–350 °C) to nanostructured bainite. The role of the transformation driving force on the bainite plate thickness will be also discussed.

  17. Effect of pore structure on capillary condensation in a porous medium.

    Science.gov (United States)

    Deinert, M R; Parlange, J-Y

    2009-02-01

    The Kelvin equation relates the equilibrium vapor pressure of a fluid to the curvature of the fluid-vapor interface and predicts that vapor condensation will occur in pores or irregularities that are sufficiently small. Past analyses of capillary condensation in porous systems with fractal structure have related the phenomenon to the fractal dimension of the pore volume distribution. Recent work, however, suggests that porous systems can exhibit distinct fractal dimensions that are characteristic of both their pore volume and the surfaces of the pores themselves. We show that both fractal dimensions have an effect on the thermodynamics that governs capillary condensation and that previous analyses can be obtained as limiting cases of a more general formulation.

  18. Light emitting structures porous silicon-silicon substrate

    International Nuclear Information System (INIS)

    Monastyrskii, L.S.; Olenych, I.B.; Panasjuk, M.R.; Savchyn, V.P.

    1999-01-01

    The research of spectroscopic properties of porous silicon has been done. Complex of photoluminescence, electroluminescence, cathodoluminescence, thermostimulated depolarisation current analyte methods have been applied to study of geterostructures and free layers of porous silicon. Light emitting processes had tendency to decrease. The character of decay for all kinds of luminescence were different

  19. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    Science.gov (United States)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  20. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    International Nuclear Information System (INIS)

    Abd Malek, N M S; Mohamed, S R; Che Ghani, S A; Wan Harun, W S

    2015-01-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition (paper)

  1. Porous organic cages

    Science.gov (United States)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  2. Hydrazine reduction of metal ions to porous submicro-structures of Ag, Pd, Cu, Ni, and Bi

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue; Shi Yongfang; Chen Yubiao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Wu Liming, E-mail: liming_wu@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2012-07-15

    Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. Phase purity, morphology, and specific surface area have been characterized. The reactions probably undergo three different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. The reductant hydrazine also plays an important role to the formation of the porous submicro-structure. The reaction temperature influences the size of the constituent particles and the overall architecture of the submicro-structure so as to influence the surface area value. The as-prepared porous metals have shown the second largest surface area ever reported, which are smaller than those made by the reduction of NaBH{sub 4}, but larger than those made by hard or soft template methods. - Graphical abstract: Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in the glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. The reactions undergo different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. Highlights: Black-Right-Pointing-Pointer Syntheses of porous Ag, Pd, Cu, Ni, and Bi with high surface area. Black-Right-Pointing-Pointer Ag and Pd undergo simple reduction. Black-Right-Pointing-Pointer Cu and Ni undergo coordination-then-reduction. Black-Right-Pointing-Pointer Bi undergoes hydrolysis-then-reduction. Black-Right-Pointing-Pointer The as-prepared metals have shown the second largest surface area ever reported.

  3. Porous Silicon Structures as Optical Gas Sensors.

    Science.gov (United States)

    Levitsky, Igor A

    2015-08-14

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  4. Effects of structural modification on reliability of nanoscale nitride HEMTs

    Science.gov (United States)

    Gaddipati, Vamsi Mohan

    AlGaN based nanoscale high-electron-mobility transistors (HEMTs) are the next generation of transistor technology that features the unique combination of higher power, wider bandwidth, low noise, higher efficiency, and temperature/radiation hardness than conventional AlGaAs and Si based technologies. However, as evidenced by recent stress tests, reliability of these devices (characterized by a gradual decrease in the output current/power leading to failure of the device in just tens of hours of operation) remains a major concern. Although, in these tests, physical damages were clearly visible in the device, the root cause and nature of these damages have not yet been fully assessed experimentally. Therefore, a comprehensive theoretical study of the physical mechanisms responsible for degradation of AlGaN HEMTs is essential before these devices are deployed in targeted applications. The main objective of the proposed research is to computationally investigate how degradation of state-of-the-art nanoscale AlGaN HEMTs is governed by an intricate and dynamical coupling of thermo-electromechanical processes at different length (atoms-to-transistor) and time (femtosecondto- hours) scales while operating in high voltage, large mechanical, and high temperature/radiation stresses. This work centers around a novel hypotheses as follows: High voltage applied to AlGaN HEMT causes excessive internal heat dissipation, which triggers gate metal diffusion into the semiconducting barrier layer and structural modifications (defect ii formation) leading to diminished polarization induced charge density and output current. Since the dynamical system to be studied is complex, chaotic (where the evolution rule is guided by atomicity of the underlying material), and involve coupled physical processes, an in-house multiscale simulator (QuADS 3-D) has been employed and augmented, where material parameters are obtained atomistically using firstprinciples, structural relaxation and defect

  5. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Directory of Open Access Journals (Sweden)

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  6. Porous matrix structures for alkaline electrolyte fuel cells

    Science.gov (United States)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  7. Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media

    Science.gov (United States)

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...

  8. Electrical investigation of the Au/n+–GaAs and Au/n-porous GaAs structures

    International Nuclear Information System (INIS)

    Saghrouni, H.; Hannachi, R.; Jomni, S.; Beji, L.

    2013-01-01

    The electrical properties of Au/n + –GaAs and Au/n-porous GaAs metal–semiconductor structures were investigated using room temperature current–voltage I(V) and capacitance–voltage C(V) measurements. The electrical parameters of these structures such as ideality factor, barrier height potential, series resistance have been calculated. The obtained parameters of Au/n-porous GaAs structure were discussed and compared to those of Au/n + –GaAs structure. The series resistances and ideality factors of the two structures were seen to have approximately the same values. Furthermore, the shunt resistance and the barrier height potential values for the Au/n-porous GaAs structure were found to be different than the ones of Au/n + –GaAs structure. Furthermore the two structures showed a non-ideal I(V) behavior with an ideality factor greater than unity. Such non ideal behavior was suggested to be due to the existence of high density of trap and the forward I(V) characteristics which were governed by space charge limited conductivity, characterized by single and exponential trapping levels in both structures (SCLC). A model based upon TFE tunneling of carriers at reverse current was used to explain the non-saturation of reverse current of the structures. The high frequency C(V) characteristics of the structure reveal the presence of an anomalous behavior at the forward bias. Though the capacitance reaches a peak, it remarkably decreases with an increasing bias voltage suggested by the presence of interface states. Furthermore, the energy distribution of interface density in the structures was determined by the forward bias C(V) measurement as well as using ideality factor and barrier height potential values obtained from forward bias I(V) and reverse bias C −2 (V) characteristics, respectively. An estimated energy band diagram for the Au/n + –GaAs and Au/n-porous GaAs structures are presented

  9. Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2017-11-01

    Full Text Available Mesoporous carbons have been successfully synthesized via self-assembly using larch-based resins as precursors and triblock copolymers as soft templates. The porous structure of mesoporous carbons can be tailored by adjusting the ratio of hydrophilic/hydrophobic (EO/PO units owing to interfacial curvature. Interestingly, the porous structures show a distinct change from vortex-like to worm-like pores, to stripe-like pores, and to ordered two-dimensional hexagonal pores as the ratio of hydrophilic/hydrophobic units increases, indicating the significant effect of EO/PO ratio on the porous structure. The mesoporous carbons as supercapacitor electrodes exhibit superior electrochemical capacitive performance and a high degree of reversibility after 2000 cycles for supercapacitors due to the well-defined mesoporosity of the carbon materials. Meanwhile, the superior carbon has a high specific capacitance of 107 F·g−1 in 6 M KOH at a current density of 10 A·g−1.

  10. Development of porous structures in GaSb by ion irradiation

    International Nuclear Information System (INIS)

    Jacobi, C.C.; Steinbach, T.; Wesch, W.

    2012-01-01

    Ion irradiation of GaSb causes not only defect formation but also leads to the formation of a porous structure. To study the behaviour of this structural modification, GaSb was irradiated with 6 MeV Iodine ions and ion fluences from 5 × 10 12 to 6 × 10 15 ions/cm 2 . The samples were investigated by step height measurements and scanning electron microscopy (SEM). Experiments were performed with two different procedures: (CI) Continuous Irradiation of samples followed by measurements of the step height in air and (SI) Stepwise Irradiation of samples with measurements of the step height in air between subsequent irradiations. Samples irradiated continuously, show a linear increase of the step height with increasing ion fluence up to 1.5 × 10 14 ions/cm 2 followed by a steeper, linear increase for higher ion fluences up to a step height of 32 μm. This swelling is induced by a formation of voids, and the two different slopes can be explained by a transformation from isolated voids to a rod like structure. For samples irradiated accordingly to procedure (SI), the step height shows the same behaviour up to an ion fluence of 1.5 × 10 14 ions/cm 2 resulting in a step height of ≈3 μm but then decreases with further irradiation. The latter effect is caused by a compaction of the porous structure.

  11. Confinement properties of 2D porous molecular networks on metal surfaces

    International Nuclear Information System (INIS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-01-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  12. Assembly of core–shell structured porous carbon–graphene composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Guo, Rong; Zhao, Li; Yue, Wenbo

    2015-01-01

    As potential anode materials for lithium-ion batteries, mesoporous carbons such as CMK-3 and CMK-8 usually show stable cycling performances but only slightly higher reversible capacities than commercial graphite. Graphene has much higher theoretical capacity than that of graphite in theory. However, its electrochemical behavior is not as good as expected due to the aggregation of graphene nanosheets. Herein we describe a novel strategy for the preparation of core–shell structured porous carbon–graphene composites. Compared to pure porous carbons or pure graphene nanosheets, these novel composites exhibit superior electrochemical performances including higher reversible capacities and better cycle/rate performances. This core–shell structure can avoid the aggregation of graphene nanosheets as well as may stabilize the mesostructure of porous carbon, which is beneficial to improving the electrochemical performances of the composites

  13. Role of Acoustoelectric Interaction in the Formation of Nanoscale Periodic Structures of Adsorbed Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Peleshchak, R. M., E-mail: peleshchak@rambler.ru; Lazurchak, I. I.; Kuzyk, O. V.; Dan’kiv, O. O. [Ivan Franko Drohobych State Pedagogical University (Ukraine); Zegrya, G. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-03-15

    The role of acoustoelectric effects in the formation of nanoscale structures of adatoms, resulting from the self-consistent interaction of adatoms with a surface acoustic wave and the electronic subsystem, is studied for the case of charged and uncharged adatoms. It is shown that an increase in the doping level of a semiconductor with donor impurities at a fixed average adatom concentration results in an increase in the critical temperature below which self-organization processes occur.

  14. A poroplastic model of structural reorganisation in porous media of biomechanical interest

    Science.gov (United States)

    Grillo, Alfio; Prohl, Raphael; Wittum, Gabriel

    2016-03-01

    We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of "plastic" distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.

  15. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  16. Nitrogen and oxygen co-doped carbon nanofibers with rich sub-nanoscale pores as self-supported electrode material of high-performance supercapacitors

    International Nuclear Information System (INIS)

    Li, Qun; Xie, Wenhe; Liu, Dequan; Wang, Qi; He, Deyan

    2016-01-01

    Self-supported porous carbon nanofibers (CNFs) network has been prepared by electrospinning technology assisted with template method. The as-prepared material is rich in sub-nanoscale pores and nitrogen and oxygen functional groups, which can serve as a fast conductive network with abundant electrochemical active sites and greatly facilitates the transport of electrons and ions. When the porous CNFs network is used as an electrode for supercapacitor in a three electrode system, it displays a high capacitance of 233.1 F/g at 0.2 A/g, and a capacitance of 130.2 F/g even at 14 A/g. It maintains a capacitance of 154.0 F/g with 90.17% retention after 4000 cycles at 2 A/g. Moreover, the assembled symmetric supercapacitor not only exhibits excellent rate capability and cycle performance, but also delivers an energy density of 4.17 Wh/kg and a power density of 2500 W/kg. The experimental results demonstrate that the prepared N, O co-doped carbon nanofibers with rich sub-nanoscale pores are a promising electrode material for high-performance supercapacitors.

  17. Shell and membrane theories in mechanics and biology from macro- to nanoscale structures

    CERN Document Server

    Mikhasev, Gennadi

    2015-01-01

    This book presents the latest results related to shells  characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.

  18. Porous Silicon Structures as Optical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Igor A. Levitsky

    2015-08-01

    Full Text Available We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  19. Accounting for porous structure in effective thermal conductivity calculations in a pebble bed reactor

    International Nuclear Information System (INIS)

    Antwerpen, W. van; Rousseau, P.G.; Toit, C.G. du

    2009-01-01

    A proper understanding of the mechanisms of heat transfer, flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature pebble bed reactor. A thorough knowledge of the porous structure within the packed bed is important to any rigorous analysis of the transport phenomena, as all the heat and flow mechanisms are influenced by the porous structure. In this paper a new approach is proposed to simulate the effective thermal conductivity employing a combination of new and existing correlations for randomly packed beds. More attention is given to packing structure based on coordination number and contact angles, resulting in a more rigorous differentiation between the bulk and near-wall regions. The model accounts for solid conduction, gas conduction, contact area, surface roughness as well as radiation. (author)

  20. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, N., E-mail: naderi.phd@gmail.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-03-05

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  1. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    International Nuclear Information System (INIS)

    Naderi, N.; Hashim, M.R.

    2013-01-01

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  2. Characterization of Ge Nano structures Embedded Inside Porous Silicon for Photonics Application

    International Nuclear Information System (INIS)

    Rahim, A.F.A.; Hashim, M.R.; Rahim, A.F.A.; Ali, N.K.

    2011-01-01

    In this work we prepared germanium nano structures by means of filling the material inside porous silicon (PS) using conventional and cost effective technique, thermal evaporator. The PS acts as patterned substrate. It was prepared by anodization of silicon wafer in ethanoic hydrofluoric acid (HF). A Ge layer was then deposited onto the PS by thermal evaporation. This was followed by deposition of Si layer by thermal evaporation and anneal at 650 degree Celsius for 30 min. The process was completed by Ni metal deposition using thermal evaporator followed by metal annealing of 400 degree Celsius for 10 min to form metal semiconductor metal (MSM) photodetector. Structural analysis of the samples was performed using energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectroscopy (RS). EDX spectrum suggests the presence of Ge inside the pores structure. Raman spectrum showed that good crystalline structure of Ge can be produced inside silicon pores with a phase with the diamond structure by (111), (220) and (400) reflections. Finally current-voltage (I-V) measurement of the MSM photodetector was carried out and showed lower dark currents compared to that of Si control device. Interestingly the device showed enhanced current gain compared to Si device which can be associated with the presence of Ge nano structures in the porous silicon. (author)

  3. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin, E-mail: chemist@126.com, E-mail: liushouxin@126.com [Northeast Forestry University, College of Material Science and Engineering (China)

    2015-11-15

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO{sub 3}){sub 2} content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N{sub 2}, CO{sub 2}, and O{sub 2} of 37.5, 19.8, and 55.5 m{sup 3} cm/m{sup 2} h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO{sub 3}){sub 2} can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.Graphical abstractNi-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles incorporated in the carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation and gas permseparation.

  4. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO_3 composites with aligned lamellar porous structure

    International Nuclear Information System (INIS)

    Liu, Beilei; Chen, Liangjian; Shao, Chunsheng; Zhang, Fuqiang; Zhou, Kechao; Cao, Jun; Zhang, Dou

    2016-01-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO_3 piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO_3 composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p 0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO_3 played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. - Graphical abstract: Aligned porous structure of HA/BaTiO_3 piezoelectric composites prepared by ice-templating method was similar to the lamellar Haversian system in bone tissue. When co-cultured with human osteosarcoma cells (MG63), porous HA/BaTiO_3 composites exhibited remarkable biological activity in promoting proliferation, differentiation and adhesion of MG63 cells. - Highlights: • The aligned porous structure of HA/BaTiO_3 composite was similar to the lamellar Haversian system in bone tissue. • The piezoelectric d_3_3 coefficient of HA/BaTiO_3 with porosity of 50% was 5.0 pC/N, much higher than that of natural bone. • HA/BaTiO_3 with porosity of 50% promoted proliferation, differentiation and adhesion of MG63 cells remarkably.

  5. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    Science.gov (United States)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin

    2015-11-01

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO3)2 into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO3)2, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO3)2 content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N2, CO2, and O2 of 37.5, 19.8, and 55.5 m3 cm/m2 h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO3)2 can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.

  6. Photocatalytic evaluation of self-assembled porous network structure of ferric oxide film fabricated by dry deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yunchan; Kim, Hyungsub; Lee, Geon-Yong; Pawar, Rajendra C.; Lee, Jai-Sung; Lee, Caroline Sunyong, E-mail: sunyonglee@hanyang.ac.kr

    2016-09-15

    Ferric oxide powder in the alpha phase (α-Fe{sub 2}O{sub 3}) was deposited on an aluminum oxide (Al{sub 2}O{sub 3}) substrate by a nanoparticle deposition system using the dry deposition method. X-ray diffraction (XRD) images confirmed that the phase of the deposited α-Fe{sub 2}O{sub 3} did not change. The deposited α-Fe{sub 2}O{sub 3} was characterized in terms of its microstructure using scanning electron microscopy (SEM). A porous network microstructure formed when small agglomerates of Fe{sub 2}O{sub 3} (SAF) were deposited. The deposition and formation mechanism of the microstructure were investigated using SEM and three-dimensional (3D) profile analysis. First, a dense coating layer formed when the film was thinner than the particle size. After that, as the film thickness increased to over 5 μm, the porous network structure formed by excavating the surface of the coating layer as it was bombarded by particles. Rhodamine B (RhB) was degraded after 6 h of exposure to the Fe{sub 2}O{sub 3} coating layer with SAF, which has good photocatalytic activity and a high porous network structure. The kinetic rate constants of the SAF and large agglomerates of Fe{sub 2}O{sub 3} (LAF) were calculated to be 0.197(h{sup −1}) and 0.128(h{sup −1}), respectively, based on the absorbance results. Using linear sweep voltammetry, we confirmed that the photoelectric effect occurred in the coating layer by measuring the resulting current under illuminated and dark conditions. - Graphical abstract: Self-assembled porous photocatalytic film fabricated by dry deposition method for water purification. - Highlights: • Different sizes of Fe{sub 2}O{sub 3} agglomerates were used to form porous network structure. • Fe{sub 2}O{sub 3} agglomerate particles were deposited using solvent-free process. • Self-assembled porous network microstructure formed better with small agglomerates of Fe{sub 2}O{sub 3}. • Fabricated porous network structure showed its potential to be used

  7. Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells.

    Science.gov (United States)

    Deng, Jingjing; Wang, Kai; Wang, Ming; Yu, Ping; Mao, Lanqun

    2017-04-26

    Zeolitic imidazole frameworks (ZIFs) are an emerging class of functional porous materials with promising biomedical applications such as molecular sensing and intracellular drug delivery. We report herein the first example of using nanoscale ZIFs (i.e., ZIF-90), self-assembled from Zn 2+ and imidazole-2-carboxyaldehyde, to target subcellular mitochondria and image dynamics of mitochondrial ATP in live cells. Encapsulation of fluorescent Rhodamine B (RhB) into ZIF-90 suppresses the emission of RhB, while the competitive coordination between ATP and the metal node of ZIF-90 dissembles ZIFs, resulting in the release of RhB for ATP sensing. With this method, we are able to image mitochondrial ATP in live cells and study the ATP level fluctuation in cellular glycolysis and apoptosis processes. The strategy reported here could be further extended to tune nanoscale ZIFs inside live cells for targeted delivery of therapeutics to subcellular organelles for advanced biomedical applications.

  8. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    Science.gov (United States)

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  9. Shape-controlled porous nanocarbons for high performance supercapacitors

    KAUST Repository

    Chén, Wěi

    2014-01-01

    Porous activated nanocarbons with well-controlled dimensionality and morphology (i.e. 0D activated carbon nanoparticles, 1D activated carbon nanotubes, and 2D activated carbon nanosheets) were derived successfully from different template-induced polyaniline nanostructures by facile carbonization and activation processes. The obtained nanocarbons show large specific surface areas (1332-2005 m2 g-1), good conductivities, and highly porous nanoscale architectures. The supercapacitors fabricated using the shape-controlled nanocarbons exhibit high specific capacitance, excellent rate capability, and superior long-term cycling stability in both aqueous and ionic liquid electrolytes. More importantly, a very high energy density of 50.5 W h kg-1 with a power density of 17.4 kW kg-1 can be obtained from the activated carbon nanotube based supercapacitors in an ionic liquid electrolyte (with a charge time of ∼10 s), making the shape-controlled nanocarbons promising candidates for high-performance energy storage devices. © 2014 the Partner Organisations.

  10. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  11. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  12. Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

    International Nuclear Information System (INIS)

    Jiang Jiu-Xing; Zhang Xu-Zhi; Wang Zhen-Hua; Xu Jian-Jun

    2016-01-01

    As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g −1 at 2 mV/s compared to pristine PANI of 397 F·g −1 . (paper)

  13. Electrical investigation of the Au/n{sup +}–GaAs and Au/n-porous GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Saghrouni, H.; Hannachi, R. [Université de Sousse. Laboratoire Energie-Matériaux. Equipe de recherche caractérisations optoélectronique et spectroscopique des matériaux et nanomatériaux pour les télécommunications et capteurs, ISITCOM, 4011 Hammam Sousse (Tunisia); Jomni, S. [Laboratoire Matériaux, Organization et Propriétés, Faculté des Sciences de Tunis (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Université de Sousse. Laboratoire Energie-Matériaux. Equipe de recherche caractérisations optoélectronique et spectroscopique des matériaux et nanomatériaux pour les télécommunications et capteurs, ISITCOM, 4011 Hammam Sousse (Tunisia)

    2013-08-01

    The electrical properties of Au/n{sup +}–GaAs and Au/n-porous GaAs metal–semiconductor structures were investigated using room temperature current–voltage I(V) and capacitance–voltage C(V) measurements. The electrical parameters of these structures such as ideality factor, barrier height potential, series resistance have been calculated. The obtained parameters of Au/n-porous GaAs structure were discussed and compared to those of Au/n{sup +}–GaAs structure. The series resistances and ideality factors of the two structures were seen to have approximately the same values. Furthermore, the shunt resistance and the barrier height potential values for the Au/n-porous GaAs structure were found to be different than the ones of Au/n{sup +}–GaAs structure. Furthermore the two structures showed a non-ideal I(V) behavior with an ideality factor greater than unity. Such non ideal behavior was suggested to be due to the existence of high density of trap and the forward I(V) characteristics which were governed by space charge limited conductivity, characterized by single and exponential trapping levels in both structures (SCLC). A model based upon TFE tunneling of carriers at reverse current was used to explain the non-saturation of reverse current of the structures. The high frequency C(V) characteristics of the structure reveal the presence of an anomalous behavior at the forward bias. Though the capacitance reaches a peak, it remarkably decreases with an increasing bias voltage suggested by the presence of interface states. Furthermore, the energy distribution of interface density in the structures was determined by the forward bias C(V) measurement as well as using ideality factor and barrier height potential values obtained from forward bias I(V) and reverse bias C{sup −2}(V) characteristics, respectively. An estimated energy band diagram for the Au/n{sup +}–GaAs and Au/n-porous GaAs structures are presented.

  14. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  15. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  16. Analysis of the nano-scale structure of a natural clayey soil using the small angle neutron scattering method

    International Nuclear Information System (INIS)

    Itakura, T.; Bertram, W.K.; Hathaway, P.V.; Knott, R.B.

    2001-01-01

    The small angle neutron scattering method (SANS) was used to analyze the nano-structure of a natural clayey soil used for containment of industrial liquid wastes. A Tertiary clay deposit called the Londonderry clay was used to contain the wastes in a state-run landfill facility in NSW. A number of site assessments have been carried out at the site and continual efforts have been made to characterize interactions between soil materials and contaminants at the site. Hence, it is of research and practical interest to investigate the effects of deformation on the nano-scale structure of the soil. Experiments have been conducted to analyze the structure of reconstituted clayey soil samples that were subjected to uniaxial compression ranging from 200 kPa to 800 kPa. The small angle neutron scattering instrument was used to measure the scattering intensity of these samples at a scattering vector (q) range between 0.01 and 0.1 Angstroms -1 . The sector integration technique was used to analyse elliptical scattering patterns along the major and minor axes. A relation between stress, void ratio and nano-scale structure properties was then briefly discussed for use in assessing the performance of clayey soils as in situ barriers

  17. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    International Nuclear Information System (INIS)

    Chen Huawei; Tieu, A. Kiet; Liu Qiang; Hagiwara, Ichiro; Lu Cheng

    2007-01-01

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters

  18. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huawei [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China) and Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)]. E-mail: chen_hua_wei@yahoo.com; Tieu, A. Kiet [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia); Liu Qiang [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China); Hagiwara, Ichiro [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo (Japan); Lu Cheng [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)

    2007-07-15

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters.

  19. EXAFS study on dynamic structural property of porous morph-genetic SiC

    International Nuclear Information System (INIS)

    Ding, J.; Sun, B.H.; Fan, T.X.; Zhang, D.; Kamada, M.; Ogawa, H.; Guo, Q.X.

    2005-01-01

    Novel porous morph-genetic silicon carbide has been fabricated through sintering treatment, after infiltrating the methyl organic silicone resin to the bio-template. Its dynamic transition of structure during sintering process is investigated by extended X-ray absorption fine structure (EXAFS) for the first time. By analyzing Si K-edge EXAFS, it is found that the coordination number of the nearest C shell remains almost unchanged while that of the nearest Si shell dramatically changes when the structure is transformed from amorphous into crystalline state

  20. A micromechanical approach To numerical modeling of yielding of open-cell porous structures under compressive loads

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.

    2016-01-01

    Today, interconnected open-cell porous structures made of titanium and its alloys are replacing the prevalent solid metals used in bone substitute implants. The advent of additive manufacturing techniques has enabled manufacturing of open-cell structures with arbitrary micro-structural geometry.

  1. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    Science.gov (United States)

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  2. Multilayer photosensitive structures based on porous silicon and rare-earth-element compounds: Study of spectral characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, N. Yu.; Latukhina, N. V., E-mail: natalat@yandex.ru; Lizunkova, D. A.; Rogozhina, G. A. [Samara National Research University (Russian Federation); Stepikhova, M. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2017-03-15

    The spectral characteristics of the specular reflectance, photosensitivity, and photoluminescence (PL) of multilayer structures based on porous silicon with rare-earth-element (REE) ions are investigated. It is shown that the photosensitivity of these structures in the wavelength range of 0.4–1.0 μm is higher than in structures free of REEs. The structures with Er{sup 3+} ions exhibit a luminescence response at room temperature in the spectral range from 1.1 to 1.7 μm. The PL spectrum of the erbium impurity is characterized by a fine line structure, which is determined by the splitting of the {sup 4}I{sub 15/2} multiplet of the Er{sup 3+} ion. It is shown that the structures with a porous layer on the working surface have a much lower reflectance in the entire spectral range under study (0.2–1.0 μm).

  3. Feasibility demonstration of consolidating porous beryllium/carbon structures. Final report

    International Nuclear Information System (INIS)

    Browning, M.J.; Hoover, G.E.; Mueller, J.J.; Hanes, H.D.

    1977-01-01

    A preliminary feasibility study was initiated to determine if porous beryllium structures could be fabricated by consolidating beryllium-coated microballoons into a rigid structure. The target specifications were to coat nominally 1-mm diameter microspheres with 0.5-mil beryllium coatings and then bond into a structure. Because of the very short time period, it was agreeable to use existing or quickly-available materials. The general approach was to apply coatings to carbon or quartz microspheres. Physical vapor deposition and ''snow-balling'' of fine beryllium powder were the two methods investigated. Once the particles were coated, HIP (pressure bonding) and pressureless sintering were to be investigated as methods for consolidating the microballoons. A low level of effort was to be spent to look at means of fabricating an all-carbon structure

  4. HRTEM analysis of the nanostructure of porous silicon

    International Nuclear Information System (INIS)

    Martin-Palma, R.J.; Pascual, L.; Landa-Canovas, A.R.; Herrero, P.; Martinez-Duart, J.M.

    2006-01-01

    The nanometric structure of porous silicon makes this material to be very suitable for its use in many different fields, including optoelectronics and biological applications. In the present work, the structure of porous silicon was investigated in detail by means of cross-sectional high-resolution transmission electron microscopy and digital image processing, together with electron energy loss spectroscopy. The structure of the Si/porous silicon interface and that of the silicon nanocrystals that compose porous silicon have been analyzed in detail. A strong strain contrast in the Si/porous silicon interface caused by high stresses was observed. Accordingly, dislocation pairs are found to be a possible mechanism of lattice matching between porous silicon and the Si substrate. Finally, high relative concentration of oxygen in the porous silicon layer was observed, together with low relative electron concentration in the conduction band when compared to Si

  5. Zirconia-hydroxyapatite composite material with micro porous structure.

    Science.gov (United States)

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Effect of the local electric field on the formation of an ordered structure in porous anodic alumina

    Science.gov (United States)

    Lazarouk, S. K.; Katsuba, P. S.; Leshok, A. A.; Vysotskii, V. B.

    2015-09-01

    Experimental data and a model are presented, and the electric field that appears in porous alumina during electrochemical anodic oxidation of aluminum in electrolytes based on an aqueous solution of oxalic acid at a voltage of 90-250 V is calculated. It is found that the electric field in the layers with a porosity of 1-10% in growing alumina reaches 109-1010 V/m, which exceeds the electric strength of the material and causes microplasma patterns emitting visible light at the pore bottom, the self-organization of the structure of porous alumina, and the anisotropy of local porous anodizing. Moreover, other new effects are to be expected during aluminum anodizing under the conditions that ensure a high electric field inside the barrier layer of porous oxide.

  7. Grazing incidence x-ray diffraction at free-standing nanoscale islands: fine structure of diffuse scattering

    International Nuclear Information System (INIS)

    Grigoriev, D; Hanke, M; Schmidbauer, M; Schaefer, P; Konovalov, O; Koehler, R

    2003-01-01

    We have investigated the x-ray intensity distribution around 220 reciprocal lattice point in case of grazing incidence diffraction at SiGe nanoscale free-standing islands grown on Si(001) substrate by LPE. Experiments and computer simulations based on the distorted wave Born approximation utilizing the results of elasticity theory obtained by FEM modelling have been carried out. The data reveal fine structure in the distribution of scattered radiation with well-pronounced maxima and complicated fringe pattern. Explanation of the observed diffraction phenomena in their relation to structure and morphology of the island is given. An optimal island model including its shape, size and Ge spatial distribution was elaborated

  8. Effect of Pressing Parameters on the Structure of Porous Materials Based on Cobalt and Nickel Powders

    Science.gov (United States)

    Shustov, V. S.; Rubtsov, N. M.; Alymov, M. I.; Ankudinov, A. B.; Evstratov, E. V.; Zelensky, V. A.

    2018-03-01

    Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt-nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.

  9. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    KAUST Repository

    Sibillano, T.

    2014-11-10

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes\\' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  10. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    KAUST Repository

    Sibillano, T.; De Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, Luca; Di Fabrizio, Enzo M.; Giannini, C.

    2014-01-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  11. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    Science.gov (United States)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  12. Sintering of Multilayered Porous Structures: Part II – Experiments and Model Applications

    DEFF Research Database (Denmark)

    Ni, De Wei; Olevsky, Eugene; Esposito, Vincenzo

    2013-01-01

    Experimental analyses of shrinkage and distortion kinetics during sintering of bilayered porous and dense gadolinium-doped ceria Ce0.9Gd0.1O1.95d structures are carried out, and compared with the theoretical models developed in Part I of this work. A novel approach is developed for the determinat...

  13. Pressure Sensitive Device Using Conductive and Porous Structures

    International Nuclear Information System (INIS)

    So, Hye-Mi; Chang, Won Seok; Park, Cheolmin

    2014-01-01

    Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple “dipping and drying” process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < 30 kΩ/sq. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance

  14. Pressure Sensitive Device Using Conductive and Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi; Chang, Won Seok [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Park, Cheolmin [University of Science and Technology, Daejeon (Korea, Republic of)

    2014-07-15

    Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple “dipping and drying” process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < 30 kΩ/sq. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance.

  15. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    CERN Document Server

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  16. Probing Structural and Catalytic Characteristics of Galactose Oxidase Confined in Nanoscale Chemical Environments

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Mossin, Susanne; Ulstrup, Jens

    2014-01-01

    Galactose oxidase (GAOX) is a special metalloenzyme in terms of its active site structure and catalytic mechanisms. This work reports a study where the enzyme confined in a nanoscale chemical environment provided by mesoporous silicas (MPS) is probed. Two types of MPS, i.e. SBA-15 and MCF, were...... synthesized and used to accommodate GAOX. SBA-15-ROD is rod-shaped particles with periodically ordered nanopores (9.5 nm), while MCF has a mesocellular foam-like structure with randomly distributed pores (23 nm) interconnected by smaller windows (8.8 nm). GAOX is non-covalently confined in SBA-15- ROD, while...... it is covalently immobilized in MCF. Relatively high loadings in the range of 50–60 mg g1 are achieved. Electron spin resonance (ESR) spectroscopy is used to probe the active site structures of the enzyme. The similar ESR spectra observed for GAOX in the free and immobilized states support that the electronic...

  17. The Role of Isolation Methods on a Nanoscale Surface Structure and Its Effect on the Size of Exosomes

    Directory of Open Access Journals (Sweden)

    JungReem Woo

    2016-06-01

    Full Text Available Exosomes are ~100 nanometre diameter vesicles secreted by mammalian cells. These emerging disease biomarkers carry nucleic acids, proteins and lipids specific to the parental cells that secrete them. Exosomes are typically isolated in bulk by ultracentrifugation, filtration or immu‐ noaffinity precipitation for downstream proteomic, genomic, or lipidomic analysis. However, the structural properties and heterogeneity of isolated exosomes at the single vesicle level are not well characterized due to their small size. In this paper, by using high-resolution atomic force microscope imaging, we show the nanoscale mor‐ phology and structural heterogeneity in exosomes derived from U87 cells. Quantitative assessment of single exosomes reveals nanoscale variations in morphology, surface roughness and counts isolated by ultracentrifugation (UC and immunoaffinity (IA purification. Both methods produce intact globular, 30-120 nm sized vesicles when imaged under fluid and in air. However, IA exosomes had higher surface roughness and bimodal size population compared to UC exosomes. The study highlights the differences in size and surface topography of exosomes purified from a single cell type using different isolation methods.

  18. The nanoscale organization of the B lymphocyte membrane☆

    Science.gov (United States)

    Maity, Palash Chandra; Yang, Jianying; Klaesener, Kathrin; Reth, Michael

    2015-01-01

    The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~ 250 nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures. PMID:25450974

  19. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  20. Investigation of the porous structure of glassy carbon by SAXS - an application of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A; Baertsch, M; Schnyder, B; Koetz, R; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The porous structure of Electrochemical Double Layer Capacitor (EDC) Electrodes was investigated using Small Angle X-ray Scattering (SAXS), assuming logarithmically normal distributed micropores. (author) 2 figs., 1 ref.

  1. Luminescence and structural study of porous silicon films

    Science.gov (United States)

    Xie, Y. H.; Wilson, W. L.; Ross, F. M.; Mucha, J. A.; Fitzgerald, E. A.; Macaulay, J. M.; Harris, T. D.

    1992-03-01

    A combination of photoluminescence, TEM, and Fourier transform IR spectroscopy is used to investigate the luminescence properties of 3-micron thick, strongly emitting, and highly porous silicon films. TEMs indicate that these samples have structures of predominantly 6-7-nm size clusters. In the as-prepared films, there is a significant concentration of Si-H bonds which is gradually replaced by Si-O bonds during prolonged aging in air. Upon optical excitation these films exhibit strong visible emission, peaking at about 690 nm. The excitation edge is shown to be emission-wavelength dependent, revealing the inhomogeneous nature of both the initially photoexcited and luminescing species. The correlation of the spectral and structural information suggest that the source of the large blue shift of the visible emission compared to the bulk Si bandgap energy is due to quantum confinement in the nanometer-size Si clusters.

  2. Neutron radiography for the characterization of porous structure in degraded building stones

    International Nuclear Information System (INIS)

    Barone, G; Mazzoleni, P; Raneri, S; Crupi, V; Longo, F; Majolino, D; Venuti, V; Teixeira, J

    2014-01-01

    As it is well known, the porous structure of stones can change due to different degradation processes that modify the characteristics of freshly quarried blocks. Their knowledge is fundamental for predicting the behavior of stones and the efficacy of conservative treatments. In this context, neutron radiography is a useful tool not only to visualize the structure of porous materials, but also to evaluate the degree of degradation and surface modifications resulting from weathering processes. Furthermore, since thermal neutrons suffer a strong attenuation by hydrogen, this technique is effective in order to investigate the amount of absorbed water in building materials. In the present work, we report a neutron radiography investigation of limestones cropping out in the South-Eastern Sicily and widely used as building stones in Baroque monuments of the Noto Valley. The analyzed samples have been submitted to cyclic salt crystallization that simulate degradation processes acting in exposed stones of buildings. The obtained results demonstrate the interest of neutron radiography to better understand deterioration processes in limestones and to acquire information useful for restoration projects

  3. Structure and composition of magnetocaloric Ni-Mn-In-Co thin films on the nanoscale - a TEM study

    Energy Technology Data Exchange (ETDEWEB)

    Erkartal, Burak; Schuermann, Ulrich; Kienle, Lorenz [Institute for Materials Science, Synthesis and Real Structure, Christian Albrechts University, Kiel (Germany); Duppel, Viola [Nanochemistry Max Planck Institute for Solid State Research, Stuttgart (Germany); Niemann, Robert; Schultz, Ludwig; Faehler, Sebastian [IFW Dresden (Germany)

    2012-08-15

    A complementary set of electron microscopy techniques is applied for the determination of structural and chemical segregation phenomena within a 300 nm thick metamagnetic Ni-Mn-In-Co thin film. The structure is predominantly composed of distinct modulated martensites of the 5M-, 6M-, 7M-, and 8M-type. Additionally these modulated structures exhibit twinning and stacking disordering. The nature of the disordering and the structural misfit at the twin interface were analyzed via high resolution micrographs. Next to an adhesion layer of Cr interdiffusion on the nanoscale was observed producing a penternary chemically and structurally homogeneous precipitate. The structure can be assigned to a twinned non-modulated pseudocubic model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Optimization of process for creating porous structure of materials from industrial waste

    International Nuclear Information System (INIS)

    Mangutova-Stoilkovska, Bianka

    2005-01-01

    Republic of Macedonia, as many European countries, possesses great quantities of industrial waste materials from thermo electrical power stations and metallurgical capacities. The powder from waste fly ash and metallurgical slag was specified from chemical, geometrical, structural and thermochemical aspects. After the consolidation, the compacts were specified from structural, mechanical and thermophysical aspects. Using three kinds of waste glasses (TV glass, window and flask), the sintering temperature was significantly reduced and ecologically risky components were fixed molecularly in the matrix based on fly ash and metallurgical slag. The glass was characterized from chemical, geometrical and thermophysical point of view. The amount of glass in the composites varied from 10%-50%. The mechanical and thermal expansion properties of the sintered compacts, in the temperature region from 800 o -1200 o C were determined. The thermodynamic stability, mechanical properties and chemical inertness have been used as criterion for selection of the consolidated compacts. Special attention was given to the creation of highly porous structure. For the purpose to obtain a high joint porous structure, several types of porosity have been used: polyurethane foam, hydrogen peroxide, limestone, carbon ash and carbon fibres. The obtained glass-ceramic materials could be used in the building industry, for making filters for gases and liquids as well as diffusers for waste water aeration. (Author)

  5. Sub-nanoscale surface ruggedness provides a water-tight seal for exposed regions in soluble protein structure.

    Directory of Open Access Journals (Sweden)

    Erica Schulz

    2010-09-01

    Full Text Available Soluble proteins must maintain backbone hydrogen bonds (BHBs water-tight to ensure structural integrity. This protection is often achieved by burying the BHBs or wrapping them through intermolecular associations. On the other hand, water has low coordination resilience, with loss of hydrogen-bonding partnerships carrying significant thermodynamic cost. Thus, a core problem in structural biology is whether natural design actually exploits the water coordination stiffness to seal the backbone in regions that are exposed to the solvent. This work explores the molecular design features that make this type of seal operative, focusing on the side-chain arrangements that shield the protein backbone. We show that an efficient sealing is achieved by adapting the sub-nanoscale surface topography to the stringency of water coordination: an exposed BHB may be kept dry if the local concave curvature is small enough to impede formation of the coordination shell of a penetrating water molecule. Examination of an exhaustive database of uncomplexed proteins reveals that exposed BHBs invariably occur within such sub-nanoscale cavities in native folds, while this level of local ruggedness is absent in other regions. By contrast, BHB exposure in misfolded proteins occurs with larger local curvature promoting backbone hydration and consequently, structure disruption. These findings unravel physical constraints fitting a spatially dependent least-action for water coordination, introduce a molecular design concept, and herald the advent of water-tight peptide-based materials with sufficient backbone exposure to remain flexible.

  6. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  7. Effect of rigidity of porous structure on electrochemical behavior of pristine Li4Ti5O12 microspheres

    International Nuclear Information System (INIS)

    Jia, Zhenyong; Zhou, Qun; Li, Xiaowei; Fu, Yu; Ming, Hai; Zheng, Junwei

    2015-01-01

    Highlights: • Rigid porous framework of Li 4 Ti 5 O 12 microspheres can be fabricated by mutual molten growth of primary particles. • Well-confined nanosized tortuous channels are formed inside Li 4 Ti 5 O 12 microspheres. • Li 4 Ti 5 O 12 microspheres with rigid porous structures exhibit greatly enhanced electrochemical performance. - Abstract: Highly controllable porous architecture is desirable to tailor the physical and chemical properties of functional materials in advanced lithium ion batteries. Here, porous microspheres of spinel lithium titanate (Li 4 Ti 5 O 12 ), a promising alternative anode material for lithium ion batteries, are fabricated by mutual molten growth method in a controllable manner. The key role of the rigidity of the porous structure on the performance of the electrode materials in lithium ion batteries is demonstrated. Rigid framework of the materials is formed by second growth of the primary particles that fused together to generate an interconnected nanopore system inside the spheres, leading to better electrolyte diffusion and lower interparticle contact resistance, relative to the non-porous counterpart. The pristine Li 4 Ti 5 O 12 microspheres with uniform pore distribution and continuous framework exhibit high tap density, remarkable reversible capacity and rate capability, as well as excellent cycling stability. The present method is scalable and may provide a new approach to fabricate other candidate electrode materials for applications that require both high power and high volumetric energy density

  8. Electronic band structure in porous silicon studied by photoluminescence and photoluminescence excitation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ki-Won; Kim, Young-You

    2004-01-01

    In this research, we used photoluminescence (PL) and photoluminescence excitation (PLE) to visualize the electronic band structure in porous silicon (PS). From the combined results of the PLE measurements at various PL emission energies and the PL measurements under excitation at various PLE absorption energies, we infer that three different electronic band structures, originating from different luminescent origins, give rise to the PL spectrum. Through either thermal activation or diffusive transfer, excited carriers are moved to each of the electronic band structures.

  9. Thermally induced structural modifications and O2 trapping in highly porous silica nanoparticles

    International Nuclear Information System (INIS)

    Alessi, A.; Agnello, S.; Iovino, G.; Buscarino, G.; Melodia, E.G.; Cannas, M.; Gelardi, F.M.

    2014-01-01

    In this work we investigate by Raman spectroscopy the effect of isochronal (2 h) thermal treatments in air in the temperature range 200–1000 °C of amorphous silicon dioxide porous nanoparticles with diameters ranging from 5 up to 15 nm and specific surface 590–690 m 2 /g. Our results indicate that the amorphous structure changes similarly to other porous systems previously investigated, in fact superficial SiOH groups are removed, Si–O–Si linkages are created and the ring statistic is modified, furthermore these data evidence that the three membered rings do not contribute significantly to the Raman signal detected at about 495 cm −1 . In addition, after annealing at 900 and 1000 °C we noted the appearance of the O 2 emission at 1272 nm, absent in the not treated samples. The measure of the O 2 emission has been combined with electron paramagnetic resonance measurements of the γ irradiation induced HO · 2 radicals to investigate the O 2 content per mass unit of thin layers of silica. Our data reveal that the porous nanoparticles have a much lower ability to trap O 2 molecules per mass units than nonporous silica supporting a model by which O 2 trapping inside a surface layer of about 1 nm of silica is always limited. - Highlights: • O 2 emission and HO · 2 electron paramagnetic resonance signals are investigated. • Silica surface ability to trap O 2 molecules is explored by thermal treatments. • Raman study of thermally induced structural changes in porous silica nanoparticles. • Raman signal attributable to the three membered rings in silica

  10. Structural characteristics of porous hydroxyapatite coating on CaO-SiO{sub 2} system glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hongquan; Yan Yuhua; Li Shipu [Wuhan Univ. of Technology (China). Biomedical and Engineering Research Center

    2001-07-01

    Hydroxyapatite(HA) coated CaO-SiO{sub 2} system glass composites were prepared successfully by the hydrothermal coating method at the temperature of 250 to 350 C and at pH of 7 to 9. The microstructure and phase composition were identified by XRD, FT-IR, SEM, EPMA and TEM. It is shown that HA coating possessed a porous gradient construction in the interface; HA coating and glass substrate were tightly bonded by an obvious transition. HA coating had a well-distributed porous construction on the surface layer. The interface structure, phase composition and the stability of HA coated glass composites were related with its forming process. These kinds of structure will benefit to the interface bonging strength and bone bonding strength. (orig.)

  11. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.

    Science.gov (United States)

    Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong

    2018-03-01

    It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Advanced Luminescent Materials and Quantum Confinement: Proceedings of the International Symposium Held in Honolulu, Hawaii on 18-20 October 1999

    National Research Council Canada - National Science Library

    Cahay, Marc

    1999-01-01

    The symposium addresses recent developments in the area of nanoscale semiconductors, metallic, and organic structures, porous silicon quantum dot structures self-ordered nanostructures and clusters...

  13. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    Science.gov (United States)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  14. Tough and strong porous bioactive glass-PLA composites for structural bone repair.

    Science.gov (United States)

    Xiao, Wei; Zaeem, Mohsen Asle; Li, Guangda; Bal, B Sonny; Rahaman, Mohamed N

    2017-08-01

    Bioactive glass scaffolds have been used to heal small contained bone defects but their application to repairing structural bone is limited by concerns about their mechanical reliability. In the present study, the addition of an adherent polymer layer to the external surface of strong porous bioactive glass (13-93) scaffolds was investigated to improve their toughness. Finite element modeling (FEM) of the flexural mechanical response of beams composed of a porous glass and an adherent polymer layer predicted a reduction in the tensile stress in the glass with increasing thickness and elastic modulus of the polymer layer. Mechanical testing of composites with structures similar to the models, formed from 13-93 glass and polylactic acid (PLA), showed trends predicted by the FEM simulations but the observed effects were considerably more dramatic. A PLA layer of thickness -400 µm, equal to -12.5% of the scaffold thickness, increased the load-bearing capacity of the scaffold in four-point bending by ~50%. The work of fracture increased by more than 10,000%, resulting in a non-brittle mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture shown to be conducive to bone infiltration, could provide optimal implants for healing structural bone defects.

  15. The processes of vaporization in the porous structures working with the excess of liquid

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2017-01-01

    Full Text Available The processes of vaporization in porous structures, working with the excess of liquid are investigated. With regard to the thermal power plants new porous cooling system is proposed and investigated, in which the supply of coolant is conducted by the combined action of gravity and capillary forces. The cooling surface is made of stainless steel, brass, copper, bronze, nickel, alundum and glass, with wall thickness of (0.05-2•10-3 m. Visualizations of the processes of vaporization were carried out using holographic interferometry with the laser system and high speed camera. The operating conditions of the experiments were: water pressures (0.01-10 MPa, the temperature difference of sub-cooling (0-20°C, an excess of liquid (1-14 of the steam flow, the heat load (1-60•104 W/m2, the temperature difference (1-60°C and orientation of the system (± 0 - ± 90 degrees. Studies have revealed three areas of liquid vaporization process (transitional, developed and crisis. The impact of operating and design parameters on the integrated and thermal hydraulic characteristics was defined. The optimum (minimum flow rate of cooling fluid and the most effective type of mesh porous structure were also defined.

  16. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  17. DNA-based construction at the nanoscale: emerging trends and applications

    Science.gov (United States)

    Lourdu Xavier, P.; Chandrasekaran, Arun Richard

    2018-02-01

    The field of structural DNA nanotechnology has evolved remarkably—from the creation of artificial immobile junctions to the recent DNA-protein hybrid nanoscale shapes—in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.

  18. Photoluminescence studies on porous silicon/polymer heterostructure

    International Nuclear Information System (INIS)

    Mishra, J.K.; Bhunia, S.; Banerjee, S.; Banerji, P.

    2008-01-01

    Hybrid devices formed by filling porous silicon with MEH-PPV or poly [2-methoxy-5(2-ethylhexyloxy-p-phenylenevinylene)] have been investigated in this work. Analyses of the structures by scanning electron microscopy (SEM) demonstrated that the porous silicon layer was filled by the polymer with no significant change of the structures except that the polymer was infiltrated in the pores. The photoluminescence (PL) of the structures at 300 K showed that the emission intensity was very high as compared with that of the MEH-PPV films on different substrates such as crystalline silicon (c-Si) and indium tin oxide (ITO). The PL peak in the MEH-PPV/porous silicon composite structure is found to be shifted towards higher energy in comparison with porous silicon PL. A number of possibilities are discussed to explain the observations

  19. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  20. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    Science.gov (United States)

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  1. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  2. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  3. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    Science.gov (United States)

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  4. Porous structure evolution of cellulose carbon fibres during heating in the initial activation stage

    Energy Technology Data Exchange (ETDEWEB)

    Babel, Krzysztof [Institute of Chemical Wood Technology, Agricultural Academy of Poznan, Ul. Wojska Polskiego 38/42, 60-637 Poznan (Poland)

    2004-01-15

    This paper is focused on the description of changes in the porous structure during fast heating to the activation temperature of the viscose fibres, pyrolysed to different final temperatures. Standard regenerated cellulose fibre structures were tested. Fabrics were subjected to pyrolysis, the samples being heated to final temperatures of 400, 600 and 850 C. Carbon fibres were subsequently heated to activation temperature (850 C) at a rate of 100 C/min, and then the samples were cooled down. The characteristics of obtained carbon preparations were examined. We have defined a level of restructuring and internal ordering of fibres which originated during slow pyrolysis as well as the range of temperature differences of pyrolysis and activation where fast increase of carbon fibre temperature before activation is advantageous for the development of porous structure. It allows for partial release of pores and fast rebuilding of structure accompanied by a considerable number of defects in the carbon matrix with higher reactivity to oxidiser which, in turn, promotes the development of pores in active carbon during oxidation. Temperature difference for viscose carbon fibres is approximately 150-300 C at pyrolysis temperature of 550-700 C.

  5. Nanoscale Structural/Chemical Characterization of Manganese Oxide Surface Layers and Nanoparticles, and the Associated Implications for Drinking Water

    Science.gov (United States)

    Michel Eduardo Vargas Vallejo

    Water treatment facilities commonly reduce soluble contaminants, such as soluble manganese (Mn2+), in water by oxidation and subsequent filtration. Previous studies have shown that conventional porous filter system removes Mn2+ from drinking water by developing Mn-oxides (MnO x(s)) bearing coating layers on the surface of filter media. Multiple models have been developed to explain this Mn2+ removal process and the formation mechanism of MnOx(s) coatings. Both, experimental and theoretical studies to date have been largely focused on the micrometer to millimeter scale range; whereas, coating layers are composed of nanoscale particles and films. Hence, understanding the nanoscale particle and film formation mechanisms is essential to comprehend the complexity of soluble contaminant removal processes. The primary objective of this study was to understand the initial MnOx(s) coating formation mechanisms and evaluate the influence of filter media characteristics on these processes. We pursued this objective by characterizing at the micro and nanoscale MnO x(s) coatings developed on different filter media by bench-scale column tests with simulating inorganic aqueous chemistry of a typical coagulation fresh water treatment plant, where free chlorine is present across filter bed. Analytical SEM and TEM, powder and synchrotron-based XRD, XPS, and ICPMS were used for characterization of coatings, filter media and water solution elemental chemistry. A secondary objective was to model how surface coating formation occurred and its correlation with experimentally observed physical characteristics. This modeling exercise indicates that surface roughness and morphology of filtering media are the major contributing factors in surface coating formation process. Contrary to previous models that assumed a uniform distribution and growth of surface coating, the experimental results showed that greater amounts of coating were developed in rougher areas. At the very early stage of

  6. Investigation on the structural characterization of pulsed p-type porous silicon

    Science.gov (United States)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  7. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials

    Science.gov (United States)

    Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung

    2018-03-01

    The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the

  8. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    Science.gov (United States)

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  9. Porous silicon: silicon quantum dots for photonic applications

    International Nuclear Information System (INIS)

    Pavesi, L.; Guardini, R.

    1996-01-01

    Porous silicon formation and structure characterization are briefly illustrated. Its luminescence properties rae presented and interpreted on the basis of exciton recombination in quantum dot structures: the trap-controlled hopping mechanism is used to describe the recombination dynamics. Porous silicon application to photonic devices is considered: porous silicon multilayer in general, and micro cavities in particular are described. The present situation in the realization of porous silicon LEDs is considered, and future developments in this field of research are suggested. (author). 30 refs., 30 figs., 13 tabs

  10. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yuanshen, E-mail: yuanshen.qi@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Contreras, Karla G. [Monash Institute of Medical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800 (Australia); Jung, Hyun-Do [Liquid Processing & Casting Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun-Ee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lapovok, Rimma [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Estrin, Yuri, E-mail: yuri.estrin@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Laboratory of Hybrid Nanostructured Materials, NUST MISiS, Moscow 119490 (Russian Federation)

    2016-02-01

    Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400 °C was shown to produce unique properties. - Highlights: • Porous Ti and porous Ti/Mg composite scaffolds were fabricated successfully. • Space holder-enabled severe plastic deformation was first used in this application. • Silicon particles as sacrificial space holders were used for the first time. • Ultrafine-grained microstructure and good bonding between particles were obtained. • Good preosteoblast cell response to as-manufactured porous Ti was achieved.

  11. Study on Topology Optimization Design, Manufacturability, and Performance Evaluation of Ti-6Al-4V Porous Structures Fabricated by Selective Laser Melting (SLM).

    Science.gov (United States)

    Xu, Yangli; Zhang, Dongyun; Zhou, Yan; Wang, Weidong; Cao, Xuanyang

    2017-09-07

    The combination of topology optimization (TOP) and selective laser melting (SLM) provides the possibility of fabricating the complex, lightweight and high performance geometries overcoming the traditional manufacturing "bottleneck". This paper evaluates the biomechanical properties of porous structures with porosity from 40% to 80% and unit cell size from 2 to 8 mm, which are designed by TOP and manufactured by SLM. During manufacturability exploration, three typical structures including spiral structure, arched bridge structure and structures with thin walls and small holes are abstracted and investigated, analyzing their manufacturing limits and forming reason. The property tests show that dynamic elastic modulus and compressive strength of porous structures decreases with increases of porosity (constant unit cell size) or unit cell size (constant porosity). Based on the Gibson-Ashby model, three failure models are proposed to describe their compressive behavior, and the structural parameter λ is used to evaluate the stability of the porous structure. Finally, a numerical model for the correlation between porous structural parameters (unit cell size and porosity) and elastic modulus is established, which provides a theoretical reference for matching the elastic modulus of human bones from different age, gender and skeletal sites during innovative medical implant design and manufacturing.

  12. Fabrication of Graded Porous and Skin-Core Structure RDX-Based Propellants via Supercritical CO2 Concentration Profile

    Science.gov (United States)

    Yang, Weitao; Li, Yuxiang; Ying, Sanjiu

    2015-04-01

    A fabrication process to produce graded porous and skin-core structure propellants via supercritical CO2 concentration profile is reported in this article. It utilizes a partial gas saturation technique to obtain nonequilibrium gas concentration profiles in propellants. Once foamed, the propellant obtains a graded porous or skin-pore structure. This fabrication method was studied with RDX(Hexogen)-based propellant under an SC-CO2 saturation condition. The principle was analyzed and the one-dimensional diffusion model was employed to estimate the gas diffusion coefficient and to predict the gas concentration profiles inside the propellant. Scanning electron microscopy images were used to analyze the effects of partial saturation on the inner structure. The results also suggested that the sorption time and desorption time played an important role in gas profile generation and controlled the inner structure of propellants.

  13. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer

    Science.gov (United States)

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor.

  14. Vibrational modes of porous silicon

    International Nuclear Information System (INIS)

    Sabra, M.; Naddaf, M.

    2012-01-01

    On the basis of theoretical and experimental investigations, the origin of room temperature photoluminescence (PL) from porous silicon is found to related to chemical complexes constituted the surface, in particular, SiHx, SiOx and SiOH groups. Ab initio atomic and molecular electronic structure calculations on select siloxane compounds were used for imitation of infrared (IR) spectra of porous silicon. These are compared to the IR spectra of porous silicon recorded by using Fourier Transform Infrared Spectroscopy (FTIR). In contrast to linear siloxane, the suggested circular siloxane terminated with linear siloxane structure is found to well-imitate the experimental spectra. These results are augmented with EDX (energy dispersive x-ray spectroscopy) measurements, which showed that the increase of SiOx content in porous silicon due to rapid oxidation process results in considerable decrease in PL peak intensity and a blue shift in the peak position. (author)

  15. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process

    NARCIS (Netherlands)

    Hou, Q.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Three-dimensional degradable porous polymeric structures with high porosities (93-98%) and well-interconnected pore networks have been prepared by freeze-drying polymer solutions in the presence of a leachable template followed by leaching of the template. Templates of the pore network were prepared

  16. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    Science.gov (United States)

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  17. Physicochemical hydrodynamics of porous structures in vascular plants

    Science.gov (United States)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon

    2013-11-01

    Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  18. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiliang [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, 500-712 Gwangju (Korea, Republic of); Jeong, Seung-Woo, E-mail: swjeong@kunsan.ac.kr [Department of Environmental Engineering, Kunsan National University, Kunsan 550-701 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, 500-712 Gwangju (Korea, Republic of)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer TCE DNAPL removal inside pores using NZVI or bimetals in a 2-D system was visualized. Black-Right-Pointing-Pointer Presence of nitrate and humic substances decrease the TCE DNAPL removal efficiency. Black-Right-Pointing-Pointer Presence of ethanol increases the TCE DNAPL removal efficiency. Black-Right-Pointing-Pointer Metal catalysts enhance the TCE DNAPL removal using NZVI in a short term reaction. Black-Right-Pointing-Pointer Metal catalysts do not increase the DNAPL removal efficiency for a long term reaction. - Abstract: Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.

  19. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification

    International Nuclear Information System (INIS)

    Wang, Qiliang; Jeong, Seung-Woo; Choi, Heechul

    2012-01-01

    Highlights: ► TCE DNAPL removal inside pores using NZVI or bimetals in a 2-D system was visualized. ► Presence of nitrate and humic substances decrease the TCE DNAPL removal efficiency. ► Presence of ethanol increases the TCE DNAPL removal efficiency. ► Metal catalysts enhance the TCE DNAPL removal using NZVI in a short term reaction. ► Metal catalysts do not increase the DNAPL removal efficiency for a long term reaction. - Abstract: Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.

  20. Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes.

    Science.gov (United States)

    Lacey, Steven D; Kirsch, Dylan J; Li, Yiju; Morgenstern, Joseph T; Zarket, Brady C; Yao, Yonggang; Dai, Jiaqi; Garcia, Laurence Q; Liu, Boyang; Gao, Tingting; Xu, Shaomao; Raghavan, Srinivasa R; Connell, John W; Lin, Yi; Hu, Liangbing

    2018-03-01

    A highly porous 2D nanomaterial, holey graphene oxide (hGO), is synthesized directly from holey graphene powder and employed to create an aqueous 3D printable ink without the use of additives or binders. Stable dispersions of hydrophilic hGO sheets in water (≈100 mg mL -1 ) can be readily achieved. The shear-thinning behavior of the aqueous hGO ink enables extrusion-based printing of fine filaments into complex 3D architectures, such as stacked mesh structures, on arbitrary substrates. The freestanding 3D printed hGO meshes exhibit trimodal porosity: nanoscale (4-25 nm through-holes on hGO sheets), microscale (tens of micrometer-sized pores introduced by lyophilization), and macroscale (benefit of (nano)porosity and structurally conscious designs, the additive-free architectures are demonstrated as the first 3D printed lithium-oxygen (Li-O 2 ) cathodes and characterized alongside 3D printed GO-based materials without nanoporosity as well as nanoporous 2D vacuum filtrated films. The results indicate the synergistic effect between 2D nanomaterials, hierarchical porosity, and overall structural design, as well as the promise of a freeform generation of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  2. Lighting emitting microstructures in porous silicon

    International Nuclear Information System (INIS)

    Squire, E.

    1999-01-01

    Experimental and theoretical techniques are used to examine microstructuring effects on the optical properties of single layer, multilayer, single and multiple microcavity structures fabricated from porous silicon. Two important issues regarding the effects of the periodic structuring of this material are discussed. Firstly, the precise role played by this microstructuring, given that the luminescence is distributed throughout the entire structure and the low porosity layers are highly absorbing at short wavelengths. The second issue examined concerns the observed effects on the optical spectra of the samples owing to the emission bandwidth of the material being greater than the optical stopband of the structure. Measurements of the reflectivity and photoluminescence spectra of different porous silicon microstructures are presented and discussed. The results are modelled using a transfer matrix technique. The matrix method has been modified to calculate the optical spectra of porous silicon specifically by accounting for the effects of dispersion, absorption and emission within the material. Layer thickness and porosity gradients have also been included in the model. The dielectric function of the two component layers (i.e. silicon and air) is calculated using the Looyenga formula. This approach can be adapted to suit other porous semiconductors if required. Examination of the experimental results have shown that the emitted light is strongly controlled by the optical modes of the structures. Furthermore, the data display an interplay of a wide variety of effects dependent upon the structural composition. Comparisons made between the experimental and calculated reflectivity and photoluminescence spectra of many different porous silicon microstructures show very good agreement. (author)

  3. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids

    International Nuclear Information System (INIS)

    Wang Shutao; Song Yanlin; Jiang Lei

    2007-01-01

    Inspired by the lotus effect, we fabricate new microscale and nanoscale hierarchical structured copper mesh films by a simple electrochemical deposition. After modification of the long-chain fatty acid monolayer, these films show superhydrophobic and superoleophilic properties, which could be used for the effective separation of oil and water. The length of the fatty acid chain strongly influences the surface wettability of as-prepared films. It is confirmed that the cooperative effect of the hierarchical structure of the copper film and the nature of the long-chain fatty acid contribute to this unique surface wettability

  4. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  5. Creation of nanoscale objects by swift heavy ion track manipulations

    International Nuclear Information System (INIS)

    Fink, D.; Petrov, A.; Stolterfoht, N.

    2003-01-01

    In this work we give an overview of the possibilities to create new objects with nanoscale dimensions with ion tracks, for future applications. This can be realized in two ways: by manipulation of latent swift heavy ion (SHI) tracks, or by embedding specific structures within etched SHI tracks. In the first case one can make use of irradiation effects such as phase transitions and chemical or structural changes along the tracks. In the latter case, one can fill etched SHI tracks with metals, semiconductors, insulating and conducting polymers, fullerite, or colloides. Wires and tubules with outer diameters, between about 50 nm and 5 μm and lengths of up to about 100 μm can be obtained. The most important production techniques are galvanic and chemical depositions. Ion Transmission Spectrometry has turned out to be an especially useful tool for the characterisation of the produced objects. Present studies aim at the construction of condensers, magnets, diodes, and sensors in etched tracks. An obstacle for the practical realization of smallest-size polymeric ion track devices is the statistical distribution of the ion tracks on the target areas, which yields some pixels without any track, and other pixels even with overlapping tracks on a given sample. In a first test experiment we demonstrate that one can, in principle, overcome that problem by taking self-ordered porous foils as masks for subsequent high-fluence SHI irradiation. (author)

  6. Synthesis, dynamics and photophysics of nanoscale systems

    Science.gov (United States)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  7. Nanoscale biophysics of the cell

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  8. Characterization and antibacterial properties of porous fibers containing silver ions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Xu, Lan, E-mail: lanxu@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Nantong Textile Institute of Soochow University, 58 Chong-chuan Road, Nantong 226018 (China)

    2016-11-30

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag{sup +} porous fibers were investigated. • The antibacterial effects of PLA/Ag{sup +} porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  9. Characterization and antibacterial properties of porous fibers containing silver ions

    International Nuclear Information System (INIS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-01-01

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag + porous fibers were investigated. • The antibacterial effects of PLA/Ag + porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  10. EXAFS and XANES analysis of oxides at the nanoscale

    Directory of Open Access Journals (Sweden)

    Alexei Kuzmin

    2014-11-01

    Full Text Available Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.. As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs and iron oxide nanoparticles.

  11. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanli, E-mail: flmeng@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Hou, Nannan [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Ge, Sheng [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Sun, Bai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: zjin@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Shen, Wei; Kong, Lingtao; Guo, Zheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Yufeng, E-mail: sunyufeng118@126.com [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wu, Hao; Wang, Chen [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Li, Minqiang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-03-25

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion.

  12. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Meng, Fanli; Hou, Nannan; Ge, Sheng; Sun, Bai; Jin, Zhen; Shen, Wei; Kong, Lingtao; Guo, Zheng; Sun, Yufeng; Wu, Hao; Wang, Chen; Li, Minqiang

    2015-01-01

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion

  13. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering

    NARCIS (Netherlands)

    Song, Y.; Kamphuis, Marloes; Zhang Zheng, Z.Z.; Zhang, Z.; Sterk, L.M.Th.; Vermes, I.; Poot, Andreas A.; Feijen, Jan; Grijpma, Dirk W.

    Biocompatible and elastic porous tubular structures based on poly(1,3-trimethylene carbonate), PTMC, were developed as scaffolds for tissue engineering of small-diameter blood vessels. High-molecular-weight PTMC (Mn = 4.37 × 105) was cross-linked by gamma-irradiation in an inert nitrogen atmosphere.

  14. Thermally induced structural modifications and O{sub 2} trapping in highly porous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: antonino.alessi@unipa.it; Agnello, S.; Iovino, G.; Buscarino, G.; Melodia, E.G.; Cannas, M.; Gelardi, F.M.

    2014-12-15

    In this work we investigate by Raman spectroscopy the effect of isochronal (2 h) thermal treatments in air in the temperature range 200–1000 °C of amorphous silicon dioxide porous nanoparticles with diameters ranging from 5 up to 15 nm and specific surface 590–690 m{sup 2}/g. Our results indicate that the amorphous structure changes similarly to other porous systems previously investigated, in fact superficial SiOH groups are removed, Si–O–Si linkages are created and the ring statistic is modified, furthermore these data evidence that the three membered rings do not contribute significantly to the Raman signal detected at about 495 cm{sup −1}. In addition, after annealing at 900 and 1000 °C we noted the appearance of the O{sub 2} emission at 1272 nm, absent in the not treated samples. The measure of the O{sub 2} emission has been combined with electron paramagnetic resonance measurements of the γ irradiation induced HO{sup ·}{sub 2} radicals to investigate the O{sub 2} content per mass unit of thin layers of silica. Our data reveal that the porous nanoparticles have a much lower ability to trap O{sub 2} molecules per mass units than nonporous silica supporting a model by which O{sub 2} trapping inside a surface layer of about 1 nm of silica is always limited. - Highlights: • O{sub 2} emission and HO{sup ·}{sub 2} electron paramagnetic resonance signals are investigated. • Silica surface ability to trap O{sub 2} molecules is explored by thermal treatments. • Raman study of thermally induced structural changes in porous silica nanoparticles. • Raman signal attributable to the three membered rings in silica.

  15. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    Science.gov (United States)

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  16. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    Science.gov (United States)

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  17. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering

    NARCIS (Netherlands)

    Pego, AP; Siebum, B; Van Luyn, MJA; Van Seijen, XJGY; Poot, AA; Grijpma, DW; Feijen, J

    2003-01-01

    Biodegradable porous scaffolds for heart tissue engineering were prepared from amorphous elastomeric (co)polymers of 1,3-trimethylene carbonate (TMC) and D,L-lactide (DLLA). Leaching of salt from compression-molded polymer-salt composites allowed the preparation of highly porous structures in a

  18. Structure of extremely nanosized and confined In-O species in ordered porous materials

    International Nuclear Information System (INIS)

    Ramallo-Lopez, J.M.; Renteria, M.; Miro, E.E.; Requejo, F.G.; Traverse, A.

    2003-01-01

    Perturbed-angular correlation, x-ray absorption, and small-angle x-ray scattering spectroscopies were suitably combined to elucidate the local structure of highly diluted and dispersed InO x species confined in the porous of the ZSM5 zeolite. This novel approach allow us to determined the structure of extremely nanosized In-O species exchanged inside the 10-atom-ring channel of the zeolite, and to quantify the amount of In 2 O 3 crystallites deposited onto the external zeolite surface

  19. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  20. Visualizing copper assisted graphene growth in nanoscale

    Science.gov (United States)

    Rosmi, Mohamad Saufi; Yusop, Mohd Zamri; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-01-01

    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp2 hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction. PMID:25523645

  1. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  2. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  3. Simulation of CO2 Injection in Porous Media with Structural Deformation Effect

    KAUST Repository

    Negara, Ardiansyah

    2011-06-18

    Carbon dioxide (CO2) sequestration is one of the most attractive methods to reduce the amount of CO2 in the atmosphere by injecting it into the geological formations. Furthermore, it is also an effective mechanism for enhanced oil recovery. Simulation of CO2 injection based on a suitable modeling is very important for explaining the fluid flow behavior of CO2 in a reservoir. Increasing of CO2 injection may cause a structural deformation of the medium. The structural deformation modeling in carbon sequestration is useful to evaluate the medium stability to avoid CO2 leakage to the atmosphere. Therefore, it is important to include such effect into the model. The purpose of this study is to simulate the CO2 injection in a reservoir. The numerical simulations of two-phase flow in homogeneous and heterogeneous porous media are presented. Also, the effects of gravity and capillary pressure are considered. IMplicit Pressure Explicit Saturation (IMPES) and IMplicit Pressure-Displacements and an Explicit Saturation (IMPDES) schemes are used to solve the problems under consideration. Various numerical examples were simulated and divided into two parts of the study. The numerical results demonstrate the effects of buoyancy and capillary pressure as well as the permeability value and its distribution in the domain. Some conclusions that could be derived from the numerical results are the buoyancy of CO2 is driven by the density difference, the CO2 saturation profile (rate and distribution) are affected by the permeability distribution and its value, and the displacements of the porous medium go to constant values at least six to eight months (on average) after injection. Furthermore, the simulation of CO2 injection provides intuitive knowledge and a better understanding of the fluid flow behavior of CO2 in the subsurface with the deformation effect of the porous medium.

  4. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Barpaga, Dushyant [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zheng, Jian [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Sabale, Sandip [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Patel, Rajankumar L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; McGrail, B. Peter [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which led to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.

  5. Structural and optical characterization of porous anodic aluminum oxide

    International Nuclear Information System (INIS)

    Galca, Aurelian C.; Kooij, E. Stefan; Wormeester, Herbert; Salm, Cora; Leca, Victor; Rector, Jan H.; Poelsema, Bene

    2003-01-01

    Spectroscopic ellipsometry and scanning electron microscopy (SEM) experiments are employed to characterize porous aluminum oxide obtained by anodization of thin aluminum films. Rutherford backscattering spectra and x-ray diffraction experiments provide information on the composition and the structure of the samples. Results on our thin film samples with a well-defined geometry show that anodization of aluminum is reproducible and results in a porous aluminum oxide network with randomly distributed, but perfectly aligned cylindrical pores perpendicular to the substrate. The ellipsometry spectra are analyzed using an anisotropic optical model, partly based on the original work by Bruggeman. The model adequately describes the optical response of the anodized film in terms of three physically relevant parameters: the film thickness, the cylinder fraction, and the nanoporosity of the aluminum oxide matrix. Values of the first two quantities, obtained from fitting the spectra, are in perfect agreement with SEM results, when the nanoporosity of the aluminum oxide matrix is taken into account. The validity of our optical model was verified over a large range of cylinder fractions, by widening of the pores through chemical etching in phosphoric acid. While the cylinder fraction increases significantly with etch time and etchant concentration, the nanoporosity remains almost unchanged. Additionally, based on a simple model considering a linear etch rate, the concentration dependence of the etch rate was determined

  6. Mimicking Bone Healing Process to Self Repair Concrete Structure Novel Approach Using Porous Network Concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, H.E.J.G.

    2013-01-01

    To repair concrete cracks in difficult or dangerous conditions such as underground structures or hazardous liquid containers, self healing mechanism is a promising alternative method. This research aims to imitate the bone self healing process by putting porous concrete internally in the concrete

  7. High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure

    International Nuclear Information System (INIS)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2015-01-01

    Graphical abstract: The porous Co 3 O 4 nanotubes (P-Co 3 O 4 -NTs) are prepared by coaxial electrospinning method followed by a fine annealing treatment. The resultant P-Co 3 O 4 -NTs exhibit excellent lithium storage performance in terms of specific capacity, rate capability, and cycling stability when used as an anode material for rechargeable lithium ion batteries (LIBs). - Abstract: Co 3 O 4 has been investigated intensively for its high specific capacity which makes it a promising candidate anode for high-performance lithium ion batteries (LIBs). However, rational design of Co 3 O 4 electrode that is beneficial for its electrochemical performance is still a great challenge. Herein, we designed and fabricated porous Co 3 O 4 nanotubes (P-Co 3 O 4 -NTs) by coaxial electrospinning method followed by a fine annealing treatment, which display one dimensional tubular structure with porous wall and hollow interior. The uniqueness of this strategy is that the morphologies of the P-Co 3 O 4 -NTs could be tuned by adjusting the mass ratio of reactants. The resultant P-Co 3 O 4 -NTs exhibit excellent lithium storage performance in terms of specific capacity, rate capability, and cycling stability, when used as an anode material for rechargeable LIBs. This unique structure endows a high reversible specific capacity of 1826.2 mA g −1 at a current density of 0.3 A g −1 after 100 cycles. Even at high current densities of 2 and 5 A g −1 , the P-Co 3 O 4 -NTs electrode still could deliver remarkable discharge capacities of 1506.2 and 1145.1 mAh g −1 , respectively. The excellent electrochemical performance can be attributed to the unique tubular and porous structure of P-Co 3 O 4 -NTs, which not only can accommodate the large volume change but also can provide an excellent ion diffusion and electronic conduction pathway. Therefore, the P-Co 3 O 4 -NTs have the potential for use as a high performance anode material in LIBs.

  8. Effects of pH on nano-bubble stability and transport in saturated porous media

    Science.gov (United States)

    Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku

    2018-01-01

    An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.

  9. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  10. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado; Herrer, Rafael; Bourlinos, Athanasios B.; Li, Ruipeng; Amassian, Aram; Archer, Lynden A.; Giannelis, Emmanuel P.

    2010-01-01

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached

  11. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  12. Parametric study of boiling heat transfer in porous media

    International Nuclear Information System (INIS)

    Shi, B.; Jones, B.G.; Pan, C.

    1996-01-01

    Detailed numerical modeling and parametric variation studies were conducted on boiling heat transfer processes in porous deposits with emphasis on applications associated with light water nuclear power reactor systems. The processes of boiling heat transfer in the porous corrosion deposits typically involve phase changes in finite volumetric regions in the porous media. The study examined such processes in two porous media configurations, without chimneys (homogeneous porous structures) and with chimneys (heterogeneous porous structures). A 1-D model and a 2-D model were developed to simulate two-phase flows with phase changes, without dry-out, inside the porous media for both structural configurations. For closure of the governing equations, an empirical correlation of the evaporation rate for phase changes inside the porous media was introduced. In addition, numerical algorithms were developed to solve the coupled nonlinear equations of mass, momentum, energy, capillary pressure, and evaporation rate. The distributions of temperature, thermodynamic saturation, liquid pressure, vapor pressure, liquid velocity, and vapor velocity were predicted. Furthermore, the effects of heat flux, system pressure, porosity, particle diameter, chimney population density, chimney radius, and crud thickness on the all superheat, critical heat flux, and minimum saturation were examined. The predictions were found to be in good agreement with the available experimental results

  13. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO{sub 3} composites with aligned lamellar porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beilei [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Chen, Liangjian, E-mail: jian007040@sina.com [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Shao, Chunsheng [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Fuqiang; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Cao, Jun [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Dou, E-mail: dzhang@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2016-04-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO{sub 3} piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO{sub 3} composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p < 0.05), so did the alkaline phosphate (ALP) and bone gla protein (BGP) activities. Porosity of 50% group exhibited higher ALP activity and BGP activity than those of the 40% and 60% groups. Scanning electron microscopy (SEM) observations revealed that osteoblasts adhered and stretched better on porous HA/BaTiO{sub 3} than on the dense one, especially HA/BaTiO{sub 3} with porosity of 50% and 60%. However, there was no significant difference in the cell morphology, cell densities, ALP and BGP activities between the polarized group and the non-polarized group (p > 0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO{sub 3} played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. - Graphical abstract: Aligned porous structure of HA/BaTiO{sub 3} piezoelectric composites prepared by ice-templating method was similar to the lamellar Haversian system in bone tissue. When co-cultured with human osteosarcoma cells (MG63), porous HA/BaTiO{sub 3} composites exhibited remarkable biological activity in promoting proliferation, differentiation and adhesion of MG63 cells. - Highlights: • The aligned porous structure of HA/BaTiO{sub 3} composite was similar to the lamellar Haversian system in bone tissue. • The piezoelectric d{sub 33} coefficient of HA/BaTiO{sub 3} with porosity

  14. Preparation and structure of porous dielectrics by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Gates, S. M.; Neumayer, D. A.; Sherwood, M. H.; Grill, A.; Wang, X.; Sankarapandian, M.

    2007-01-01

    The preparation of ultralow dielectric constant porous silicon, carbon, oxygen, hydrogen alloy dielectrics, called 'pSiCOH', using a production 200 mm plasma enhanced chemical vapor deposition tool and a thermal treatment is reported here. The effect of deposition temperature on the pSiCOH film is examined using Fourier transform infrared (FTIR) spectroscopy, dielectric constant (k), and film shrinkage measurements. For all deposition temperatures, carbon in the final porous film is shown to be predominantly Si-CH 3 species, and lower k is shown to correlate with increased concentration of Si-CH 3 . NMR and FTIR spectroscopies clearly detect the loss of a removable, unstable, hydrocarbon (CH x ) phase during the thermal treatment. Also detected are increased cross-linking of the Si-O skeleton, and concentration changes for three distinct structures of carbon. In the as deposited films, deposition temperature also affects the hydrocarbon (CH x ) content and the presence of C=O and C=C functional groups

  15. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    Science.gov (United States)

    Kuchibhatla, Satyanarayana Vnt

    molecular dynamic simulations. Poly (ethylene glycol) (PEG) and ethylene glycol (EG) were used to control the kinetics of this morphology evolution. The ability to control the agglomeration of CNPs in these media stems from the lower dielectric constant and an increased viscosity of the EG and PEG based solvents. CNPs when synthesized and aged in frozen conditions, i.e. in ice, were found to form one dimensional, high aspect ratio structures. A careful analysis has provided some evidence that the CNPs use the porous channels in ice as a template and undergo oriented attachment to form nanorods. When the aging treatment was done near freezing temperature in solution, the nanorods were not observed, confirming the role of channels in ice. When synthesized in aqueous media such as DI water, PEG and EG; CNPs were observed to exhibit a reversible oxidation state switching between +3 and +4. Band gap values were computed from the optical absorption data. The changes in the band gap values observed were attributed to the changes in the oxidation state of CNPs as opposed to the quantum confinement effects, as expected in other nanoparticle systems. The work presented in this dissertation demonstrates, with evidence, that in order to obtain a comprehensive understanding of the properties of nanoscale materials it is of paramount importance to monitor their behavior over relatively longer periods of time under various ambient environments. While the solution based techniques offer a versatility and low cost route to study the fundamental properties of nanomaterials, they suffer some inherent problems such as precursor contamination and uncontrolled chemical reactions. Especially when analyzing the behavior of ceria-based materials for applications like solid oxide fuel cells, a great control in the density and crystalline quality are desired. In order to achieve this, as a first step pure ceria thin films were synthesized using oxygen plasma assisted molecular beam epitaxy (OPA

  16. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  17. Designing a porous-crystalline structure of β-Ga2O3: a potential approach to tune its opto-electronic properties.

    Science.gov (United States)

    Banerjee, Swastika; Jiang, Xiangwei; Wang, Lin-Wang

    2018-04-04

    β-Ga2O3 has drawn recent attention as a state-of-the-art electronic material due to its stability, optical transparency and appealing performance in power devices. However, it has also found a wider range of opto-electronic applications including photocatalysis, especially in its porous form. For such applications, a lower band gap must be obtained and an electron-hole spatial separation would be beneficial. Like many other metal oxides (e.g. Al2O3), Ga2O3 can also form various types of porous structure. In the present study, we investigate how its optical and electronic properties can be changed in a particular porous structure with stoichiometrically balanced and extended vacancy channels. We apply a set of first principles computational methods to investigate the formation and the structural, dynamic, and opto-electronic properties. We find that such an extended vacancy channel is mechanically stable and has relatively low formation energy. We also find that this results in a spatial separation of the electron and hole, forming a long-lived charge transfer state that has desirable characteristics for a photocatalyst. In addition, the electronic band gap reduces to the vis-region unlike the transparency in the pure β-Ga2O3 crystal. Thus, our systematic study is promising for the application of such a porous structure of β-Ga2O3 as a versatile electronic material.

  18. Quantum dynamics in nanoscale magnets in dissipative environments

    NARCIS (Netherlands)

    Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.

    2000-01-01

    In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic

  19. The Nanoscale Observation of the Three-Dimensional Structures of Neurosynapses, Membranous Conjunctions Between Cultured Hippocampal Neurons and Their Significance in the Development of Epilepsy.

    Science.gov (United States)

    Sun, Lan; Jiang, Shuang; Tang, Xianhua; Zhang, Yingge; Qin, Luye; Jiang, Xia; Yu, Albert Cheung Hoi

    2016-12-01

    The nanoscale three-dimensional structures of neurosynapses are unknown, and the neuroanatomical basis of epilepsy remains to be elucidated. Here, we studied the nanoscale three-dimensional synapses between hippocampal neurons, and membranous conjunctions between neurons were found with atomic force microscopy (AFM) and confirmed by transmission electron microscope (TEM), and their pathophysiological significance was primarily investigated. The neurons and dendrites were marked by MAP-2, axons by neurofilament 200, and synapses by synapsin I immunological staining. In the synapsin I-positive neurite ends of the neurons positively stained with MAP-2 and neurofilament 200, neurosynapses with various nanoscale morphology and structure could be found by AFM. The neurosynapses had typical three-dimensional structures of synaptic triplet including the presynaptic neurite end, synaptic cleft of 30 ∼ 40 in chemical synapses and 2 ∼ 6 nm in electrical ones, the postsynaptic neurite or dendrite spine, the typical neurite end button, the distinct pre- and postsynaptic membranes, and the obvious thickening of the postsynaptic membranes or neurites. Some membranous connections including membrane-like junctions (MLJ) and fiber-tube links (FTL) without triplet structures and cleft were found between neurons. The development frequencies of the two membranous conjunctions increased while those of the synaptic conjunctions decreased between the neurons from Otx1 knock-out mice in comparison with those between the neurons from normal mice. These results suggested that the neuroanatomical basis of Otx1 knock-out epilepsy is the combination of the decreased synaptic conjunctions and the increased membranous conjunctions.

  20. Porous poly(vinyl alcohol)/sepiolite bone scaffolds: Preparation, structure and mechanical properties

    International Nuclear Information System (INIS)

    Killeen, Derek; Frydrych, Martin; Chen Biqiong

    2012-01-01

    Porous poly(vinyl alcohol) (PVA)/sepiolite nanocomposite scaffolds containing 0–10 wt.% sepiolite were prepared by freeze-drying and thermally crosslinked with poly(arylic acid). The microstructure of the obtained scaffolds was characterised by scanning electron microscopy and micro-computed tomography, which showed a ribbon and ladder like interconnected structure. The incorporation of sepiolite increased the mean pore size and porosity of the PVA scaffold as well as the degree of anisotropy due to its fibrous structure. The tensile strength, modulus and energy at break of the PVA solid material that constructed the scaffold were found to improve with additions of sepiolite by up to 104%, 331% and 22% for 6 wt.% clay. Such enhancements were attributed to the strong interactions between the PVA and sepiolite, the good dispersion of sepiolite nanofibres in the matrix and the intrinsic properties of the nanofibres. However, the tensile properties of the PVA scaffold deteriorated in the presence of sepiolite because of the higher porosity, pore size and degree of anisotropy. The PVA/sepiolite nanocomposite scaffold containing 6 wt.% sepiolite was characterised by an interconnected structure, a porosity of 89.5% and a mean pore size of 79 μm and exhibited a tensile strength of 0.44 MPa and modulus of 14.9 MPa, which demonstrates potential for this type of materials to be further developed as bone scaffolds. - Highlights: ► Novel PAA-crosslinked PVA/sepiolite nanocomposite scaffolds were prepared. ► They were highly porous with interconnected structures and exhibited good mechanical properties. ► The effects of sepiolite nanofibres on structure and properties of the scaffolds were investigated. ► Sepiolite nanofibres improved the mechanical properties of the solid material significantly.

  1. Fabrication of porous zirconia using filter paper template

    International Nuclear Information System (INIS)

    Deng Yuhua; Wei Pan

    2005-01-01

    In this work, porous zirconia ceramic was synthesized using filter papers as a template. Special attention is paid to whether the structural of the filter paper can be transferred to the zirconia structure. Microstructure of so synthesized porous zirconia was observed with SEM and the phase was determined by XRD. The surface area and the pore were investigated with an automatic volumetric sorption analyzer. It has been found that the morphology of the template transmit to the porous zirconia quite well. (orig.)

  2. Analysis of Porous Structure Parameters of Biomass Chars Versus Bituminous Coal and Lignite Carbonized at High Pressure and Temperature—A Chemometric Study

    Directory of Open Access Journals (Sweden)

    Adam Smoliński

    2017-09-01

    Full Text Available The characteristics of the porous structure of carbonized materials affect their physical properties, such as density or strength, their sorption capacity, and their reactivity in thermochemical processing, determining both their applicability as fuels or sorbents and their efficiency in various processes. The porous structure of chars is shaped by the combined effects of physical and chemical properties of a carbonaceous material and the operating parameters applied in the carbonization process. In the study presented, the experimental dataset covering parameters of various fuels, ranging from biomass through lignite to bituminous coal, and chars produced at 1273 K and under the pressure of 1, 2, 3, and 4 MPa was analyzed with the application of the advanced method of data exploration. The principal component analysis showed that the sample of the highest coal rank was characterized by lower values of parameters reflecting the development of the porous structure of chars. A negative correlation was also observed between the carbon content in a fuel and the evolution of the porous structure of chars at high pressure. The highest total pore volume of chars produced under 1 and 3 MPa and the highest micropore surface area under 3 MPa were reported for a carbonized fuel sample of the highest moisture content.

  3. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction.

    Science.gov (United States)

    Kim, Chang-Shik; Jung, Kyung-Hye; Kim, Hun; Kim, Chan-Bong; Kang, Inn-Kyu

    2016-01-01

    After tumor resection, bone reconstruction such as skull base reconstruction using interconnected porous structure is absolutely necessary. In this study, porous scaffolds for bone reconstruction were prepared using heat-pressing and salt-leaching methods. High-density polyethylene (HDPE) and poly(ethylene-co-acrylic acid) (PEAA) were chosen as the polymer composites for producing a porous scaffold of high mechanical strength and having high reactivity with biomaterials such as collagen, respectively. The porous structure was observed through surface images, and its intrusion volume and porosity were measured. Owing to the carboxylic acids on PEAA, collagen was successfully grafted onto the porous HDPE/PEAA scaffold, which was confirmed by FT-IR spectroscopy and electron spectroscopy for chemical analysis. Osteoblasts were cultured on the collagen-grafted porous scaffold, and their adhesion, proliferation, and differentiation were investigated. The high viability and growth of the osteoblasts suggest that the collagen-grafted porous HDPE/PEAA is a promising scaffold material for bone generation.

  4. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  5. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

    Science.gov (United States)

    Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.

    2015-07-01

    In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

  6. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.

    Science.gov (United States)

    Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio

    2018-01-23

    Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.

  7. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  8. Preparation and Enzymatic Degradation of Porous Crosslinked Polylactides of Biomass Origin

    Directory of Open Access Journals (Sweden)

    Yuya Kido

    2014-06-01

    Full Text Available To understand the enzymatic degradation behavior of crosslinked polylactide (PLA, the preparation and enzymatic degradation of both thermoplastic (linear and crosslinked PLAs that have pore structures with different dimensions were carried out. The porous structures of the linear PLA samples were of micro and nanoporous nature, and prepared by batch foaming with supercritical CO2 and compared with the porous structures of crosslinked PLA (Lait-X created by the salt leaching method. The surface and cross-sectional morphologies of the porous structures were investigated by using scanning electron microscopy. The morphological analysis of porous Lait-X showed a rapid loss of physical features within 120 h of exposure to proteinase-K enzymatic degradation at 37 °C. Due to the higher affinity for water, enhanced enzymatic activity as compared to the linear PLA porous structures in the micro and nanoporous range was observed.

  9. THE INFLUENCE OF BINDING MATERIAL ON POROUS STRUCTURE OF SHAPED HOPCALITE

    Directory of Open Access Journals (Sweden)

    N.K. Kulikov

    2008-06-01

    Full Text Available The authors have investigated the equilibrated adsorption of water vapors on GFG hopcalite, which was obtained using the extrusion shaping method, with bentonite clay as the binding compound. In the frames of the BET model, the values of the monolayer capacity and the size of medium area occupied by the water molecule in the filled monolayer have been determined. The distribution of pores according to their sizes has been evaluated. It has been established that the modification of the bentonitic clay allows directed construction of the hopcalite porous structure,i.e. the formation of the mesoporous structure with a narrow distribution of the pores capacities by sizes, which was achieved varying the sizes of binding compound particles.

  10. The formation and evolution of layered structures in porous media: effects of porosity and mechanical dispersion

    NARCIS (Netherlands)

    Schoofs, Stan; Trompert, Ron A.; Hansen, Ulrich

    1999-01-01

    Horizontally layered structures can develop in porous or partially molten environments, such as hydrothermal systems, magmatic intrusions and the early Earth's mantle. The porosity f of these natural environments is typically small. Since dissolved chemical elements unlike heat cannot diffuse

  11. Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties.

    Science.gov (United States)

    Simon, Cory M; Braun, Efrem; Carraro, Carlo; Smit, Berend

    2017-01-17

    Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes.

  12. The Effect of the Nanoscale Structure of Nanobioceramics on Their In Vitro Bioactivity and Cell Differentiation Properties

    Directory of Open Access Journals (Sweden)

    Cristian Covarrubias

    2015-01-01

    Full Text Available The effect of the nanoscale structure of bioceramics on their in vitro bioactivity and capacity to osteogenically differentiate stem cell is studied. Nanoparticles of hydroxyapatite (nHA, bioactive glass (nBG, nanoporous bioactive glass (MBG, and nanoporous bioactive glass nanospheres (nMBG are investigated. The nanometric particle size of bioceramics seems to be more determining in controlling the ability to induce bone-like apatite as compared to the nanoporous structure. At short incubation time, nBG also produces a bioactive extracellular medium capable of upregulating key osteogenic markers involved in the development of a mineralizing phenotype in DPSCs. The bioactive properties of nBG are promissory for accelerating the bone regeneration process in tissue engineering applications.

  13. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Bingjian [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); College of chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014 (China); Zhu, Qingzeng, E-mail: qzzhu@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); Yao, Linli [Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, 250012 Jinan (China); Hao, Jingcheng [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10{sup 3}:3.0 × 10{sup 4}. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  14. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    International Nuclear Information System (INIS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-01-01

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10 3 :3.0 × 10 4 . The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth

  15. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process

    Institute of Scientific and Technical Information of China (English)

    Tang Yehua; Fei Jianming; Cao Hongbin; Zhou Chunlan; Wang Wenjing; Zhou Su; Zhao Yan; Zhao Lei; Li Hailing; Yan Baojun; Chen Jingwei

    2012-01-01

    A silicon (Si) surface with a nanosized porous structure was formed via simple wet chemical etching catalyzed by gold (Au) nanoparticles on p-type Cz-Si (100).The average reflectivity from 300 to 1200 nm was less than 1.5%.Black Si solar cells were then fabricated using a conventional production process.The results reflected the output characteristics of the cells fabricated using different etching depths and emitter dopant profiles.Heavier dopants and shallower etching depths should be adopted to optimize the black Si solar cell output characteristics.The efficiency at the optimized etching time and dopant profile was 12.17%.However,surface passivation and electrode contact due to the nanosized porous surface structure are still obstacles to obtaining high conversion efficiency for the black Si solar cells.

  16. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors.

    Science.gov (United States)

    Kang, Kyeong-Nam; Kim, Ik-Hee; Ramadoss, Ananthakumar; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun

    2018-01-03

    An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH) 2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH) 2 /C/Cu exhibited a high specific capacitance of 1860 F g -1 at 1 A g -1 , and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg -1 and a power density of 37.0 kW kg -1 . These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.

  17. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo

    2016-02-08

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  18. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo; Abou-Hamad, Edy; Chen, Yin; Saih, Youssef; Liu, Weibing; Basset, Jean-Marie; Samal, Akshaya Kumar

    2016-01-01

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  19. Friction laws at the nanoscale.

    Science.gov (United States)

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  20. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  1. The chiral structure of porous chitin within the wing-scales of Callophrys rubi.

    Science.gov (United States)

    Schröder-Turk, G E; Wickham, S; Averdunk, H; Brink, F; Fitz Gerald, J D; Poladian, L; Large, M C J; Hyde, S T

    2011-05-01

    The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4₁32, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid-protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation

    Science.gov (United States)

    Calamur, Narasimhan; Carrera, Martin E.; Devlin, David J.; Archuleta, Tom

    2000-01-01

    The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.

  3. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting

    International Nuclear Information System (INIS)

    Liu, Y.J.; Wang, H.L.; Li, S.J.; Wang, S.G.; Wang, W.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Zhang, L.C.

    2017-01-01

    β-type titanium porous structure is a new class of solution for implant because it offers excellent combinations of high strength and low Young's modulus. This work investigated the influence of porosity variation in electron beam melting (EBM)-produced β-type Ti2448 alloy samples on the mechanical properties including super-elastic property, Young's modulus, compressive strength and fatigue properties. The relationship between the misorientation angle of adjacent grains and fatigue crack deflection behaviors was also observed. The super-elastic property is improved as the porosity of samples increases because of increasing tensile/compressive ratio. For the first time, the position of fatigue crack initiation is defined in stress-strain curves based on the variation of the fatigue cyclic loops. The unique manufacturing process of EBM results in the generation of different sizes of grains, and the apparent fatigue crack deflection occurs at the grain boundaries in the columnar grain zone due to substantial misorientation between adjacent grains. Compared with Ti-6Al-4V samples, the Ti2448 porous samples exhibit a higher normalized fatigue strength owing to super-elastic property, greater plastic zone ahead of the fatigue crack tip and the crack deflection behavior. - Highlights: • The super-elastic property is improved with increasing porosity of Ti2448 porous samples. • The position of fatigue crack initiation on the strain curve is defined. • The unique EBM-produced microstructure leads to apparent fatigue crack deflection occurring at columnar grain boundary. • Ti2448 porous samples display only half of the Young's modulus of Ti-6Al-4V porous samples at same fatigue strength level.

  4. Brillouin gain enhancement in nano-scale photonic waveguide

    Science.gov (United States)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  5. Surface wave photonic device based on porous silicon multilayers

    International Nuclear Information System (INIS)

    Guillermain, E.; Lysenko, V.; Benyattou, T.

    2006-01-01

    Porous silicon is widely studied in the field of photonics due to its interesting optical properties. In this work, we present theoretical and first experimental studies of a new kind of porous silicon photonic device based on optical surface wave. A theoretical analysis of the device is presented using plane-wave approximation. The porous silicon multilayered structures are realized using electrochemical etching of p + -type silicon. Morphological and optical characterizations of the realized structures are reported

  6. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  7. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  8. Dual-energy X-ray absorptiometry for the simultaneous determination of Density and Moisture Content in Porous Structural Materials

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Jensen, Signe Kamp; Gerward, Leif

    1999-01-01

    The paper describes the dual-energy x-ray equipment, which consists of a x-ray source, filters and a detector. The x-ray beam can be moved automatically in two dimensions relative to a fixed specimen. The purpose of the equipment is to measure simultaneously the density and moisture content...... in porous materials relevant for the building industry. The theory of dual-energy x-ray absorptiometry (DEXA) is presented. DEXA results on two combinations of aluminium and acrylic plastic are compared with corresponding values calculated from the geometry of the experimental setup. The results from the x......-ray measurements show good agreement with results from the two standard materials which imitate water in a porous material. On this background the dual-energy x-ray absorptiometry measurement principle can be used on porous structural materials....

  9. UV photooxidation induced structural and photoluminescence behaviors in vapor-etching based porous silicon

    International Nuclear Information System (INIS)

    Aouida, S.; Saadoun, M.; Ben Saad, K.; Bessais, B.

    2006-01-01

    In this paper, we investigate the effect of UV irradiation on Vapor-Etching (VE) based Porous Silicon (PS) structure and luminescence under controlled atmosphere (N 2 , air, O 2 ). The oxidation evolution is monitored by Fourier transform infrared (FTIR) spectroscopy. FTIR measurements show that the SiH x bond, initially present in the freshly prepared PS layers, decreased progressively with UV irradiation time until they completely disappear. We found that this treatment accelerates the oxidation process. SiO x structures appear and gradually become dominant as regard to the SiH x species, while UV irradiation is in progress. Generally, the photoluminescence (PL) intensity of the PS layer decreases instantaneously at the starting by the UV excitation and stabilizes after a period depending on the ambient gas and the specific surface area of the porous structure. Further UV exposure leads to a linear decrease of the PL intensity due to change of surface passivation from SiH x to O y SiH x . After less than 100 min of UV irradiation, the PL intensity exhibits an exponential decay. UV exposure in air and O 2 leads approximately to the same PL behavior, although faster PL intensity decrease was observed under O 2 -rich ambient. This was explained as being due to intense hydrogen desorption in presence of oxygen. Correlations of PL results with FTIR measurements show that surface passivation determine the electronic states of silicon nano-crystallites and influence the photoluminescence efficiency

  10. Structural control in the synthesis of inorganic porous materials

    Science.gov (United States)

    Holland, Brian Thomas

    Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals

  11. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    International Nuclear Information System (INIS)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-01-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures

  12. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Wauthle, Ruben, E-mail: ruben.wauthle@3dsystems.com [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Ahmadi, Seyed Mohammad; Amin Yavari, Saber [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Mulier, Michiel [KU Leuven, Department of Orthopaedics, Weligerveld 1, 3212 Pellenberg (Belgium); Zadpoor, Amir Abbas [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Weinans, Harrie [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Department of Orthopedics & department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Van Humbeeck, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); Kruth, Jean-Pierre [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); Schrooten, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, PB 813, O& N1, Herestraat 49, 3000 Leuven (Belgium)

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures.

  13. Pore-Fractal Structure in Porous Carbons Made from Corn and Wheat

    Science.gov (United States)

    Kapoor, Y. M.; Schmidt, P. W.; Rice, Randall D.; Shulse, Laural; Voss, D. J.; Venkatraman, A.; Fan, L. T.; Walawender, W. P.; Rieker, T. P.

    1998-03-01

    Small-angle X-ray scattering has been used in a study of the pore structure of some porous and activated carbons on length scales between about 5 and 10^4 ÅThe carbons were obtained by pyrolysis and activation of wheat and American corn (maize). The scattering data showed that in each carbon there are at least two of the following four types of pores: (1) pores with diameters of at least 10^4 Åpores with smooth or fractal surfaces and diameters of at least 5 x 10^3 Åpore-fractals with diameters of no more than about 10^3 Åand (4) pores with diameters no larger than 100 ÅThe relation between the pore structure and the procedure used to obtain the carbon and will be discussed.

  14. Large-scale model of flow in heterogeneous and hierarchical porous media

    Science.gov (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  15. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  16. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  17. Formation of a stable, three-dimensional porous structure with self-assembled glass spheres using the plasma-induced electromeniscus phenomenon

    International Nuclear Information System (INIS)

    Matsuura, Hiroshi; Tanikawa, Tamio; Ando, Yasuhisa; Miyake, Koji; Sasaki, Shinya

    2006-01-01

    We develop a method for fabricating a stable, three-dimensional porous structure with self-assembled glass spheres. This three-dimensional (3D) self-assembly of glass spheres is achieved using the electromeniscus phenomenon, which is associated with a microscale solution current. The current encloses a group of glass spheres, carries the spheres, and assembles them three dimensionally with its surface tension at the desired site. The assembled glass spheres are fixed using a plasma-induced reaction combined with thermal treatment of the solution. These assembled microscale spheres create a large number of openings with extensive surface areas. This extensive area among 3D porous structures would be particularly useful for fabricating high-performance catalysts and high-resolution hydrogen sensors

  18. Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale

    KAUST Repository

    Kumar, Naresh

    2017-01-12

    Novel optoelectronic devices rely on complex nanomaterial systems where the nanoscale morphology and local chemical composition are critical to performance. However, the lack of analytical techniques that can directly probe these structure-property relationships at the nanoscale presents a major obstacle to device development. In this work, we present a novel method for non-destructive, simultaneous mapping of the morphology, chemical composition and photoelectrical properties with <20 nm spatial resolution by combining plasmonic optical signal enhancement with electrical-mode scanning probe microscopy. We demonstrate that this combined approach offers subsurface sensitivity that can be exploited to provide molecular information with a nanoscale resolution in all three spatial dimensions. By applying the technique to an organic solar cell device, we show that the inferred surface and subsurface composition distribution correlates strongly with the local photocurrent generation and explains macroscopic device performance. For instance, the direct measurement of fullerene phase purity can distinguish between high purity aggregates that lead to poor performance and lower purity aggregates (fullerene intercalated with polymer) that result in strong photocurrent generation and collection. We show that the reliable determination of the structure-property relationship at the nanoscale can remove ambiguity from macroscopic device data and support the identification of the best routes for device optimisation. The multi-parameter measurement approach demonstrated herein is expected to play a significant role in guiding the rational design of nanomaterial-based optoelectronic devices, by opening a new realm of possibilities for advanced investigation via the combination of nanoscale optical spectroscopy with a whole range of scanning probe microscopy modes.

  19. Synthesis and characterization of porous microspheres bearing pyrrolidone units

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewska, M., E-mail: mmacieje@umcs.pl; Kołodyńska, D.

    2015-01-15

    Porous microspheres of glycydyl methacrylate (GMA) cross-linked with trimethylolpropane trimethacrylate (TRIM) were prepared with toluene as porogen by suspension-emulsion polymerization. With increasing molar ratio of the functional monomer to cross-linker, the epoxy group content increases significantly whereas the parameters of porous structure (specific surface area and total pore volume) decreases. In order to obtain adsorbents bearing functional groups the porous methacrylate network was modified by subsequent reaction with pyrrolidone. The materials were studied using elemental analysis, infrared spectroscopy, atomic force microscopy (AFM), attenuated total reflection (ATR) spectroscopy, Raman spectroscopy, thermal gravimetry. Additionally, polymers sorption capacity towards Cu(II) was investigated. - Highlights: • Porous microspheres with reactive epoxy group were synthesized. • Highly developed porous structure was created. • Pyrrolidone units were incorporated during ring–opening reaction. • Polymers sorption capacity towards Cu (II) was investigated.

  20. Development of Nanoscale Graphitic Devices and The Transport Characterization

    International Nuclear Information System (INIS)

    Gunasekaran, Venugopal

    2011-02-01

    This dissertation describes the development of graphitic based nanoscale devices with its fabrication and transport characterization results. It covers graphite nano-scale stacked-junctions fabricated using focused ion beam (FIB) 3-D etching technique, a single layer graphite layer (graphene) preparation and its electrical transport characterization results and the synthesis and investigation of electrical transport behavior of graphene oxide based thin film devices. The first chapter describes the basic information about the carbon family in detail in which the electronic properties and structure of graphite, graphene and graphene oxide are discussed. In addition, the necessity of developing nanoscale graphitic devices is given. The second chapter explains the experimental techniques used in this research for fabricating nanoscale devices which includes focused ion beam 3-D fabrication procedures, mechanical exfoliation technique and photolithographic methods. In third chapter, we have reported the results on temperature dependence of graphite planar-type structures fabricated along ab-plane. In the fourth and fifth chapters, the fabrication and electrical transport characteristics of large in-plane area graphite planar-type structures (fabricated along ab-plane and c-axis) were discussed and their transport anisotropy properties were investigated briefly. In the sixth chapter, we focused the fabrication of the submicron sized graphite stacked junctions and their electrical transport characterization studies. In which, FIB was used to fabricated the submicron junctions with various in-plane area (with same stack height) are and their transport characteristics were compared. The seventh chapter reports investigation of electrical transport results of nanoscale graphite stacked-junctions in which the temperature dependent transport (R-T) studies, current-voltage measurements for the various in-plane areas and for various stack height samples were analyzed. The

  1. In Vitro Corrosion Assessment of Additively Manufactured Porous NiTi Structures for Bone Fixation Applications

    Directory of Open Access Journals (Sweden)

    Hamdy Ibrahim

    2018-03-01

    Full Text Available NiTi alloys possess distinct functional properties (i.e., shape memory effect and superelasticity and biocompatibility, making them appealing for bone fixation applications. Additive manufacturing offers an alternative method for fabricating NiTi parts, which are known to be very difficult to machine using conventional manufacturing methods. However, poor surface quality, and the presence of impurities and defects, are some of the major concerns associated with NiTi structures manufactured using additive manufacturing. The aim of this study is to assess the in vitro corrosion properties of additively manufactured NiTi structures. NiTi samples (bulk and porous were produced using selective laser melting (SLM, and their electrochemical corrosion characteristics and Ni ion release levels were measured and compared with conventionally fabricated NiTi parts. The additively manufactured NiTi structures were found to have electrochemical corrosion characteristics similar to those found for the conventionally fabricated NiTi alloy samples. The highest Ni ion release level was found in the case of 50% porous structures, which can be attributed to their significantly higher exposed surface area. However, the Ni ion release levels reported in this work for all the fabricated structures remain within the range of most of values for conventionally fabricated NiTi alloys reported in the literature. The results of this study suggest that the proposed SLM fabrication process does not result in a significant deterioration in the corrosion resistance of NiTi parts, making them suitable for bone fixation applications.

  2. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    Science.gov (United States)

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.

  3. Formation and properties of porous silicon layers

    International Nuclear Information System (INIS)

    Vitanov, P.; Kamenova, M.; Dimova-Malinovska, D.

    1993-01-01

    Preparation, properties and application of porous silicon films are investigated. Porous silicon structures were formed by an electrochemical etching process resulting in selective dissolution of the silicon substrate. The silicon wafers used with a resistivity of 5-10Ω.cm were doped with B to concentrations 6x10 18 -1x10 19 Ω.cm -3 in the temperature region 950 o C-1050 o C. The density of each porous films was determined from the weight loss during the anodization and it depends on the surface resistivity of the Si wafer. The density decreases with decreasing of the surface resistivity. The surface of the porous silicon layers was studied by X-ray photoelectron spectroscopy which indicates the presence of SiF 4 . The kinetic dependence of the anode potential and the porous layer thickness on the time of anodization in a galvanostatic regime for the electrolytes with various HF concentration were studied. In order to compare the properties of the resulting porous layers and to establish the dependence of the porosity on the electrolyte, three types of electrolytes were used: concentrated HF, diluted HF:H 2 O=1:1 and ethanol-hydrofluoric solutions HF:C 2 H 5 OH:H 2 O=2:1:1. High quality uniform and reproducible layers were formed using aqueous-ethanol-hydrofluoric electrolyte. Both Kikuchi's line and ring patterns were observed by TEM. The porous silicon layer was single crystal with the same orientation as the substrate. The surface shows a polycrystalline structure only. The porous silicon layers exhibit visible photoluminescence (PL) at room temperature under 480 nm Ar + laser line excitation. The peak of PL was observed at about 730 nm with FWHM about 90 nm. Photodiodes was made with a W-porous silicon junction. The current voltage and capacity voltage characteristics were similar to those of an isotype heterojunction diode. (orig.)

  4. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  5. Refractive index contrast in porous silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nava, R.; Mora, M.B. de la; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Rio, J.A. del [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Centro Morelense de Innovacion y Transferencia Tecnologica, Consejo de Ciencia y Tecnologia del Estado de Morelos (Mexico)

    2009-07-15

    Two of the most important properties of a porous silicon multilayer for photonic applications are flat interfaces and a relative large refractive index contrast between layers in the optical wavelength range. In this work, we studied the effect of the current density and HF electrolyte concentration on the refractive index of porous silicon. With the purpose of increasing the refractive index contrast in a multilayer, the refractive index of porous silicon produced at low current was studied in detail. The current density applied to produce the low porosity layers was limited in order to keep the electrolyte flow through the multilayer structure and to avoid deformation of layer interfaces. We found that an electrolyte composed of hydrofluoric acid, ethanol and glycerin in a ratio of 3:7:1 gives a refractive index contrast around 1.3/2.8 at 600 nm. Several multilayer structures with this refractive index contrast were fabricated, such as dielectric Bragg mirrors and microcavities. Reflectance spectra of the structures show the photonic quality of porous silicon multilayers produced under these electrochemical conditions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  7. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  8. Broadband photosensor with a tunable frequency range, built on the basis of nanoscale carbon structure with field localization

    Science.gov (United States)

    Yakunin, Alexander N.; Akchurin, Garif G.; Aban'shin, Nikolay P.; Gorfinkel, Boris I.

    2014-03-01

    The work is devoted to the development of a new direction in creating of broadband photo sensors which distinctive feature is the possibility of dynamic adjustment of operating frequency range. The author's results of study of red threshold control of classic photoelectric effect were the basis for the work implementation. This effect was predicted theoretically and observed experimentally during irradiation of nanoscale carbon structure of planar-edge type by stream of low-energy photons. The variation of the accelerating voltage within a small range allows you to change photoelectric threshold for carbon in a wide range - from UV to IR. This is the consequence of the localization of electrostatic field at tip of the blade planar structure and of changes in the conditions of non-equilibrium electrons tunneling from the boundary surface of the cathode into the vacuum. The generation of nonequilibrium electrons in the carbon film thickness of 20 nm has a high speed which provides high performance of photodetector. The features of the use of nanoscale carbon structure photocurrent registration as in the prethreshold regime, and in the mode of field emission existence are discussed. The results of simulation and experimental examination of photosensor samples are given. It is shown that the observed effect is a single-photon tunneling. This in combination with the possibility of highspeed dynamic tuning determines the good perspectives for creation of new devices working in the mode of select multiple operating spectral bands for the signal recording. The architecture of such devices is expected to be significantly simpler than the conventional ones, based on the use of tunable filters.

  9. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  10. Charge transport in nanoscale vertical organic semiconductor pillar devices

    NARCIS (Netherlands)

    Wilbers, J.G.E.; Xu, B.; Bobbert, P.A.; de Jong, M.P.; van der Wiel, W.G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust

  11. Poly-benzyl domains grown on porous silicon and their I-V rectification

    International Nuclear Information System (INIS)

    Chao Jie; Han Huanmei; Xia Bing; Ba Long; Liu Hongbo; Xiao Shoujun

    2007-01-01

    Microwave-irradiated polymerization of benzyl chloride and triphenyl chloromethane on hydride-terminated porous silicon (PS) was achieved through the use of Zn powder as a catalyst. Transmission infrared Fourier-transform spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the poly-benzyl membranes grafted on PS. Topographical images by AFM revealed crystal-like domains rather than homogenous monolayers on the surface. The current-voltage measurements in nano-scale by current sensing atomic force microscopy (CS-AFM) showed the rectification behavior of this polymer membrane. Finally, mechanism of a radical initiation on the surface and a following Friedel-Crafts alkylation was proposed for the covalent assembly of poly-benzyl domains

  12. Rationally designed porous silicon as platform for optical biosensors

    International Nuclear Information System (INIS)

    Priano, G.; Acquaroli, L.N.; Lasave, L.C.; Battaglini, F.; Arce, R.D.; Koropecki, R.R.

    2012-01-01

    Optical porous silicon multilayer structures are able to work as sensitive chemical sensors or biosensors based in their optical response. An algorithm to simulate the optical response of these multilayers was developed, considering the optical properties of the individual layers. The algorithm allows designing and customizing the porous silicon structures according to a given application. The results obtained by the simulation were experimentally verified; for this purpose different photonic structures were prepared, such as Bragg reflectors and microcavities. Some of these structures have been derivatized by the introduction of aminosilane groups on the porous silicon surface. The algorithm also permits to simulate the effects produced by a non uniform derivatization of the multilayer. - Highlights: ► Mesoporous silicon structure ► Functionalization of mesoporous silicon as sensors ► Design of the one-dimensional photonic crystal ► Simulation of non-uniformity in covering the sensor structure

  13. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  14. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study

    Science.gov (United States)

    Yang, Fei; Chen, Chen; Zhou, Qianrong; Gong, Yiming; Li, Ruixue; Li, Chichi; Klämpfl, Florian; Freund, Sebastian; Wu, Xingwen; Sun, Yang; Li, Xiang; Schmidt, Michael; Ma, Duan; Yu, Youcheng

    2017-03-01

    Fabricating Ti alloy based dental implants with defined porous scaffold structure is a promising strategy for improving the osteoinduction of implants. In this study, we use Laser Beam Melting (LBM) 3D printing technique to fabricate porous Ti6Al4V dental implant prototypes with three controlled pore sizes (200, 350 and 500 μm). The mechanical stress distribution in the surrounding bone tissue is characterized by photoelastography and associated finite element simulation. For in-vitro studies, experiments on implants’ biocompatibility and osteogenic capability are conducted to evaluate the cellular response correlated to the porous structure. As the preliminary results, porous structured implants show a lower stress-shielding to the surrounding bone at the implant neck and a more densed distribution at the bottom site compared to the reference implant. From the cell proliferation tests and the immunofluorescence images, 350 and 500 μm pore sized implants demonstrate a better biocompatibility in terms of cell growth, migration and adhesion. Osteogenic genes expression of the 350 μm group is significantly increased alone with the ALP activity test. All these suggest that a pore size of 350 μm provides an optimal provides an optimal potential for improving the mechanical shielding to the surrounding bones and osteoinduction of the implant itself.

  15. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin

    Energy Technology Data Exchange (ETDEWEB)

    Xie Xinhui; Wang Xinluan; Zhang Ge; He Yixin; Liu Zhong; Peng Jiang; Qin Ling [Department of Orthopaedics and Traumatology, Chinese University of Hong Kong (Hong Kong); Wang Xiaohong; He Kai [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing (China); Leng Yang, E-mail: lingqin@cuhk.edu.h [Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-10-01

    Phytomolecules may chemically bind to scaffold materials for medical applications. The present study used an osteoconductive porous poly(l-lactide-co-glycolide)/tricalcium phosphate (PLGA/TCP) to incorporate an exogenous phytoestrogenic molecule icaritin to form a PLGA/TCP/icaritin composite scaffold material with potential slow release of icaritin during scaffold degradation. Accordingly, the present study was designed to investigate its in vitro degradation characteristics and the release pattern of icaritin at three different doses (74 mg, 7.4 mg and 0.74 mg per 100 g PLGA/TCP, i.e. in the PLGA/TCP/icaritin-H, -M and -L groups, respectively). A PLGA/TCP/icaritin porous composite scaffold was fabricated using a computer-controlled printing machine. The PLGA/TCP/icaritin scaffolds were incubated in saline at 37 {sup 0}C for 12 weeks and the pure PLGA/TCP scaffold served as a control. During the 12 weeks in vitro degradation, the scaffolds in all four groups showed changes, including a decrease in weight, volume and pore size of the composite scaffold, while there was a decrease in acidity and an increase in Ca and lactic acid concentrations in the degradation medium, especially after 7 weeks. The rate of degradation was explained by the relationship with the content of icaritin incorporated into the scaffolds. The higher the icaritin content in the scaffolds, the slower the degradation could be observed during 12 weeks. After 12 weeks, the SEM showed that the surface of the PLGA/TCP and PLGA/TCP/icaritin-L groups was relatively smooth with a gradual decrease in number and size of the micropores, while the porous morphology on the surface of the PLGA/TCP/icaritin-M and PLGA/TCP/icaritin-H groups was partly maintained, accompanied by a decrease in phosphate (P) and calcium (Ca) contents at the surface. Though the mechanical property of the PLGA/TCP/icaritin scaffold decreased after degradation, its porous structure was maintained, which was essential for cell

  16. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    Science.gov (United States)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)

    Science.gov (United States)

    Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim

    2017-02-01

    Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.

  18. Nanoscale synthesis and characterization of graphene-based objects

    Directory of Open Access Journals (Sweden)

    Daisuke Fujita

    2011-01-01

    Full Text Available Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and resulted in the directional growth of nanowires. Surface analysis by scanning tunneling microscopy (STM has clarified the structure and functionality of the novel nano-objects at atomic resolution. Nanobelts were detected consisting of bilayer graphene sheets with a nanoscale width and a length of several microns. Moiré patterns and one-dimensional reconstruction were observed on multilayer graphite terraces. As a useful functionality, application to repairable high-resolution STM probes is demonstrated.

  19. Tritium transport in lithium ceramics porous media

    International Nuclear Information System (INIS)

    Tam, S.W.; Ambrose, V.

    1991-01-01

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs

  20. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    Science.gov (United States)

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  1. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  2. Rationally designed porous silicon as platform for optical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Priano, G. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Acquaroli, L.N.; Lasave, L.C. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Battaglini, F. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Arce, R.D., E-mail: rarce@intec.unl.edu.ar [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina); Koropecki, R.R. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina)

    2012-08-01

    Optical porous silicon multilayer structures are able to work as sensitive chemical sensors or biosensors based in their optical response. An algorithm to simulate the optical response of these multilayers was developed, considering the optical properties of the individual layers. The algorithm allows designing and customizing the porous silicon structures according to a given application. The results obtained by the simulation were experimentally verified; for this purpose different photonic structures were prepared, such as Bragg reflectors and microcavities. Some of these structures have been derivatized by the introduction of aminosilane groups on the porous silicon surface. The algorithm also permits to simulate the effects produced by a non uniform derivatization of the multilayer. - Highlights: Black-Right-Pointing-Pointer Mesoporous silicon structure Black-Right-Pointing-Pointer Functionalization of mesoporous silicon as sensors Black-Right-Pointing-Pointer Design of the one-dimensional photonic crystal Black-Right-Pointing-Pointer Simulation of non-uniformity in covering the sensor structure.

  3. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin

    Science.gov (United States)

    Sivakumar, P.; Priyatharshni, S.; Nagashanmugam, K. B.; Thanigaivelan, A.; Kumar, K.

    2017-08-01

    In recent years nanoscale metal-organic frameworks (NMOFs) are contributing as an effective material for use in drug delivery and imaging applications due to their porous surfaces and easy surface modifications. In this work, Fe-MIL-88B-NH2 NMOFs were successfully synthesized on facile hydrothermal route and 2-aminoterephthalic acid (NH2-BDC) was employed as a bridging ligand to activate amine functional groups on the surface. Amine functional groups not only serve as a structure stabilizing agent but also enhance the loading efficiency of the doxorubicin (DOX) anticancer drug. A pH responsive DOX release was realized by introducing a positively charged chitosan (Chi) capping layer. Upon Chi-coating, cleavage was observed in the Fe-MIL-88B-NH2 structure at acidic pH, while gel-like insoluble structure was formed at basic pH. By utilizing this phenomenon, a pH responsive DOX release system was developed by using Chi capped Fe-MIL-88B-NH2 NMOFs under the designed pH (4.0-8.0). The results suggest the Chi capped Fe-MIL-88B-NH2 can be a promising candidate for future pH responsive drug delivery systems.

  4. Patterning high explosives at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Nafday, Omkar A.; Pitchimani, Rajasekar; Weeks, Brandon L. [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Haaheim, Jason [NanoInk Inc., 8025 Lamon Ave., Skokie, IL 60077 (United States)

    2006-10-15

    For the first time, we have shown that spin coating and Dip pen nanolithography (DPN trademark) are simple methods of preparing energetic materials such as PETN and HMX on the nanoscale, requiring no heating of the energetic material. Nanoscale patterning has been demonstrated by the DPN method while continuous thin films were produced using the spin coating method. Results are presented for preparing continuous PETN thin films of nanometer thickness by the spin coating method and for controlling the architecture of arbitrary nanoscale patterns of PETN and HMX by the DPN method. These methods are simple for patterning energetic materials and can be extended beyond PETN and HMX, opening the door for fundamental studies at the nanoscale. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Structurally Stable Attractive Nanoscale Emulsions with Dipole-Dipole Interaction-Driven Interdrop Percolation.

    Science.gov (United States)

    Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong

    2017-03-28

    This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol).

    Science.gov (United States)

    Teng, Jian; Yang, Biao; Zhang, Liang-Qing; Lin, Sheng-Qiang; Xu, Ling; Zhong, Gan-Ji; Tang, Jian-Hua; Li, Zhong-Ming

    2018-01-01

    The ultra-high mechanical, biocompatible and biodegradable porous regenerated cellulose/poly(ethylene glycol) (RC/PEG) composites with double network structure were fabricated via an simple method to dissolve cellulose followed by UV irradiation. The porous structure of RC/PEG was sensitively altered by PEG contents, which led to the porous structure morphology transition from 3D fibrillar network to close-grained sheet-like-network with the loading of cross-linked PEG. The porous RC/PEG showed excellent mechanical properties, i.e., the compressive strength can reach 33 times higher than that of neat RC (0.07MPa) at the compressive strain of 30%. Porous RC/PEG also displayed outstanding properties with openly porous structure and structural stabilization. Besides, porous RC/PEG exhibited good water absorbency, which the water absorbency ratio at equilibrium state was 83% higher than that of porous RC. This work provides an environmentally friendly and simple pathway to prepare non-toxic and biocompatible porous regenerated cellulose-based composites with high strength, structural stabilization and good water absorbency, which could be useful for packaging, biomedical applications, sewage purification, etc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Study of double porous silicon surfaces for enhancement of silicon solar cell performance

    Science.gov (United States)

    Razali, N. S. M.; Rahim, A. F. A.; Radzali, R.; Mahmood, A.

    2017-09-01

    In this work, design and simulation of double porous silicon surfaces for enhancement of silicon solar cell is carried out. Both single and double porous structures are constructed by using TCAD ATHENA and TCAD DEVEDIT tools of the SILVACO software respectively. After the structures were created, I-V characteristics and spectral response of the solar cell were extracted using ATLAS device simulator. Finally, the performance of the simulated double porous solar cell is compared with the performance of both single porous and bulk-Si solar cell. The results showed that double porous silicon solar cell exhibited 1.8% efficiency compared to 1.3% and 1.2% for single porous silicon and bulk-Si solar cell.

  8. The structural properties of flower-like ZnO nanostructures on porous silicon

    Science.gov (United States)

    Eswar, Kevin Alvin; Suhaimi, Mohd Husairi Fadzillah; Guliling, Muliyadi; Mohamad, Maryam; Khusaimi, Zuraida; Rusop, M.; Abdullah, Saifollah

    2018-05-01

    The flower-like zinc oxide (ZnO) were successfully synthesized on porous silicon (PSi) via hydrothermal method. The characteristic of ZnO nanostructures was investigated using field emission scanning microscopy (FESEM) and X-ray diffraction (X-Ray). The FESEM images show the flower-like ZnO nanostructures composed ZnO nanoparticles. The X-ray diffraction shows that strong intensity of (100), (002) and (101) peaks. The structural analysis revealed that the peaks angles were shifted due to the stress or imperfection of the crystalline of ZnO nanostructures. The crystalline sizes in range of 42.60 to 54.09 nm were produced.

  9. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...

  10. PDMS-SiO{sub 2}-TiO{sub 2}-CaO hybrid materials – Cytocompatibility and nanoscale surface features

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S.; Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Fernandes, M. Helena Vaz [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-07-01

    Two PDMS-SiO{sub 2}-TiO{sub 2}-CaO porous hybrid materials were prepared using the same base composition, precursors, and solvents, but following two different sol-gel procedures, based on the authors' previous works where for the first time, in this hybrid system, calcium acetate was used as calcium source. The two different procedures resulted in monolithic materials with different structures, microstructures, and surface wettability. Even though both are highly hydrophobic (contact angles of 127.2° and 150.6°), and present different filling regimes due to different surface topographies, they have demonstrated to be cytocompatible when tested with human osteoblastic cells, against the accepted idea that high-hydrophobic surfaces are not suitable to cell adhesion and proliferation. At the nanoscale, the existence of hydrophilic silica domains containing calcium, where water molecules are physisorbed, is assumed to support this capability, as discussed. - Highlights: • Two hybrid materials were prepared following two different sol-gel procedures. • Both are highly hydrophobic but demonstrated to be cytocompatible. • Different filling regimes were observed.

  11. Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Phaechamud, Thawatchai, E-mail: tphaechamud011@yahoo.com; Chitrattha, Sasiprapa, E-mail: sasi_toey@hotmail.com

    2016-04-01

    Porous PLA structure has been widely used in cell transplantation, drug carrier and wound dressing. The porous structure can be controlled depending on the choice of the polymer, solvent, nonsolvent and preparation parameters. In this study, the porous PLA matrix membranes were prepared by adding PEG 400 in PLA solution using dichloromethane (DCM) as solvent prior to casting. The influence of other liquids as co-solvent on pore formation and the structural change during membrane formation were evaluated. The co-solvents affected both porous topography and mechanical properties of PLA membrane. The porous matrix were produced when the non-solvent of PLA was used as co-solvent. Cryo-SEM micrographs revealed that PEG 400 still remained in the PLA porous matrix membrane. From the tracking of the structural change during film formation, the PLA–PEG solution changed into porous structure by liquid liquid phase separation and solidification processes, respectively. Thermogravimetric analysis revealed that PLA–PEG in DCM solution exhibited the two-step of weight loss, the first step occurred from DCM evaporation and the second step occurred from the degradation of PLA–PEG matrix. The liquid–liquid phase separation and solidification started when the amount of DCM was higher than PEG 400 for 2.67 folds and DCM amount was equal to that of PEG 400, respectively. These results could clarify the pore formation mechanism of porous PLA membrane and will be useful for the further investigation and application. - Highlights: • Pore formation mechanism of PLA matrix membrane inducing by PEG 400 addition was investigated. • Cryo-scanning electron microscopy revealed the embedded PEG 400 in matrix membrane. • Tracking of structural change during membrane formation with stereomicroscope and thermogravimetric analysis could explain the pore formation mechanism. • Liquid-liquid phase separation of PLA-PEG 400 solution started when the amount of dichloromethane remained 2

  12. Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane

    International Nuclear Information System (INIS)

    Phaechamud, Thawatchai; Chitrattha, Sasiprapa

    2016-01-01

    Porous PLA structure has been widely used in cell transplantation, drug carrier and wound dressing. The porous structure can be controlled depending on the choice of the polymer, solvent, nonsolvent and preparation parameters. In this study, the porous PLA matrix membranes were prepared by adding PEG 400 in PLA solution using dichloromethane (DCM) as solvent prior to casting. The influence of other liquids as co-solvent on pore formation and the structural change during membrane formation were evaluated. The co-solvents affected both porous topography and mechanical properties of PLA membrane. The porous matrix were produced when the non-solvent of PLA was used as co-solvent. Cryo-SEM micrographs revealed that PEG 400 still remained in the PLA porous matrix membrane. From the tracking of the structural change during film formation, the PLA–PEG solution changed into porous structure by liquid liquid phase separation and solidification processes, respectively. Thermogravimetric analysis revealed that PLA–PEG in DCM solution exhibited the two-step of weight loss, the first step occurred from DCM evaporation and the second step occurred from the degradation of PLA–PEG matrix. The liquid–liquid phase separation and solidification started when the amount of DCM was higher than PEG 400 for 2.67 folds and DCM amount was equal to that of PEG 400, respectively. These results could clarify the pore formation mechanism of porous PLA membrane and will be useful for the further investigation and application. - Highlights: • Pore formation mechanism of PLA matrix membrane inducing by PEG 400 addition was investigated. • Cryo-scanning electron microscopy revealed the embedded PEG 400 in matrix membrane. • Tracking of structural change during membrane formation with stereomicroscope and thermogravimetric analysis could explain the pore formation mechanism. • Liquid-liquid phase separation of PLA-PEG 400 solution started when the amount of dichloromethane remained 2

  13. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2

    International Nuclear Information System (INIS)

    Patridge, Christopher J.; Love, Corey T.; Swider-Lyons, Karen E.; Twigg, Mark E.; Ramaker, David E.

    2013-01-01

    The local structure of nanoscale (∼10–40 nm) LiCoO 2 is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO 2 nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO 2 metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO 2 as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO 2 . - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO 2 to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO 2 . • Surface structural changes are emphasized using nanoscale-LiCoO 2 and difference spectra. • Full multiple scattering calculations are used to

  14. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed; Najar, Adel; Ng, Tien Khee; Ooi, Boon S.

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation

  15. Manufacturing at Nanoscale: Top-Down, Bottom-up and System Engineering

    International Nuclear Information System (INIS)

    Zhang Xiang; Sun Cheng; Fang, Nicholas

    2004-01-01

    The current nano-technology revolution is facing several major challenges: to manufacture nanodevices below 20 nm, to fabricate three-dimensional complex nano-structures, and to heterogeneously integrate multiple functionalities. To tackle these grand challenges, the Center for Scalable and Integrated NAno-Manufacturing (SINAM), a NSF Nanoscale Science and Engineering Center, set its goal to establish a new manufacturing paradigm that integrates an array of new nano-manufacturing technologies, including the plasmonic imaging lithography and ultramolding imprint lithography aiming toward critical resolution of 1-10 nm and the hybrid top-down and bottom-up technologies to achieve massively parallel integration of heterogeneous nanoscale components into higher-order structures and devices. Furthermore, SINAM will develop system engineering strategies to scale-up the nano-manufacturing technologies. SINAMs integrated research and education platform will shed light to a broad range of potential applications in computing, telecommunication, photonics, biotechnology, health care, and national security

  16. Structural analysis of anodic porous alumina used for resistive random access memory

    International Nuclear Information System (INIS)

    Lee, Jeungwoo; Nigo, Seisuke; Kato, Seiichi; Kitazawa, Hideaki; Kido, Giyuu; Nakano, Yoshihiro

    2010-01-01

    Anodic porous alumina with duplex layers exhibits a voltage-induced switching effect and is a promising candidate for resistive random access memory. The nanostructural analysis of porous alumina is important for understanding the switching effect. We investigated the difference between the two layers of an anodic porous alumina film using transmission electron microscopy and electron energy-loss spectroscopy. Diffraction patterns showed that both layers are amorphous, and the electron energy-loss spectroscopy indicated that the inner layer contains less oxygen than the outer layer. We speculate that the conduction paths are mostly located in the oxygen-depleted area.

  17. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane

    Science.gov (United States)

    Tianliang Zhai; Qifeng Zheng; Zhiyong Cai; Lih-Sheng Turng; Hesheng Xia; Shaoqin Gong

    2015-01-01

    Superhydrophobic poly(vinyl alcohol) (PVA)/ cellulose nanofibril (CNF) aerogels with a unidirectionally aligned microtubular porous structure were prepared using a unidirectional freeze-drying process, followed by the thermal chemical vapor deposition of methyltrichlorosilane. The silanized aerogels were characterized using various techniques including scanning...

  18. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2006-01-01

    The effect of pore structure on anomalous behaviour of the lithium intercalation into porous V 2 O 5 film electrode has been investigated in terms of fractal geometry by employing ac-impedance spectroscopy combined with N 2 gas adsorption method and atomic force microscopy (AFM). For this purpose, porous V 2 O 5 film electrodes with different pore structures were prepared by the polymer surfactant templating method. From the analysis of N 2 gas adsorption isotherms and the triangulation analysis of AFM images, it was found that porous V 2 O 5 surfaces exhibited self-similar scaling properties with different fractal dimensions depending upon amount of the polymer surfactant in solution and the spatial cut-off ranges. All the ac-impedance spectra measured on porous V 2 O 5 film electrodes showed the non-ideal behaviour of the charge-transfer reaction and the diffusion reaction, which resulted from the interfacial capacitance dispersion and the frequency dispersion of the diffusion impedance, respectively. From the comparison between the surface fractal dimensions by using N 2 gas adsorption method and AFM, and the analysis of ac-impedance spectra by employing a constant phase element (CPE), it is experimentally confirmed that the lithium intercalation into porous V 2 O 5 film electrode is crucially influenced by the pore surface irregularity and the film surface irregularity

  19. Nanoscale Turing structures

    DEFF Research Database (Denmark)

    Dziekan, Piotr; Hansen, Jesper Schmidt; Nowakowski, Bogdan

    2014-01-01

    Formation of Turing patterns of nanoscopic length scale is simulated using molecular dynamics. Based on Fourier spectra of the concentrations of species, we compare stabilities of the structures of different wavelengths and for different intermolecular potentials. Long range attraction is shown...... to oppose the formation of structures. Our simulations suggest that Turing patterns can be a method of self-organization at a length scale of down to 20 molecular diameters...

  20. Multilayer porous UHMWPE scaffolds for bone defects replacement.

    Science.gov (United States)

    Maksimkin, A V; Senatov, F S; Anisimova, N Yu; Kiselevskiy, M V; Zalepugin, D Yu; Chernyshova, I V; Tilkunova, N A; Kaloshkin, S D

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79±2%; the pore size range was 80-700μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nanoscale drug delivery for targeted chemotherapy.

    Science.gov (United States)

    Xin, Yong; Huang, Qian; Tang, Jian-Qin; Hou, Xiao-Yang; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan

    2016-08-28

    Despite significant improvements in diagnostic methods and innovations in therapies for specific cancers, effective treatments for neoplastic diseases still represent major challenges. Nanotechnology as an emerging technology has been widely used in many fields and also provides a new opportunity for the targeted delivery of cancer drugs. Nanoscale delivery of chemotherapy drugs to the tumor site is highly desirable. Recent studies have shown that nanoscale drug delivery systems not only have the ability to destroy cancer cells but may also be carriers for chemotherapy drugs. Some studies have demonstrated that delivery of chemotherapy via nanoscale carriers has greater therapeutic benefit than either treatment modality alone. In this review, novel approaches to nanoscale delivery of chemotherapy are described and recent progress in this field is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. In-situ realtime monitoring of nanoscale gold electroplating using micro-electro-mechanical systems liquid cell operating in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Minoru; Fujita, Hiroyuki [Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); Ishida, Tadashi, E-mail: ishida.t.ai@m.titech.ac.jp [Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); Graduate School of Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 225-8503 (Japan); Jalabert, Laurent [LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France and University of Toulouse, LAAS, F-31400 Toulouse (France)

    2016-01-11

    The dynamics of nanoscale electroplating between gold electrodes was investigated using a microfabricated liquid cell mounted on a scanning transmission electron microscope. The electroplating was recorded in-situ for 10 min with a spatial resolution higher than 6 nm. At the beginning of the electroplating, gold spike-like structures of about 50 nm in size grew from an electrode, connected gold nanoclusters around them, and form three dimensional nanoscale structures. We visualized the elementary process of the gold electroplating, and believe that the results lead to the deeper understanding of electroplating at the nanoscale.

  3. In-situ realtime monitoring of nanoscale gold electroplating using micro-electro-mechanical systems liquid cell operating in transmission electron microscopy

    International Nuclear Information System (INIS)

    Egawa, Minoru; Fujita, Hiroyuki; Ishida, Tadashi; Jalabert, Laurent

    2016-01-01

    The dynamics of nanoscale electroplating between gold electrodes was investigated using a microfabricated liquid cell mounted on a scanning transmission electron microscope. The electroplating was recorded in-situ for 10 min with a spatial resolution higher than 6 nm. At the beginning of the electroplating, gold spike-like structures of about 50 nm in size grew from an electrode, connected gold nanoclusters around them, and form three dimensional nanoscale structures. We visualized the elementary process of the gold electroplating, and believe that the results lead to the deeper understanding of electroplating at the nanoscale

  4. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  5. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M. [School of Physics, Alagappa University, Karaikudi – 630 003 (India); Dharuman, V. [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi – 630 003 (India)

    2016-05-23

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  7. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  8. Plant virus directed fabrication of nanoscale materials and devices

    Science.gov (United States)

    2015-03-26

    Structural features within the internal and external PVN surfaces are amenable to either chemi- cal or genetic modifications for the display of novel moieties...structures: from nanoboomerangs to tetrapods. Nanoscale 7, 344–355. Eggen, R., Verver, J., Wellink, J., De Jong, A., Goldbach, R., van Kammen, A., 1989...in planta expression and for templates for synthetic biology applica- tions. New Phytol. 200, 16–26. Saunders, K., Sainsbury, F., Lomonossoff, G.P

  9. Nanoscale strontium titanate photocatalysts for overall water splitting.

    Science.gov (United States)

    Townsend, Troy K; Browning, Nigel D; Osterloh, Frank E

    2012-08-28

    SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  10. Nanoscale heat transfer in carbon nanotube - sugar alcohol composites as heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Rindt, C.C.M.; Smeulders, D.M.J.; Gaastra - Nedea, S.V.

    2016-01-01

    Nanoscale carbon structures such as graphene and carbon nanotubes (CNTs) can greatly improve the effective thermal conductivity of thermally sluggish heat storage materials, such as sugar alcohols (SAs). The specific improvement depends on the heat transfer rate across the carbon structure. Besides,

  11. The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting.

    Science.gov (United States)

    Lee, Hyun; Jang, Tae-Sik; Song, Juha; Kim, Hyoun-Ee; Jung, Hyun-Do

    2017-03-31

    Porous hydroxyapatite (HA) scaffolds with porosity-graded structures were fabricated by sequential freeze-casting. The pore structures, compressive strengths, and biocompatibilities of the fabricated porous HA scaffolds were evaluated. The porosities of the inner and outer layers of the graded HA scaffolds were controlled by adjusting the initial HA contents of the casting slurries. The interface between the dense and porous parts was compact and tightly adherent. The porosity and compressive strengths of the scaffold were controlled by the relative thicknesses of the dense/porous parts. In addition, the porous HA scaffolds showed good biocompatibility in terms of preosteoblast cell attachment and proliferation. The results suggest that porous HA scaffolds with load-bearing parts have potential as bone grafts in hard-tissue engineering.

  12. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  13. Simple method to generate and fabricate stochastic porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Nan, E-mail: y79nzw@163.com; Gao, Lilan; Zhou, Kuntao

    2015-11-01

    Considerable effort has been made to generate regular porous structures (RPSs) using function-based methods, although little effort has been made for constructing stochastic porous structures (SPSs) using the same methods. In this short communication, we propose a straightforward method for SPS construction that is simple in terms of methodology and the operations used. Using our method, we can obtain a SPS with functionally graded, heterogeneous and interconnected pores, target pore size and porosity distributions, which are useful for applications in tissue engineering. The resulting SPS models can be directly fabricated using additive manufacturing (AM) techniques. - Highlights: • Random porous structures are constructed based on their regular counterparts. • Functionally graded random pores can be constructed easily. • The scaffolds can be directly fabricated using additive manufacturing techniques.

  14. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    International Nuclear Information System (INIS)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-01-01

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu 2+ was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu 2+ were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu 2+ ). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied

  15. Structural study on the gas adsorption phenomena in porous coordination polymers by synchrotron powder diffraction method

    International Nuclear Information System (INIS)

    Kubota, Yoshiki

    2017-01-01

    In situ synchrotron powder diffraction measurement of gas adsorption and crystal structure analysis for porous coordination polymers (PCPs) were performed. From the obtained accurate crystal structure in both atomic and charge density levels, not only the position and orientation of adsorbed gas molecules but also the interaction between the adsorbed gas molecule and host framework were found. The information enables us to understand the mechanism of gas adsorption phenomena and functions of PCPs. It will give us the guiding principles for the novel functional materials design. (author)

  16. Hierarchically porous Ni monolith@branch-structured NiCo2O4 for high energy density supercapacitors

    Directory of Open Access Journals (Sweden)

    Mengjie Xu

    2016-06-01

    Full Text Available A variety of NiCo2O4 nanostrucutures ranging from nanowire to nanoplate and branched structures were successfully prepared via a simple hydrothermal process. The experimental results show that NiCo2O4 with branched structures possesses the best overall electrochemical performance. The improvement of energy density was explored in terms of hierarchically three-dimensional (3D metal substrates and a high specific area capacitance, and area energy density is obtained with hierarchically porous Ni monolith synthesized through a controlled combustion procedure.

  17. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeji [School of Materials Science and Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Um, Ji Hyun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742 (Korea, Republic of); Choi, Hyelim [School of Materials Science and Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Yoon, Won-Sub [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Sung, Yung-Eun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742 (Korea, Republic of); Choe, Heeman, E-mail: heeman@kookmin.ac.kr [School of Materials Science and Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Cellmotive Co. Ltd., #518, Engineering Building, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2017-03-31

    Highlights: • Sn-Cu scaffold anode fabricated by freeze-casting and electroless plating. • Sn-Cu scaffold architecture shows superior capacity and cyclic stability at high current density. • Sn-Cu scaffold electrode is commercially promising. - Abstract: A Novel 3D porous Sn-Cu architecture is prepared as an anode material for use in an advanced lithium-ion battery. Micro-lamellar-structured 3D porous Cu foam, which is electroless-plated with Sn as an active material, is used as anode current collector. Compared to Sn-coated Cu foil, the 3D Sn-Cu foam exhibits superior Li-ion capacity and stable capacity retention, demonstrating the advantage of 3D porous architecture by preserving its structural integrity. In addition, the effect of heat-treatment after Sn plating is investigated. Sn/Sn{sub 6}Cu{sub 5} and SnO{sub 2}/Cu{sub 10}Sn{sub 3} were formed on and in the 3D Sn-Cu foam under the heat-treatment at 150 °C and 500 °C, respectively. The development of Cu{sub 10}Sn{sub 3} in the 3D Sn-Cu foam heat-treated at 500 °C can be a key factor for the enhanced cyclic stability because the Cu{sub 10}Sn{sub 3} inactively reacts with Li-ion and alleviates the volume expansion of SnO{sub 2} as an inactive matrix.

  18. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    Full Text Available There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures. The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The

  19. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Sogne, E. [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); European School of Molecular Medicine (SEMM), IFOM-IEO, Milano (Italy); Merlini, M. [Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli 32, 20133 Milano (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-08-07

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  20. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    International Nuclear Information System (INIS)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P.; Sogne, E.; Merlini, M.; Ducati, C.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  1. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.

    2016-08-05

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  2. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.; Sogne, Elisa; Lenardi, C.; Podestà , A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  3. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  4. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins.

    Science.gov (United States)

    Faas, Ramona; Pohle, Annelie; Moß, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-12-01

    Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl- sn -glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.

  5. Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications

    Science.gov (United States)

    Jung, Gyeong-Bok; Kim, Ji-Hye; Burm, Jin Sik; Park, Hun-Kuk

    2013-05-01

    We propose a simple, low-cost, large-area, and functional surface enhanced Raman scattering (SERS) substrate for biomedical applications. The SERS substrate with chitosan-silver nanoparticles (chitosan-Ag NPs) hybrid 3D porous structure was fabricated simply by a one-step method. The chitosan was used as a template for the Ag NPs deposition. SERS enhancement by the chitosan-Ag NPs substrate was experimentally verified using rhodamine B as an analyte. Thiolated single stranded DNA was also measured for atopic dermatitis genetic markers (chemokines CCL17) at a low concentration of 5 pM. We successfully designed a novel SERS substrate with silver nanoparticle hybridized 3D porous chitosan that has the potential to become a highly sensitive and selective tool for biomedical applications.

  6. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  7. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.

    Science.gov (United States)

    Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D

    2017-11-01

    Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design

  8. Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

    Directory of Open Access Journals (Sweden)

    G. Recio-Sánchez

    2012-01-01

    Full Text Available In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D and three-dimensional (3D devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5×5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures or multilayers (for 3D structures, opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.

  9. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    Science.gov (United States)

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPamanufactured and filled porous structures were then determined. The static mechanical properties and fatigue life (including endurance limit) of the porous structures were found to increase by factors 2-7, even when they were filled with polymeric materials with relatively low mechanical properties. The relative increase in the mechanical properties was much higher for the porous structures with lower porosities. Moreover, the increase in the fatigue life was more notable as compared to the increase in the static mechanical properties. Such large values of increase in the mechanical properties with the progress of bone tissue regeneration have implications in terms of mechanical stimulus for bone tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    Science.gov (United States)

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  11. Photoconductivity of composite structures based on porous SnO2 sensitized with CdSe nanocrystals

    International Nuclear Information System (INIS)

    Drozdov, K. A.; Kochnev, V. I.; Dobrovolsky, A. A.; Vasiliev, R. B.; Babynina, A. V.; Rumyantseva, M. N.; Gaskov, A. M.; Ryabova, L. I.; Khokhlov, D. R.

    2013-01-01

    The introduction of CdSe nanocrystals (colloidal quantum dots) into a porous SnO 2 matrix brings about the appearance of photoconductivity in the structures. Sensitization is a consequence of charge exchange between the quantum dots and the matrix. Photoconductivity spectral measurements show that the nanocrystals embedded into the matrix are responsible for the optical activity of the structure. The photoconductivity of the structures sensitized with different-sized quantum dots is studied in the temperature range from 77 to 300 K. It is shown that the maximum photoconductivity is attained by introducing nanocrystals of the minimum size (2.7 nm). The mechanisms of charge-carrier transport in the matrix and the charge-exchange kinetics are discussed.

  12. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    International Nuclear Information System (INIS)

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-01-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m 2 s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  13. Characterizations of additive manufactured porous titanium implants.

    Science.gov (United States)

    Basalah, Ahmad; Shanjani, Yaser; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2012-10-01

    This article describes physical, chemical, and mechanical characterizations of porous titanium implants made by an additive manufacturing method to gain insight into the correlation of process parameters and final physical properties of implants used in orthopedics. For the manufacturing chain, the powder metallurgy technology was combined with the additive manufacturing to fabricate the porous structure from the pure tanium powder. A 3D printing machine was employed in this study to produce porous bar samples. A number of physical parameters such as titanium powder size, polyvinyl alcohol (PVA) amount, sintering temperature and time were investigated to control the mechanical properties and porosity of the structures. The produced samples were characterized through porosity and shrinkage measurements, mechanical compression test and scanning electron microscopy (SEM). The results showed a level of porosity in the samples in the range of 31-43%, which is within the range of the porosity of the cancelluous bone and approaches the range of the porosity of the cortical bone. The results of the mechanical test showed that the compressive strength is in the wide range of 56-509 MPa implying the effect of the process parameters on the mechanical strengths. This technique of manufacturing of Ti porous structures demonstrated a low level of shrinkage with the shrinkage percentage ranging from 1.5 to 5%. Copyright © 2012 Wiley Periodicals, Inc.

  14. Immobilization of cellulase using porous polymer matrix

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions

  15. Porous silicon-based direct hydrogen sulphide fuel cells.

    Science.gov (United States)

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  16. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  17. From Coordination Cages to a Stable Crystalline Porous Hydrogen-Bonded Framework

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Zhanfeng [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Liu, Guoliang [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, Argonne Illinois 60439 USA; Yuan, Daqiang [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Chen, Banglin [Department of Chemistry, University of Texas at San Antonio, San Antonio Texas 78249-0698 USA

    2017-03-20

    A stable framework has been constructed through multiple charge-assisted H-bonds between cationic coordination cages and chloride ions. The framework maintained its original structure upon desolvation, which has been established by single-crystal structure analysis. This is the first fully characterized stable porous framework based on coordination cages after desolvation, with a moderately high Brunauer–Emmett–Teller (BET) surface area of 1201 m2 g-1. This work will not only give a light to construct stable porous frameworks based on coordination cages and thus broaden their applications, but will also provide a new avenue to the assembly of other porous materials such as porous organic cages and hydrogen-bonded organic frameworks (HOFs) through non covalent bonds.

  18. Structure of zirconium dioxide based porous glasses

    Czech Academy of Sciences Publication Activity Database

    Gubanova, N. N.; Kopitsa, G. P.; Ezdakova, K. V.; Baranchikov, A. Y.; Angelov, Borislav; Feoktystov, A.; Pipich, V.; Ryukhtin, Vasyl; Ivanov, V. K.

    2014-01-01

    Roč. 8, č. 5 (2014), s. 967-975 ISSN 1027-4510 R&D Projects: GA ČR GAP208/10/1600; GA MŠk(XE) LM2011019; GA ČR GB14-36566G Institutional support: RVO:61389013 ; RVO:61389005 Keywords : zirconium dioxide * porous glasse * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 0.359, year: 2012

  19. 3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

    Science.gov (United States)

    Guerrero, Miguel; Pané, Salvador; Nelson, Bradley J.; Baró, Maria Dolors; Roldán, Mònica; Sort, Jordi; Pellicer, Eva

    2013-11-01

    Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the

  20. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.; Byrne, H.; Osborne, J.; Pitt-Francis, J.; Gavaghan, D.; Quintard, M.

    2013-01-01

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate

  1. Deformation mechanisms of a porous structure of the poly(ethylene terephthalate) nuclear track membrane

    International Nuclear Information System (INIS)

    Ovchinnikov, V.V.

    1989-01-01

    The deformation mechanisms of a porous structure of the nuclear track membrane made of poly(ethylene terephthalate) are investigated in the temperature range from 333 to 473 K. It is shown that the pore size of the membrane can both decrease and increase. The analytical equation based on the Alfrey mechanical approach to the relaxation deformation of polymers describes the experimental data satisfactorily over the whole range of temperatures and pore radii of the membranes. 21 refs.; 5 figs.; 3 tabs

  2. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Patridge, Christopher J. [NRC/NRL Cooperative Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Love, Corey T., E-mail: corey.love@nrl.navy.mil [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Swider-Lyons, Karen E. [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Twigg, Mark E. [Electronics Science and Technology Division, Code 6812, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Ramaker, David E. [Chemistry Division, Code 6189, U.S. Naval Research laboratory, Washington, DC 20375 (United States)

    2013-07-15

    The local structure of nanoscale (∼10–40 nm) LiCoO{sub 2} is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO{sub 2} nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO{sub 2} metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO{sub 2} as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO{sub 2}. - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO{sub 2} to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO{sub 2}. • Surface structural changes are emphasized using nanoscale-LiCoO{sub 2} and difference spectra. • Full multiple

  3. Use of geonics scientific positions for designing of building composites for protective (fortification) structures

    Science.gov (United States)

    Fediuk, R. S.; Yevdokimova, Yu G.; Smoliakov, A. K.; Stoyushko, N. Yu; Lesovik, V. S.

    2017-07-01

    The examples of the implementation of the geological (geomimetic) positions in construction materials science are given in the work. The wall materials obtained with this technology have a much more developed surface than traditional wall materials. The second example of using such approaches is the development of internal care systems that will create a more highly organized structure of cement stone at the macro-, micro- and nano-scale levels and concrete in general at all stages: the stage of mixing, hardening and exploitation of the material. The regularities of the structure formation processes are revealed and the principles for increasing the efficiency of non-autoclaved aerated concrete due to application of composite binders, process control in a three-phase disperse porous system and the development of technological methods for the production of protective (fortification) structures are developed.

  4. Microfabricated microneedle with porous tip for drug delivery

    Science.gov (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin; Iliescu, Ciprian

    2006-05-01

    This paper presents a novel approach to fabrication of a silicon microneedle array with porous tips. Dry etching technology with SF6/O2 gas by STS's inductively coupled plasma (ICP) etch tool was used to achieve the pyramidal needle structure. A thin silicon nitride layer was deposited after a thick photoresist layer was coated and reflowed at 120 °C. The silicon nitride layer and residual photoresist on the tips of the pyramidal structures were removed using reactive ion etching (RIE). Electrochemical etching in MeCN/HF was carried out to generate porous silicon on the tips of the microneedles. The fabricated microneedle array has potential applications in drug delivery, since the porous tips can be loaded with a high molecular weight drug. Analytic solutions to the critical loadings of the fabricated microneedle structure are also presented. The variations of the square cross-section were expressed as a function of the axial coordinate to analyze the bending normal stress and critical buckling loading. This analytic method can also be used for other microneedle structures with different cross-sections.

  5. Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO2 Nanobelts for Fast and Stable Lithium Storage.

    Science.gov (United States)

    Liu, Yuan; Yan, Xiaodong; Xu, Bingqing; Lan, Jinle; Yu, Yunhua; Yang, Xiaoping; Lin, Yuanhua; Nan, Cewen

    2018-06-06

    Owing to their unique structural advantages, TiO 2 hierarchical nanostructures assembled by low-dimensional (LD) building blocks have been extensively used in the energy-storage/-conversion field. However, it is still a big challenge to produce such advanced structures by current synthetic techniques because of the harsh conditions needed to generate primary LD subunits. Herein, a novel one-dimensional (1D) TiO 2 hierarchical porous fibrous nanostructure constructed by TiO 2 nanobelts is synthesized by combining a room-temperature aqueous solution growth mechanism with the electrospinning technology. The nanobelt-constructed 1D hierarchical nanoarchitecture is evolves directly from the amorphous TiO 2 /SiO 2 composite fibers in alkaline solutions at ambient conditions without any catalyst and other reactant. Benefiting from the unique structural features such as 1D nanoscale building blocks, large surface area, and numerous interconnected pores, as well as mixed phase anatase-TiO 2 (B), the optimum 1D TiO 2 hierarchical porous nanostructure shows a remarkable high-rate performance when tested as an anode material for lithium-ion batteries (107 mA h g -1 at ∼10 A g -1 ) and can be used in a hybrid lithium-ion supercapacitor with very stable lithium-storage performance (a capacity retention of ∼80% after 3000 cycles at 2 A g -1 ). The current work presents a scalable and cost-effective method for the synthesis of advanced TiO 2 hierarchical materials for high-power and stable energy-storage/-conversion devices.

  6. Mathematical Modeling of Partial-Porous Circular Cylinders with Water Waves

    Directory of Open Access Journals (Sweden)

    Min-Su Park

    2015-01-01

    Full Text Available The interaction of water waves with partially porous-surfaced circular cylinders was investigated. A three-dimensional numerical modeling was developed based on the complete mathematical formulation of the eigenfunction expansion method in the potential flow. Darcy’s law was applied to describe the porous boundary. The partial-porous cylinder is composed of a porous-surfaced body near the free surface, and an impermeable-surfaced body with an end-capped rigid bottom below the porous region. The optimal ratio of the porous portion to the impermeable portion can be adopted to design an effective ocean structure with minimal hydrodynamic impact. To scrutinize the hydrodynamic interactions in N partial-porous circular cylinders, the computational fluid domain is divided into three regions: an exterior region, N inner porous body regions, and N regions beneath the body. Wave excitation forces and wave run-up on multibodied partial-porous cylinders are calculated and compared for various porous-portion ratios and wave conditions, all of which significantly influence the hydrodynamic property.

  7. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  8. Microstructures and photocatalytic properties of porous ZnO films synthesized by chemical bath deposition method

    International Nuclear Information System (INIS)

    Wang Huihu; Dong, Shijie; Chang Ying; Zhou Xiaoping; Hu Xinbin

    2012-01-01

    Different porous ZnO film structures on the surface of alumina substrates were prepared through a simple chemical bath deposition method in the methanolic zinc acetate solution. The surface morphology and phase structure of porous ZnO film were determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Both initial zinc acetate concentration and sintering temperature have great impact on the final film structures. With the increase of initial zinc acetate concentration, the porous structures can be finely tuned from circular nest like assemblies composed film into successive nest like film, and finally to globular aggregates composed film. By increasing the sintering temperature, the porous structure of successive nest like film can be further controlled. Furthermore, the crystallinity of photocatalysts also can be greatly improved. The photodegradation results of Methyl Orange revealed that porous ZnO film with successive nest like structure sintered at 500 °C exhibited the highest photocatalytic activity under UV illumination.

  9. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  10. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging.

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K; Ghimire, Hemendra M; Almabadi, Huda M; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-03-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  11. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  12. Processing and structural characterization of porous reforming catalytic films

    International Nuclear Information System (INIS)

    Hou Xianghui; Williams, Jey; Choy, Kwang-Leong

    2006-01-01

    Nickel-based catalysts are often used to reform methanol into hydrogen. The preparation and installation of these catalysts are costly and laborious. As an alternative, directly applying catalytic films onto the separator components can improve the manufacturing efficiency. This paper reports the successful deposition of adherent porous NiO-Al 2 O 3 -based catalytic films with well-controlled stoichiometry, using a single-step Aerosol Assisted Chemical Vapour Deposition (AACVD) method. The microstructure, composition and crystalline phase of the as-deposited catalytic films are characterized using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FTIR) Spectrometer. The results have demonstrated the capability of AACVD to produce porous NiO-Al 2 O 3 -based catalytic films

  13. High-performance flexible supercapacitor based on porous array electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Jen-Yu; Tsai, Sung-Ying; Li, Bo-Yan [Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2017-07-01

    In this study, an array of polystyrene (PS) spheres was synthesized by a dispersion-polymerization technique as a template onto which a porous polydimethylsiloxane (PDMS) microarray structure was fabricated by soft lithography. A conducting layer was coated on the surface of the microarray after a suspension of multi-walled carbon nanotubes (MWCNTs) mixed with graphene (G) had been poured into the porous array. A PDMS-based porous supercapacitor was assembled by sandwiching a separator between two porous electrodes filled with a H{sub 3}PO{sub 4}/polyvinyl alcohol (PVA) gel electrolyte. The specific capacitance, electrochemical properties, and cycle stability of the porous electrode supercapacitors were explored. The porous PDMS-electrode-based supercapacitor exhibited high specific capacitance and good cycle stability, indicating its enormous potential for future applications in wearable and portable electronic products. - Highlights: • Porous electrode was prepared using an array of polystyrene spheres as template. • The porous electrodes provided increased contact area with the electrolyte. • A gel electrolyte averted problems with leakage and poor interfacial contact. • A larger separator pore size effectively reduced the internal resistance, iR{sub drop}. • Porous PDMS supercapacitor showed superior flexibility and cycling stability.

  14. Volume changes at macro- and nano-scale in epoxy resins studied by PALS and PVT experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, A. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina) and CICPBA, Pinto 399, B7000GHG Tandil (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar; Salgueiro, W. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina); Goyanes, S. [LPMPyMC, Depto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Ramos, J. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain); Mondragon, I. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain)

    2007-02-15

    A systematic study on changes in the volumes at macro- and nano-scale in epoxy systems cured with selected aminic hardeners at different pre-cure temperatures is presented. Free- and macroscopic specific-volumes were measured by PALS and pressure-volume-temperature techniques, respectively. An analysis of the relation existing between macro- and nano-scales of the thermosetting networks developed by the different chemical structures is shown. The result obtained indicates that the structure of the hardeners governs the packing of the molecular chains of the epoxy network.

  15. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  16. New Non-Stationary Gradient Model of Heat-Mass-Electric Charge Transfer in Thin Porous Media

    Directory of Open Access Journals (Sweden)

    V. Rogankov

    2017-10-01

    Full Text Available The well-known complicated system of non-equilibrium balance equations for a continuous fluid (f medium needs the new non-Gibbsian model of f-phase to be applicable for description of the heterogeneous porous media (PMs. It should be supplemented by the respective coupled thermal and caloric equations of state (EOS developed specially for PMs to become adequate and solvable for the irreversible transport f-processes. The set of standard assumptions adopted by the linear (or quasi-linear non-equilibrium thermodynamics are based on the empirical gradient-caused correlations between flows and forces. It leads, in particular, to the oversimplified stationary solutions for PMs. The most questionable but typical modeling suppositions of the stationary gradient (SG theory are: 1 the assumption of incompressibility accepted, as a rule, for f-flows; 2 the ignorance of distinctions between the hydrophilic and hydrophobic influence of a porous matrix on the properties; 3 the omission of effects arising due to the concomitant phase intra-porous transitions between the neighboring f-fragments with the sharp differences in densities; 4 the use of exclusively Gibbsian (i.e. homogeneous and everywhere differentiable description of any f-phase in PM; 5 the very restrictive reduction of the mechanical velocity field to its specific potential form in the balance equation of f-motion as well as of the heat velocity field in the balance equation of internal energy; 6 the neglect of the new specific peculiarities arising due to the study of any non-equilibrium PM in the meso- and nano-scales of a finite-size macroscopic (N,V-system of discrete particles. This work is an attempt to develop the alternative non-stationary gradient (NSG model of real irreversible processes in PM. Another aim is to apply it without the above restrictions 1-6 to the description of f-flows through the obviously non-Gibbsian thin porous medium (TPM. We will suppose that it is composed by two

  17. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  18. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  19. Uniform Fe{sub 3}O{sub 4} microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang [Institute of Electrostatic & Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003 (China); Liu, Yanguo [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Arandiyan, Hamidreza [Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Yang, Hongping; Bai, Lu; Mujtaba, Jawayria [Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Qingguo; Liu, Shanghe [Institute of Electrostatic & Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003 (China); Sun, Hongyu, E-mail: hyltsun@gmail.com [Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2016-12-15

    Highlights: • Uniform Fe{sub 3}O{sub 4} microflowers hierarchical structures were successfully prepared. • The Fe{sub 3}O{sub 4} microflowers are assembled with porous nanoplates. • Hollow Fe{sub 3}O{sub 4} microspheres exhibit better lithium storage properties than Fe{sub 3}O{sub 4} microspheres. • The good lithium storage properties are attributed to the special structural nature. - Abstract: Uniform Fe{sub 3}O{sub 4} microflowers assembled with porous nanoplates were successfully synthesized by a solvothermal method and subsequent annealing process. The structural and compositional analysis of the Fe{sub 3}O{sub 4} microflowers were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Bruauer–Emmett–Teller (BET) specific surface area was calculated by the nitrogen isotherm curve and pore size distribution of Fe{sub 3}O{sub 4} microflowers was determined by the Barret–Joyner–Halenda (BJH) method. When evaluated as anode material for lithium-ion batteries, the as-prepared Fe{sub 3}O{sub 4} microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe{sub 3}O{sub 4} microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture and the porous sheet structural nature.

  20. Nanoscale semiconducting silicon as a nutritional food additive

    Energy Technology Data Exchange (ETDEWEB)

    Canham, L T [pSiNutria Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ (United Kingdom)

    2007-05-09

    Very high surface area silicon powders can be realized by high energy milling or electrochemical etching techniques. Such nanoscale silicon structures, whilst biodegradable in the human gastrointestinal tract, are shown to be remarkably stable in most foodstuffs and beverages. The potential for using silicon to improve the shelf life and bioavailability of specific nutrients in functional foods is highlighted. Published drug delivery data implies that the nanoentrapment of hydrophobic nutrients will significantly improve their dissolution kinetics, through a combined effect of nanostructuring and solid state modification. Nutrients loaded to date include vitamins, fish oils, lycopene and coenzyme Q10. In addition, there is growing published evidence that optimized release of orthosilicic acid, the biodegradation product of semiconducting silicon in the gut, offers beneficial effects with regard bone health. The utility of nanoscale silicon in the nutritional field shows early promise and is worthy of much further study.

  1. Nanoscale semiconducting silicon as a nutritional food additive

    International Nuclear Information System (INIS)

    Canham, L T

    2007-01-01

    Very high surface area silicon powders can be realized by high energy milling or electrochemical etching techniques. Such nanoscale silicon structures, whilst biodegradable in the human gastrointestinal tract, are shown to be remarkably stable in most foodstuffs and beverages. The potential for using silicon to improve the shelf life and bioavailability of specific nutrients in functional foods is highlighted. Published drug delivery data implies that the nanoentrapment of hydrophobic nutrients will significantly improve their dissolution kinetics, through a combined effect of nanostructuring and solid state modification. Nutrients loaded to date include vitamins, fish oils, lycopene and coenzyme Q10. In addition, there is growing published evidence that optimized release of orthosilicic acid, the biodegradation product of semiconducting silicon in the gut, offers beneficial effects with regard bone health. The utility of nanoscale silicon in the nutritional field shows early promise and is worthy of much further study

  2. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen, E-mail: zhangch@mail.buct.edu.cn

    2014-07-15

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu{sup 2+} was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu{sup 2+} were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu{sup 2+}). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  3. Engineering evaluation of porous-dike intake screening systems

    International Nuclear Information System (INIS)

    Roberge, J.C.

    1978-01-01

    As one of many concepts currently under investigation for use in screening fish and larvae from power plant intakes, the porous-dike system presents unique challenges to the designer and constructor. A complete understanding of the hydraulic losses through such a structure is necessary to properly size and locate the intake and to ensure proper pump selection and performance. In the study described in this report, an analogy with frictional losses in conduits was employed, and empirical data on losses were determined for three sizes of filter stone typical of the types used in the construction of a porous-dike intake system. These empirical data were compared with additional information from the literature. The dependence of hydraulic losses through large-diameter media on stone shape and porosity were demonstrated although no empirical expression of this dependence was developed. A hypothetical porous-dike intake installation was developed, demonstrating the fundamental design considerations which must be made for such a structure. Finally, a cursory economic comparison of various intake screening systems demonstrated that the porous-dike intake concept was economically competitive with all others

  4. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  5. Sonochemical synthesis and photocatalytic activity of meso- and macro-porous TiO2 for oxidation of toluene

    International Nuclear Information System (INIS)

    Yang Liu; Yan Li; Wang Yuntao; Xie Lei; Zheng Jie; Li Xingguo

    2008-01-01

    Meso-and macro-porous TiO 2 were synthesized by ultrasonic induced solvothermal method. Octadecylamine as a soft template was used to direct the formation of porous structure. The as-prepared porous TiO 2 was characterized by low angle and wide angle X-ray diffraction, N 2 adsorption-desorption isotherms and BET surface area. The energy influence of ultrasound and heat and concentration of nitric acid for post extraction on formation of porous structure were investigated. The photocatalytic activities of TiO 2 were investigated by degrading toluene gas under UV light. The results revealed that proper energy facilitates the formation of porous structure and too low concentration of nitric acid cannot extract template from pores. The photocatalytic activities of TiO 2 with porous structure are higher than those of nonporous ones

  6. The USANS technique for the investigation of structure from hydrated gels to porous rock

    International Nuclear Information System (INIS)

    Crompton, Kylie; Forsythe, John; Bertram, Willem; Knott, R.B.; Barker, John

    2005-01-01

    Full text: The Ultra Small Angle Neutron Scattering (USANS) technique extends the range of the Small Angle Neutron Scattering (SANS) technique into the tens of micron size range. This is extremely useful for many systems particularly those where sample preparation for optical or electron microscopy can cause major changes to the microstructure under investigation. Two examples will be presented to highlight different aspects of the technique. Firstly, the structure was investigated of a full hydrated polymer scaffold for stem cells constructed from chitosan. Stem cells interact with the scaffold on the micron scale however information on the nanoscale (i e individual chitosan polymer chains) is also required in order the tailor the scaffold structure. The soft, hydrated gel is unsuitable for optical or electron microscopy. Secondly, the structure was investigated of natural oil-bearing and synthetic rock. The scattering data from different thickness of rock was analysed using a Fourier Transform method to remove multiple scattering effects and to simulate scattering from a thin rock. In this case bulk properties such as porosity are of interest. (authors)

  7. Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane

    International Nuclear Information System (INIS)

    Ke Guizhen; Xie Huifang; Ruan Ruping; Yu Weidong

    2010-01-01

    Based on the theory of clotty porous phase change materials, the porous membrane was prepared with the blend of polyurethane (PU) and two polyethylene glycol (PEG) systems. Studied by scanning electron microscope (SEM), Fourier transform infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermo-gravimetric (TG) tests, the morphology structure, chemical composition, crystalline morphology, phase change behaviors and thermal stability of porous phase change membrane were investigated. The results showed that the PU/PEG membrane had obvious porous structural feature, suitable transition temperature and high transition enthalpy. It is a flexible membrane with good energy storage function. When it is between solid and liquid transfer state in microcosms, the membrane can still keep solid shape in macroscopic state at high temperature during phase transition processing. It means that porous membrane PCM can be regarded as functional polymer. This method solved the problem of low working materials content in phase change textile. It succeeded in introducing the porous technology into functional textile's formation, and developed a new way to improve the phase change enthalpy largely for adjustable textile.

  8. Heat transfer across the interface between nanoscale solids and gas.

    Science.gov (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  9. On the role of weak interface in crack blunting process in nanoscale layered composites

    Science.gov (United States)

    Li, Yi; Zhou, Qing; Zhang, Shuang; Huang, Ping; Xu, Kewei; Wang, Fei; Lu, Tianjian

    2018-03-01

    Heterointerface in a nanoscale metallic layered composite could improve its crack resistance. However, the influence of metallic interface structures on crack propagation has not been well understood at atomic scale. By using the method of molecular dynamics (MD) simulation, the crack propagation behavior in Cu-Nb bilayer is compared with that in Cu-Ni bilayer. We find that the weak Cu-Nb interface plays an important role in hindering crack propagation in two ways: (i) dislocation nucleation at the interface releases stress concentration for the crack to propagate; (ii) the easily sheared weak incoherent interface blunts the crack tip. The results are helpful for understanding the interface structure dependent crack resistance of nanoscale bicrystal interfaces.

  10. Study and characterization of porous germanium for radiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Akkari, E.; Benachour, Z.; Touayar, O.; Benbrahim, J. [Activites de Recherche, Metrologie des Rayonnements, Institut National des Sciences Appliquees et de Technologie, INSAT, Tunis (Tunisia); Aouida, S.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes de l' Energie, LaNSE, Centre de Recherche et des Technologies de l' Energie, CRTEn, Hammam-Lif (Tunisia)

    2009-07-15

    The aim of this article is to study and realize a new detector based on a porous germanium (pGe) photodiode to be used as a standard for radiometric measurement in the wavelength region between 800 nm and 1700 nm. We present the development and characterization of a porous structure realized on a single-crystal substrate of p-type germanium (Ga doped) and of crystallographic orientation (100). The obtained structure allows, on the one hand, to trap the incident radiation, and on the other hand, to minimize the fluctuations of the front-face reflection coefficient of the photodiode. The first studies thus made show that it is possible to optimize, respectively, the electrical current density and the electrochemical operation time necessary for obtaining exploitable porous structures. The obtained results show that for 50 mA/cm{sup 2} and 5 min as operational parameters, we obtain a textured aspect of the porous samples that present a pyramidal form. The reflectivity study of the front surface shows a constant value of around 38% in a spectral range between 800 nm and 1700 nm approximately. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Radiation synthesis of the nano-scale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  12. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  13. Porous siliconformation and etching process for use in silicon micromachining

    Science.gov (United States)

    Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.

    1991-01-01

    A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.

  14. Luminescence properties of Si-containing porous matrix–PbS nanoparticle systems

    International Nuclear Information System (INIS)

    Tarasov, S. A.; Aleksandrova, O. A.; Lamkin, I. A.; Maksimov, A. I.; Maraeva, E. V.; Mikhailov, I. I.; Moshnikov, V. A.; Musikhin, S. F.; Nalimova, S. S.; Permyakov, N. V.; Spivak, Yu. M.; Travkin, P. G.

    2015-01-01

    The luminescence properties of systems that contain lead-sulfide nanoparticles deposited onto substrates fabricated from porous silicon, oxidized porous silicon, and porous (tin-oxide)–(silicon-oxide) layers are studied. It is shown that the structure and composition of the matrix induce a strong effect on the luminescence spectra of colloidal quantum dots, defining their emission wavelength

  15. Synthesis, Characterization and Application of Multiscale Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hussami, Linda

    2010-07-01

    This thesis work brings fresh insights and improved understanding of nano scale materials through introducing new hybrid composites, 2D hexagonal in MCM-41 and 3D random interconnected structures of different materials, and application relevance for developing fields of science, such as fuel cells and solar cells. New types of porous materials and organometallic crystals have been prepared and characterized in detail. The porous materials have been used in several studies: as hosts to encapsulate metal-organic complexes; as catalyst supports and electrode materials in devices for alternative energy production. The utility of the new porous materials arises from their unique structural and surface chemical characteristics as demonstrated here using various experimental and theoretical approaches. New single crystal structures and arene-ligand exchange properties of f-block elements coordinated to ligand arene and halogallates are described in Paper I. These compounds have been incorporated into ordered 2D-hexagonal MCM-41 and polyhedral silica nano foam (PNF-SiO{sub 2}) matrices without significant change to the original porous architectures as described in Paper II and III. The resulting inorganic/organic hybrids exhibited enhanced luminescence activity relative to the pure crystalline complexes. A series of novel polyhedral carbon nano foams (PNF-C's) and inverse foams were prepared by nano casting from PNF-SiO{sub 2}'s. These are discussed in Paper IV. The synthesis conditions of PNF-C's were systematically varied as a function of the filling ratio of carbon precursor and their structures compared using various characterization methods. The carbonaceous porous materials were further tested in Paper V and VI as possible catalysts and catalyst supports in counter- and working electrodes for solar- and fuel cell applications

  16. Oxide films at the nanoscale: new structures, new functions, and new materials.

    Science.gov (United States)

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    We all make use of oxide ultrathin films, even if we are unaware of doing so. They are essential components of many common devices, such as mobile phones and laptops. The films in these ubiquitous electronics are composed of silicon dioxide, an unsurpassed material in the design of transistors. But oxide films at the nanoscale (typically just 10 nm or less in thickness) are integral to many other applications. In some cases, they form under normal reactive conditions and confer new properties to a material: one example is the corrosion protection of stainless steel, which is the result of a passive film. A new generation of devices for energy production and communications technology, such as ferroelectric ultrathin film capacitors, tunneling magnetoresistance sensors, solar energy materials, solid oxide fuel cells, and many others, are being specifically designed to exploit the unusual properties afforded by reduced oxide thickness. Oxide ultrathin films also have tremendous potential in chemistry, representing a rich new source of catalytic materials. About 20 years ago, researchers began to prepare model systems of truly heterogeneous catalysts based on thin oxide layers grown on single crystals of metal. Only recently, however, was it realized that these systems may behave quite differently from their corresponding bulk oxides. One of the phenomena uncovered is the occurrence of a spontaneous charge transfer from the metal support to an adsorbed species through the thin insulating layer (or vice versa). The importance of this property is clear: conceptually, the activation and bond breaking of adsorbed molecules begin with precisely the same process, electron transfer into an antibonding orbital. But electron transfer can also be harnessed to make a supported metal particle more chemically active, increase its adhesion energy, or change its shape. Most importantly, the basic principles underlying electron transfer and other phenomena (such as structural

  17. Improved critical current densities and compressive strength in porous superconducting structures containing calcium

    International Nuclear Information System (INIS)

    Walsh, D; Hall, S R; Wimbush, S C

    2008-01-01

    Templated control of crystallization by biopolymers is a new technique in the synthesis of high temperature superconducting phases. By controlling the way YBa 2 Cu 3 O 7-δ (Y123) materials crystallize and are organized in three dimensions, the critical current density can be improved. In this work, we present the results of doping superconducting sponges with calcium ions, which result in higher critical current densities (J c ) and improved compressive strength compared to that of commercially available Y123, in spite of minor reductions in T c . Y123 synthesis using the biopolymer dextran achieves not only an extremely effective oxygenation of the superconductor but also an in situ template-directing of the crystal morphology producing high J c , homogeneous superconducting structures with nano-scale crystallinity

  18. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  19. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  20. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.