WorldWideScience

Sample records for nanoscale materials science

  1. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  2. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  3. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  4. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-01-01

    fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative

  5. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  6. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer A.

    2009-03-24

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  7. Nanoscale materials in chemistry

    National Research Council Canada - National Science Library

    Klabunde, Kenneth J; Richards, Ryan

    2009-01-01

    ...: Disordered, Porous Nanostructures Stephanie L. Brock 209 9 Ordered Microporous and Mesoporous Materials Freddy Kleitz 243 10 Applications of Microporous and Mesoporous Materials Anirban Ghosh,...

  8. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert; Herrera, Rafael; Archer, Lynden A.; Giannelis, Emmanuel P.

    2008-01-01

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  9. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  10. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in the

  11. Nanoscale Science and Engineering in Romania

    International Nuclear Information System (INIS)

    Dascalu, Dan; Topa, Vladimir; Kleps, Irina

    2001-01-01

    In spite of difficult working conditions and with very low financial support, many groups from Romania are involved in emerging fields, such as the nanoscale science and technology. Until the last years, this activity was developed without a central coordination and without many interactions between these research groups. In the year 2000, some of the institutes and universities active in the nanotechnology field in Romania founded the MICRONANOTECH network. The aim of this paper is to emphasize the main activities and results of the Romanian groups working in this novel domain. Most of the groups are deal with the nanomaterial technology and only few of them have activities in nanostructure science and engineering, in new concepts and device modeling and technology. This paper describes the nanotechnology research development in two of the most significant institutes from Romania: Centre for Nanotechnologies from National Institute for Research and Development in Microtehnologies (IMT-Bucharest) and from National Institute for Research and Development in Materials Physics (INCD-FM), Magurele. The Romanian research results in nanotechnology field were presented in numerous papers presented in international conferences or published in national and international journals. They are also presented in patents, international awards and fellowships. The research effort and financial support are outlined. Some future trends of the Romanian nanoscale science and technology research are also described

  12. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  13. PREFACE: Nanoscale science and technology

    Science.gov (United States)

    Bellucci, Stefano

    2008-11-01

    , nanopowders) were discussed. Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches were illustrated by Yu F Zhukovskii. M B Muradov talked about nanoparticles of cadmium selenide and cadmium sulfide, which yield one of the perspective materials for application to solar cell elements, high-speed computing systems, catalyses and biomarkers in medicine. In the presentation, the process of transformation of nanoparticles cadmium of sulfide to nanoparticles of cadmium selenide by an ionic exchange from solutions of electrolytes was considered. The size of particles was controlled by the quantity of growth cycles. After manufacturing, the structures were investigated by atomic force microscope (AFM). Structures CdS:polymer transformed into CdSe:polymer with the help of ion-exchange. For the realization of the process of ionic exchange, solutions were prepared containing bivalent ions of selenium as follows: NaBH4 and Se in a weight parity 2:1 added in water 4NaBH4+2Se+7H2O→2NaHSe+Na2B4O7+14H2 In the prepared solution nanostructures CdS:polymer were immersed. Time of endurance was 2 h. After an ionic exchange the obtained structures were investigated by means of EDAX on a chemical composition. Results of analyses have shown that atoms of sulfur are completely replaced by selenium. The band gap of nanoparticles in comparison with initial samples is displaced in the long-wave area. It is connected with the fact that the width of the band gap of bulk crystals CdSe (1.74 eV) is smaller than the band gap of CdS (2.42 eV). Optical microscopy with spatial resolution beyond the diffraction limit obtained by using near field techniques was the subject of S Prato's talk. Scanning near field optical microscopy (SNOM) has developed into a powerful tool to investigate local optical properties that depend on heterogeneity of materials at nanoscale and to study nanoenvironment of biosystems. Crucial topics in SNOM are: force sensitivity and

  14. Quantum Materials at the Nanoscale - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Stephen Lance [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics

    2016-01-11

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the funding period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16

  15. Selective nanoscale growth of lattice mismatched materials

    Science.gov (United States)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  16. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  17. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  18. Filter casting nanoscale porous materials

    Science.gov (United States)

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

    2013-12-10

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

  19. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  20. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  1. Tube Formation in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Yan Chenglin

    2008-01-01

    Full Text Available Abstract The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities.

  2. Bulk nanoscale materials in steel products

    International Nuclear Information System (INIS)

    Chehab, B; Wang, X; Masse, J-P; Zurob, H; Embury, D; Bouaziz, O

    2010-01-01

    Although a number of nanoscale metallic materials exhibit interesting mechanical properties the fabrication paths are often complex and difficult to apply to bulk structural materials. However a number of steels which exhibit combinations of plasticity and phase transitions can be deformed to produce ultra high strength levels in the range 1 to 3 GPa. The resultant high stored energy and complex microstructures allow new nanoscale structures to be produced by combinations of recovery and recrystallisation. The resultant structures exhibit totally new combinations of strength and ductility to be achieved. In specific cases this also enables both the nature of the grain boundary structure and the spatial variation in structure to be controlled. In this presentation both the detailed microstructural features and their relation to the strength, work-hardening capacity and ductility will be discussed for a number of martensitic and austenitic steels.

  3. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  4. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  5. Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

    National Research Council Canada - National Science Library

    Alderson, Norris; Alexander, Catherine; Merzbacher, Celia; Chernicoff, William; Middendorf, Paul; Beck, Nancy; Chow, Flora; Poster, Dianne; Danello, Mary Ann; Barrera, Enriqueta

    2006-01-01

    ...) research and information needs related to understanding and management of potential risks of engineered nanoscale materials that may be used, for example, in commercial or consumer products, medical...

  6. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  7. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2 ... films deposited by rf magnetron sputtering using a high quality ceramic target ... Critical shear stress produced by interaction of edge dislocation with nanoscale inhomogeneity ... production cost limiting zircon usage as a raw material at an industrial scale.

  8. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  9. Materials science

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Materials Science Division is engaged in research on physical properties of materials and the effects of radiation upon them. This involves solid state materials undergoing phase transitions, energy storing materials, and biomaterials. The Division also offers research facilities for M.S. and Ph.D. thesis work in the fields of physics, chemistry, materials, and radiation sciences in cooperation with the various colleges and departments of the UPR Mayaguez Campus. It is anticipated that it will serve as a catalyst in starting energy-related research programs in cooperation with UPR faculty, especially programs involving solar energy. To encourage and promote cooperative efforts, contact is maintained with former graduate students and with visiting scientists from Latin American research institutions

  10. EDITORIAL: Big science at the nanoscale Big science at the nanoscale

    Science.gov (United States)

    Reed, Mark

    2009-10-01

    In 1990, the journal Nanotechnology was the first academic publication dedicated to disseminating the results of research in what was then a new field of scientific endeavour. To celebrate the 20th volume of Nanotechnology, we are publishing a special issue of top research papers covering all aspects of this multidisciplinary science, including biology, electronics and photonics, quantum phenomena, sensing and actuating, patterning and fabrication, material synthesis and the properties of nanomaterials. In the early 1980s, scanning probe microscopes brought the concepts of matter and interactions at the nanoscale into visual reality, and hastened a flurry of activity in the burgeoning new field of nanoscience. Twenty years on and nanotechnology has truly come of age. The ramifications are pervasive throughout daily life in communication, health care and entertainment technology. For example, DVDs have now consigned videotapes to the ark and mobile phones are as prevalent as house keys, and these technologies already look set to be superseded by internet phones and Blu-Ray discs. Nanotechnology has been in the unique position of following the explosive growth of this discipline from its outset. The surge of activity in the field is notable in the number of papers published by the journal each year, which has skyrocketed. The journal is now published weekly, publishing over 1400 articles a year. What is more, the quality of these articles is also constantly improving; the average number of citations to articles within two years of publication, quantified by the ISI impact factor, continues to increase every year. The rate of activity in the field shows no signs of slowing down, as is evident from the wealth of great research published each week. The aim of the 20th volume special issue is to present some of the very best and most recent research in many of the wide-ranging fields covered by the journal, a celebration of the present state of play in nanotechnology and

  11. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  12. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; Meerwall, Ernst von; Vaia, Richard A.; Rodriguez, Robert; Giannelis, Emmanuel P.

    2010-01-01

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  13. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-01

    -performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high

  14. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  15. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2013-04-24

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology.... SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  16. 77 FR 61448 - Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National...

    Science.gov (United States)

    2012-10-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee...: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  17. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado; Herrer, Rafael; Bourlinos, Athanasios B.; Li, Ruipeng; Amassian, Aram; Archer, Lynden A.; Giannelis, Emmanuel P.

    2010-01-01

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached

  18. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  19. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology... public meeting. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  20. 77 FR 56681 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2012-09-13

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology...: Notice of webinar. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  1. Analytical TEM investigations of nanoscale magnetic materials

    International Nuclear Information System (INIS)

    Meingast, A.

    2015-01-01

    Analytical transmission electron microscopy has been applied within this thesis to investigate several novel approaches to design and fabricate nanoscale magnetic materials. As the size of the features of interest rank in the sub-nanometer range, it is necessary to employ techniques with a resolution – both spatial and analytical – well below this magnitude. Only at this performance level it is possible to examine material properties, necessary for the further tailoring of materials. Within this work two key aspects have been covered: First, analytical TEM (transmission electron microscopy) investigations were carried out to get insight into novel magnetic materials with high detail. Second, new analytical and imaging possibilities enabled with the commissioning of the new ASTEM (Austrian scanning transmission electron microscope) were explored. The aberration corrected TITAN® microscope (© FEI Company) allows resolving features in scanning transmission mode (STEM) with 70 pm distance. Thereby, direct imaging of light elements in STEM mode by using the annular bright field method becomes possible. Facilitated through high beam currents within the electron probe, an increased acquisition speed of analytical signals is possible. For energy dispersive X-ray spectroscopy (EDXS) a new four detector disc geometry around the specimen was implemented, which increases the accessible collection angle. With the integration of the latest generation of image filter and electron spectrometer (GIF QuantumERS), electron energy loss spectroscopy (EELS) is boosted through the high acquisition speed and the dual spectroscopy mode. The high acquisition speed allows to record up to 1000 spectra per second and the possibility to record atomically resolved EELS maps is at hand. Hereby it is important to avoid beam damage and alteration of the material during imaging and analysis. With the simultaneous acquisition of the low and the high loss spectral region, an extended range for

  2. Nanoscale device physics science and engineering fundamentals

    CERN Document Server

    Tiwari, Sandip

    2017-01-01

    Nanoscale devices are distinguishable from the larger microscale devices in their specific dependence on physical phenomena and effects that are central to their operation. The size change manifests itself through changes in importance of the phenomena and effects that become dominant and the changes in scale of underlying energetics and response. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the inter-actions, and others. These interactions, with the limits placed on size, make not just electronic, but also magnetic, optical and mechanical behavior interesting, important and useful. Connecting these properties to the behavior of devices is the focus of this textbook. Description of the book series: This collection of four textbooks in the Electroscience series span the undergrad...

  3. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  4. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  5. EDITORIAL: Quantum science and technology at the nanoscale Quantum science and technology at the nanoscale

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of quantum theory was an archetypal scientific revolution in early twentieth-century physics. In many ways, the probabilities and uncertainties that replaced the ubiquitous application of classical mechanics may have seemed a violent assault on logic and reason. 'Something unknown is doing we don't know what-that is what our theory amounts to,' Sir Arthur Eddington famously remarked, adding, 'It does not sound a particularly illuminating theory. I have read something like it elsewhere: the slithy toves, did gyre and gimble in the wabe' [1]. Today, quantum mechanics no longer seems a dark art best confined to the boundaries of physics and philosophy. Scanning probe micrographs have captured actual images of quantum-mechanical interference patterns [2], and familiarity has made the claims of quantum theory more palatable. An understanding of quantum effects is essential for nanoscale science and technology research. This special issue on quantum science and technology at the nanoscale collates some of the latest research that is extending the boundaries of our knowledge and understanding in the field. Quantum phenomena have become particularly significant in attempts to further reduce the size of electronic devices, the trend widely referred to as Moore's law. In this issue, researchers in Switzerland report results from transport studies on graphene. The researchers investigate the conductance variance in systems with superconducting contacts [3]. Also in this issue, researchers in Germany calculate the effects of spin-orbit coupling in a molecular dimer and predict nonlinear transport. They also explain how ferromagnetic electrodes can be used to probe these interactions [4]. Our understanding of spin and the ability to manipulate it has advanced greatly since the notion of spin was first proposed. However, it remains the case that little is known about local coherent fluctuations of spin polarizations, the scale on which they occur, how they are

  6. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  7. ISOLDE takes big science to nanoscale

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    New materials that could replace the semiconductors currently used in Blu-ray and other electronic devices, cost-efficient silicon for a new generation of solar panels, innovative investigation techniques for archaeology, biophysics and biochemistry…behind all this are the studies using nuclear hyperfine interactions. Of paramount importance in such studies is the availability of a large variety of radioactive ion beams: at CERN, these are produced by the ISOLDE facility.   Students from the University of Leuven and ITN Lisbon working at ISOLDE on a technique used to locate impurities in materials. Nuclear hyperfine interactions and their wide range of applications were the focus of the third Joint International Conference on Hyperfine Interactions and International Symposium on Nuclear Quadrupole Interactions, held at CERN from 12 to 17 September. The conference featured theoretical talks but also studies on magnetic materials, semiconductors, thin films, nano-structures and quantum...

  8. Nanoscale Topographical Characterization of Orbital Implant Materials

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2018-04-01

    Full Text Available The search for an ideal orbital implant is still ongoing in the field of ocular biomaterials. Major limitations of currently-available porous implants include the high cost along with a non-negligible risk of exposure and postoperative infection due to conjunctival abrasion. In the effort to develop better alternatives to the existing devices, two types of new glass-ceramic porous implants were fabricated by sponge replication, which is a relatively inexpensive method. Then, they were characterized by direct three-dimensional (3D contact probe mapping in real space by means of atomic force microscopy in order to assess their surface micro- and nano-features, which were quantitatively compared to those of the most commonly-used orbital implants. These silicate glass-ceramic materials exhibit a surface roughness in the range of a few hundred nanometers (Sq within 500–700 nm and topographical features comparable to those of clinically-used “gold-standard” alumina and polyethylene porous orbital implants. However, it was noted that both experimental and commercial non-porous implants were significantly smoother than all the porous ones. The results achieved in this work reveal that these porous glass-ceramic materials show promise for the intended application and encourage further investigation of their clinical suitability.

  9. Depositing Materials on the Micro- and Nanoscale

    DEFF Research Database (Denmark)

    Mar, Mikkel Dysseholm; Herstrøm, Berit; Shkondin, Evgeniy

    2014-01-01

    on sequential introduction of precursor pulses with intermediate purging steps. The process proceeds by specific surface ligand-exchange reactions and this leads to layer-by-layer growth control. No other thin film deposition technique can approach the conformity achieved by ALD on high aspect ratio structures....... In these systems thin films of different kind are important parts of giving the system the properties needed. This can be properties like light absorbing layers, antireflection coatings or conductive layers in solar cells. It can be low stress layers in membranes, chemicals resistant layers in chemical sensors......, layers with specific optical properties in optical sensors, piezoelectric thin films or insulating layers in many other applications. These different materials and properties impose a demand for different kind of deposition techniques. At DTU Danchip we have a large variety of these deposition techniques...

  10. Fungal nanoscale metal carbonates and production of electrochemical materials.

    Science.gov (United States)

    Li, Qianwei; Gadd, Geoffrey Michael

    2017-09-01

    Fungal biomineralization of carbonates results in metal removal from solution or immobilization within a solid matrix. Such a system provides a promising method for removal of toxic or valuable metals from solution, such as Co, Ni, and La, with some carbonates being of nanoscale dimensions. A fungal Mn carbonate biomineralization process can be applied for the synthesis of novel electrochemical materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  12. Radiation synthesis of the nano-scale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  13. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  14. Molecular and nanoscale materials and devices in electronics.

    Science.gov (United States)

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia ...

  16. 75 FR 30874 - National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology...

    Science.gov (United States)

    2010-06-02

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology Subcommittee, National Science and Technology Council, Committee on Technology; The National Nanotechnology Initiative (NNI) Strategic Planning Stakeholder Workshop: Public...

  17. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Investigation of graphene-based nanoscale radiation sensitive materials

    Science.gov (United States)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  19. Nanoscale defect architectures and their influence on material properties

    Science.gov (United States)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  20. A nanoscale ordered materials diffractometer for the SNS

    International Nuclear Information System (INIS)

    Neuefeind, Joerg; Chipley, Kenneth K.; Tulk, Chris A.; Simonson, J. Michael; Winokur, Michael J.

    2006-01-01

    The Nanoscale Ordered Materials Diffractometer (NOMAD) is one of five neutron scattering instruments being managed within the Spallation Neutron Source (SNS) Instruments-Next Generation (SING) project. NOMAD is designed as a high-flux, medium-resolution diffractometer using a large bandwidth of neutron energies and extensive detector coverage to perform structural determinations of local order in crystalline and amorphous materials. The instrument will enable studies of a large variety of samples ranging from liquids, solutions, glasses, polymers, and nanocrystalline materials to long-range ordered crystals and will allow unprecedented access to high-resolution pair distribution functions, small-contrast isotope substitution experiments, small sample sizes, and parametric studies. Project completion for the instrument is anticipated in 2010 and a review of the design status will be given

  1. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  2. Nanoscale deformation measurements for reliability assessment of material interfaces

    Science.gov (United States)

    Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2006-03-01

    With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.

  3. Ion beam modification of biological materials in nanoscale

    Science.gov (United States)

    Yu, L. D.; Anuntalabhochai, S.

    2012-07-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  4. Ion beam modification of biological materials in nanoscale

    International Nuclear Information System (INIS)

    Yu, L.D.; Anuntalabhochai, S.

    2012-01-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  5. Social and ethical dimensions of nanoscale science and engineering research.

    Science.gov (United States)

    Sweeney, Aldrin E

    2006-07-01

    Continuing advances in human ability to manipulate matter at the atomic and molecular levels (i.e. nanoscale science and engineering) offer many previously unimagined possibilities for scientific discovery and technological development. Paralleling these advances in the various science and engineering sub-disciplines is the increasing realization that a number of associated social, ethical, environmental, economic and legal dimensions also need to be explored. An important component of such exploration entails the identification and analysis of the ways in which current and prospective researchers in these fields conceptualize these dimensions of their work. Within the context of a National Science Foundation funded Research Experiences for Undergraduates (REU) program in nanomaterials processing and characterization at the University of Central Florida (2002-2004), here I present for discussion (i) details of a "nanotechnology ethics" seminar series developed specifically for students participating in the program, and (ii) an analysis of students' and participating research faculty's perspectives concerning social and ethical issues associated with nanotechnology research. I conclude with a brief discussion of implications presented by these issues for general scientific literacy and public science education policy.

  6. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    Science.gov (United States)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  7. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  8. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, C.H., E-mail: hadlee.joseph@artov.imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Electronics Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome (Italy); Sardi, G.M. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Tuca, S.S.; Gramse, G. [Johannes Kepler University, Institute for Biophysics, Gruberstrasse 40, A-4020 Linz (Austria); Lucibello, A.; Proietti, E. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kienberger, F. [Keysight Technologies Austria GmbH, Keysight Laboratories, Gruberstrasse 40, A-4020 Linz (Austria); Marcelli, R. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-12-15

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S{sub 11} are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S{sub 11} with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  9. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

    2005-07-01

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  10. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    Science.gov (United States)

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  11. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2013-12-23

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  12. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; von Meerwall, Ernst D.; Koerner, Hilmar; Vaia, Richard A.; Fernandes, Nikhil J.; Giannelis, Emmanuel P.

    2013-01-01

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  13. Science and technology on the nanoscale with swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Reinhard, E-mail: r.neumann@gsi.de

    2013-11-01

    Swift heavy ions have stimulated developments of science and technology on the nanoscale due to the specific manner of transferring their kinetic energy in a solid successively in small portions along their trajectories. They thus create absolutely straight, almost cylindrical, and very narrow damage trails of diameter 5–10 nm. In various materials, such as polymers, a suitable etchant can transform these tracks into narrow channels of cylindrical, conical, or other desired shapes. These channels represent a starting point particularly for two major fields: they can be chemically modified to control small species and act, e.g., as sensors and transmitters of specific biomolecules. Irradiation of a sample with only one heavy ion allows the fabrication of single-nanochannel devices enabling measurements of enormous sensitivity. Filling nanochannels with a material provides nanowires. These objects of restricted dimensions exhibit finite-size and quantum behavior and give rise to a broad range of fundamental and applied research. This contribution briefly recollects microtechnological achievements with swift heavy ions that began already in the 1970s, preparing the ground for gradual size decrease down to the nanoscopic objects now under study. Various examples of material modifications on the nanoscale are presented, including recent results obtained with nanochannels and nanowires. Emerging developments are addressed, encompassing in situ recording of processes in biological cells stimulated by well-aimed ion irradiation, the fabrication of three-dimensional nanowire architectures, and plasmonic effects in nanowires.

  14. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Science.gov (United States)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  15. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali; Jabbari, Esmaiel

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  16. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  17. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  18. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  19. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  20. Materials science and architecture

    Science.gov (United States)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  1. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  2. Nanofluidics: A New Arena for Materials Science.

    Science.gov (United States)

    Xu, Yan

    2018-01-01

    A significant growth of research in nanofluidics is achieved over the past decade, but the field is still facing considerable challenges toward the transition from the current physics-centered stage to the next application-oriented stage. Many of these challenges are associated with materials science, so the field of nanofluidics offers great opportunities for materials scientists to exploit. In addition, the use of unusual effects and ultrasmall confined spaces of well-defined nanofluidic environments would offer new mechanisms and technologies to manipulate nanoscale objects as well as to synthesize novel nanomaterials in the liquid phase. Therefore, nanofluidics will be a new arena for materials science. In the past few years, burgeoning progress has been made toward this trend, as overviewed in this article, including materials and methods for fabricating nanofluidic devices, nanofluidics with functionalized surfaces and functional material components, as well as nanofluidics for manipulating nanoscale materials and fabricating new nanomaterials. Many critical challenges as well as fantastic opportunities in this arena lie ahead. Some of those, which are of particular interest, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fast nanoscale heat-flux modulation with phase-change materials

    OpenAIRE

    Van Zwol , Pieter; Joulain , Karl; Ben-Abdallah , Philippe; Greffet , Jean-Jacques; Chevrier , Joël

    2011-01-01

    International audience; We introduce a new concept for electrically controlled heat flux modulation. A flux contrast larger than 10 dB is expected with switching time on the order of tens of nanoseconds. Heat flux modulation is based on the interplay between radiative heat transfer at the nanoscale and phase change materials. Such large contrasts are not obtainable in solids, or in far field. As such this opens up new horizons for temperature modulation and actuation at the nanoscale.

  4. Plant virus directed fabrication of nanoscale materials and devices

    Science.gov (United States)

    2015-03-26

    Structural features within the internal and external PVN surfaces are amenable to either chemi- cal or genetic modifications for the display of novel moieties...structures: from nanoboomerangs to tetrapods. Nanoscale 7, 344–355. Eggen, R., Verver, J., Wellink, J., De Jong, A., Goldbach, R., van Kammen, A., 1989...in planta expression and for templates for synthetic biology applica- tions. New Phytol. 200, 16–26. Saunders, K., Sainsbury, F., Lomonossoff, G.P

  5. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  6. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  7. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement: Advancing Risk Analysis for Nanoscale Materials

    Energy Technology Data Exchange (ETDEWEB)

    Shatkin, J. A. [Vireo Advisors, Boston MA USA; Ong, Kimberly J. [Vireo Advisors, Boston MA USA; Beaudrie, Christian [Compass RM, Vancouver CA USA; Clippinger, Amy J. [PETA International Science Consortium Ltd, London UK; Hendren, Christine Ogilvie [Center for the Environmental Implications of NanoTechnology, Duke University, Durham NC USA; Haber, Lynne T. [TERA, Cincinnati OH USA; Hill, Myriam [Health Canada, Ottawa Canada; Holden, Patricia [UC Santa Barbara, Bren School of Environmental Science & Management, ERI, and UC CEIN, University of California, Santa Barbara CA USA; Kennedy, Alan J. [U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg MS USA; Kim, Baram [Independent, Somerville MA USA; MacDonell, Margaret [Argonne National Laboratory, Environmental Science Division, Argonne IL USA; Powers, Christina M. [U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Transportation and Air Quality, Ann Arbor MI USA; Sharma, Monita [PETA International Science Consortium Ltd, London UK; Sheremeta, Lorraine [Alberta Ingenuity Labs, Edmonton Alberta Canada; Stone, Vicki [John Muir Building Gait 1 Heriot-Watt University, Edinburgh Scotland UK; Sultan, Yasir [Environment Canada, Gatineau QC Canada; Turley, Audrey [ICF International, Durham NC USA; White, Ronald H. [RH White Consultants, Silver Spring MD USA

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article.

  8. Uncovering Design Principles of Intermediate Filaments, a Self-Assembling Biomaterial: Lessons in Nanoscale Materials Design

    National Research Council Canada - National Science Library

    Lee, David H

    2007-01-01

    .... Such proteins may be harnessed for military purposes (eg. protective self-healing materials or nanoscale scaffolds) if one had a better understanding of how molecular structure determines material properties. In this final progress report, we summarize our studies on these systems.

  9. Materials Discovery | Materials Science | NREL

    Science.gov (United States)

    Discovery Materials Discovery Images of red and yellow particles NREL's research in materials characterization of sample by incoming beam and measuring outgoing particles, with data being stored and analyzed Staff Scientist Dr. Zakutayev specializes in design of novel semiconductor materials for energy

  10. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts

    International Nuclear Information System (INIS)

    Castellini, O. M.; Walejko, G. K.; Holladay, C. E.; Theim, T. J.; Zenner, G. M.; Crone, W. C.

    2007-01-01

    Researchers are faced with challenges when addressing the public on concepts and applications associated with nanotechnology. The goal of our work was to understand the public's knowledge of nanotechnology in order to identify appropriate starting points for dialog. Survey results showed that people lack true understanding of concepts associated with atoms and the size of the nanoscale regime. Such gaps in understanding lead to a disappointing lack of communication between researchers and the public concerning fundamental concepts in nanoscale science and engineering. Strategies are offered on how scientists should present their research when engaging the public on nanotechnology topics

  11. Nanoscale control of energy and matter: challenges and opportunities for plasma science

    International Nuclear Information System (INIS)

    Ostrikov, Kostya

    2013-01-01

    Multidisciplinary challenges and opportunities in the ultimate ability to achieve nanoscale control of energy and matter are discussed using an example of the Plasma Nanoscience. This is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. The origin, progress and future perspectives of this research field driven by the global scientific and societal challenges, is examined. The future potential of the Plasma Nanoscience to remain as a highly topical area in the global research and technological agenda in the Age of Fundamental-Level Control for a Sustainable Future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to control energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for the Plasma Nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health

  12. Nanoscale heat transfer in carbon nanotube - sugar alcohol composites as heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Rindt, C.C.M.; Smeulders, D.M.J.; Gaastra - Nedea, S.V.

    2016-01-01

    Nanoscale carbon structures such as graphene and carbon nanotubes (CNTs) can greatly improve the effective thermal conductivity of thermally sluggish heat storage materials, such as sugar alcohols (SAs). The specific improvement depends on the heat transfer rate across the carbon structure. Besides,

  13. 76 FR 41178 - Pesticides; Policies Concerning Products Containing Nanoscale Materials; Opportunity for Public...

    Science.gov (United States)

    2011-07-13

    ... Pesticides; Policies Concerning Products Containing Nanoscale Materials; Opportunity for Public Comment; Extension of Comment Period AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed policy statement; extension of comment period. SUMMARY: EPA issued a proposed policy statement in the Federal Register of June...

  14. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  15. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  16. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights:

  17. One-pot Synthesis of Soluble Nanoscale CIGS Photoactive Functional Materials

    Directory of Open Access Journals (Sweden)

    Yan Aixia

    2007-01-01

    Full Text Available Abstract Promising alternatives for solar energy utilization are thin film technologies involving various new materials. This contribution describes an easy and inexpensive synthetic method that can be used to prepare soluble nanoscale triphenyl phosphine-coordinated CIGS (TPP-CIGS photoactive functional materials. This complex is stable in the solid state under the irradiation of the ambient light, but its solution becomes a little bit unstable under the illumination of the low intensity laser.

  18. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    Science.gov (United States)

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  19. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  20. Sb-Te Phase-change Materials under Nanoscale Confinement

    Science.gov (United States)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with

  1. Monolithic silica aerogel - material design on the nano-scale

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    structure of aerogel could be used for gas filters in the 20 to 100 nm region. - The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of lowest for an inorganic material. Due to the low density, low acoustic impedance of aerogel could help boost the efficiency...... of piezoelectric transducers. - Other applications could be; waste encapsulation, spacers for vacuum insulation panels, membranes, etc. Department of Civil Engineering is co-ordinator of a current EU FP5 research project1, which deals with the application of aerogel as transparent insulation materials in windows....... Due to the excellent optical and thermal properties of aerogel, it is possible to develop windows with both high insulation and high transmittance, which is impossible applying the conventional window techniques, i.e. extra layers of glass, low-e coatings and gas fillings. It can be shown...

  2. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  3. NANOINTERACT: A rational approach to the interaction between nanoscale materials and living matter?

    International Nuclear Information System (INIS)

    Lynch, Iseult; Linse, Sara; Howard, C Vyvyan; Stepnik, Maciej; Rydzynski, Konrad; Hanrahan, John; Jong, Wim de; Langevin, Dominique; Raedler, Joachim; Parak, Wolfgang; Volkov, Yuri; Radomski, Marek; Thomas, Robert; Klein, Jacob; Barron, Andrew A; Janssen, Colin; Lyons, Fiona M; Quinn, Francis; Swennen, Bert; Cuypers, Peter

    2009-01-01

    The importance of understanding the interactions between nanoscale materials and living matter has now begun to be appreciated by an extraordinaryly large range of stakeholders, including researchers, industry, governments and society, all of whom appreciate both the opportunities presented by and challenges raised by this arena of research. Not only does it open up new directions in nanomedicine and nanodiagnostics, but it also offers the chance to implement nanotechnology across all industry in a safe and responsible manner. The underlying reasons for this arena as a new scientific paradigm are real and durable. Less than 100 nm nanoparticles can enter cells, less that 40 nm they can enter cell nucleus, and less that 35 nm they can pass through the blood brain barrier. These are fundamental length scales of biological relevance that will ensure that engineered nanoscience will impinge on biology and medicine for many decades to come. One important issue is the current lack of reproducibility of the outcomes of many experiments in this arena. Differences are likely a consequence of such things as uncontrolled nanoparticle aggregation leading to unpredictable doses being presented to cells, interference of the nanoparticles themselves with many of the tests being applied, differences in the degree of confluency of the cells used, and a host of other factors. NanoInteract has shown how careful control of all aspects of the test system, combined with round robin type approaches, can help resolve these issues and begin to ensure that the field can become a quantitative science. The basic principle of NanoInteract is that given identical nanomaterials, cells and biological materials, and using a common protocol, experiments must yield identical answers. Thus, any deviations result from errors in (applying) the protocol which can be tracked and eliminated, until quantitatively reproducible results are obtained by any researcher in any location. This paper outlines the

  4. NANOINTERACT: A rational approach to the interaction between nanoscale materials and living matter?

    Science.gov (United States)

    Lynch, Iseult; Linse, Sara; Vyvyan Howard, C.; Stepnik, Maciej; Rydzynski, Konrad; Hanrahan, John; de Jong, Wim; Langevin, Dominique; Rädler, Joachim; Parak, Wolfgang; Volkov, Yuri; Radomski, Marek; Thomas, Robert; Klein, Jacob; Barron, Andrew A.; Janssen, Colin; Lyons, Fiona M.; Quinn, Francis; Swennen, Bert; Cuypers, Peter; Duffy, Angela; Dawson, Kenneth A.

    2009-05-01

    The importance of understanding the interactions between nanoscale materials and living matter has now begun to be appreciated by an extraordinaryly large range of stakeholders, including researchers, industry, governments and society, all of whom appreciate both the opportunities presented by and challenges raised by this arena of research. Not only does it open up new directions in nanomedicine and nanodiagnostics, but it also offers the chance to implement nanotechnology across all industry in a safe and responsible manner. The underlying reasons for this arena as a new scientific paradigm are real and durable. Less than 100 nm nanoparticles can enter cells, less that 40 nm they can enter cell nucleus, and less that 35 nm they can pass through the blood brain barrier. These are fundamental length scales of biological relevance that will ensure that engineered nanoscience will impinge on biology and medicine for many decades to come. One important issue is the current lack of reproducibility of the outcomes of many experiments in this arena. Differences are likely a consequence of such things as uncontrolled nanoparticle aggregation leading to unpredictable doses being presented to cells, interference of the nanoparticles themselves with many of the tests being applied, differences in the degree of confluency of the cells used, and a host of other factors. NanoInteract has shown how careful control of all aspects of the test system, combined with round robin type approaches, can help resolve these issues and begin to ensure that the field can become a quantitative science. The basic principle of NanoInteract is that given identical nanomaterials, cells and biological materials, and using a common protocol, experiments must yield identical answers. Thus, any deviations result from errors in (applying) the protocol which can be tracked and eliminated, until quantitatively reproducible results are obtained by any researcher in any location. This paper outlines the

  5. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, Stephen [Univ. of Oregon, Eugene, OR (United States)

    2016-05-27

    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  6. Oxide films at the nanoscale: new structures, new functions, and new materials.

    Science.gov (United States)

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    flexibility, electronic modifications, and nanoporosity) are now largely understood, thus paving the way for the rational design of new catalytic systems based on oxide ultrathin films. Many of the mechanisms involved (electron tunneling, work function changes, defects engineering, and so forth) are typical of semiconductor physics and allow a direct link between the two fields. A related conceptual framework, the "electronic theory of catalysis", was proposed a long time ago but has been largely neglected by the catalytic community. A renewed appreciation of this catalytic framework, together with spectacular advances in modeling and electronic structure methods, now makes it possible to combine theory with advanced experimental setups and meet the challenge of designing new materials with tailored properties. In this Account, we discuss some of the recent advances with nanoscale oxide films, highlighting contributions from our laboratory. Once mastered, ultrathin oxide films on metals will provide vast and unforeseen opportunities in heterogeneous catalysis as well as in other fields of science and technology.

  7. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China; Department of Physics, Shanghai University, Shanghai 200444, China; State Key Laboratory of Crystal Material, Shandong ...

  9. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M K Rabinal. Articles written in Bulletin of Materials Science. Volume 35 Issue 4 August 2012 pp 529-532. An optical tweezer-based study of antimicrobial activity of silver nanoparticles · Yogesha Sarbari Bhattacharya M K Rabinal Sharath Ananthamurthy · More Details Abstract ...

  11. The science of tiny things: physics at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Copp, Stacy Marla [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-07

    Nanoscience is the study of tiny objects that are only a billionth of a meter in size, or about 1,000 to 10,000 times smaller than a human hair. From the electronics in your smartphone to the molecular motors that are in your body’s cells, nanoscientists study and design materials that span a huge range of subjects, from physics to chemistry to biology. I will talk about some of what we do at LANL’s Center for Integrated Technologies, as well as how I first got interested in nanoscience and how I became a nanoscientist at LANL.

  12. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    Low temperature preparation of some perovskites La2MM'O6 (M,M'=Cr,Mn,Fe ... Inorganic materials for optical data storage -- S K Date ... Dielectric and polarization studies on some organic materials -- B jagannadh and Lalitha Sirdeshmukh.

  14. Contributions to materials science

    International Nuclear Information System (INIS)

    Asbeck, O.W.; Matucha, K.H.

    1989-01-01

    The ten papers presented at a festive colloquium held on November 14, 1988 in Frankfurt to honour Prof. Peter Wincierz deal with the texture and mechanical anisotropy of zirconium alloys (by E. Tenckhoff), materials for cladding tubes (H. Boehm), aluminium materials achieved by near technology (W. Bunk), dispersion-strengthened materials (H. Fischmeister), materials for plain bearings (K.H. Matucha), and the archeometallurgy of copper (H.-G. Bachmann). (MM) [de

  15. Cathodoluminescence | Materials Science | NREL

    Science.gov (United States)

    shown on a computer screen; the image of a sample semiconductor material appears as a striated oval material sample shown above; the image is a high-contrast light and dark oval on a dark background and was top left of copper indium gallium selenide semiconductor material sample; the image is shown on a

  16. Materials science challenges in paintings.

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-01-23

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  17. Materials science challenges in paintings

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-02-01

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  18. Chemistry and Materials Science progress report, first half FY 1992

    International Nuclear Information System (INIS)

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy

  19. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1 .... Na + /B 3 + phosphor has a potential application in white light-emitting diodes based ... College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China ...

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 ... In this study, a modified model for the application of the thermionic and hopping current ... Departments of Mathematics and Physics, Arab American University, Jenin 240, ...

  2. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  3. A study on a nano-scale materials simulation using a PC cluster

    International Nuclear Information System (INIS)

    Choi, Deok Kee; Ryu, Han Kyu

    2002-01-01

    Not a few scientists have paid attention to application of molecular dynamics to chemistry, biology and physics. With recent popularity of nano technology, nano-scale analysis has become a major subject in various engineering fields. A underlying nano scale analysis is based on classical molecular theories representing molecular dynamics. Based on Newton's law of motions of particles, the movement of each particles is to be determined by numerical integrations. As the size of computation is closely related with the number of molecules, materials simulation takes up huge amount of computer resources so that it is not until recent days that the application of molecular dynamics to materials simulations draw some attention from many researchers. Thanks to high-performance computers, materials simulation via molecular dynamics looks promising. In this study, a PC cluster consisting of multiple commodity PCs is established and nano scale materials simulations are carried out. Micro-sized crack propagation inside a nano material is displayed by the simulation

  4. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1 ... I D S – V b g branches in accordance with the SERS results and humidity responses. ... Ni˘gde University, Graduate School Natural and Applied Sciences, Ni˘gde 51240, ...

  6. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  7. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  8. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  9. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    Science.gov (United States)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  10. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    Influence of the presence of Fe2+ ion in nickel-zinc ferrite -- C M Srivastava, ... Investigation of hydrogenous materials using neutrons -- B A Dasannacharya and P S Goyal ... of potassium gold-cyanide -- Indira Rajagopal and S R Rajagopalan .... A novel method of RF powder sputtering -- K Solomon Harshavardhanan and ...

  11. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    -organic chemical vapour deposited (MOCVD) gamma iron oxide thin film for ... V2)5-Te)2 glasses using heterogeneous conductor model -- M Pal, S K Saha and ... The hardness-flow stress correlation in metallic materials -- G Soundararajan ...

  12. Chemistry and Materials Science

    International Nuclear Information System (INIS)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director's initiatives and individual projects, and transactinium institute studies

  13. Weightless Materials Science

    Science.gov (United States)

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Issue front cover thumbnail. Volume 26, Issue 5. August 2003, pages 461-568. pp 461-464 Sensor Materials. Preparation, characterization and dielectric behaviour of some yttrium doped strontium stannates · P K Bajpai Kuldeep Ratre Mukul Pastor T P ...

  15. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials

    Science.gov (United States)

    Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung

    2018-03-01

    The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the

  16. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1984-12-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  17. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  18. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1985-01-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particular electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Small-angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of in situ time-dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. Examples will be given of small-angle scattering projects from the nuclear metallurgy, coal, oil, cement, detergent and plastics industries. High-resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasingly complex phases. The structure and volume fraction of minority phase can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Neutron diffraction is unique in being able to measure the full strain tensor from a specified volume within a bulk specimen. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. Examples will be chosen from the field of catalysis where inelastic spectroscopy has revealed the nature of the bonding of hydrocarbon molecules. (author)

  20. Universal deformation pathways and flexural hardening of nanoscale 2D-material standing folds

    Science.gov (United States)

    Chacham, Helio; Barboza, Ana Paula M.; de Oliveira, Alan B.; de Oliveira, Camilla K.; Batista, Ronaldo J. C.; Neves, Bernardo R. A.

    2018-03-01

    In the present work, we use atomic force microscopy nanomanipulation of 2D-material standing folds to investigate their mechanical deformation. Using graphene, h-BN and talc nanoscale wrinkles as testbeds, universal force-strain pathways are clearly uncovered and well-accounted for by an analytical model. Such universality further enables the investigation of each fold bending stiffness κ as a function of its characteristic height h 0. We observe a more than tenfold increase of κ as h 0 increases in the 10-100 nm range, with power-law behaviors of κ versus h 0 with exponents larger than unity for the three materials. This implies anomalous scaling of the mechanical responses of nano-objects made from these materials.

  1. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi; Park, Youngjune; Petit, Camille; Park, Ah-Hyung Alissa

    2014-01-01

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  2. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  3. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 5. Issue front cover thumbnail. Volume 23, Issue 5. October 2000, pages 341-452. pp 341-344 Synthesis. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes · B Rajesh K Ravindranathan Thampi J -M Bonard B Viswanathan · More Details ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. BOTAN JAWDAT ABDULLAH QING JIANG MUSTAFA SAEED OMAR. Volume 39 Issue 5 September 2016 pp 1295-1302 ...

  6. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 4. Issue front cover thumbnail. Volume 32, Issue 4. August 2009, pages 369-463. pp 369-373 Thin Films. Mobility activation in thermally deposited CdSe thin films · Kangkan Sarmah Ranjan Sarma · More Details Abstract Fulltext PDF. Effect of illumination on ...

  7. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Structural, microstructural and optical properties of Cu 2 ZnSnS 4 thin films prepared by thermal evaporation: effect of substrate temperature and annealing. U CHALAPATHI S UTHANNA V SUNDARA RAJA. Volume 40 Issue 5 September 2017 pp 887-895 ...

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 1. Issue front cover thumbnail. Volume 24, Issue 1. February 2001, pages 1-94. pp 1-21 Review---Phase Transitions. Kinetics of pressure induced structural phase transitions—A review · N V Chandra Shekar K Govinda Rajan · More Details Abstract Fulltext ...

  9. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Issue front cover thumbnail. Volume 25, Issue 6. November 2002, pages 449-582. pp 449- .... Bi-layer functionally gradient thick film semiconducting methane sensors .... Thermal sensor properties of PANI(EB)–CSA ( = 0.4 ± 0.1 mol) polymer thin films.

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 1. Issue front cover thumbnail. Volume 30, Issue 1. February 2007, pages 1-71. pp 1-3 Single Crystals. Thermoluminescence characteristics of Sm doped NaYF4 crystals · M V Ramana Reddy Ch Gopal Reddy K Narasimha Reddy · More Details Abstract ...

  11. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. V V Deshpande1 M M Patil1 S C Navale2 V Ravi1. Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  12. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Self-assembling behaviour of Pt nanoparticles onto surface of TiO2 and their resulting photocatalytic activity. M Qamar Ashok K Ganguli. Volume 36 Issue 6 November 2013 pp 945-951 ...

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 3. Issue front cover thumbnail. Volume 32, Issue 3. June 2009, pages 215-367. pp 215-215. Foreword · S B Krupanidhi H L Bhat · More Details Fulltext PDF. pp 217-225. Molecule-based magnets · J V Yakhmi · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Layered LiNi1/3Co1/3Mn1/3O2 was synthesized by a citric acid assisted ... was investigated by the galvanostatic intermittent titration technique (GITT) ... The State Key Laboratory Base of Novel Functional Materials and Preparation Science; ...

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Issue front cover thumbnail. Volume 23, Issue 3. June 2000, pages 159-238. pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 2. Issue front cover thumbnail. Volume 32, Issue 2. April 2009, pages 117-214. pp 117-123 Thin Films and Nanomatter. Microstructural characteristics and mechanical properties of magnetron sputtered nanocrystalline TiN films on glass substrate.

  18. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 4 ... were synthesized by self-propagating high temperature synthesis (SHS) method. ... Structure determination at room temperature and phase transition studies above T c in .... Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn Heusler alloys.

  19. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 3 ... Sintering of nano crystalline silicon carbide by doping with boron carbide ... of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. ... pp 213-217 Alloys and Steels.

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 .... (EDX) and UV–vis spectroscopy were used to study the chemical composition and optical .... Enhanced microactuation with magnetic field curing of magnetorheological ... Structure, morphology and corrosion resistance of Ni–Mo+PTh composite coatings.

  1. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 4. Issue front cover thumbnail. Volume 27, Issue 4. August 2004, pages 323-394. pp 323-325 Crystal Growth. Growth features of ammonium hydrogen -tartrate single crystals · G Sajeevkumar R Raveendran B S Remadevi Alexander Varghese Vaidyan.

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Issue front cover thumbnail. Volume 29, Issue 1. February 2006, pages 1-99. pp 1-5 Nanomaterials. A simple synthesis and characterization of CuS nanocrystals · Ujjal K Gautam Bratindranath Mukherjee · More Details Abstract Fulltext PDF. Water-soluble ...

  4. Nanoscale Characterization for the Classroom

    International Nuclear Information System (INIS)

    Carroll, D.L.

    1999-01-01

    This report describes the development of a semester course in 'nano-scale characterization'. The interdisciplinary course is opened to both advanced undergraduate and graduate students with a standard undergraduate preparation in Materials Science, Chemistry, or Physics. The approach is formal rather than the typical 'research seminar' and has a laboratory component

  5. Setting science free from materialism.

    Science.gov (United States)

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  7. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  8. Art and science: geodesy in materials science.

    Science.gov (United States)

    Kroto, Harold

    2010-09-01

    A 3-dimensional model based on a molecular structural recipe having some unique and unexpected shape characteristics is demonstrated. The project was originally initiated to satisfy the aesthetic creative impulse to build a 3-dimensional model or sculpture. Further scientific investigation explained some important nanoscale structural observations that had been seen many years beforehand and mistakenly explained. This is a rare example of artistic creativity resulting in a key scientific advance.

  9. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamalonis, A. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Weber, J. K. R., E-mail: rweber@anl.gov; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Neuefeind, J. C.; Carruth, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Skinner, L. B. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Stony Brook University, Stony Brook, New York 11794 (United States); Benmore, C. J. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-09-15

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å{sup −1}, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å{sup −1}, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å{sup −1} was significantly decreased when the collimators were installed.

  10. Fabrication and Optical Measurements of Nanoscale Meta-Materials: Terahertz and Beyond

    OpenAIRE

    Martin, Michael C.; Hao, Zhao; Liddle, Alex; Anderson, Erik H.; Padilla, Willie J.; Schurig, David; Smith, David R.

    2005-01-01

    Recently, artificial meta-materials have been reported [1] that have a negative index of refraction, which allows a homogeneous flat slab of the material to behave as a perfect lens [2], possibly even creating sub-diffraction limited focusing. These novel artificial materials have numerous potential applications in science, technology, and medicine [3],especially if their novel behavior can be extended to the technologically critical near-infrared and visible region.The meta-materials co...

  11. Ellipsometry at the nanoscale

    CERN Document Server

    Hingerl, Kurt

    2013-01-01

    This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics...

  12. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  13. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  14. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  15. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  16. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  17. Art Advancing Science: Filmmaking Leads to Molecular Insights at the Nanoscale.

    Science.gov (United States)

    Reilly, Charles; Ingber, Donald E

    2017-12-26

    Many have recognized the potential value of facilitating activities that span the art-science interface for the benefit of society; however, there are few examples that demonstrate how pursuit of an artistic agenda can lead to scientific insights. Here, we describe how we set out to produce an entertaining short film depicting the fertilization of the egg by sperm as a parody of a preview for another Star Wars movie to excite the public about science, but ended up developing a simulation tool for multiscale modeling. To produce an aesthetic that communicates mechanical continuity across spatial scales, we developed custom strategies that integrate physics-based animation software from the entertainment industry with molecular dynamics simulation tools, using experimental data from research publications. Using this approach, we were able to depict biological physicality across multiple spatial scales, from how sperm tails move to collective molecular behavior within the axoneme to how the molecular motor, dynein, produces force at the nanometer scale. The dynein simulations, which were validated by replicating results of past simulations and cryo-electron microscopic studies, also predicted a potential mechanism for how ATP hydrolysis drives dynein motion along the microtubule as well as how dynein changes its conformation when it goes through the power stroke. Thus, pursuit of an artistic work led to insights into biology at the nanoscale as well as the development of a highly generalizable modeling and simulation technology that has utility for nanoscience and any other area of scientific investigation that involves analysis of complex multiscale systems.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Screen printing; ferroelectricity; piezoelectricity; nonlinear property. .... Luoyang Institute of Science and Technology, Luoyang 471023, China; Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China; Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, ...

  19. The structural science of functional materials.

    Science.gov (United States)

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  20. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; Department of Materials Science and Engineering, Luoyang Institute of Science and ...

  2. Nanoscale/multilayer gradient materials for application in electromagnetic gun systems

    Energy Technology Data Exchange (ETDEWEB)

    Otooni, M.A. [Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ (United States); Brown, I.G.; Anders, S.; Wang, Z. [Lawrence Berkeley Lab., CA (United States)

    1996-12-31

    Analysis of fired rails from electromagnetic railguns indicates severe surface damage occurs due to high current arcing and tribological mismatch. The authors have explored the behavior of several nanoscale multilayered materials as possible routes to improve the thermomechanical properties of the rail and armature materials. Structures investigated include (i) Ti-Co alloy on Ta-Cu alloy on dlc (diamond-like carbon) on stainless steel; (ii) Ti-Co alloy on Ta-Cu alloy on dlc on Cu, (iii) Ti-Co alloy on Ta-Cu on Cu; and (iv) Ti-Co on Ta-Cu alloy on Al. The alloys were all 50:50 at% and film thicknesses were fin the range 400--1,000 {angstrom}. The films were formed using a repetitively pulsed vacuum arc plasma deposition method with substrate biasing- and IBAD-like techniques. The surfaces were characterized by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy, optical microscopy, microhardness measurements, arc erosion resistance and scratch resistance tests. Preliminary results show improvement in the microhardness, arc erosion resistance and scratch resistance, most especially for the dlc-coated surfaces. This kind of multilayered approach to the fabrication of electromagnetic railgun and armature surfaces could be important for future advanced Electromagnetic EM Gun systems.

  3. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    Science.gov (United States)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  4. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.

    2018-02-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  5. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.; Li, Ming-yang; Li, Lain-Jong; Jin, Song; Hamers, Robert J

    2018-01-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  6. Reinventing Material Science - Continuum Magazine | NREL

    Science.gov (United States)

    by Sandia National Laboratories Reinventing Material Science It's not often that scientists set out pursuing in the field of material science. The vision of the center is to revolutionize the discovery of new material science. "In the old days, if you wanted somebody to calculate the properties of a

  7. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    Science.gov (United States)

    Shen, Xiaohan

    With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness

  8. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  9. Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field

    International Nuclear Information System (INIS)

    Huang Zan; Chen Hsinchun; Yip, Alan; Ng, Gavin; Guo Fei; Chen Zhikai; Roco, Mihail C.

    2003-01-01

    Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents

  10. Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field

    Science.gov (United States)

    Huang, Zan; Chen, Hsinchun; Yip, Alan; Ng, Gavin; Guo, Fei; Chen, Zhi-Kai; Roco, Mihail C.

    2003-08-01

    Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 5 ... The electrical performances of thin film material can be improved largely by dopants. ... Department of Materials Science and Engineering, Jinan University, Jinan 250022, PR China; The State Key Laboratory of Material Composite and Advanced ...

  12. Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Hackley, Vincent A; Roebben, Gert; Ehara, Kensei; Hankin, Steve; Postek, Michael T; Lynch, Iseult; Fu, Wei-En; Linsinger, Thomas P J; Thünemann, Andreas F

    2013-12-01

    The authors critically reviewed published lists of nano-objects and their physico-chemical properties deemed important for risk assessment and discussed metrological challenges associated with the development of nanoscale reference materials (RMs). Five lists were identified that contained 25 (classes of) nano-objects; only four (gold, silicon dioxide, silver, titanium dioxide) appeared on all lists. Twenty-three properties were identified for characterisation; only (specific) surface area appeared on all lists. The key themes that emerged from this review were: 1) various groups have prioritised nano-objects for development as "candidate RMs" with limited consensus; 2) a lack of harmonised terminology hinders accurate description of many nano-object properties; 3) many properties identified for characterisation are ill-defined or qualitative and hence are not metrologically traceable; 4) standardised protocols are critically needed for characterisation of nano-objects as delivered in relevant media and as administered to toxicological models; 5) the measurement processes being used to characterise a nano-object must be understood because instruments may measure a given sample in a different way; 6) appropriate RMs should be used for both accurate instrument calibration and for more general testing purposes (e.g., protocol validation); 7) there is a need to clarify that where RMs are not available, if "(representative) test materials" that lack reference or certified values may be useful for toxicology testing and 8) there is a need for consensus building within the nanotechnology and environmental, health and safety communities to prioritise RM needs and better define the required properties and (physical or chemical) forms of the candidate materials.

  13. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications.

    Science.gov (United States)

    Liu, Xiaofeng; Qiu, Jianrong

    2015-12-07

    Transfer of energy occurs endlessly in our universe by means of radiation. Compared to energy transfer (ET) in free space, in solid state materials the transfer of energy occurs in a rather confined manner, which is usually mediated by real or virtual particles, including not only photons, but also electrons, phonons, and excitons. In the present review, we discuss the recent advances in optical ET by resonance mediated with photons in solid materials as well as their nanoscale counterparts, with focus on the photoluminescence behavior pertaining to ET between optically active centers, such as rare earth (RE) ions. This review begins with a brief discussion on the classification of optical ET together with an overview of the theoretical formulations and experimental method for the examination of ET. We will then present a comprehensive discussion on the ET in practical systems in which normal photoluminescence, upconversion and quantum cutting resulted from ET involving metal ions, QDs, organic species, 2D materials and plasmonic nanostructures. Diverse ET systems are therefore simply categorized into cases of ion-ion interactions and non-ion interactions. Special attention has been paid to the progress in the manipulation of spatially confined ET in nanostructured systems including core-shell structures, as well as the ET in multiple exciton generation found in QDs and organic molecules, which behave quite similarly to resonance ET between metal ion centers. Afterwards, we will discuss the broad spectrum of applications of ET in the aforementioned systems, including solid state lighting, solar energy utilization, bio-imaging and diagnosis, and sensing. In the closing part, along with a short summary, we discuss further research focus regarding the problems and possible future directions of optical ET in solids.

  14. Supercapacitors - nanostructured materials and nanoscale processes contributing to the next mobile generation

    International Nuclear Information System (INIS)

    Mahon, P.J.; Drummond, C.J.

    2001-01-01

    Supercapacitors, alternatively known as ultracapacitors, electrical double-layer capacitors or electrochemical capacitors, are energy storage devices that have considerably more specific capacitance than conventional capacitors. In recent years there have been major advancements in the design of low impedance (low resistance) Supercapacitors, which are ideally suited for high-power applications for mobile devices, particularly those using GSM (Global System for Mobile communication) and GPRS (General Packet Radio Service) wireless technologies. Cap-XX Pty Ltd is a global leader in supercapacitor technology. Cap-XX was established in 1997 and evolved from a collaboration that began in 1994 between Plessey Ducon Pty Ltd, a company that manufactured metallized film capacitors, and what is now CSIRO Energy Technology. In this article we outline the physical chemistry, and in particular, the colloid and surface, electro-, and polymer chemistry, elements that underpin supercapacitor performance. The emphasis is placed on high surface area, particulate-carbon-based supercapacitor technology. This is the cap-XX technology. It is a good example of nanostructured materials and nanoscale processes governing device performance. Some application areas for Supercapacitors are highlighted at the end of this article. Copyright (2001) CSIRO Australia

  15. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement.

    Science.gov (United States)

    Shatkin, J A; Ong, Kimberly J; Beaudrie, Christian; Clippinger, Amy J; Hendren, Christine Ogilvie; Haber, Lynne T; Hill, Myriam; Holden, Patricia; Kennedy, Alan J; Kim, Baram; MacDonell, Margaret; Powers, Christina M; Sharma, Monita; Sheremeta, Lorraine; Stone, Vicki; Sultan, Yasir; Turley, Audrey; White, Ronald H

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article. © 2016 Society for Risk Analysis.

  16. Computational Methods for Nanoscale X-ray Computed Tomography Image Analysis of Fuel Cell and Battery Materials

    Science.gov (United States)

    Kumar, Arjun S.

    Over the last fifteen years, there has been a rapid growth in the use of high resolution X-ray computed tomography (HRXCT) imaging in material science applications. We use it at nanoscale resolutions up to 50 nm (nano-CT) for key research problems in large scale operation of polymer electrolyte membrane fuel cells (PEMFC) and lithium-ion (Li-ion) batteries in automotive applications. PEMFC are clean energy sources that electrochemically react with hydrogen gas to produce water and electricity. To reduce their costs, capturing their electrode nanostructure has become significant in modeling and optimizing their performance. For Li-ion batteries, a key challenge in increasing their scope for the automotive industry is Li metal dendrite growth. Li dendrites are structures of lithium with 100 nm features of interest that can grow chaotically within a battery and eventually lead to a short-circuit. HRXCT imaging is an effective diagnostics tool for such applications as it is a non-destructive method of capturing the 3D internal X-ray absorption coefficient of materials from a large series of 2D X-ray projections. Despite a recent push to use HRXCT for quantitative information on material samples, there is a relative dearth of computational tools in nano-CT image processing and analysis. Hence, we focus on developing computational methods for nano-CT image analysis of fuel cell and battery materials as required by the limitations in material samples and the imaging environment. The first problem we address is the segmentation of nano-CT Zernike phase contrast images. Nano-CT instruments are equipped with Zernike phase contrast optics to distinguish materials with a low difference in X-ray absorption coefficient by phase shifting the X-ray wave that is not diffracted by the sample. However, it creates image artifacts that hinder the use of traditional image segmentation techniques. To restore such images, we setup an inverse problem by modeling the X-ray phase contrast

  17. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Science.gov (United States)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    2017-11-01

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW → NCCDW transition.

  18. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 5 ... Polyester urethane; scaffold; tensile strength; swelling; degradation; cell culture. ... Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Ming Kang1 2 Xiaoming Liao1 Guangfu Yin1 Xun Sun3 Xing Yin4 Lu Xie4 Jun Liu2. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China; College of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Department of ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. BALDEV RAJ. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 449-460 Instrumentation. Thermogravimetry-evolved gas analysis–mass spectrometry system for materials research · M Kamruddin P K Ajikumar S Dash A K Tyagi Baldev Raj.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D S Prasad. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 79-83 Materials Synthesis. Preparation of high purity tellurium by zone refining · N R Munirathnam D S Prasad Ch Sudheer A J Singh T L Prakash · More Details Abstract Fulltext PDF.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S R Dhage. Articles written in Bulletin of Materials Science. Volume 27 Issue 1 February 2004 pp 43-45 Dielectric Materials. Nonlinear – characteristics study of doped SnO2 · S R Dhage V Ravi S K Date · More Details Abstract Fulltext PDF. When tin oxide is doped with ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. U S Sajeev. Articles written in Bulletin of Materials Science. Volume 27 Issue 2 April 2004 pp 155-161 Magnetic Materials. Magnetic field induced assembling of nanoparticles in ferrofluidic liquid thin films based on NiFe1-Fe2O4 · V S Abraham S Swapna Nair S Rajesh U S ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SARAVANA KUMAR JAGANATHAN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Roy. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 513-515. Improved zinc oxide film for gas sensor applications · S Roy S Basu · More Details Abstract Fulltext PDF. Zinc oxide (ZnO) is a versatile material for different commercial ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. DANUTA OLSZEWSKA. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 16. Influence of the conditions of a solid-state synthesis anode material Li 4 Ti 5 O 12 on its electrochemical properties of lithium cells · DANUTA OLSZEWSKA ANNA ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. ISABEL HERRMANN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR JAGANATHAN A ...

  9. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  10. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    International Nuclear Information System (INIS)

    Wirth, Brian

    2015-01-01

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the ''selfhealing'' or radiation resistance in advanced

  11. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the “selfhealing” or radiation resistance in advanced materials containing

  12. Incorporating nanoscale science and technology into secondary school curriculum: Views of nano-trained science teachers

    Directory of Open Access Journals (Sweden)

    Antti Laherto

    2011-09-01

    Full Text Available The growing societal significance of nanoscience and nanotechnology (NST entails needs for addressing these topics in school curricula. This study lays groundwork for responding to those needs in Finland. The purpose was to analyse the appropriateness of NST for secondary school curriculum contents. First, a week-long in-service teacher training course was arranged on content knowledge of NST. After attending the course, 23 experienced science teachers were surveyed regarding their views on the educational significance of these issues, and on prospects for including them into the curriculum. A questionnaire with open-ended questions was used. Qualitative content analysis of the responses revealed that the respondents considered NST as desirable contents for secondary school, but arranging instruction is problematic. The teachers emphasised the educational significance of many applications, scientific principles and ethical issues related to NST. The outcomes are discussed with reference to recent studies on teachers’ barriers and educational concerns regarding NST.

  13. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  14. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  15. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.

    Science.gov (United States)

    Unwin, Patrick R; Güell, Aleix G; Zhang, Guohui

    2016-09-20

    -sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Department of Physics, Sultan Qaboos University, Muscat, P.O. Box 36, Code 123, Oman; Department of Polymer Science andRubber Technology, Cochin University of Science and Technology, Cochin 682022, India; Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Bulletin of Materials Science. Editor. Giridhar U. Kulkarni, Centre for Nano and Soft Matter Science, Bengaluru. Associate Editors. Ayan Datta, Indian Association for the Cultivation of Science, Kolkata M. Eswaramoorthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru A.K. Ganguli ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Mirza. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 377-382 Glass Ceramics. Preparation and characterization of magnesium–aluminium–silicate glass ceramics · Madhumita Goswami T Mirza A Sarkar Shobha Manikandan Sangeeta ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Murali Sastry. Articles written in Bulletin of Materials Science. Volume 23 Issue 3 June 2000 pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rajeev Gupta. Articles written in Bulletin of Materials Science. Volume 34 Issue 3 June 2011 pp 447-454. An investigation in InGaO3(ZnO)m pellets as cause of variability in thin film transistor characteristics · Sonachand Adhikari Rajeev Gupta Ashish Garg Deepak.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amit Sinha. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 653-657 Bioceramics. Development of calcium phosphate based bioceramics · Amit Sinha A Ingle K R Munim S N Vaidya B P Sharma A N Bhisey · More Details Abstract Fulltext ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3. Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method ... Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016, India; Material Science Division, Indira Gandhi Centre for Atomic Research, ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MURAT UYGUN. Articles written in Bulletin of Materials Science. Volume 39 Issue 2 April 2016 pp 353-359. Hydrophobic nano-carrier for lysozyme adsorption · CANAN ALTUNBAS FULDEN ZEYNEP URAL MURAT UYGUN NESIBE AVCIBASI UGUR AVCIBASI DENIZ AKTAS ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ch Sudheer. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 545-547. Tellurium purification: various techniques and limitations · D S Prasad Ch Sudheer N R Munirathnam T L Prakash · More Details Abstract Fulltext PDF. Limitations and ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B P Singh. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 11-16 Molecular Magnets. Synthesis and magnetic properties of one-dimensional metal oxalate networks as molecular-based magnets · B P Singh B Singh · More Details Abstract ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhanshuang Li. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shunxiao Zhang. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Kumar. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 335-341 Glasses. Optical absorption and fluorescent behaviour of titanium ions in silicate glasses · Manoj Kumar Aman Uniyal A P S Chauhan S P Singh · More Details Abstract ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Rajendra Babu. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 249-252 Crystal Growth. Thermal behaviour of strontium tartrate single crystals grown in gel · M H Rahimkutty K Rajendra Babu K Sreedharan Pillai M R Sudarsana Kumar C M K ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. RITWIK SARKAR. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 293-298 Alloys and Steels. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles · Ritwik Sarkar Nar Singh Swapan Kumar Das.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Prasad. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 547-553 Glasses and Ceramics. Impedance analysis of Pb2Sb3LaTi5O18 ceramic · C K Suman K Prasad R N P Choudhary · More Details Abstract Fulltext PDF. Polycrystalline ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Mondal. Articles written in Bulletin of Materials Science. Volume 36 Issue 1 February 2013 pp 51-58. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 coating in borate buffer solution · G Gupta A P Moon K Mondal · More Details Abstract Fulltext PDF.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SABRI BAYLAV. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 49. Synthesis and characterization of metal ion-imprinted polymers · YASEMIN ISIKVER SABRI BAYLAV · More Details Abstract Fulltext PDF. In this study, ion-imprinted polymeric ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P M Raole. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 81-88. Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K Avasthi P M Raole · More Details ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anjum Qureshi. Articles written in Bulletin of Materials Science. Volume 29 Issue 6 November 2006 pp 605-609. Analysis of organometallics dispersed polymer composite irradiated with oxygen ions · N L Singh Anjum Qureshi A K Rakshit D K Avasthi · More Details Abstract ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Singh. Articles written in Bulletin of Materials Science. Volume 28 Issue 7 December 2005 pp .... Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit Kumar S S Sharma B Tripathi M Singh Y K Vijay.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and ... Author Affiliations. A S Singha1 Anjali Shama1 Vijay Kumar Thakur1. Material Science Laboratory, National Institute of Technology, Hamirpur 177 005, India ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. Mickiewicza 30, 30-059 Krakow, Poland; The Pennsylvania State University, Department of Physics and Center for 2-Dimensional and Layered Materials, 104 Davey Laboratory, University Park, PA ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China; Anhui Provincial Laboratory of High Performance Nonferrous Metals Material, Wuhu, Anhui 241000, P.R. China; Department of Materials Science and Engineering, University of Science and Technology of ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Y Arthoba Naik. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 495-501 Thin Films. A new condensation product for zinc plating from non-cyanide alkaline bath · Y Arthoba Naik T V Venkatesha · More Details Abstract Fulltext PDF.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dinesh Kumar. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 549-551. Semiconductor applications of plasma immersion ion implantation technology · Mukesh Kumar Rajkumar Dinesh Kumar P J George · More Details Abstract Fulltext ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Murugesan. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Gopalakrishnan. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 235-241 Polymers. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol · C V Mythili A Malar Retna S Gopalakrishnan · More Details ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. E Subramanian. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. HUA WANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Raji George. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 183-185 Nanomaterials. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles · Arnab Ganguly Raji George · More Details Abstract Fulltext PDF. Nanoparticles of ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Vinmathi. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 625-628. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Bajpai. Articles written in Bulletin of Materials Science. Volume 25 Issue 1 February 2002 pp 21-23 Mechanical Properties. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment · R Bajpai V Mishra Pragyesh Agrawal S C Datt · More Details ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Bajpai. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 529-534 Review—Polymers. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nitai Debnath. Articles written in Bulletin of Materials Science. Volume 37 Issue 2 April 2014 pp 199-206. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria · Prasun Patra Shouvik Mitra Nitai Debnath Panchanan Pramanik ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K B R Varma. Articles written in Bulletin of Materials Science. Volume 30 Issue 6 December 2007 pp 567-570 Ceramics and Glasses. Microwave synthesis and sintering characteristics of CaCu3Ti4O12 · P Thomas L N Sathapathy K Dwarakanath K B R Varma · More Details ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Arunkumar Lagashetty. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 491-495 Nanomaterials. Adsorption study of Pb ions on nanosized SnO2, synthesized by self-propagating combustion reaction · Arunkumar Lagashetty A ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. TRAN NGOC TUYEN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 6. Lead ions removal from aqueous solution using modified carbon nanotubes · NGUYEN DUC VU QUYEN TRAN NGOC TUYEN DINH QUANG KHIEU HO VAN MINH ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N J KARALE. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1335-1345. Chemical synthesis and characterization of nano-sized rare-earth ruthenium pyrochlore compounds Ln 2 Ru 2 O 7 (Ln = rare earth) · R A PAWAR A K NIKUMBH ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Komath. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 135-140 Biomaterials. On the development of an apatitic calcium phosphate bone cement · Manoj Komath H K Varma R Sivakumar · More Details Abstract Fulltext PDF.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Le Minh Duc. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc · More Details ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Veera Brahmam. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 411-414 Single Crystals. Crystal growth and reflectivity studies of Zn1–MnTe crystals · K Veera Brahmam D Raja Reddy B K Reddy · More Details Abstract Fulltext PDF.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Wein-Duo Yang. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Neelotpal Sen Sarma. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Md HABIB. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 56. Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach · NARENDRA NATH GHOSH Md HABIB ANUP PRAMANIK PRANAB SARKAR SOUGATA PAL.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhang Lei. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 161-167. Characterization on strength and toughness of welded joint for Q550 steel · Jiang Qinglei Li Yajiang Wang Juan Zhang Lei · More Details Abstract Fulltext PDF. Q550 high ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B L Kalsotra. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B N Dev. Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer · J Kamila S Roy K Bhattacharjee B Rout B N Dev R Guico J Wang A W Haberl P Ayyub P V Satyam.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Bhimasankaram. Articles written in Bulletin of Materials Science. Volume 23 Issue 6 December 2000 pp 483-489 Oxide Ceramics. Effect of HIPing on conductivity and impedance measurements of DyBi5Fe2Ti3O18 ceramics · N V Prasad G Prasad Mahendra Kumar S V ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. REGINA C SO. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1179-1187. Preparation, characterization of chitosan/bamboo charcoal/poly(methacrylate) composite beads · DOROTHY CAMINOS-PERUELO WEI-CHIEH WANG ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. F Wang. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Pal. Articles written in Bulletin of Materials Science. Volume 24 Issue 4 August 2001 pp 415-420 Biomaterials. A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin · G Saraswathy S Pal C Rose T P Sastry · More Details Abstract Fulltext PDF.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Thotapalli P Sastry. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 177-181. Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder · Gunasekaran Krithiga Thotapalli P Sastry.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Annie John. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 141-154 Biomaterials. Bone growth response with porous hydroxyapatite granules in a critical sized lapine tibial-defect model · Annie John S Abiraman H K Varma T V Kumari P R ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LIFANG ZHANG. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 811-816. Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture · Lifang Zhang Yanyan Zheng Chengdong Xiong · More Details Abstract ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S S Samal. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 379-386 Polymers. Carbon nanotube reinforced polymer composites—A state of the art · S Bal S S Samal · More Details Abstract Fulltext PDF. Because of their high mechanical ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N K PANDEY. Articles written in Bulletin of Materials Science. Volume 40 Issue 2 April 2017 pp 253-262. Electrical and optical properties of ZnO–WO 3 nanocomposite and its application as a solid-state humidity sensor · VANDNA SHAKYA N K PANDEY SUNEET KUMAR ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P K Parhi. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 143-149. Failure analysis of multiple delaminated composite plates due to bending and impact · P K Parhi S K Bhattacharyya P K Sinha · More Details Abstract Fulltext PDF. The present ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shweta Agrawal. Articles written in Bulletin of Materials Science. Volume 32 Issue 6 December 2009 pp 569-573 Thin Films and Nanomatter. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sandeep Arya. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SURESH KUMAR. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 787-794. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Prakash. Articles written in Bulletin of Materials Science. Volume 29 Issue 4 August 2006 pp 339-345 Ceramics and Glasses. Solution-combustion synthesis of Bi1–LnO1.5 (Ln = Y and La–Yb) oxide ion conductors · Manjunath B Bellakki A S Prakash C Shivakumara M S ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Uma Maheswar Rao. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 587-593 Surface Studies. Investigation of surface modifications in ethylene propylene diene monomer (EPDM) rubber due to tracking under a.c. and d.c. voltages.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jiuxing Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 825-828. Magnetocaloric effect of Gd5Si2Ge2 alloys in low magnetic field · Hong Zeng Chunjiang Kuang Jiuxing Zhang Ming Yue · More Details Abstract Fulltext PDF.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H N Sheikh. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P P PRADYUMNAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 5 September 2017 pp 1007-1011. Structural and magnetic studies on copper succinate dihydrate single crystals · M P BINITHA P P PRADYUMNAN · More Details Abstract Fulltext PDF.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rani Joseph. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 343-348 Thin Films. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly(vinyl chloride) films · M Ushamani N G Leenadeenja K Sreekumar ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R AHMED. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1105-1110. Structural, elastic, optoelectronic and magnetic properties of CdHo 2 S 4 spinel: a first-principle study · I HATRAF O MERABIHA T SEDDIK H BALTACHE R KHENATA R ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MONICA KATIYAR. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 653-660. Processing and performance of organic insulators as a gate layer in organic thin film transistors fabricated on polyethylene terephthalate substrate · Saumen Mandal ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K R Rajesh. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 95-99. High mobility polymer gated organic field effect transistor using zinc phthalocyanine · K R Rajesh V Kannan M R Kim Y S Chae J K Rhee · More Details Abstract Fulltext PDF.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Avasthi. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Shrinet. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect of ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Rakshit. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Chandra. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 309-314 Biomaterials. Characteristics of porous zirconia coated with hydroxyapatite as human bones · V V Narulkar S Prakash K Chandra · More Details Abstract Fulltext PDF.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Austrian Centre of Competence for Tribology, Viktor Kaplan-Straße 2, A 2700 Wiener Neustadt, Austria; Institute of Industrial Electronics and Material Science, Vienna University of Technology, A 1040 Vienna, Austria; Institute of Material Science and Testing, Vienna University of Technology, A 1040 Vienna, Austria; Institute ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. XIAOWEN ZHANG. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 895-902. Structural evolution, electrical and optical properties of AZO films deposited by sputtering ultra-high density target · Jiwen Xu Zupei Yang Hua Wang Xiaowen Zhang.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KANNAIYAN DINAKARAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 4 August 2000 pp 295-299 Alloys. A test for diffusional coherency strain hypothesis in the discontinuous precipitation in Mg–Al alloy · K T Kashyap C Ramachandra V Bhat B Chatterji · More Details Abstract ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. AGNIESZKA SOBCZAK-KUPIEC. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 755-764. Effect of calcination conditions of pork bone sludge on behaviour of hydroxyapatite in simulated body fluid · Agnieszka Sobczak-Kupiec Zbigniew ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SUDHANSHU CHOUDHARY. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 713-718. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube · Sudhanshu Choudhary ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amarnath. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 435-439 Biomaterials. Effect of heat treatments on the hydrogen embrittlement susceptibility of API X-65 grade line-pipe steel · G Ananta Nagu Amarnath T K G Namboodhiri.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KADARKARAI MURUGAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YONG J IANG. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1255-1261. Molecular dynamics study on the relaxation properties of bilayered graphene with defects · WEI ZHANG JIU-REN YIN PING ZHANG YAN-HUAI DING YONG J IANG.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B Swarna Latha. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 883-888. Structural, spectroscopic and electrochemical study of V substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries · A Venkateswara Rao V Veeraiah A V Prasada ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B V Radhakrishna Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 109-117 Composites. Optimization of processing parameters for making alumina–partially stabilized zirconia laminated composites · S Deb B V Radhakrishna Bhat.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Biswas. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 251-255 Polymers. Effect of substrate roughness on growth of diamond by hot filament CVD · Awadesh K Mallik S R Binu L N Satapathy Chandrabhas Narayana Md Motin Seikh S A ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jadu Samuel. Articles written in Bulletin of Materials Science. Volume 36 Issue 6 November 2013 pp 981-987. Green chemical incorporation of sulphate into polyoxoanions of molybdenum to nano level · Jadu Samuel S Hari Prasad M K Sreedhar · More Details Abstract Fulltext ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T K Bhattacharya. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 703-706 Cements. Solid state sintering of lime in presence of La2O3 and CeO2 · T K Bhattacharya A Ghosh H S Tripathi S K Das · More Details Abstract Fulltext PDF.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dong Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 25-28. Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication · Tian-You Zhang Dong Zhang · More Details Abstract Fulltext PDF.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Ganesan. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 609-615 Thin Films. Structural morphology of amorphous conducting carbon film · P N Vishwakarma V Prasad S V Subramanyam V Ganesan · More Details Abstract Fulltext PDF.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Mandal. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 743-752. Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification · M Mandal D Singh Gouthama B S Murty S Sangal K Mondal · More Details ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Kharat. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 453-455 Ceramics and Glasses. Characterization and microstructure of porous lead zirconate titanate ceramics · B Praveenkumar H H Kumar D K Kharat · More Details Abstract ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Hui Shen. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 101-104 Single Crystals. Piezoelectric properties of Sr3Ga2Ge4O14 single crystals · Anhua Wu Jiayue Xu Juan Zhou Hui Shen · More Details Abstract Fulltext PDF. A new piezoelectric ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anhua Wu. Articles written in Bulletin of Materials Science. Volume 27 Issue 4 August 2004 pp 333-336 Crystal Growth. Bridgman growth and defects of Nd : Sr3Ga2Ge4O14 laser crystals · Jiaxuan Ding Anhua Wu Jiayue Xu · More Details Abstract Fulltext PDF.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G Prasad. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 431-437 High T c Superconductors. Studies on electrical properties of SrBi4Ti4–3Fe4O15 · N Venkat Ramulu G Prasad S V Suryanarayana T Bhima Sankaram · More Details ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Muthulakshmi. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1575-1582. Effect of temperature on the AC impedance of protein and carbohydrate biopolymers · S Muthulakshmi S Iyyapushpam D Pathinettam Padiyan · More Details ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Sahu. Articles written in Bulletin of Materials Science. Volume 32 Issue 3 June 2009 pp 285-294. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview · A K Sahu S Pitchumani P Sridhar A K Shukla · More Details Abstract Fulltext PDF.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N L Singh. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sejal Shah. Articles written in Bulletin of Materials Science. Volume 30 Issue 5 October 2007 pp 477-480 Polymers. Study of microhardness and electrical properties of proton irradiated polyethersulfone (PES) · Nilam Shah Dolly Singh Sejal Shah Anjum Qureshi N L Singh K P ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Prasannakumar. Articles written in Bulletin of Materials Science. Volume 24 Issue 5 October 2001 pp 535-538 Polymers. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K V Shah. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 715-720 Glasses and Ceramics. Preparation and studies of some thermal, mechanical and optical properties of Al2O3(1 – )NaPO3 glass system · K V Shah V Sudarsan M ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ganesh Sanjeev. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 191-196 Thin Films and Nanomatter. Dielectric properties of electron irradiated PbZrO3 thin films · Shetty Aparna V M Jali Ganesh Sanjeev Jayanta Parui S B Krupanidhi.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LING YANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  19. Qi Liu - Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. QI LIU. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 183-189. Study of structural transformations and phases formation upon calcination of Zn–Ni–Al hydrotalcite nanosheets · Zhanshuang Li Yanchao Song Jun Wang Qi Liu Piaoping Yang ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Singha. Articles written in Bulletin of Materials Science. Volume 31 Issue 1 February 2008 pp 7-13 Polymers. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre · A S Singha Anjali Shama ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. L C GUPTA. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1121-1125. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2 · ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H P Sachin. Articles written in Bulletin of Materials Science. Volume 30 Issue 1 February 2007 pp 57-63 Electrochemistry. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath · H P Sachin Ganesha Achary Y Arthoba Naik T V Venkatesha.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Petrič. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 113-119. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives · M Humar M Pavlič D Žlindra M Tomažič M Petrič.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Hafez. Articles written in Bulletin of Materials Science. Volume 33 Issue 2 April 2010 pp 149-155 Polymers. Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol · A B Elaydy M Hafez · More Details ...

  5. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  6. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  7. Materials Science and the Problem of Garbage

    Science.gov (United States)

    McPherson, Heather

    2016-01-01

    Materials science--the science of stuff--has made our lives better by making it possible for manufacturers to supply us with products. Students have misconceptions about materials use. Many may think using bottled water, for example, is harmless because they recycle the plastic empties, but they fail to consider the resources and energy used to…

  8. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  9. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  10. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  11. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  12. Developments in reactor materials science methodology

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Ivanov, V.B.

    1987-01-01

    Problems related to organization of investigations into reactor materials science are considered. Currently the efficiency and reliability of nuclear power units are largely determined by the fact, how correctly and quickly conclusions concerning the parameters of designs and materials worked out for a long time in reactor cores, are made. To increase information value of materials science investigations it is necessary to create a uniform system, providing for solving methodical, technical and organizational problems. Peculiarities of the current state of reactor material science are analysed and recommendations on constructing an optimal scheme of investigations and data flow interconnection are given

  13. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2012-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G P Nayaka. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K C Anjaneya. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  16. The Science of Smart Materials

    Science.gov (United States)

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  17. Radiation materials science. V. 7

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  18. Radiation materials science. V. 6

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  19. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4 ... Microwave materials; ceramic dielectric resonators; polytitanates; co-precipitation. ... hypotheses viz. diffusion, high surface and nucleation energy, potential barrier, non-stoichiometry etc as critical factors limiting formation of 2 : 9 as single-phase material.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This generated great interest in the development of these heteroatom structured materials through different processing routes. ... of Materials Science, Sardar Patel University, Vallabh Vidyanagar 388 120, India; Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama 226, Japan ...

  2. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  3. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  4. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. Yasser B Saddeek1 Moenis A Azooz2 Amr Bakr Saddek3. Faculty of Science, Physics Department, Al-Azhar University, Assiut, Egypt; Glass Research Department, National Research Center, Dokki, Cairo, Egypt; Faculty of Engineering, Civil Engineering Department, Beni-Suef University, Beni-Suef, Egypt ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ankur Jain1 R K Jain1 Shivani Agarwal1 I P Jain1. Material Science Laboratory, Centre for Non-Conventional Energy Resources, 14, Vigyan Bhawan, University of Rajasthan, Jaipur 302 004, India ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation ... Keywords. Gamma irradiation; graft copolymerization; spectroscopic analysis; XRD; kinetics of thermal decomposition; activation energy.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Bulletin of Materials Science began in the year 1979. ... one of the world's leading interactive databases of high quality STM journals, book series, books, reference works and online archives collection. ... Sadashivanagar, P.B. No. 8005 ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Romania; 'Alexandru Ioan Cuza' University, Research Center on Advanced Materials and Technologies, Sciences Department, 11 Carol I Blvd., 700506 Iasi, Romania; Photonics Laboratory, Angers University, 2, Bd. Lavoisier, 49045 Angers, ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiaoming Liao1 Hongyang Zhu1 Guangfu Yin1 Zhongbing Huang1 Yadong Yao1 Xianchun Chen1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, P.R. of China ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7 ... pulse electrodeposition with ultrasound agitation from nickelWatts-type bath. ... The results showed that wear resistance increased with increase in duty cycle and frequency.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4 ... has a dielectric anomaly of ferroelectric to paraelectric type at 198°C, and exhibits ... that the compound has negative temperature coefficient of resistance (NTCR) behaviour.

  13. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi, Morocco; LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco; Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. U D Lanke1 2. Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Mumbai 400 076, India; School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. G KOROTCENKOV1 V BRINZARI2 B K CHO1. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500712, Republic of Korea; Department of Theoretical Physics, State University of Moldova, Chisinau, Republic of Moldova ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    MOHAMMOD AMINUZZAMAN1 LIM POH YING1 WEE-SHENOG GOH1 AKIRA WATANABE2. Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Malaysia; Institute of Multidisciplinary Research for Advanced Materials ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement ... Author Affiliations. I Janotka1 L' Krajèi1. Institute of Construction and Architecture of the Slovak Academy of Sciences, Bratislava, Slovak Republic ...

  19. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LI-XIA YANG. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 233-237. Shape control synthesis of low-dimensional calcium sulfate · Li-Xia Yang Yan-Feng Meng Ping Yin Ying-Xia Yang Ying-Ying Tang Lai-Fen Qin · More Details Abstract ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Singh. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 561-563. Synthesis of SiC from rice husk in a plasma reactor · S K Singh B C Mohanty S Basu · More Details Abstract Fulltext PDF. A new route for production of SiC from rice husk ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. C H Xia. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    scale grain growth of two nanocrystalline materials, Pd81Zr19 and RuAl. ... Structural, optical and electrical properties of chemically deposited copper selenide films .... Effect of substitution of titanium by magnesium and niobium on structure and ...

  4. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  5. Materials science for nuclear detection

    OpenAIRE

    Peurrung, Anthony

    2008-01-01

    The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detec...

  6. Molecular Building Blocks for Nanotechnology From Diamondoids to Nanoscale Materials and Applications

    CERN Document Server

    Mansoori, G. Ali; Assoufid, Lahsen; Zhang, Guoping

    2007-01-01

    This book is a result of the research and educational activities of a group of outstanding scientists worldwide who have authored the chapters of this book dealing with the behavior of nanoscale building blocks. It contains a variety of subjects covering computational, dry and wet nanotechnology. The state-of-the-art subject matters presented here provide the reader with the latest developments on ongoing nanoscience and nanotechnology research from the bottom-up approach, which starts with with atoms and molecules as molecular building blocks.

  7. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  8. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  9. Infochemistry Information Processing at the Nanoscale

    CERN Document Server

    Szacilowski, Konrad

    2012-01-01

    Infochemistry: Information Processing at the Nanoscale, defines a new field of science, and describes the processes, systems and devices at the interface between chemistry and information sciences. The book is devoted to the application of molecular species and nanostructures to advanced information processing. It includes the design and synthesis of suitable materials and nanostructures, their characterization, and finally applications of molecular species and nanostructures for information storage and processing purposes. Divided into twelve chapters; the first three chapters serve as an int

  10. Microgravity Materials Science Conference 2000. Volume 1

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  11. Microgravity Materials Science Conference 2000. Volume 3

    Science.gov (United States)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  12. Microgravity Materials Science Conference 2000. Volume 2

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  13. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  14. Editorial: Defining materials science: A vision from APL Materials

    Directory of Open Access Journals (Sweden)

    Judith MacManus-Driscoll

    2014-07-01

    Full Text Available These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    pp 235-241 Polymers. Synthesis, mechanical, thermal and chemical properties of ... pp 243-249 Polymers. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene ... showed reduction in g value. pp 251-262 Polymers. Analysis of surface degradation of high density polyethylene (HDPE) insulation material due to tracking.

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Synthesis and characterization of fluorophore attached silver nanoparticles ... by X-ray diffraction, differential thermal analysis, thermogravimetric analysis, Fourier ..... Infrared spectra, Raman laser, XRD, DSC/TGA and SEM investigations on the ..... composite materials based on polyaniline–polyethylene glycol–CdS system.

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Mullite retains the usual orthorhombic habit of sillimanite. Rounded to sub rounded zirconia dispersed within the mullite matrix of the sample ZA is noticed. pp 221-225 Sol-gel Materials. Role of binder in the synthesis of titania membrane · K S Seshadri M Selvaraj R Kesava Moorthy K Varatharajan M P Srinivasan K B Lal.

  18. Introduction into modern materials science

    International Nuclear Information System (INIS)

    Brostow, W.

    1984-01-01

    This book is divided into the following headings: Preliminary remarks on mathematics, statistical mechanics, intermolecular interactions; gases and fluids - general fundamentals, liquids and solutions, crystals, metals and alloys, non-metallic solids, composites; thermodynamic properties, mechanical properties, electric conductivity, dielectric and magnetic properties, surface effects, and materials testing - an outline. (orig./MM) With 128 figs., 21 tabs [de

  19. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Studies on relative catalytic efficiencies of zinc and aluminium on nucleation of ... Production of boron carbide powder by carbothermal synthesis of gel material .... Studies on CdIn2O4 derived from CdIn2S4 prepared by flux method ... and thermally stimulated discharge conductivity (TSDC) study in polymer thin films.

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... metal oxides in the process of chloride induced corrosion of steel reinforcement ... Paper pulp waste—A new source of raw material for the synthesis of a porous .... Utilization of mixed pond ash in integrated steel plant for manufacturing ...

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Department of Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210 702, Korea; Graduate School of Green Energy Technology, Chungnam National University, Daejeon 305 764, Korea; Department of Civil Engineering, Gangneung-Wonju National University, Gangneung 210 702, ...

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    deposition and annealing · G Ranga Rao .... Fine structure at the diffusion welded interface of Fe3Al/Q235 dissimilar materials · Wang Juan ... and Steels. Effect of zirconium addition on the recrystallization behaviour of a commercial Al–Cu–Mg alloy.

  3. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.) [pt

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 5 ... of CdTe nanoparticles before and after transfer from liquid phase to polystyrene ... Catalytic synthesis of ZnO nanorods on patterned silicon wafer—An optimum material for gas .... Hot-rolled, warm-rolled and heat treated alloys were examined using optical ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Electro-optical properties, decomposition pathways and the hydrostatic pressure-dependent behaviours of a double-cation hydrogen storage material of Al 3 Li 4 (BH 4 ) 13. MEHMET SIMSEK. Volume 40 Issue 5 September 2017 pp 907-915 ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 27 Issue 5 October 2004 pp 417-420 Nuclear Related Materials. Irradiation of large area Mylar membrane and characterization of ... Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wang Juan1 Li Yajiang1 Wu Huiqiang1 Ren Jiangwei1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P.R. China ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Key Lab for Green Processing and Functionalization of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, P.R. China; State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; Zhuxi ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 4 ... Permittivity; polarization effects; strontium tartrate; thermal properties; dielectric properties. ... It is explained that crystallographic change due to polymorphic phase transition may be occurring in the material, besides the change due to loss of water ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Optimization of growth of InGaAs/InP quantum wells using photoluminescence and secondary ion mass spectrometry. S Bhunia P Banerji T K Chaudhuri A R Haldar D N Bose Y Aparna M B Chettri B R Chakraborty. Semiconducting Materials Volume 23 ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites. Smrutisikha Bal ... Author Affiliations. Smrutisikha Bal1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769 008, India ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher ... National Metallurgical Laboratory, Jamshedpur 831 007, India; Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Sanjay Panwar1 D B Goel2 O P Pandey1. School of Physics and Materials Science, Thapar Institute of Engineering & Technology, Patiala 147 004, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Preparation of new thermoluminescent material ( 100 − x )B 2 O 3 –xLi 2 O: Cu 2 + for sensing and detection of radiation. Zeid A Alothman Tansir Ahamad Mu Naushad Saad M Alshehri. Volume 39 Issue 1 February 2016 pp 331-336 ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 6 ... by microwave route and nature of anatase–rutile phase transition in nano TiO2 .... properties of AgPb10SbTe12 prepared by high pressure method .... the crystal field strength around Mn(V) such that a blue colour results for materials with small values of .

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Chemical and Materials Engineering, National University of Science and Technology, H/12 Islamabad, Pakistan; Austrian Institute of Technology GmbH, Advanced Materials & Aerospace Technologies, A-2444 Seibersdorf, Austria; Centre of Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 6 .... modified with 4–12% 3,3′-bis(maleimidophenyl) phenylphosphine oxide and cured ... Study of effect of composition, irradiation and quenching on ionic ... Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 4. CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials. Yuan Fang Rijing Wang Guohua Jiang He Jin Yin Wang Xinke Sun Sheng Wang Tao Wang. Volume 35 Issue 4 August 2012 pp 495-499 ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 6. Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites. M R Anantharaman K A Malini S Sindhu E M Mohammed S K Date S D Kulkarni P A Joy Philip Kurian. Magnetic Materials Volume 24 Issue 6 December 2001 ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiuqiang Li1 Dong Zhang1 Peiying Zhu1 Chao Yang1. Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, College of Materials Science and Engineering, Tongji University, 4800 CaoAn Road, Shanghai 200092, China ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 4. Phase analysis and dielectric properties of ceramics in PbO–MgO–ZnO–Nb2O5 system: A comparative study of materials obtained by ceramic and molten salt synthesis routes. M Thirumal A K Ganguli. Ceramics Volume 23 Issue 4 August 2000 pp 255-261 ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Materials Chemistry Laboratory, Department of Materials Science, Gulbarga University, Gulbarga 585 106, India; Veeco-India Nanotechnology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India; R&D Centre Premier Explosives Pvt. Ltd., Hyderabad 500 015, India ...

  3. Material science and neutron scattering

    International Nuclear Information System (INIS)

    1983-01-01

    Neutron scattering experiments complete and extend the condensed matter studies made with X and gamma rays. Then story show a permanent evolution of the instrumentation, methods and experimental techniques to improve the result quality. This is more especially important as neutron sources are weaker than photon and electron sources. Progress in this research domain is due, in most part, to discovery and development of materials for the different measurement device components [fr

  4. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)

  5. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P., E-mail: prasri@ece.ucsb.edu, E-mail: srinivasan@lifesci.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.

  6. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    International Nuclear Information System (INIS)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J.; Mesot, J.; Shiroka, T.; Veen, J.F. van der; Mesot, J.

    2009-09-01

    consultation with individual leading scientists. The scientific case presented here is the result of hard and dedicated work by about 20 research groups from Swiss universities and research institutes, as well as by PSI staff. It shows that Switzerland has an active scientific community eager to use the unique properties of SwissFEL, be it for optimizing catalytic processes, identifying polluting molecules, designing new pharmaceutical drugs or studying defects in engineering materials. As is usual with new facilities, new applications will emerge that no-one had ever imagined before. This is science and technology at its best, and PSI will be proud and honoured to make SwissFEL a reality. (authors)

  7. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  8. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  9. Enhanced electrochemical properties of LiNiO{sub 2}-based cathode materials by nanoscale manganese carbonate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junkai; Wang, Zhixing, E-mail: zxwang.csu@hotmail.com; Guo, Huajun; Li, Xinhai

    2017-05-01

    Highlights: • Li residuals are consumed during the process of modification. • MnO{sub 2} coating layer can protect bulk material from the erosion of electrolyte. • The electrochemical performance is enhanced by the nanosacle MnCO{sub 3} treatment. • The enhancement of coating can be strengthened by the removal of lithium impurities. - Abstract: LiNiO{sub 2}-based layered oxides are of great importance as cathode materials for rechargeable batteries. In this paper, illustrating LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} as an example, the effect of nanoscale MnCO{sub 3} treatment on LiNiO{sub 2}-based materials is investigated for the first time. The structures of materials and the properties about the object surface are characterized by XRD, SEM, TEM, EDAX and XPS. The results demonstrate that a part of MnCO{sub 3} is able to react with lithium impurities to form nonstoichiometric Li{sub x}Mn{sub y}O{sub 4} and the rest of MnCO{sub 3} is converted to MnO{sub 2} coating on the surface of the material in situ. After 100 repeated cycles at 1C, the modified material exhibits a capacity retention rate of 91.2%, while the bare material only remains 84.8%. And the modified material exhibits more significantly improved cycling stability when cycling at 60 °C, maintaining 85.7% of its initial capacity at 1C after 100th cycles. The consumption of Li impurities can decelerate the decomposition of electrolyte during cycling, thus result in less resistive byproducts. Moreover, the obtained MnO{sub 2} coating layer acts as an isolating layer to suppress the drastic reaction between active material and electrolyte. This synergistic effect is responsible for the excellent properties of MnCO{sub 3}-modified material.

  10. Density functional theory in materials science.

    Science.gov (United States)

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  11. Material Science Experiments on Mir

    Science.gov (United States)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  12. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J. [Paul Scherrer Intitute (PSI), Villigen (Switzerland); Mesot, J.; Shiroka, T.; Veen, J.F. van der [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Mesot, J. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2009-09-15

    the past few years and by consultation with individual leading scientists. The scientific case presented here is the result of hard and dedicated work by about 20 research groups from Swiss universities and research institutes, as well as by PSI staff. It shows that Switzerland has an active scientific community eager to use the unique properties of SwissFEL, be it for optimizing catalytic processes, identifying polluting molecules, designing new pharmaceutical drugs or studying defects in engineering materials. As is usual with new facilities, new applications will emerge that no-one had ever imagined before. This is science and technology at its best, and PSI will be proud and honoured to make SwissFEL a reality. (authors)

  13. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  14. Environmental TEM for Materials Research

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum

    Over the last decades, electron microscopy has played a large role in materials research. The increasing use of particularly environmental transmission electron microscopy (ETEM) in materials science provides new possibilities for investigating nanoscale components at work. Careful experimentation...

  15. Environmental TEM in Materials Research

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    Over the last decades, electron microscopy has played a large role in materials research. The increasing use of particularly environmental transmission electron microscopy (ETEM) in materials science provides new possibilities for investigating nanoscale components at work. Careful experimentation...

  16. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    International Nuclear Information System (INIS)

    2010-01-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working_materials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation synthesize

  17. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 1. Characterization and in vitro and in vivo evaluation of cross-linked chitosan films as implant for controlled release of citalopram. Patit P Kundu Santosh Kumar Jindal Manish Goswami. Volume 36 Issue 1 February 2013 pp 175-182 ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 5. Influence of additives on electrodeposition of bright Zn–Ni alloy on mild steel from acid sulphate bath. S Shivakumara U Manohar Y Arthoba Naik T V Venkatesha. Alloys and Steels Volume 30 Issue 5 October 2007 pp 455-462 ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Structural investigation of V 2 O 5 –P 2 O 5 –K 2 O glass system with antibacterial potential. N S VEDEANU I B COZAR R STANESCU R STEFAN D VODNAR O COZAR. Volume 39 Issue 3 June 2016 pp 697-702 ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer ... optical and secondary electron microscopic experimental methods. Volume 34 Issue 4 July 2011 pp 595-599. Thermal stability of gold-PS nanocomposites thin films.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions. CHOKKALINGAM PRIYA GANESSIN ARAVIND WILSON RICHARD THILAGARAJ. Volume 39 Issue 2 April 2016 ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 3. Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses. S P Singh Aman Anal Tarafder. Glasses Volume 27 Issue 3 June 2004 pp 281-287 ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    K Ramachandran. Articles written in Bulletin of Materials Science. Volume 25 Issue 4 August 2002 pp ... Volume 27 Issue 5 October 2004 pp 403-407 Phase Transitions. Phase transition in L-alaninium oxalate by ... Thermal and structural properties of spray pyrolysed CdS thin film · P Raji C Sanjeeviraja K Ramachandran.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of rolling deformation and solution treatment on ... By the solution treatment, the elongated and broken crystalline grains recrystallize which leads to the formation of finer grains (<10 m) of austenite. X-ray diffraction analysis has corroborated well with ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    University of Mohammed V, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.O. Box 1014, Rabat–Agdal 10106, Morocco; Departamento de Ingeniería Química Industrial y del Medio Ambiente, E.T.S.I. Industriales, Universidad Politécnica ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Magnetic resonance in superparamagnetic zinc ferrite. Jitendra Pal Singh Gagan Dixit R C Srivastava Hemant Kumar H M Agrawal Prem Chand. Volume 36 Issue 4 August 2013 pp 751-754 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Liu Jinlian Wu Xianming Chen Shang Liu Jianben He Zeqiang. Volume 36 Issue 4 August 2013 pp 687-691 ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K L Sahoo1 Rina Sahu1 M Ghosh1 S Chatterjee2. Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India; Department of Metallurgical and Materials Engineering, Bengal Engineering and Science University, Howrah 711 103, India ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effect of height to diameter ( h / d ) ratio on the deformation behaviour of Fe–Al 2 O 3 metal matrix nanocomposites. PALLAV GUPTA DEVENDRA KUMAR A K JHA OM PARKASH. Volume 39 Issue 5 September 2016 pp 1245-1258 ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Synthesis and luminescence properties of Tb 3 + − d o p e d L i M g P O _4$ phosphor. C B PALAN N S BAJAJ A SONI S K OMANWAR. Volume 39 Issue 5 September ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses to probe local environment. GAJANAN V HONNAVAR K P RAMESH ... Keywords. Tellurite glasses; Raman spectroscopy; photoluminscence; Stark level splitting; UV visible spectroscopy.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of nitrogen flow ratio on structure and properties of zirconium nitride films on Si(100) prepared by ion beam sputtering. Shahab Norouzian Majid Mojtahedzadeh Larijani Reza Afzalzadeh. Volume 35 Issue 5 October 2012 pp 885-887 ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 5. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques. Nishat Arshi Junqing Lu Chan Gyu Lee Jae Hong Yoon Bon Heun Koo Faheem Ahmed. Volume 36 Issue 5 October 2013 pp ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. K Kumari P P Kundu. Polymers Volume 31 Issue 2 April 2008 pp 159-167 ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 26 Issue 2 February 2003 pp 247-253 Electrical Properties. Impedance spectroscopy ... the a.c. conductivity data. Volume 26 Issue 7 December 2003 pp 745-747 Electrical Properties. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 301-308 Biomaterials. Adhesive B-doped DLC films on ... Volume 30 Issue 4 August 2007 pp 407-413 Alloys and Steels. Structural phase transitions and piezoelectric anomalies in ordered Sc0.5Ga0.5N alloys · A M Alsaad A A Ahmad.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 2 ... Surface texture modification of spin-coated SiO2 xerogel thin films by TMCS silylation .... Influence of pH and bath composition on properties of Ni–Fe alloy films ... Diffuse phase transition, piezoelectric and optical study of Bi0.5Na0.5TiO3 ceramic.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Fereshteh Chekin Samira Bagheri Sharifah Bee Abd Hamid. Volume 38 Issue 7 December 2015 pp 1711-1716 ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 2 ... TSDC; PS; naphthalene; thermo-electrets; glass transition temperature (g). Abstract. The electrical conductivity of naphthalene doped polystyrene (PS) films (≈ 61.58 m thick) was studied as a function of dopant concentration and temperature.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    V Renteria. Articles written in Bulletin of Materials Science. Volume 38 Issue 1 February 2015 pp 29-40. Yttrium deposition on mesoporous TiO2: textural design and UV decolourization of organic dyes · M L Ojeda C Velasquez V Renteria A Campero M A García-Sánchez F Rojas · More Details Abstract Fulltext PDF.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4. Preparation of titanium diboride powders from titanium alkoxide ... The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... The energy diagram shows the feasibility of La2CuO4 for the H2 evolution under visible light. ... Laboratory of Storage and Valorization of Renewable Energies, Faculty of ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 3. Microstructural and optical properties of transparent conductive ZnO : Al : Mo films deposited by template-assisted sol–gel method. H-Y He J-F Huang Z He J Lu Q Shen. Volume 37 Issue 3 May 2014 pp 519-525 ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2. Evaluation of borax solid wastes in production of frits suitable for fast single-fired wall tile opaque glass–ceramic glazes. K Pekkan B Karasu. Ceramics and Glasses Volume 33 Issue 2 April 2010 pp 135-144 ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 4 .... Synthesis and structural studies of Na2O–ZnO–ZnF2–B2O3 oxyfluoride glasses ... processing: A potential technique for preparing NiO–YSZ composite and Ni–YSZ cermet.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 3. Effect of composition on the polarization and ohmic resistances of LSM/YSZ composite cathodes in solid oxide fuel cell. B SHRI PRAKASH S SENTHIL KUMAR S T ARUNA. Volume 40 Issue 3 June 2017 pp 441-452 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Medicine and Dentistry, James Cook University, Cairns 4878, Australia; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China; Institute of Dental Materials, Wenzhou Medical University, Wenzhou ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 2. Effect of annealing temperature on the structural–microstructural and electrical characteristics of thallium bearing HTSC films prepared by chemical spray pyrolysis technique. K K Verma R S Tiwari O N Srivastava. Superconductors Volume 28 Issue 2 April ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. Effect of oxygen vacancies on Li-storage of anatase TiO 2 (001) facets: a first principles study. H CHEN Y H DING X Q TANG W ZHANG J R YIN P ZHANG Y JIANG. Volume 41 Issue 2 April 2018 Article ID 51 ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 4. Structural, spectroscopic and electrochemical study of V5+ substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries. A Venkateswara Rao V Veeraiah A V Prasada Rao B Kishore Babu B Swarna Latha K Rama Rao. Volume 37 Issue 4 June 2014 pp ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Special Issues. Bulletin of Materials Science. pp 199-584 Volume 31 Issue 3 June 2008. Proceedings of the 'National Review and Coordination Meeting on Nanoscience and Nanotechnology', Hyderabad, 2007. Editor: S. B. Krupanidhi Guest Editors: G. Sundararajan and Tata Narasinga Rao. pp 547-651 Volume 29 Issue ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Bulletin of Materials Science; Volume 29; Issue 2. Mechanism of cube grain nucleation during recrystallization of deformed commercial purity aluminium. K T Kashyap R George. Nucleation Studies Volume 29 Issue ... Keywords. Recrystallization; cube texture; commercial purity aluminium; differential stored energy model.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Harnessing renewable solar energy through different technologies is greatly dependent on the advancement of solar grade materials' science and engineering. In this article, the prominent solar energy technologies, namely solarphotovoltaic and concentrated solar power and other relevant technologies, and aspects ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe 12 − 2 x O 19 nanoparticles synthesized by sol–gel auto-combustion method. S ALAMOLHODA S M MIRKAZEMI Z GHIAMI M NIYAIFAR. Volume 39 Issue 5 ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume ... Preparation and characterization of magnesium–aluminium–silicate glass ceramics ... Preparation and studies of some thermal, mechanical and optical properties of .... Surface degradation behaviour of sodium borophosphate glass in aqueous media: Some studies.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5 .... Influence of different heat treatment programs on properties of sol–gel ... The strong preferred c-axis orientation is lost due to cadmium doping and degree ... Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 4 ... Nacional de Investigaciones Científicas y Técnicas), A4408FVY Salta, Argentina; Fac. Ingeniería, Universidad Nacional de Salta, A4408FVY Salta, Argentina; Fac.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Acoustic study of nano-crystal embedded PbO–P2O5 glass. Sudip K Batabyal A Paul P Roychoudhury C Basu. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 357-363 ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Impedance and a.c. conductivity studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic prepared through conventional and microwave sintering route. Syed Mahboob G Prasad G S Kumar. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 347-355 ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Thermoluminescence dosimetry of rare earth doped calcium aluminate phosphors. K Madhukumar K Rajendra Babu K C Ajith Prasad J James T S Elias V Padmanabhan C M K Nair. Ceramics and Glasses Volume 29 Issue 2 April 2006 pp 119-122 ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film ... amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive -phase spots surrounded by amorphous regions. Scanning ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 4. Evaluation of solid–liquid interface profile during continuous casting by a spline based formalism. S K Das. Metals and Alloys Volume ... Keywords. Continuous casting; solidification; solid–liquid interface; front tracking algorithm; phase change; heat transfer.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 27; Issue 6. Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals. Namita Rajput S Tiwari B P Chandra. Optical Properties Volume 27 Issue 6 December 2004 pp 505-509 ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... of the nanoporous titania films attached with and without photosensitizer TCPP .... The positive values of free energy indicate the non-spontaneity of the sorption of HNTs ..... Effect of RF power and gas flow ratio on the growth and morphology of the PECVD ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Theoretical study of built-in-polarization effect on relaxation time and mean free path of phonons in Al x Ga 1 − x N alloy. B K SAHOO A PANSARI. Volume 39 Issue 7 December 2016 pp 1835-1841 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3 ... The morphology and the nature of the protective layer grown under the paint film were also ... en Tecnología de Pinturas, Calle 52e/121 y 122, (B1900AYB), La Plata 1900, ...

  9. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Science.gov (United States)

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... mission to support the development of nanotechnology through research on measurement and fabrication...

  10. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  11. Phase change materials: science and applications

    National Research Council Canada - National Science Library

    Raoux, Simone; Wuttig, Matthias

    2009-01-01

    ... are the Ovonic threshold switch, the multi-state Ovonic Universal Memory (OUM), and the Ovonic cognitive device which emulates the biological neurons with its plasticity and synaptic activity. The field of amorphous and disordered materials created not only a basic new area of science, but also important new technologies. It should be kept in mind that...

  12. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  13. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  14. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working{sub m}aterials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation

  15. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  16. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  17. Annual review of materials science. Volume 7

    International Nuclear Information System (INIS)

    Huggins, R.A.; Bube, R.H.; Roberts, R.W.

    1977-01-01

    A review is presented of recent materials science research. Topics covered include: point defects and their interaction; defect chemistry in crystalline solids; deep level impurities in semiconductors; structural aspects of one-dimensional conductors; structural transformations during aging of metal alloys; high rate thick film growth; metal forming, the application of limit analysis; kinetics and mechanisms of gas-metal interactions; erosion; reversible temper embrittlement; acoustic emission in brittle materials; capacitance transient spectroscopy; hot corrosion of high-temperature alloys; fundamental optical phenomena in infrared window materials; dental amalgam; and transparent conducting coatings

  18. Report of the 1st RCM on ''Nanoscale radiation engineering of advanced materials for potential biomedical applications''. Working document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions and radiation techniques are uniquely suited for such a task, due to their favorable characteristics, and in most cases, not possible by other methods of synthesis. Accordingly, many of the developing and developed Member States have an interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. The proposal for this CRP was formulated based on the requests and information received from the member states and the conclusions and recommendations of the Consultant’s meeting on “Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes”, held on 10-14 December 2007, in Vienna. Based on these conclusions, this CRP aims to support MS to develop methodologies for the use of radiation in the synthesis, modification, and characterization of nanomaterials - nanogels, nanoparticles, nanovehicles, nanoporous membranes, and surfaces with enhanced biocompatibility for potential biomedical applications, such as cell-sheet engineering and artificial tissue construction; diagnostics and imaging; and drug delivery. Additionally, this CRP facilitates networking between radiation technologists and biomedical scientists for the development of such applications. The CRP generated a huge interest, but due to funding constrains, many good proposals had to be rejected. The first RCM of the CRP was convened in Vienna on 30 March - 03 April 2009. It was attended by 14 representatives and two observers. The participants presented and discussed the status of the field, the needs for further research, and various application possibilities

  19. Report of the 1st RCM on ''Nanoscale radiation engineering of advanced materials for potential biomedical applications''. Working document

    International Nuclear Information System (INIS)

    2009-01-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions and radiation techniques are uniquely suited for such a task, due to their favorable characteristics, and in most cases, not possible by other methods of synthesis. Accordingly, many of the developing and developed Member States have an interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. The proposal for this CRP was formulated based on the requests and information received from the member states and the conclusions and recommendations of the Consultant’s meeting on “Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes”, held on 10-14 December 2007, in Vienna. Based on these conclusions, this CRP aims to support MS to develop methodologies for the use of radiation in the synthesis, modification, and characterization of nanomaterials - nanogels, nanoparticles, nanovehicles, nanoporous membranes, and surfaces with enhanced biocompatibility for potential biomedical applications, such as cell-sheet engineering and artificial tissue construction; diagnostics and imaging; and drug delivery. Additionally, this CRP facilitates networking between radiation technologists and biomedical scientists for the development of such applications. The CRP generated a huge interest, but due to funding constrains, many good proposals had to be rejected. The first RCM of the CRP was convened in Vienna on 30 March - 03 April 2009. It was attended by 14 representatives and two observers. The participants presented and discussed the status of the field, the needs for further research, and various application possibilities

  20. Materials science. Materials that couple sensing, actuation, computation, and communication.

    Science.gov (United States)

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  1. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Fourth International Conference on Nanoscale Magnetism

    CERN Document Server

    Aktas, Bekir; Advances in Nanoscale Magnetism

    2009-01-01

    The book aims to provide an overview of recent progress in the understanding of magnetic properties in nanoscale through recent results of various theoretical and experimental investigations. The papers describe a wide range of physical aspects, together with theoretical and experimental methods. It is of central interest to researchers and specialists in magnetism and magnetic materials science, both in academic and industrial research, as well as advanced students.

  3. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  4. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  5. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.; Moon, Juhyuk; Yoon, Seyoon; Bae, Sungchul; Levitz, Pierre; Winarski, Robert; Monteiro, Paulo J. M.

    2013-01-01

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Investigation of localization effect in GaN-rich InGaN alloys and modified band-tail model. Chuan-Zhen Zhao Bin Liu De-Yi Fu Hui Chen Ming Li Xiang-Qian Xiu Zi-Li Xie Shu-Lin Gu You-Dou Zheng. Volume 36 Issue 4 August 2013 pp 619-622 ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Impedance spectroscopy studies on (Na0.5Bi0.5)0.94Ba0.06TiO3 + 0.3 wt% Sm2O3 + 0.25 wt% LiF lead-free piezoelectric ceramics. N Zidi A Chaouchi S D'Astorg M Rguiti C Courtois. Volume 38 Issue 3 June 2015 pp 731-737 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In addition, 0.25Ca0.8Sr0.2 TiO3–0.75Li0.5Nd0.5TiO3 + 4.0 wt% LiF ceramics sintered at 1350°C for 4 h exhibited good microwave dielectric properties of r ... College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China; Department of Information Engineering, Guilin ...

  9. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  10. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...

  11. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  12. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  13. Materials Science and X-ray Techniques

    International Nuclear Information System (INIS)

    Brock, J.; Sutton, M.

    2008-01-01

    Many novel synchrotron-based X-ray techniques directly address the core questions of modern materials science but are not yet at the stage of being easy to use because of the lack of dedicated beamlines optimized for specific measurements. In this article, we highlight a few of these X-ray techniques and discuss why, with ongoing upgrades of existing synchrotrons and with new linear-accelerator-based sources under development, now is the time to ensure that these techniques are readily available to the larger materials research community.

  14. Application of cluster computing in materials science

    International Nuclear Information System (INIS)

    Kuzmin, A.

    2006-01-01

    Solution of many problems in materials science requires that high performance computing (HPC) be used. Therefore, a cluster computer, Latvian Super-cluster (LASC), was constructed at the Institute of Solid State Physics of the University of Latvia in 2002. The LASC is used for advanced research in the fields of quantum chemistry, solid state physics and nano materials. In this work we overview currently available computational technologies and exemplify their application by interpretation of x-ray absorption spectra for nano-sized ZnO. (author)

  15. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  16. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  17. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  18. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  19. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    1984-09-01

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  20. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved