WorldWideScience

Sample records for nanoscale iron particles

  1. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized using tea-polyphenols.

    Science.gov (United States)

    A “green” protocol was used for the rapid generation of nanoscale zerovalent iron (NZVI) particles using tea polyphenols. The NZVI particles were subsequently examined for in vitro biocompatibility using the human keratinocyte cell (HaCaT) line as a skin exposure model. The cell...

  2. Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: characteristics and reactivity.

    Science.gov (United States)

    Kim, Hong-Seok; Ahn, Jun-Young; Hwang, Kyung-Yup; Kim, Il-Kyu; Hwang, Inseong

    2010-03-01

    Atmospherically stable NZVI (nanoscale zero-valent iron) particles were produced by modifying shell layers of Fe(H2) NZVI particles (RNIP-10DS) by using a controlled air contact method. Shell-modified NZVI particles were resistant to rapid aerial oxidation and were shown to have TCE degradation rate constants that were equivalent to 78% of those of pristine NZVI particles. Fe(H2) NZVI particles that were vigorously contacted with air (rapidly oxidized) showed a substantially compromised reactivity. Aging of shell-modified particles in water for one day resulted in a rate increase of 54%, implying that depassivation of the shell would play an important role in enhancing reactivity. Aging of shell-modified particles in air led to rate decreases by 14% and 46% in cases of one week and two months of aging, respectively. A series of instrumental analyses using transmission electron microscopy, X-ray diffractography, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure showed that the shells of modified NZVI particles primarily consisted of magnetite (Fe(3)O(4)). Analyses also implied that the new magnetite layer produced during shell modification was protective against shell passivation. Aging of shell-modified particles in water yielded another major mineral phase, goethite (alpha-FeOOH), whereas aging in air produced additional shell phases such as wustite (FeO), hematite (alpha-Fe(2)O(3)), and maghemite (gamma-Fe(2)O(3)).

  3. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.

    Science.gov (United States)

    Katsenovich, Yelena P; Miralles-Wilhelm, Fernando R

    2009-09-01

    The longevity and reactivity of nanoscale zerovalent iron (nZVI) and palladized bimetallic particles (BNP) were evaluated in batch and column experiments for remediation of a trichloroethene (TCE)-contaminated plume within a clayey soil from Oak Ridge Reservation (ORR). Comparative studies assessing the viability of BNP and nZVI confirmed that particle behavior is severely affected by clay sediments. Surface morphology and composition analyses using SEM and SEM-energy-dispersive spectroscopy spectrum revealed particle agglomeration through the formation of clay-iron aggregates of greater mass during the early phase of the experiment. Batch study results suggest that TCE degradation in ORR clayey soil follows a pseudo-first-order kinetic model exhibiting reaction rate constants (k) of 0.05-0.24 day(-1) at varied iron-to-soil ratios. Despite high reactivity in water, BNP were less effective in the site-derived clay sediment with calculated TCE removal efficiencies of 98.7% and 19.59%, respectively. A column experiment was conducted to investigate particle longevity and indicator parameters of the TCE degradation process under flow conditions. It revealed that the TCE removal efficiency gradually declined over the course of the experiment from 86-93% to 51-52%, correlating to a progressive increase in oxidation-reduction potential (ORP) from -485 to -250 mV and pH drop from 8.2-8.6 to 7.4-7.5. The rate of nZVI deactivation reaction was found to be a first order with a k(d) value of 0.0058 day(-1). SEM images of residual nZVI revealed heavily agglomerated particles. However, despite widespread oxidation and agglomeration, particles managed to maintain some capacity for oxidation. A quantitative analysis of nZVI deactivation has the potential of predicting nZVI longevity in order to improve the design strategy of TCE remediation.

  4. Ecotoxicity of nanoscale zero-valent iron particles – a review

    Directory of Open Access Journals (Sweden)

    José Tomás Albergaria

    2013-11-01

    Full Text Available The use of nanoscale zero-valent iron particles (nZVIs in the environmental remediation of water and soil is increasing. This increase is related to the higher reactivity and mobility of nZVIs compared with that of macro- or micro-sized iron particles. The introduction of nZVIs into the environment raises concerns related to their fate and effect on aquatic and terrestrial biota. Knowledge of these issues will allow a better understanding not only of the remediation process but also of the long-term effects and impact of nZVIs on ecosystems, leading to a safer and more efficient application of these particles. This paper presents the current state of play concerning the toxic effects of nZVIs on organisms at different stages of the food chain. The majority of studies show that nZVIs have a negative impact on bacteria, aquatic invertebrates, such as Daphnia mag-na, terrestrial organisms, such as Eisenia fetida, and seed germination. However, the number of published studies related to this issue is clearly insufficient. This reinforces the need for further research in order to specify the toxic concentrations of nZVIs that affect the most important target organisms. Furthermore, an evaluation of the effects of the coating of nanoparticles should also be pursued

  5. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    Directory of Open Access Journals (Sweden)

    Min-Hee Jang

    2014-12-01

    Full Text Available Objectives Nanoscale zero-valent iron (nZVI particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1 the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2 assessing their potential environmental risks using in situ field scale applications.

  6. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-01

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment

  7. Nanoscale lignin particles as sources of dissolved iron to the ocean

    Science.gov (United States)

    Krachler, Regina; von der Kammer, Frank; Jirsa, Franz; Süphandag, Altan; Krachler, Rudolf F.; Plessl, Christof; Vogt, Margret; Keppler, Bernhard K.; Hofmann, Thilo

    2012-09-01

    Primary production in large areas of the open ocean is limited by low iron concentrations. Rivers are potential sources of iron to the ocean, however, riverine iron is prone to intense flocculation and sedimentation in the estuarine mixing zone. Here we report the detection of iron-rich nanoparticles in a typical peatland-draining creek which are resistant against salt-induced flocculation i.e., their behavior is in sharp contrast to the well-known behavior of Fe colloids in river waters. Sample fractionation by AsFlFFF (Asymmetric Flow Field Flow Fractionation) revealed that these powerful iron carriers are in the size range of only 0.5-3.0 nm hydrodynamic diameter. They were isolated from the water phase using solid phase extraction/gel permeation chromatography, and analyzed by a CuO oxidation/GC-MS method. Our results suggest that the particles consist mainly of lignin catabolites and that gymnosperm as well as angiosperm tissues are contributors to the seawater-resistant iron-bearing DOM. Lignin phenols, which have no autochthonous source in the ocean, have been nevertheless found in low concentrations throughout the entire Arctic, Atlantic, and Pacific oceans. It is therefore tempting to speculate that peatland-derived iron-bearing lignin particles may have a sufficiently long half-life in ocean waters to sustain iron concentration in extended regions of the ocean.

  8. Investigation of washing and storage strategy on aging Of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    The tendency towards agglomeration and oxidation of nanoscale zero-valent iron (nZVI) particles limits its application for in situ groundwater and soil remediation. Although the effect of surface coatings on nanoparticle stabilization has been commonly practiced, the effect of preparation procedu...

  9. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism.

    Science.gov (United States)

    Fu, Rongbing; Xu, Zhen; Peng, Lin; Bi, Dongsu

    2016-12-01

    In this study, nanoscale zerovalent iron (NZVI) immobilized on biomass carbon was used for the high efficient removal of BDE 209. NZVI supported on biomass carbon minimized the aggregation of NZVI particles resulting in the increased reaction performance. The proposed removal mechanism included the adsorption of BDE 209 on the surface or interior of the biomass carbon NZVI (BC-NZVI) particles and the subsequent debromination of BDE 209 by NZVI while biomass carbon served as an electron shuttle. BC-NZVI particles and the interaction between BC-NZVI particles and BDE 209 were characterized by TEM, XRD, and XPS. The removal reaction followed a pseudo-first-order rate expression under different reaction conditions, and the k obs was higher than that of other NZVI-supported materials. The debromination of BDE 209 by BC-NZVI was a stepwise process from nona-BDE to DE. A proposed pathway suggested that supporting NZVI on biomass carbon has potential as a promising technique for in situ organic-contaminated groundwater remediation.

  10. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Ghauch, Antoine, E-mail: antoine.ghauch@aub.edu.l [American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh, 1107-2020 Beirut (Lebanon); Tuqan, Almuthanna; Assi, Hala Abou [American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh, 1107-2020 Beirut (Lebanon)

    2009-05-15

    Zerovalent iron powder (ZVI or Fe{sup 0}) and nanoparticulate ZVI (nZVI or nFe{sup 0}) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe{sup 0} and nFe{sup 0}. Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the beta-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L{sup -1}) undergo first-order decay with half-lives of about 60.3 +- 3.1 and 43.5 +- 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t{sub 1/2} of about 11.5 +- 0.6 and 11.2 +- 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe{sup 0} consumption, shortening the service life of Fe{sup 0} treatment systems. - Fe{sup 0} is efficient for the aqueous removal of the beta-lactam antibiotics and chlorides enhanced the removal rate by sustaining the process of iron corrosion.

  11. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles

    International Nuclear Information System (INIS)

    Ghauch, Antoine; Tuqan, Almuthanna; Assi, Hala Abou

    2009-01-01

    Zerovalent iron powder (ZVI or Fe 0 ) and nanoparticulate ZVI (nZVI or nFe 0 ) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe 0 and nFe 0 . Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the β-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L -1 ) undergo first-order decay with half-lives of about 60.3 ± 3.1 and 43.5 ± 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t 1/2 of about 11.5 ± 0.6 and 11.2 ± 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe 0 consumption, shortening the service life of Fe 0 treatment systems. - Fe 0 is efficient for the aqueous removal of the β-lactam antibiotics and chlorides enhanced the removal rate by sustaining the process of iron corrosion.

  12. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.

    Science.gov (United States)

    Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng

    2013-08-01

    Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms

  13. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Tang, Jing [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Guide; Xie, Xia; Zhou, Yaoyu [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Pang, Ya [Department of Biological Engineering and Environmental Science, Changsha College, Changsha 410003 (China); Fang, Yan; Wang, Jiajia [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Xiong, Weiping [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2015-04-01

    Highlights: • Nanoscale zero-valent iron (nZVI) was doped in mesoporous silica (SBA-15). • High capacity and fast rate for the removal of p-nitrophenol. • Better antioxidant ability of nZVI/SBA-15 than nZVI. • p-Nitrophenol removal depended heavily on immobilized nZVI amount. • Mechanism of PNP removal by nZVI/SBA-15 was proposed. - Abstract: In this study, nanoscale zero-valent iron particles immobilized on mesoporous silica (nZVI/SBA-15) were successfully prepared for effective degradation of p-nitrophenol (PNP). The nZVI/SBA-15 composites were characterized by N{sub 2} adsorption/desorption, transmission electron microscopy (TEM), UV–vis spectrum and X-ray photoelectron spectroscopy (XPS). Results showed that abundant ultrasmall nanoscale zero-valent iron particles were formed and well dispersed on mesoporous silica (SBA-15). Batch experiments revealed that PNP removal declined from 96.70% to 16.14% as solution pH increased from 3.0 to 9.0. Besides, degradation equilibrium was reached within 5 min, which was independent of initial PNP concentration. Furthermore, only a little PNP elimination on SBA-15 indicated that nZVI immobilized on mesoporous silica was mainly responsible for the target contaminant removal. The UV–vis spectrum and XPS measurement confirmed that the PNP removal was a reductive degradation process, which was further proved by the detected intermediates using gas chromatography–mass spectrometry (GC/MS). The excellent antioxidation ability had been discovered with more than 80% of PNP being removed by nZVI/SBA-15 treated with 30 days’ exposure to air. These results demonstrated the feasible and potential application of nZVI/SBA-15 composites in organic wastewater treatment.

  14. Incorporation of nanoscale zero-valent iron particles inside the channels of SBA-15 silica rods by a “two solvents” reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xia [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lian yungang 222005 (China); Yu, Hongxia; Zheng, Da [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Xuesong [School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lian yungang 222005 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2013-08-15

    A new reduction method named a “two solvents” reduction technique was developed for incorporation of nanoscale zero-valent iron particles (NZVIs) inside the channels of SBA-15 silica rods under mild conditions. The resulting NZVIs/SBA-15 composites were compared with the ones prepared by the conventional liquid phase reduction method in structure, morphology and reactivity. All the samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption isotherms, transmission electron microscopy (TEM) and all-direct-reading plasma atomic emission spectrometry (ICP-AES). Results showed that abundant ultrasmall zero-valent iron particles were synthesized and well dispersed in the mesopores of SBA-15 silica rods by the new reduction technique, whereas larger iron particles were supported and aggregated on the surface of the silica rods by conventional reduction method. Batch experiment demonstrated that NZVIs incorporated inside the silica channels had higher reactivity for the removal of Cr(VI) in aqueous solution than those supported on the surface.

  15. A new method to produce nanoscale iron for nitrate removal

    International Nuclear Information System (INIS)

    Chen, S.-S.; Hsu, H.-D.; Li, C.-W.

    2004-01-01

    This article proposes a novel technology combining electrochemical and ultrasonic methods to produce nanoscale zero valent iron (NZVI). With platinum placed in the cathode and the presence of the dispersion agent, 0.2g/l cetylpyridinium chloride (CPC), a cation surfactant, in the solution, the nanoscale iron particle was successfully produced with diameter of 1-20 nm and specific surface area of 25.4m 2 /g. The produced NZVI was tested in batch experiments for nitrate removal. The results showed that the nitrate reduction was affected by pH. Al low pH, nitrate was shown faster decline and more reduction in term of g NO 3 - -N/g NZVI. The reaction was first order and kinetic coefficients for the four pHs were directly related to pH with R 2 >0.95. Comparing with microscale zero-valent iron (45μm, 0.183m 2 /g), microscale zero-valent iron converted nitrate to ammonia completely, but NZVI converted nitrate to ammonia partially from 36.2 to 45.3% dependent on pH. For mass balance of iron species, since the dissolved iron in the solution was very low ( 2 O 3 was recognized. Thus the reaction mechanisms can be determined

  16. Nanoscale science and engineering forum (706c) design of solid lipid particles with iron oxide quantum dots for the delivery of therapeutic agents

    Science.gov (United States)

    Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...

  17. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin; Faraone, Antonio

    2017-12-01

    Using x-ray photon correlation spectroscopy, we examined slow nanoscale motion of silica nanoparticles individually dispersed in entangled poly (ethylene oxide) melt at particle volume fractions up to 42 %. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slowdown at higher volume fractions- when all chains are practically on the nanoparticle interface- and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.

  18. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    Science.gov (United States)

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin; Faraone, Antonio

    2017-12-01

    Using x-ray photon correlation spectroscopy, we examined the slow nanoscale motion of silica nanoparticles individually dispersed in an entangled poly (ethylene oxide) melt at particle volume fractions up to 42%. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slow down at higher volume fractions—when all chains are practically on the nanoparticle interface—and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.

  19. Aqueous phosphate removal using nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Almeelbi, Talal; Bezbaruah, Achintya

    2012-01-01

    Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide variety of contaminants. NZVI particles have high reactivity because of high reactive surface area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO 4 3− -P/L with 400 mg NZVI/L) removed ∼96 to 100 % phosphate in 30 min. Efficacy of the NZVI in phosphate removal was found to 13.9 times higher than micro-ZVI (MZVI) particles with same NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, nitrate, and humic substances present in the water affected in phosphate removal by NZVI but they may not have any practical significance in phosphate removal in the field. Phosphate recovery batch study indicated that better recovery is achieved at higher pH and it decreased with lowering of the pH of the aqueous solution. Maximum phosphate recovery of ∼78 % was achieved in 30 min at pH 12. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.

  20. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.

    2015-01-01

    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples...... with very different porosities (4% and 26%). The three-dimensional pore systems derived from the tomograms were imported into DPD simulations and filled with spherical particles of variable diameter and with an optional attractive interaction to the pore surfaces. We found that diffusion significantly...

  1. Nanoscale three-dimensional single particle tracking.

    Science.gov (United States)

    Dupont, Aurélie; Lamb, Don C

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.

  2. Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors.

    Science.gov (United States)

    Carpenter, Alexis Wells; Laughton, Stephanie N; Wiesner, Mark R

    2015-08-01

    Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25-5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO 2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment.

  3. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  4. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  5. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, Henning [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); RWTH Aachen Univ., Aachen (Germany). Inst. of Physical Chemistry; Come, Jérémy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Tempel, Hermann [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Kungl, Hans [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Eichel, Rüdiger-A. [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Balke, Nina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2017-10-10

    Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

  6. Recovery of indium ions by nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen; Su, Yiming [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China); Wen, Zhipan [Wuhan Institute of Technology, School of Chemistry and Environmental Engineering (China); Zhang, Yalei; Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn; Dai, Chaomeng, E-mail: daichaomeng@tongji.edu.cn [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China)

    2017-03-15

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH){sub 2} with In(OH){sub 3}. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca{sup 2+} and HPO{sub 4}{sup 2−} have more negative influence on In(III) recovery compared with Na{sup +}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, and SO{sub 4}{sup 2−}. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  7. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron

    International Nuclear Information System (INIS)

    Chen Hua; Luo Hanjin; Lan Yuecun; Dong Tingting; Hu Bingjie; Wang Yiping

    2011-01-01

    The interactions of tetracycline (TC) with nanoscale zerovalent iron (NZVI) modified by polyvinylpyrrolidone (PVP-K30) were investigated using batch experiments as a function of reactant concentration, pH, temperature, and competitive anions. Transmission electron micrographs (TEM), BET surface area and Zeta (ζ)-potential analyses indicated that the mean particle size was 10-40 nm with a surface area of 36.90 m 2 /g, and a iso-electric point of PVP-NZVI was 7.2. The results of X-ray diffraction (XRD) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) of modified nanoscale zerovalent iron (PVP-NZVI) revealed that the iron nanoparticles likely have a core of zero-valent iron (Fe 0 ), while a shell is largely made of iron oxides. Degradation of TC was strongly dependent on pH and temperature. The presence of silicate and phosphate strongly inhibited the removal of TC, whereas acetate and sulfate only caused slight inhibition. LC-MS analysis of the treated solution showed that the degradation products from TC resulted from the removal of functional groups from the TC ring. The degradation products were detected both in the treated solution (initial pH of 3.0 and 6.5) and on the surface of PVP-NZVI after 4-h interaction, indicating that PVP-NZVI can adsorb both TC and its degradation products.

  8. Analytical Characterisation of Nanoscale Zero-Valent Iron: A ...

    Science.gov (United States)

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed. In recent years, manufactured nanoparticles (MNPs) have attracted increasing interest for their potential applications in the treatment of contaminated soil and water. In compar

  9. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  10. Chitosan-mediated and spatially selective electrodeposition of nanoscale particles.

    Science.gov (United States)

    Wu, Li-Qun; Lee, Kyuyong; Wang, Xiang; English, Douglas S; Losert, Wolfgang; Payne, Gregory F

    2005-04-12

    Nanoscale particles offer a variety of interesting properties, and there is growing interest in their assembly into higher ordered structures. We report that the pH-responsive aminopolysaccharide chitosan can mediate the electrodeposition of model nanoparticles. Chitosan is known to electrodeposit at the cathode surface in response to a high localized pH. To demonstrate that chitosan can mediate nanoparticle deposition, we suspended fluorescently labeled latex nanoparticles (100 nm diameter spheres) in a chitosan solution (1%) and performed electrodeposition (0.05 mA/cm2 for several minutes). Results demonstrate that chitosan is required for nanoparticle electrodeposition; chitosan confers spatial selectivity to electrodeposition; and nanoparticles distribute throughout the electrodeposited chitosan film. Additionally, we observed that the deposited films reversibly swell upon rehydration. This work indicates that chitosan provides a simple means to assemble nanoparticles at addressable locations and provides further evidence that stimuli-responsive biological materials may facilitate fabrication at the microscale.

  11. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yankai [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2017-01-05

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H{sub 2}) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  12. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2015-01-01

    Despite the wide application of nanoscale zero valent iron (nZVI) for the treatment of a plethora of pollutants through reductive reactions, reactivity evaluation of nZVI towards dehalogenation has not been standardized. In this light, it was desired to develop a simple colorimetric assay, for ve...

  13. Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    2015-01-01

    Nanoscale zero-valent iron (nZVI), with its reductive potentials and wide availability, offers degradative remediation of environmental contaminants. Rapid aggregation and deactivation hinder its application in real-life conditions. Here, we show that by caging nZVI into the micropores of porous ...

  14. Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon

    DEFF Research Database (Denmark)

    Mines, Paul D.; Andersen, Henrik Rasmus; Hwang, Yuhoon

    2016-01-01

    Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only...

  15. Characterization of molecule and particle transport through nanoscale conduits

    Science.gov (United States)

    Alibakhshi, Mohammad Amin

    Nanofluidic devices have been of great interest due to their applications in variety of fields, including energy conversion and storage, water desalination, biological and chemical separations, and lab-on-a-chip devices. Although these applications cross the boundaries of many different disciplines, they all share the demand for understanding transport in nanoscale conduits. In this thesis, different elusive aspects of molecule and particle transport through nanofluidic conduits are investigated, including liquid and ion transport in nanochannels, diffusion- and reaction-governed enzyme transport in nanofluidic channels, and finally translocation of nanobeads through nanopores. Liquid or solvent transport through nanoconfinements is an essential yet barely characterized component of any nanofluidic systems. In the first chapter, water transport through single hydrophilic nanochannels with heights down to 7 nm is experimentally investigated using a new measurement technique. This technique has been developed based on the capillary flow and a novel hybrid nanochannel design and is capable of characterizing flow in both single nanoconduits as well as nanoporous media. The presence of a 0.7 nm thick hydration layer on hydrophilic surfaces and its effect on increasing the hydraulic resistance of the nanochannels is verified. Next, ion transport in a new class of nanofluidic rectifiers is theoretically and experimentally investigated. These so called nanofluidic diodes are nanochannels with asymmetric geometries which preferentially allow ion transport in one direction. A nondimensional number as a function of electrolyte concentration, nanochannel dimensions, and surface charge is derived that summarizes the rectification behavior of this system. In the fourth chapter, diffusion- and reaction-governed enzyme transport in nanofluidic channels is studied and the theoretical background necessary for understanding enzymatic activity in nanofluidic channels is presented. A

  16. Effect of Nano-Scale Roughness on Particle Wetting and on Particle-Mediated Emulsion Stability

    Science.gov (United States)

    San Miguel, Adriana; Behrens, Sven

    2012-02-01

    Colloidal particles can strongly adsorb to liquid interfaces and stabilize emulsions against droplet coalescence, the effectiveness of which depends crucially on the particle wettability. From the study of macroscopic solids, surface wetting is known to be influenced strongly by nano-scale roughness (as seen e.g. in the ``Lotus effect'' or in anti-fog coatings); similarly, strong effects of particle roughness on particle-stabilized emulsions should be expected. Here we report the first experimental study of particle wetting and particle-mediated emulsion stability in which particle roughness could be varied continuously without varying the surface chemistry. We demonstrate an enabling method for preparing particles and macroscopic substrates with tunable nano-roughness and correlate the extent of roughness quantitatively with surface wetting (measured via the three-phase contact angle) and with emulsion stability (quantifiable via the maximum capillary pressure). Our results confirm a dramatic influence of roughness on wetting, emulsion stability, and even the type of emulsion formed (o/w vs. w/o) upon mixing oil with an aqueous particle dispersion. Whether particle roughness benefits emulsion stability or not is seen to depend on both the size and shape of the surface features.

  17. Characterization and fluoride uptake studies of nano-scale iron ...

    African Journals Online (AJOL)

    ... the studied concentration range of 10-30 mg/L. The high loading capacity points towards the potential of this adsorbent for fluoride removal from aqueous streams. Keywords: Fluoride, nano-iron oxide hydroxide, adsorption, kinetics, isotherm study. International Journal of Engineering, Science and Technology, Vol. 2, No.

  18. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology

    International Nuclear Information System (INIS)

    Crane, R.A.; Scott, T.B.

    2012-01-01

    Highlights: ► Contemporary knowledge of nano-Fe 0 synthesis, modification and toxicity is reviewed. ► Discrepancies in the literature are highlighted with regard to testing parameters. ► Compared to “real-systems” nano-Fe 0 performance has been largely overestimated. ► A universal testing procedure and reactivity scale are suggested to effectively compare future nano-Fe 0 materials. - Abstract: For the past 15 years, nanoscale metallic iron (nZVI) has been investigated as a new tool for the treatment of contaminated water and soil. The technology has reached commercial status in many countries worldwide, however is yet to gain universal acceptance. This review summarises our contemporary knowledge of nZVI aqueous corrosion, manufacture and deployment, along with methods to enhance particle reactivity, stability and subsurface mobility. Reasons for a lack of universal acceptance are also explored. Key factors include: concerns over the long-term fate, transformation and ecotoxicity of nZVI in environmental systems and, a lack of comparable studies for different nZVI materials and deployment strategies. It is highlighted that few investigations to date have examined systems directly analogous to the chemistry, biology and architecture of the terrestrial environment. Such emerging studies have highlighted new concerns, including the prospect for remobilisation of heavy metals and radionuclides over extended periods. The fundamental importance of being able to accurately predict the long-term physical, chemical and biological fate of contaminated sites following nZVI treatment is emphasised and, as part of this, a universal empirical testing framework for nZVI is suggested.

  19. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe.

    Science.gov (United States)

    Mueller, Nicole C; Braun, Jürgen; Bruns, Johannes; Černík, Miroslav; Rissing, Peter; Rickerby, David; Nowack, Bernd

    2012-02-01

    Nanoscale zero valent iron (NZVI) is emerging as a new option for the treatment of contaminated soil and groundwater targeting mainly chlorinated organic contaminants (e.g., solvents, pesticides) and inorganic anions or metals. The purpose of this article is to give a short overview of the practical experience with NZVI applications in Europe and to present a comparison to the situation in the USA. Furthermore, the reasons for the difference in technology use are discussed. The results in this article are based on an extensive literature review and structured discussions in an expert workshop with experts from Europe and the USA. The evaluation of the experiences was based on a SWOT (strength, weakness, opportunity, threat) analysis. There are significant differences in the extent and type of technology used between NZVI applications in Europe and the USA. In Europe, only three full-scale remediations with NZVI have been carried out so far, while NZVI is an established treatment method in the USA. Bimetallic particles and emulsified NZVI, which are extensively used in the USA, have not yet been applied in Europe. Economic constraints and the precautionary attitude in Europe raise questions regarding whether NZVI is a cost-effective method for aquifer remediation. Challenges to the commercialization of NZVI include mainly non-technical aspects such as the possibility of a public backlash, the fact that the technology is largely unknown to consultants, governments and site owners as well as the lack of long-term experiences. Despite these concerns, the results of the current field applications with respect to contaminant reduction are promising, and no major adverse impacts on the environment have been reported so far. It is thus expected that these trials will contribute to promoting the technology in Europe.

  20. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  1. Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography

    NARCIS (Netherlands)

    Wise, Anna M.; Weker, Johanna Nelson; Kalirai, Samanbir; Farmand, Maryam; Shapiro, David A.; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2016-01-01

    Understanding Fe deposition in fluid catalytic cracking (FCC) catalysis is critical for the mitigation of catalyst degradation. Here we employ soft X-ray ptychography to determine at the nanoscale the distribution and chemical state of Fe in an aged FCC catalyst particle. We show that both particle

  2. The sorption of metal ions on nanoscale zero-valent iron

    OpenAIRE

    Suponik Tomasz; Popczyk Marcin; Pierzyna Piotr

    2017-01-01

    The injection of the colloidal suspensions of nano-iron (nZVI) into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II) and Zn(II), on Green Tea nanoscale Zero-Valent Ion (GT-nZVI) was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested rang...

  3. Nanoscale structure and atomic disorder in the iron-based chalcogenides

    Directory of Open Access Journals (Sweden)

    Naurang Lal Saini

    2013-01-01

    Full Text Available The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,S1−xTex (11-type and K0.8Fe1.6Se2 (122-type systems, discussing their local structure obtained by extended x-ray absorption fine structure. Local structure studies on the Fe(Se,S1−xTex system reveal clear nanoscale phase separation characterized by coexisting components of different atomic configurations, similar to the case of random alloys. In fact, the Fe–Se/S and Fe–Te distances in the ternary Fe(Se,S1−xTex are found to be closer to the respective distances in the binary FeSe/FeS and FeTe systems, showing significant divergence of the local structure from the average one. The observed features are characteristic of ternary random alloys, indicating breaking of the local symmetry in these materials. On the other hand, K0.8Fe1.6Se2 is known for phase separation in an iron-vacancy ordered phase and an in-plane compressed lattice phase. The local structure of these 122-type chalcogenides shows that this system is characterized by a large local disorder. Indeed, the experiments suggest a nanoscale glassy phase in K0.8Fe1.6Se2, with the superconductivity being similar to the granular materials. While the 11-type structure has no spacer layer, the 122-type structure contains intercalated atoms unlike the 1111-type REFeAsO (RE = rare earth oxypnictides, having well-defined REO spacer layers. It is clear that the interlayer atomic correlations in these iron-based superconducting structures play an important role in structural stability as well as superconductivity and magnetism.

  4. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types...... of nanoscale zero-valent iron (nZVI). Batch experiments showed that an iron dose of 1 g•L-1 in the form of Mg-aminoclay (MgAC) coated nZVI, at an initial pH of 3.0 effectively removed 38 % to 96 % of individual PFCs. An increasing order of removal efficiency was observed of PFOA < PFNA < PFOS ≈ PFDA....... Compared to this, PFCs removal was less than 27 % using a commercial air stabilized nZVI or freshly synthesized uncoated nZVI, under the same experimental conditions. The effectiveness of PFCs removal by MgAC coated nZVI was further investigated at various initial pH, nZVI dosage, temperature and age...

  5. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins.

    Science.gov (United States)

    Faas, Ramona; Pohle, Annelie; Moß, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-12-01

    Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl- sn -glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.

  6. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2018-01-01

    Granular activated carbon was customized with a chemical grafting procedure of a nanoporous polymeric network for the purpose of nanoscale zero-valent iron impregnation and subsequent water contaminant remediation. Characterization of the prepared composite material revealed that not only...... water contaminants, nitrobenzene and nitrate, the composite material exploited the qualities of both the activated carbon and the polymeric network to work together in a synergistic manner. In that the increased protection from oxidation allowed for increased reactivity of the nanoscale zero-valent iron...

  7. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  8. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe ha...

  9. Abiotic transformation of hexabromocyclododecane by sulfidated nanoscale zerovalent iron: Kinetics, mechanism and influencing factors.

    Science.gov (United States)

    Li, Dan; Zhu, Xifen; Zhong, Yin; Huang, Weilin; Peng, Ping'an

    2017-09-15

    Recent studies showed that sulfidated nanoscale zerovalent iron (S-nZVI) is a better reducing agent than nanoscale zerovalen iron (nZVI) alone for reductive dechlorination of several organic solvents such as trichloroethylene (TCE) due to the catalytic role of iron sulfide (FeS). We measured the rates of transformation of hexabromocyclododecane (HBCD) by S-nZVI and compared them to those by FeS, nZVI, and reduced sulfur species. The results showed that: i) HBCD (20 mg L -1 ) was almost completely transformed by S-nZVI (0.5 g L -1 ) within 12 h; ii) the reaction with β-HBCD was much faster than with α- and γ-HBCD, suggesting the diastereoisomeric selectivity for the reaction by S-nZVI; and iii) the reaction with S-nZVI was 1.4-9.3 times faster than with FeS, S 2- and nZVI, respectively. The study further showed that the HBCD reaction by S-nZVI was likely endothermic, with the optimal solution pH of 5.0, and could be slowed in the presence of Ca 2+ , Mg 2+ , NO 3 - , HCO 3 - and Cl - , and by increasing ionic strength, solvent content and initial HBCD concentration, or decreasing the S-nZVI dosage. GC-MS analysis showed that tetrabromocyclododecene and dibromocyclododecadiene were the products. XPS spectra indicated that both Fe(II) and S(-II) on the S-nZVI surface were oxidized during the reaction, suggesting that FeS might act as both catalyst and reactant. The study not only demonstrated the superiority of S-nZVI over other well-known reactive reagents, but also provided insight to the mechanisms of the reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nanoscale Design of Nano-Sized Particles in Shape-Memory Polymer Nanocomposites Driven by Electricity

    Directory of Open Access Journals (Sweden)

    Kai Yu

    2013-09-01

    Full Text Available In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed.

  11. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.

    Science.gov (United States)

    Bae, Sungjun; Hanna, Khalil

    2015-09-01

    While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).

  12. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  13. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    International Nuclear Information System (INIS)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo

    2016-01-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  14. Iron Mobilization from Particles as a Function of pH and Particle Source

    National Research Council Canada - National Science Library

    Rohrbough, James

    2000-01-01

    .... The work presented here shows the role pH can play in iron mobilization from particles. At low pH, bioavailability of iron can be greatly increased, and can be significantly decreased at higher pH...

  15. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    DEFF Research Database (Denmark)

    Mines, Paul D.; Kaarsholm, Kamilla Marie Speht; Droumpali, Ariadni

    2017-01-01

    Remediation of contaminated groundwater by nanoscale zero-valent iron (nZVI) is widely becoming a leading environmentally friendly solution throughout the globe. Since a wide range of various nZVI-containing materials have been developed for effective remediation, it is necessary to determine an ...

  16. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.

    2015-01-01

    Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of nZVI and...

  17. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  18. Characterization, Exposure Measurement and Control for Nanoscale Particles in Workplaces and on the Road

    International Nuclear Information System (INIS)

    Wang Jing; Pui, David Y H

    2011-01-01

    The amount of engineered nanoparticles is increasing at a rapid rate and more concerns are being raised about the occupational health and safety of nanoparticles in the workplace, and implications of nanotechnology on the environment and living systems. At the same time, diesel engine emissions are one of the serious air pollution sources in urban area. Ultrafine particles on the road can result in harmful effects on the health of drivers and passengers. Research on characterization, exposure measurement and control is needed to address the environmental, health and safety issues of nanoscale particles. We present results of our studies on airborne particles in workplaces and on the road.

  19. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    Energy Technology Data Exchange (ETDEWEB)

    Brocchi, E.A. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Motta, M.S. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Solorzano, I.G. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil)]. E-mail: guilsol@dcmm.puc-rio.br; Jena, P.K. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Moura, F.J. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil)

    2004-09-25

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented.

  20. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  1. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  2. Deactivation of nanoscale zero-valent iron by humic acid and by retention in water.

    Science.gov (United States)

    Kim, Do-Gun; Hwang, Yu-Hoon; Shin, Hang-Sik; Ko, Seok-Oh

    2013-01-01

    The effects of the deactivation of nanoscale zero-valent iron (NZVI), induced by humic acid (HA) and by the retention of NZVI in water, on nitrate reduction were investigated using a kinetic study. Both the nitrate removal and generation of ammonia were significantly inhibited as the HA adsorption amount and retention time were increased. However, HA removal was greatly enhanced when the NZVI was used after 1 d or 25 d of retention in water. The results are caused by the formation of iron oxides/hydroxides, which increased the specific surface area and the degree of NZVI aggregation which was observed by transmission electron microscopy (TEM). However, the nitrate reduction was greater at the beginning of reaction in the presence of HA when fresh NZVI was used, because of the enhanced electron transfer by the HA in bulk phase and on NZVI surface as train sequences. The pseudo second order adsorption kinetic equation incorporating deactivation and a Langmuir-Hinshelwood (LH) type kinetic equation provided accurate descriptions of the nitrate removal and ammonia generation, respectively. The deactivation constant and the reaction rate constant of the LH type kinetic equation were strongly correlated with the HA amount accumulated on NZVI. These results suggest that the HA accumulation on the NZVI surface reactive sites plays the dominant role in the inhibition and the inhibition can be described successfully using the deactivation model. The HA accumulation on NZVI was verified using TEM.

  3. A new analytical approach to understanding nanoscale lead-iron interactions in drinking water distribution systems.

    Science.gov (United States)

    Trueman, Benjamin F; Gagnon, Graham A

    2016-07-05

    High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dielectric relaxation in metal-coated particles: the dramatic role of nano-scale coatings

    International Nuclear Information System (INIS)

    Youngs, I J; Bowler, N; Lymer, K P; Hussain, S

    2005-01-01

    Insulating materials filled with conducting particles permit tailoring of electrical, electromagnetic and thermal properties of the resulting composite. When the filler particles are small and metallic, a dielectric relaxation due to interfacial polarization is commonly observed at optical or smaller wavelengths. Here, experimental results are presented in which the dielectric relaxation is shifted to microwave frequencies as a result of using metal-coated dielectric particles with a nano-scale coating thickness. The results are analysed in the context of effective medium theory adapted for multi-layer particles. Such a large shift in relaxation frequency, compared with that for a similar composite with solid metal filler particles, is shown to be a function of both the coating geometry and a thin-film-related reduction in the conductivity of the metal. The observed broadening of the relaxation peak is attributed to non-uniformity of the coating thickness and a consequent distribution of coating conductivity

  5. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles.

    Science.gov (United States)

    Warheit, D B; Brown, S C; Donner, E M

    2015-10-01

    Data generated using standardized testing protocols for toxicity studies generally provide reproducible and reliable results for establishing safe levels and formulating risk assessments. The findings of three OECD guideline-type oral toxicity studies of different duration in rats are summarized in this publication; each study evaluated different titanium dioxide (TiO2) particles of varying sizes and surface coatings. Moreover, each study finding demonstrated an absence of any TiO2 -related hazards. To briefly summarize the findings: 1) In a subchronic 90-day study (OECD TG 408), groups of young adult male and female rats were dosed with rutile-type, surface-coated pigment-grade TiO2 test particles (d50 = 145 nm - 21% nanoparticles by particle number criteria) by oral gavage for 90 days. The no-adverse-effect level (NOAEL) for both male and female rats in this study was 1000 mg/kg bw/day, the highest dose tested. The NOAEL was determined based on a lack of TiO2 particle-related adverse effects on any in-life, clinical pathology, or anatomic/microscopic pathology parameters; 2) In a 28-day repeated-dose oral toxicity study (OECD TG 407), groups of young adult male rats were administered daily doses of two rutile-type, uncoated, pigment-grade TiO2 test particles (d50 = 173 nm by number) by daily oral gavage at a dose of 24,000 mg/kg bw/day. There were no adverse effects measured during or following the end of the exposure period; and the NOAEL was determined to be 24,000 mg/kg bw/day; 3) In an acute oral toxicity study (OECD TG 425), female rats were administered a single oral exposure of surface-treated rutile/anatase nanoscale TiO2 particles (d50 = 73 nm by number) with doses up to 5000 mg/kg and evaluated over a 14-day post-exposure period. Under the conditions of this study, the oral LD50 for the test substance was >5000 mg/kg bw. In summary, the results from these three toxicity studies - each with different TiO2 particulate-types, demonstrated an absence of

  6. Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater

    Directory of Open Access Journals (Sweden)

    Sheng-Hsun Chaung

    2014-01-01

    Full Text Available The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.

  7. Photo-Fenton and Fenton Oxidation of Recalcitrant Industrial Wastewater Using Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Henrik Hansson

    2012-01-01

    Full Text Available There is a need for the development of on-site wastewater treatment technologies suitable for “dry-process industries,” such as the wood-floor sector. Due to the nature of their activities, these industries generate lower volumes of highly polluted wastewaters after cleaning activities. Advanced oxidation processes such as Fenton and photo-Fenton, are potentially feasible options for treatment of these wastewaters. One of the disadvantages of the Fenton process is the formation of large amounts of ferrous iron sludge, a constraint that might be overcome with the use of nanoscale zero-valent iron (nZVI powder. Wastewater from a wood-floor industry with initial COD of 4956 mg/L and TOC of 2730 mg/L was treated with dark-Fenton (nZVI/H2O2 and photo-Fenton (nZVI/H2O2/UV applying a 2-level full-factorial experimental design. The highest removal of COD and TOC (80% and 60%, resp. was achieved using photo-Fenton. The supply of the reactants in more than one dose during the reaction time had significant and positive effects on the treatment efficiency. According to the results, Fenton and mostly photo-Fenton are promising treatment options for these highly recalcitrant wastewaters. Future investigations should focus on optimizing treatment processes and assessing toxic effects that residual pollutants and the nZVI might have. The feasibility of combining advanced oxidation processes with biological treatment is also recommended.

  8. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application.

    Science.gov (United States)

    Li, Shaolin; Wang, Wei; Liang, Feipeng; Zhang, Wei-Xian

    2017-01-15

    Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E h , enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E h -controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E h -controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245mg As+226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.

    Science.gov (United States)

    Wu, Limei; Liao, Libing; Lv, Guocheng; Qin, Faxiang; He, Yujuan; Wang, Xiaoyu

    2013-06-15

    In this paper we prepared a novel material of activated carbon/nanoscale zero-valent iron (C-Fe(0)) composite. The C-Fe(0) was proved to possess large specific surface area and outstanding reducibility that result in the rapid and stable reaction with Cr (VI). The prepared composite has been examined in detail in terms of the influence of solution pH, concentration and reaction time in the Cr (VI) removal experiments. The results showed that the C-Fe(0) formed a micro-electrolysis which dominated the reaction rate. The Micro-electrolysis reaches equilibrium is ten minutes. Its reaction rate is ten times higher than that of traditional adsorption reaction, and the removal rate of Cr reaches up to 99.5%. By analyzing the obtained profiles from the cyclic voltammetry, PXRD and XPS, we demonstrate that the Cr (VI) is reduced to insoluble Cr (III) compound in the reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1 within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7-6.8 significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42-, HCO3- and NO3- all inhibited it. Humic acid (HA inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater.

  11. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond, the applicat......Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond......, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four PFCs using three different types of nanoscale zero-valent iron (nZVI) was investigated. Influencing......ZVI, under the same experimental conditions. Removal efficiencies of PFCs using MgAC coated nZVI were enhanced under acidic conditions and lower reaction temperature, as well as nZVI concentration increased. Based on removal mechanism experiments, it was demonstrated that PFCs removal can be accomplished...

  12. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  13. Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements.

    Science.gov (United States)

    Boente, C; Sierra, C; Martínez-Blanco, D; Menéndez-Aguado, J M; Gallego, J R

    2018-05-15

    The present study focuses on soil washing enhancement via soil pretreatment with nanoscale zero-valent iron (nZVI) for the remediation of potentially toxic elements. To this end, soil polluted with As, Cu, Hg, Pb and Sb was partitioned into various grain sizes (500-2000, 125-500 and accounting correction considering the dilution effects caused by nanoparticle addition. As a result, remarkable recovery yields were obtained for Cu, Pb and Sb, which concentrated with the nZVI in the magnetically separated fraction (WHIMS tests) and underflow (hydrocyclone tests). In contrast, Hg, concentrated in the non-magnetic fraction and overflow respectively, while the behavior of As was unaltered by the nZVI pretreatment. All things considered, the addition of nZVI enhanced the efficiency of soil washing, particularly for larger fractions (125-2000 μm). The proposed methodology lays the foundations for nanoparticle utilization in soil washing operations. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. EM-wave absorption properties of hollow spiral iron particles

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Zhang, Deyuan

    2015-01-01

    Hollow iron spiral particles were fabricated successfully by thermal decomposition method, and they were heat-treated at different temperatures in N 2 atmosphere. The electromagnetic wave absorption properties of hollow iron spiral particles were investigated ranging between 1 GHz and 18 GHz. The results indicated that the phase structures of the particles changed from amorphous to nanocrystal with the treating temperature rising, also causing the significant change in electromagnetic parameters and the reflection loss. The reflection loss could reach −33 dB at 16.2 GHz, indicating that the hollow iron spiral particles had the potential to be used in prepare the a high property EM-wave absorber. - Highlights: • Hollow iron spiral particles were fabricated by thermal decomposition method. • The particles changed from amorphous to nanocrystals with heat-treatment. • Particles’ EM-parameters have a great change after high temperature heat-treatment. • RL results show the particles have potential to be high property EM-wave absorber

  15. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.

    Science.gov (United States)

    Dong, Haoran; Zhang, Cong; Deng, Junmin; Jiang, Zhao; Zhang, Lihua; Cheng, Yujun; Hou, Kunjie; Tang, Lin; Zeng, Guangming

    2018-02-07

    Sulfide-modified nanoscale zero-valent iron (S/NZVI) has been considered as an efficient material to degrade trichloroethylene (TCE) in groundwater. However, some critical factors influencing the dechlorination of TCE by S/NZVI have not been investigated clearly. In this study, the effects of Fe/S molar ratio, initial pH, dissolved oxygen and particle aging on TCE dechlorination by S/NZVI (using dithionite as sulfidation reagent) were studied. Besides, the feasibility of reactivation of the aged-NZVI by sulfidation treatment was looked into. The results show that the Fe/S molar ratio and initial pH significantly influenced the TCE dechlorination, and a higher TCE dechlorination was observed at Fe/S molar ratio of ∼60 under alkaline condition. Spectroscopic analyses demonstrate that the enhanced TCE dechlorination was associated with the presence of FeS on the surface of S/NZVI. Dissolved oxygen had little effect on TCE dechlorination by S/NZVI, revealing that the FeS layer could be able to alleviate the surface passivation of NZVI caused by oxidation. Aging of S/NZVI up to 10-20 d only slightly decreased the dechlorination efficiency of TCE. Although an obvious drop in dechorination efficiency was observed for the S/NZVI aged for 30 d, it still exhibited a higher reactivity than the bare NZVI. This indicates that sulfidation of NZVI did prolong its lifetime. Additionally, sulfidation treatment was used to reactivate the aged NZVI, and the results show that the reactivated NZVI even had higher reactivity than the fresh NZVI, suggesting that sulfidation treatment would be a promising method to reactivate the aged NZVI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation

    International Nuclear Information System (INIS)

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-01-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg −1 of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg −1 nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg −1 nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI. - Highlights: • Higher concentrations of nZVI induced iron deficiency in rice seedlings visibly. • nZVI was taken in rice seedlings and transported form root to shoot. • The pathway of active iron transport from root to shoot was inhibited. • The cortex tissues in

  17. Iron oxide and iron carbide particles produced by the polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y., E-mail: yyasu@rs.kagu.tus.ac.jp; Shimizu, R. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan)

    2016-12-15

    Iron oxide (γ-Fe{sub 2}O{sub 3}) and iron carbide (Fe{sub 3}C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe {sub 2}O{sub 3}. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe{sub 3}C and α-Fe with various sizes.

  18. Iron oxide and iron carbide particles produced by the polyol method

    Science.gov (United States)

    Yamada, Y.; Shimizu, R.; Kobayashi, Y.

    2016-12-01

    Iron oxide ( γ-Fe2O3) and iron carbide (Fe3C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe 2O3. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe3C and α-Fe with various sizes.

  19. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  20. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaolin, E-mail: lishaolin@tongji.edu.cn; Wang, Wei; Liang, Feipeng; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • nZVI is able to perform fast and simultaneous removal of different heavy metal ions. • Fast separation and seeding effect of nZVI facilities its application in wastewater. • A novel process of E{sub h}-controlled reactor, nZVI separator and reuse is proposed. • E{sub h}-controlled system and nZVI recirculation increase material efficiency of nZVI. • The process produces stable effluent and is effective in wastewater treatment. - Abstract: Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E{sub h}, enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E{sub h}-controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E{sub h}-controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245 mg As + 226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment.

  1. Foam-assisted delivery of nanoscale zero valent iron in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin; Zhong, Lirong; Li, Xiqing

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through the unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.

  2. Nanoscale Investigation of New Fe-Based Superconductors

    Science.gov (United States)

    2012-10-15

    12-10-2012 4. TITLE AND SUBTITLE Nanoscale Investigation of New Iron - Based Superconductors 5a. CONTRACT NUMBER FA23861114054 5b. GRANT NUMBER 5c...Final Report for AOARD Grant 114054 “Nanoscale Investigation of New Fe- based Superconductors ” Date: October 15, 2012 Name of Principal...particles [5]. These results indicate that interesting phenomena may happen in iron chalcogenide superconductors when their size goes to nanometer

  3. Uranium(VI) Reduction by Nanoscale Zerovalent Iron in Anoxic Batch Systems

    International Nuclear Information System (INIS)

    Yan, Sen; Hua, Bin; Bao, Zhengyu; Yang, John; Liu, Chongxuan; Deng, Baolin

    2010-01-01

    This study investigated the influences of pH, bicarbonate, and calcium on U(VI) adsorption and reduction by synthetic nanosize zero valent iron (nano Fe 0 ) particles under an anoxic condition. The results showed that about 87.1%, 82.7% and 78.3% of U(VI) could be reduced within 96 hours in the presence of 10 mM bicarbonate at pHs 6.92, 8.03 and 9.03, respectively. The rates of U(VI) reduction and adsorption by nano Fe 0 , however, varied significantly with increasing pH and concentrations of bicarbonate and/or calcium. Solid phase analysis by X-ray photoelectron spectroscopy confirmed the formation of UO 2 and iron (hydr)oxides as a result of the redox interactions between adsorbed U(VI) and nano Fe 0 . This study highlights the potential important role of groundwater chemical composition in controlling the rates of U(VI) reductive immobilization using nano Fe 0 in subsurface environments.

  4. Field Testing of Bimetallic Nanoscale Particle Technology for In-Situ Groundwater Treatment of a Fractured Rock DNAPL Zone

    Science.gov (United States)

    Zhang, W.; Walata, L.; Nash, R.; Gheorghiu, F.; Glazier, R.; Venkatakrishnan, R.

    2003-04-01

    This study has been carried out as part of the Corrective Measure Study (CMS) at a property owned by GlaxoSmithKline in Research Triangle Park, North Carolina, USA. The study area is located in the Durham subbasin of the Deep River Triassic Basin and is underlain by interbedded siltstone and sandstone sequences. Groundwater underlying portions of the site has been impacted by historical industrial activities conducted by previous owners; groundwater contaminants consist mainly of chlorinated volatile organic compounds. Golder conducted an initial review of potentially applicable remediation technologies and retained the Bimetallic Nanoscale Particle (BNP) technology for further evaluation. BNP consists of nanoscale particles (~ 60 nm) of zero valent iron (Fe0) with a trace coating of noble metal catalyst (palladium). The rapid destruction of a wide range of recalcitrant contaminants is based on a surface-catalyzed redox process where the contaminant serves as an electron acceptor and BNP as the electron donor and can be accomplished either in situ or ex situ (Wei-xian Zhang, 1997, 1999, 2000). This study presents the field demonstration of the BNP effectiveness to treat in-situ chlorinated VOCs in a complex fractured bedrock aquifer setting. During the field pilot test 11 kilograms of BNP mixed in water-based slurry were injected into the shallow bedrock groundwater suspected to contain dense non-aqueous phase liquids (DNAPLs). The results of the test indicated rapid treatment of chlorinated VOCs 7 m to 14 m around the injection well. In addition, the oxidation-reduction potential (ORP) and dissolved oxygen (DO) values have decreased and persisted at very low levels of -450 millivolts and less than 0.001 milligrams per liter, respectively, indicating favorable conditions for reductive dechlorination. Interpretation of pre- and post-test data on the in-situ microbiological community in the test area indicate that the changes in ORP and DO have resulted in inhibition

  5. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    Science.gov (United States)

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may

  6. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency.

    Science.gov (United States)

    Velimirovic, Milica; Auffan, Melanie; Carniato, Luca; Micić Batka, Vesna; Schmid, Doris; Wagner, Stephan; Borschneck, Daniel; Proux, Olivier; von der Kammer, Frank; Hofmann, Thilo

    2018-03-15

    Milled zerovalent iron (milled ZVI) particles have been recognized as a promising agent for groundwater remediation because of (1) their high reactivity with chlorinated aliphatic hydrocarbons, organochlorine pesticides, organic dyes, and a number of inorganic contaminants, and (2) a possible greater persistance than the more extensively investigated nanoscale zerovalent iron. We have used laboratory-scale batch degradation experiments to investigate the effect that hydrogeochemical conditions have on the corrosion of milled ZVI and on its ability to degrade trichloroethene (TCE). The observed pseudo first-order degradation rate constants indicated that the degradation of TCE by milled ZVI is affected by groundwater chemistry. The apparent corrosion rates of milled ZVI particles were of the same order of magnitude for hydrogeochemical conditions representative for two contaminated field sites (133-140mmolkg -1 day -1 , indicating a milled ZVI life-time of 128-135days). Sulfate enhances milled ZVI reactivity by removing passivating iron oxides and hydroxides from the Fe 0 surface, thus increasing the number of reactive sites available. The organic matter content of 1.69% in the aquifer material tends to suppress the formation of iron corrosion precipitates. Results from scanning electron microscopy, X-ray diffraction, and iron K-edge X-ray adsorption spectroscopy suggest that the corrosion mechanisms involve the partial dissolution of particles followed by the formation and surface precipitation of magnetite and/or maghemite. Numerical corrosion modeling revealed that fitting iron corrosion rates and hydrogen inhibitory terms to hydrogen and pH measurements in batch reactors can reduce the life-time of milled ZVI particles by a factor of 1.2 to 1.7. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation

    Science.gov (United States)

    Kalasin, Surachate

    This thesis explores the impact of surface heterogeneities on colloidal interactions and translates concepts to biointerfacial systems, for instance, microfluidic and biomedical devices. The thesis advances a model system, originally put forth by Kozlova: Tunable electrostatic surface heterogeneity is produced by adsorbing small amounts of cationic polyelectrolyte on a silica flat. The resulting positive electrostatic patches possess a density that is tuned from a saturated carpet down to average spacings on the order of a few hundred nanometers. At these length-scales, multiple adhesive elements (from tens to thousands) are present in the area of contact between a particle and a surface, a distinguishing feature of the thesis. Much of the literature addressing surface "heterogeneity" engineers surfaces with micron-scale features, almost always larger than the contact area between a particle and a second surface. With a nanoscale heterogeneity model, this thesis reports and quantitatively explains particle interaction behavior not typical of homogeneous interfaces. This includes (1) an adhesion threshold, a minimum average surface density of cationic patches needed for particle capture, (previously observed by Kozlova); (2) a crossover, from salt-destabilized to salt-stabilized interactions between heterogeneous surfaces with net-negative charge; (3) a shift of the adhesion threshold with shear, reducing adhesion; (4) a crossover from shear-enhanced to shear-hindered particle adhesion; (5) a range of surface compositions and processing parameters that sustain particle rolling; and (6) conditions where particles arrest immediately on contact. Through variations in ionic strength and particle size, the particle-surface contact area is systematically varied relative to the heterogeneity lengthscale. This provides a semi-quantitative explanation for the shifting of the adhesion threshold, in terms of the statistical probability of a particle being able to find a

  8. Antibacterial activity of silver: the role of hydrodynamic particle size at nanoscale.

    Science.gov (United States)

    Khurana, Chandni; Vala, Anjana K; Andhariya, Nidhi; Pandey, O P; Chudasama, Bhupendra

    2014-10-01

    Silver shows the highest antimicrobial activities amongst all metals. It is better than many first line antibiotics. The antimicrobial properties of silver can be tuned by altering its physical and surface properties. Researchers have demonstrated enhancement in the antibacterial properties of silver with decreasing particle size from bulk to nano. In the present article, we study the effect of particle size of silver at nanoscale on their antimicrobial properties. Two samples of silver nanoparticles (SNPs) of same physical size (≈8 nm) but different hydrodynamic size (59 and 83 nm) are prepared by chemical reduction of AgNO3 with oleylamine followed by phase transfer with triblock copolymer Pluronic F-127. Their antimicrobial properties are investigated by microdilution method against clinically important strains of gram positive (S. aureus and B. megaterium) and gram negative (P. vulgaris and S. sonnei) bacteria. Nearly 38-50% enhancement in the antibacterial action of SNPs was observed when their hydrodynamic size was reduced to 59 nm from 83 nm. It has been observed that the antibacterial action of SNPs was governed by their hydrodynamic size and not by their crystallite and physical size. The phenomenological model was also proposed which makes an attempt to explain the microscopic mechanism responsible for the size dependent antibacterial activities of silver. © 2013 Wiley Periodicals, Inc.

  9. Determination of nanoscale particles in the air of working zone at the metallurgical production

    Directory of Open Access Journals (Sweden)

    Т.S. Ulanova

    2015-03-01

    Full Text Available The results of studies of the air of working zone at the metallurgical production on the example of Avisma OJSC (Berezniki, the Perm Territory for the content of nanoscale particles are specified. The maximum nanoparticles concentration in the range of 13523–28609 mln./m3 is determined at the working place of the titanium production smelter with the maximum size of particles of 10–15 nm. At the working place in the administrative building (reference working place the maximum concentration is determined within the range of 524–1000 mln./m3; the maximum size of nanoparticles is 20 nm. It was established that the number concentration of nanoparticles at the reference working places (administration of Avisma OJSC is significantly lower than at the working places of main production processes. The presented studies can be used as the additional factors in the assessment of labor conditions and occupational risk during the manufacture and use of materials containing nanoparticles as well as the production processes with the nanoparticles formation.

  10. Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty.

    Science.gov (United States)

    Polyzois, Ioannis; Nikolopoulos, Dimitrios; Michos, Ioannis; Patsouris, Efstratios; Theocharis, Stamatios

    2012-04-01

    Over the past 30 years joint replacement prostheses have been developed and refined to enhance durability and reproducibility. Total hip joint arthroplasty is being performed in an increasing number of younger patients; therefore orthopaedic surgeons seek implants with a longer life span. With regards to the progress of mechanical behaviour of the biomaterials used in an arthroplasty, little is known about the long-term biological effects of wear debris. Owing to the composition of the prostheses currently in use, systemic exposure to chromium (Cr), cobalt (Co), nickel (Ni) and aluminium (Al) alloys occurs as a result of the formation of metal wear nano-particles that are released both from metal-on-metal and polyethylene-on-metal bearings, resulting in a postoperative increase in metal ion levels at different organ sites. These particles circulate both locally and systemically, penetrate cell plasma membranes, bind to cellular proteins and enzymes and modulate cytokine expression. Their physiologic effects are poorly understood and their potential toxicity, hypersensitivity and carcinogenicity remain a cause for concern. In this article we will address the issue of whether these nanoscale degradation products are associated with adverse, clinically significant local or systemic toxicologic sequelae. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater.

    Science.gov (United States)

    Dong, Lei; Lin, Li; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Wu, Min; Li, Chao; Cao, Xiaohuan; Scholz, Miklas

    2018-02-26

    Attapulgite (or palygorskite) is a magnesium aluminium phyllosilicate. Modified attapulgite-supported nanoscale zero-valent iron (NZVI) was created by a liquid-phase reduction method and then applied for nitrate-nitrogen (NO 3 -N) removal (transformation) in simulated groundwater. Nanoscale zero-valent iron was sufficiently dispersed on the surface of thermally modified attapulgite. The NO 3 -N removal efficiency reached up to approximately 83.8% with an initial pH values of 7.0. The corresponding thermally modified attapulgite-supported nanoscale zero-valent iron (TATP-NZVI) and NO 3 -N concentrations were 2.0 g/L and 20 mg/L respectively. Moreover, 72.1% of the water column NO 3 -N was converted to ammonium-nitrogen (NH 4 -N) within 6 h. The influence of environmental boundary conditions including dissolved oxygen (DO) concentration, light illumination and water temperature on NO 3 -N removal was also investigated with batch experiments. The results indicated that the DO concentration greatly impacted on NO 3 -N removal in the TATP-NZVI-contained solution, and the NO 3 -N removal efficiencies were 58.5% and 83.3% with the corresponding DO concentrations of 9.0 and 0.3 mg/L after 6 h of treatment, respectively. Compared to DO concentrations, no significant (p > 0.05) effect of light illumination on NO 3 -N removal and NH 4 -N generation was detected. The water temperature also has great importance concerning NO 3 -N reduction, and the removal efficiency of NO 3 -N at 25 °C was 1.25 times than that at 15 °C. For groundwater, therefore, environmental factors such as water temperature, anaerobic conditions and darkness could influence the NO 3 -N removal efficiency when TATP-NZVI is present. This study also demonstrated that TATP-NZVI has the potential to be developed as a suitable material for direct remediation of NO 3 -N-contaminated groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Degradation of nitrobenzene-containing wastewater by carbon nanotubes immobilized nanoscale zerovalent iron

    International Nuclear Information System (INIS)

    Jiao, Weizhou; Feng, Zhirong; Liu, Youzhi; Jiang, Huihui

    2016-01-01

    Nanoscaled zerovalent iron (NZVI)–multiwalled carbon nanotubes (CNTs) composite materials were prepared by in situ reduction of Fe 2+ onto CNTs for nitrobenzene (NB) degradation. The morphologies and the composites of the prepared materials were characterized by SEM, TEM, and XRD. The results showed that the agglomeration of NZVI decreased with NZVI dispersed well onto the surfaces of CNTs, the particle size of NZVI on CNTs was about 20–50 nm. The BET surface areas of NZVI–CNTs was about 95.8 m 2 /g, which was 39 % higher than that of bare NZVI. For storage, the prepared NZVI–CNTs were concentrated into slurry and stored in situ as fresh slurry without drying. Contrast experiment results showed that the removal efficiency of NB by NZVI–CNTs fresh slurry was 30 % higher than that of vacuum-dried NZVI–CNTs, which indicates that storing in situ as fresh slurry can be an alternative strategy for nanoparticle storage. Batch experiment results showed that NB could be degraded to aniline by NZVI–CNTs rapidly, and the appropriate pH can be conducted at a relatively wide range from 2.0 to 9.0. The optimum mass ratio of iron–carbon was 1:1, and removal efficiency of NB by NZVI–CNTs with this mass ratio can achieve 100 % within 1 min. The degradation process of NB to intermediates was accelerated significantly by NZVI–CNTs, however, there was still a long term for the intermediates to transfer completely into the final product of aniline. The existence of CNTs can improve the formation of aniline through accelerating the electron transfer by forming microscopic galvanic cells with NZVI.

  13. Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene.

    Science.gov (United States)

    Ling, Xiaofeng; Li, Jiansheng; Zhu, Wen; Zhu, Yaoyao; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2012-05-01

    Nanoscale zero-valent iron (NZVI) supported on ordered mesoporous carbon (OMC) was synthesized through liquid phase reduction route. The NZVI/OMC composite was characterized by X-ray diffraction, N(2) adsorption/desorption and transmission electron microscopy. Results reveal that the composite possesses ordered mesostructure with NZVI distributing homogeneously on the surface of OMC support. The removal effects of nitrobenzene (NB) in water with OMC, NZVI/OMC and non-supported NZVI were evaluated. Results indicate that NZVI/OMC shows enhanced removal efficiency, which is attributed to its adsorption and synergistic reduction for NB. The transformation process of NB was further investigated by HPLC. Nitrosobenzene and phenylhydroxylamine were detected as intermediate products and aniline was the final reductive product. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Thermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process.

    Science.gov (United States)

    Kim, Yun Young

    2017-08-31

    The thermal conductivity of a nanoscale yttrium iron garnet (Y₃Fe₅O 12 , YIG) thin-film prepared by a sol-gel method was evaluated using the ultrafast pump-probe technique in the present study. The thermoreflectance change on the surface of a 250 nm thick YIG film, induced by the irradiation of femtosecond laser pulses, was measured, and curve fitting of a numerical solution for the transient heat conduction equation to the experimental data was performed using the finite difference method in order to extract the thermal property. Results show that the film's thermal conductivity is 22-83% higher than the properties of bulk YIG materials prepared by different fabrication techniques, reflecting the microstructural characteristics and quality of the film.

  15. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    International Nuclear Information System (INIS)

    Motozuka, S.; Hayashi, K.; Tagaya, M.; Morinaga, M.

    2015-01-01

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method

  16. Characteristic lesions in mouse retina irradiated with accelerated iron particles

    International Nuclear Information System (INIS)

    Malachowski, M.J.; Philpott, D.E.; Corbett, R.L.; Tobias, C.A.

    1981-01-01

    A program is underway to determine the radiation hazards of HZE particles using the Bevalac, a heavy-ion accelerator at LBL. Our earlier work with helium, carbon, neon, and argon particles, and exposure to rats to HZE particles in space flight demonstrated some deleterious biological effects. TEM studies have shown that some visual cells were missing and dislocated; these were termed channel lesions. Recently obtained is evidence that a single iron HZE particle may affect a series of cells. Mice were irradiated with 0.1, 0.3, 1, 10, or 25 rad of 590 MeV/amu initial kinetic energy iron particles in groups of 10 animals per dose point. Irradiated and control animals were sacrificed at intervals from one week to two years postirradiation. The eye samples were dehydrated, critical points dried with freon, fractured, and Au-Pd coated for SEM, or plastic embedded, sectioned, and stained for TEM. Additionally, dry fractured samples viewed with the SEM were embedded in plastic, sectioned, and stained for the TEM. Characteristic tunnel shaped lesions were observed with the SEM. Stereo pairs showed tunnels of various lengths up to 100 μm. Light microscopy of serially cut sections from the same material had vacuoles (V) extending the same length. TEM of the same specimen and specimens prepared only for TEM exhibited large vacuoles, greater than or equal to 2 μm, in the inner segment (IS) and outer segment (OS) layers. Severe membrane disruption was found bordering the vacuoles and gross nuclear degeneration (ND) and loose tissue (LT) were seen in the outer nuclear layer (ONL). The number of lesions increased with increasing dose. Microscopy of the control retina failed to demonstrate similar lesions

  17. Liquid Plasma Synthesis of Carbon Coated Iron Oxide Particles

    Science.gov (United States)

    Uygun, Aysegul; Hershkowitz, Noah; Eren, Esin; Uygun, Emre; Celik Cogal, Gamze; Yurdabak Karaca, Gozde; Manolache, Sorin; Sundaram, Gunasekaran; Sadak, Omer; Oksuz, Lutfi

    2017-10-01

    Recently, magnetic metal or metal oxide nanoparticles encapsulated in carbon are important in biomedical applications. The relevant reason to study toxicity of the magnetic nanoparticles coated by carbon is that they have great potential to contribute to cancer treatment. In this work, the synthesis of iron oxide nano-particles coated by graphitic carbon shells using pulsed plasma in liquid method. Short duration of RF plasma discharge, low electrical energy and fast quenching of the surrounding media can let to synthesize various kinds of pure nanoparticles. Corresponding author: ayseguluygun@sdu.edu.tr, lutfioksuz@sdu.edu.tr.

  18. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Weizhou, E-mail: jwz0306@126.com; Qin, Yuejiao [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China); Luo, Shuai [Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering (United States); Feng, Zhirong; Liu, Youzhi [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China)

    2017-02-15

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO{sub 4} and NaBH{sub 4} were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10–20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s{sup −1}, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1–9.

  19. Iron (III) sulfide particles produced by a polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Ryo; Kubono, Ippei [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan); Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp [Tokyo University of Science (Japan)

    2015-04-15

    Iron(III) sulfide Fe{sub 2}S{sub 3} particles were produced using a polyol method. Although pyrrhotite Fe{sub 1−x}S appeared together with Fe{sub 2}S{sub 3}, the relative yield of Fe{sub 2}S{sub 3} changed when the concentration of reagents in the oleylamine changed. Mössbauer spectra of the particles showed superparamagnetic doublets due to Fe{sub 2}S{sub 3} at 293 K, along with a hyperfine magnetic splitting of H = 24.7 T at 6 K. XRD patterns of the Fe{sub 2}S{sub 3} suggested a structure similar to that of greigite Fe{sub 3}S{sub 4}.

  20. Mössbauer spectra of iron (III) sulfide particles

    Science.gov (United States)

    Kubono, I.; Nishida, N.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter = 10-50 nm, length = 350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite ( γ-Fe2 O 3) with a lattice constant of a = 10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.

  1. Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI Removal

    Directory of Open Access Journals (Sweden)

    Chaoxia Zhao

    2017-01-01

    Full Text Available Well-dispersed nanoscale zero-valent iron (NZVI supported inside the pores of macroporous silica foams (MOSF composites (Mx-NZVI has been prepared as the Cr(VI adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1. X-ray photoelectron spectroscopy (XPS and powder X-ray diffraction (XRD measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II/Fe(III species shell. Batch experiments reveal that the removal efficiency of Cr(VI can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI. The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI is consistent with pseudo-second-order kinetic model.

  2. Development and Optimization of Targeted Nanoscale Iron Delivery Methods for Treatment of NAPL Source Zones

    Science.gov (United States)

    2011-04-01

    Reactivity Screening …………………………………………………………. 7 II.1.3.1. RNIP and Synthesized Bimetallic Nano Iron in Aqueous Phase …… 7...24) is a difunctional block copolymer surfactant commonly used in cosmetic and pharmaceutical applications. Aerosol MA-80I (sodium di(1,3...and is an oil- soluble surfactant having an HLB of 1. II.1.3. Reactivity Screening II.1.3.1. RNIP and Synthesized Bimetallic Nano Iron in Aqueous

  3. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.

    Science.gov (United States)

    Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao

    2014-05-01

    Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review

    Science.gov (United States)

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their te...

  5. Optimization of Nanoscale Zero-Valent Iron for the Remediation of Groundwater Contaminants

    Science.gov (United States)

    2012-03-22

    G. Pan, Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles, Water Res. 41...nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para- nitrochlorobenzene in water, Desalination 271 (2011), pp. 11-19. [61] W.X...with sodium carboxymethyl cellulose for catalytic reduction of para- nitrochlorobenzene in water. Desalination . 2011, 271, 11-19. [24

  6. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    Science.gov (United States)

    2010-04-01

    Thallium (Tl) Iron (Fe) Nickel (Ni) Lead (Pb) Antimony (Sb) Potassium (K) Manganese (Mn) Molybdenum (Mo) Sodium (Na) Magnesium (Mg) Cadmium (Cd... Potassium (K) Manganese (Mn) Molybdenum (Mo) Sodium (Na) Magnesium (Mg) Selenium (Se) Strontium (Sr) Titanium (Ti) Thallium (Tl) Vanadium (V) Zinc (Zn...Sb) Potassium (K) Manganese (Mn) Molybdenum (Mo) Sodium (Na) Magnesium (Mg) Selenium (Se) Strontium (Sr) Titanium (Ti) Thallium (Tl) Vanadium (V) Zinc

  7. Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating.

    Science.gov (United States)

    Huang, Danlian; Hu, Zhengxun; Peng, Zhiwei; Zeng, Guangming; Chen, Guomin; Zhang, Chen; Cheng, Min; Wan, Jia; Wang, Xi; Qin, Xiang

    2018-03-15

    Proper management of metal-contaminated sediment plays a key role in sediment recovery and reuse. This study synthesized two kinds of stabilized nanoscale zero-valent iron (nZVI) with starch (S-nZVI) and carboxymethyl cellulose (C-nZVI) for the in situ immobilization of Cd(II) in river sediment and investigated their transport in porous media. Experimental data showed that when the sediment sample was treated with C-nZVI for 56 days at a dosage ranging from 5 to 10 mg/g-sediment as Fe 0 , the TCLP (toxicity characteristic leaching procedure) leachability of Cd(II) in the sediment decreased by 93.75-96.43%, and the PBET (physiologically-based extraction test) bioaccessibility of Cd(II) decreased by 22.79-71.32%. Additionally, the acid soluble fraction of Cd(II) was partially transformed to a residual fraction, resulting in a 32.4-33.1% decrease of acid soluble Cd(II) and a 125.4-205.6% increase of the residual-Cd(II) fraction. Surface complexation with iron oxyhydroxide minerals might be the main mechanism of Cd(II) immobilization in sediment. Column experiments indicate that starch or carboxymethyl cellulose (CMC) could extend the travel distance of nZVI, but inherent site physical and chemical heterogeneities still posed challenges for nanoparticle transport. Over all, this study verifies the effectiveness of stabilized nZVI for Cd(II) immobilization in sediment and discusses the potential immobilization mechanism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  9. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    Science.gov (United States)

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  10. The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs.

    Science.gov (United States)

    Peeters, Kelly; Lespes, Gaëtane; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2016-05-01

    Among the different nanoparticles (NPs) that are used in the remediation of contaminated environmental waters, iron nanoparticles (FeNPs) are the most frequently applied. However, if these FeNPs remain in the waters after the treatment, they can cause a hazard to the environment. In this work the time dependent size distribution of iron particles was investigated in Milli-Q water, forest spring water and landfill leachate after a variety of FeNP treatments. The efficiency of the metal removal by the FeNPs was also examined. The concentrations of the metals in the aqueous samples were determined before and after the nano-remediation by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that the settling and removal of the FeNPs after the treatment of the waters was related to the sample characteristics and the ways of dispersing the NPs. When mixing was used for the dispersion, the nano zero-valent iron (nZVI), FeONPs and Fe3O4NPs settled quickly in the Milli-Q water, the forest spring water and the landfill leachate. Dispersion with tertramethylammonium hydroxide (TMAH) resulted in a slower settling of the iron aggregates. In the Milli-Q and forest spring waters treated with FeONPs and dispersed by TMAH, the nanosized iron remained in solution as long as 24 h after the treatment and could represent a potential threat in environmental waters with a low ionic strength. The removal of the metals strongly depended on the type of FeNPs, the chemical speciation of the elements and the sample matrix. If the FeNPs are contaminated by a particular metal, this contaminant could be, during the NPs treatment, released into the water that is being remediated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Organomineral Complexation at the Nanoscale: Iron Speciation and Soil Carbon Stabilization

    Science.gov (United States)

    Coward, E.; Thompson, A.; Plante, A. F.

    2016-12-01

    Much of the uncertainty in the biogeochemical behavior of soil carbon (C) in tropical ecosystems derives from an incomplete understanding of soil C stabilization processes. The 2:1 phyllosilicate clays often associated with temperate organomineral complexation are largely absent in tropical soils due to extensive weathering. In contrast, these soils contain an abundance of Fe- and Al-containing short-range-order (SRO) mineral phases capable of C stabilization through sorption or co-precipitation, largely enabled by high specific surface area (SSA). SRO-mediated organomineral associations may thus prove a critical, yet matrix-selective, driver of the long-term C stabilization capacity observed in tropical soils. Characterizing the interactions between inherently heterogeneous organic matter and amorphous mineralogy presses the limits of current analytical techniques. This work pairs inorganic selective dissolution with high-resolution assessment of Fe speciation to determine the contribution of extracted mineral phases to the mineral matrix, and to C stabilization capacity. Surface (0-20 cm) samples were taken from 20 quantitative soil pits within the Luquillo Critical Zone Observatory in northeast Puerto Rico stratified across granodioritic and volcaniclastic parent materials. 57Fe-Mössbauer spectroscopy (MBS) and x-ray diffraction (XRD) before and after Fe-SOM extraction were used to assess changes in the mineralogical matrix associated with SOM dissolution, while N2-BET sorption was used to determine the contributions of the extractable phases to SSA. Results indicate (1) selective extraction of soil C produces significant shifts in Fe phase distribution, (2) SRO minerals contribute substantially to SSA, and (3) SRO minerals appear protected by more crystalline phases via physical mechanisms, rather than dissolution-dependent chemical bonds. This nanoscale characterization of Fe-C complexes thus provides evidence for both anticipated mineral-organic and

  12. Optimization of Reactive Blue 21 removal by Nanoscale Zero-Valent Iron using response surface methodology

    Directory of Open Access Journals (Sweden)

    Mahmood Reza Sohrabi

    2016-07-01

    Full Text Available Since Reactive Blue 21 (RB21 is one of the dye compounds which is harmful to human life, a simple and sensitive method to remove this pollutant from wastewater is using Nano Zero-Valent Iron (NZVI catalyst. In this paper, a Central Composite Rotatable Design (CCRD was employed for response surface modeling to optimize experimental conditions of the RB21 removal from aqueous solution. The significance and adequacy of the model were analyzed using analysis of variance (ANOVA. Four independent variables—including catalyst amount (0.1–0.9 g, pH (3.5–9.5, removal time (30–150 s and dye concentration (10–50 mg/L—were transformed to coded values and consequently second order quadratic model was built to predict the responses. The result showed that under optimized experimental conditions the removal of RB21 was over 95%.

  13. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging.

    Science.gov (United States)

    Pellico, Juan; Llop, Jordi; Fernández-Barahona, Irene; Bhavesh, Riju; Ruiz-Cabello, Jesús; Herranz, Fernando

    2017-01-01

    The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.

  14. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Juan Pellico

    2017-01-01

    Full Text Available The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.

  15. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  16. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Science.gov (United States)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (dumbbells and 〈 111 〉 crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  17. The removal of lead and nickel from the composted municipal waste and sewage sludge using nanoscale zero-valent iron fixed on quartz.

    Science.gov (United States)

    Ghasemzadeh, Parisa; Bostani, Amir

    2017-11-01

    Reducing the concentration of heavy metals including lead (Pb) and nickel (Ni) in organic contaminants such as municipal wastes and sewage sludge is of health and environmental importance. Nanoscale zero-valent iron (NZVI) particles can effectively remove heavy metals from contaminated aqueous and solid media. It was accordingly hypothesized that it is possible to recycle and detoxify organic waste materials containing heavy metals using NZVI and NZVI fixed on quartz (QNZVI). The objective was to investigate the effects of NZVI type, concentration (2% and 5%) and contact time on the removal of Pb and Ni from raw compost, compost fermented with beet molasses, and leachate using a factorial design. The results indicated the significant reduction of DTPA- Pb and DTPA-Ni concentration, in all the organic compounds treated with NZVI and QNZVI (P= 0.01), compared with control. Increased concentration of NZVI in all treatments, increased the rate of DTPA-Pb and DTPA-Ni (P= 0.01) at 113.1% and 180% for Pb (NZVI at 2% and 5%), and at 16.3% and 23.3% for Ni, irrespective of the NZVI type. The reducing trend of extractable Pb and Ni in all the organic compounds was the same, quick reduction at the beginning, followed by a negligible rate. The highest reduction rates for Pb (at one hour) and Ni (at 672h) were equal to 72.93% and 23.27%, respectively. NZVI at 2% was more efficient than NZVI at 5%. There were not any significant differences between NZVI and QNZVI on the removal of Pb and Ni from the organic contaminants. It is possible to immobilize and reduce the concentration of heavy metals such as Pb and Ni in organic contaminants using NZVI, which is affected by NZVI properties, concentration, and contact time, as well as by organic contaminant type. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Artificial Intelligence Based Optimization for the Se(IV) Removal from Aqueous Solution by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron Composites.

    Science.gov (United States)

    Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui

    2018-03-15

    Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms.

  19. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software

    International Nuclear Information System (INIS)

    Gontard, Lionel C.; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E.

    2016-01-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi 2 (PO 4 ) 3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi 2 (PO 4 ) 3 particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.

  20. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, Lionel C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); Faico PCT Cartuja. Edif. TI Marie Curie, C/ Leonardo da Vinci 18, 4a Planta, 41092 Sevilla (Spain); Schierholz, Roland; Yu, Shicheng [Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Cintas, Jesús [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-10-15

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.

  1. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    OpenAIRE

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, P. (Petra); Filip, P. (Petr); Vesel, A.

    2011-01-01

    The aim of this paper is to document suitability of plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Surface-modified carbonyl iron particles were prepared via their exposure to 50% argon and 50% octafluorocyclobutane plasma. The X-ray photoelectron spectroscopy was used for analysis of chemical bonding states in the surface layer. Plasma-treated particles were adopted for a dispersed phase in magnetorheological (MR) fluids, and the MR behaviour was in...

  2. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  3. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  4. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chenghong; Xu, Xuping [School of Life Science, Fujian Normal University, Fuzhou 350108, Fujian Province (China); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-10-15

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD{sub 600} = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized.

  5. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification

    International Nuclear Information System (INIS)

    Wang, Qiliang; Jeong, Seung-Woo; Choi, Heechul

    2012-01-01

    Highlights: ► TCE DNAPL removal inside pores using NZVI or bimetals in a 2-D system was visualized. ► Presence of nitrate and humic substances decrease the TCE DNAPL removal efficiency. ► Presence of ethanol increases the TCE DNAPL removal efficiency. ► Metal catalysts enhance the TCE DNAPL removal using NZVI in a short term reaction. ► Metal catalysts do not increase the DNAPL removal efficiency for a long term reaction. - Abstract: Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.

  6. Nano-scale zero valent iron transport in a variable aperture dolomite fracture and a glass fracture

    Science.gov (United States)

    Mondal, P.; Sleep, B. E.; Cui, Z.; Zhou, Z.

    2014-12-01

    Experiments and numerical simulations are being performed to understand the transport behavior of carboxymethyl cellulose polymer stabilized nano-scale zero valent iron (nZVI) in a variable aperture dolomite rock fracture and a variable aperture glass replica of a fractured slate. The rock fracture was prepared by artificially inducing a fracture in a dolomite block along a stylolite, and the glass fracture was prepared by creating molds with melted glass on two opposing sides of a fractured slate rock block. Both of the fractures were 0.28 m in length and 0.21 m in width. Equivalent hydraulic apertures are about 110 microns for the rock fracture and 250 microns for the glass replica fracture. Sodium bromide and lissamine green B (LGB) serve as conservative tracers in the rock fracture and glass replica fracture, respectively. A dark box set-up with a light source and digital camera is being used to visualize the LGB and CMC-nZVI movement in the glass fracture. Experiments are being performed to determine the effects of water specific discharge and CMC concentration on nZVI transport in the fractures. Transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry were performed to determine the stability and characteristics of the CMC-nZVI mixture. The transport of bromide, LGB, CMC, and CMC-nZVI in both fractures is being evaluated through analysis of the effluent concentrations. Time-lapse images are also being captured for the glass fracture. Bromide, LGB, and CMC recoveries have exceeded 95% in both fractures. Significant channeling has been observed in the fractures for CMC transport due to viscous effects.

  7. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Airong, E-mail: liuairong@tongji.edu.cn; Liu, Jing; Han, Jinhao; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • A comprehensive study of corrosion products for nZVI under both oxic and anoxic conditions is performed. • Under anoxic conditions, the oxidation products contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). • Under oxic conditions, the final products are mainly crystalline lepidocrocite (γ-FeOOH) with acicular-shaped structures. • Morphological and structural evolution of nZVI under both oxic and anoxic conditions are substantially different. - Abstract: Knowledge on the transformation of nanoscale zero-valent iron (nZVI) in water is essential to predict its surface chemistry including surface charge, colloidal stability and aggregation, reduction and sorption of organic contaminants, heavy metal ions and other pollutants in the environment. In this work, transmission electronic microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy are applied to study the compositional and structural evolution of nZVI under oxic and anoxic conditions. Under anoxic conditions, the core–shell structure of nZVI is well maintained even after 72 h, and the corrosion products usually contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). Under oxic conditions, the core–shell structure quickly collapses to flakes or acicular-shaped structures with crystalline lepidocrocite (γ-FeOOH) as the primary end product. This work provides detailed information and fills an important knowledge gap on the physicochemical characteristics and structural evolution of engineered nanomaterials in the environment.

  8. Surface interactions between nanoscale iron and organic material: Potential uses in water treatment process units

    Science.gov (United States)

    Storms, Max

    Membrane systems are among the primary emergent technologies in water treatment process units due to their ease of use, small physical footprint, and high physical rejection. Membrane fouling, the phenomena by which membranes become clogged or generally soiled, is an inhibitor to optimal efficiency in membrane systems. Novel, composite, and modified surface materials must be investigated to determine their efficacy in improving fouling behavior. Ceramic membranes derived from iron oxide nanoparticles called ferroxanes were coated with a superhydrophillic, zwitterionic polymer called poly (sulfobetaine methacrylate) (polySBMA) to form a composite ceramic-polymeric membrane. Membrane samples with and without polySBMA coating were subjected to fouling with a bovine serum albumin solution and fouling was observed by measuring permeate flux at 10 mL intervals. Loss of polySBMA was measured using total organic carbon analysis, and membrane samples were characterized using x-ray diffraction, scanning electron microscopy, and optical profilometry. The coated membrane samples decreased initial fouling rate by 27% and secondary fouling rate by 24%. Similarly, they displayed a 30% decrease in irreversible fouling during the initial fouling stage, and a 27% decrease in irreversible fouling in the secondary fouling stage; however, retention of polySBMA sufficient for improved performance was not conclusive. The addition of chemical disinfectants into drinking water treatment processes results in the formation of compounds called disinfection by-products (DBPs). The formation of DBPs occurs when common chemical disinfectants (i.e. chlorine) react with organic material. The harmful effects of DBP exposure require that they be monitored and controlled for public safety. This work investigated the ability of nanostructured hematite derived from ferroxane nanoparticles to remove organic precursors to DBPs in the form of humic acid via adsorption processes. The results show that p

  9. LIGHT MICROSCOPY DETECTION OF NANOSCALE PARTICLE INTERNALIZATION BY HUMAN LUNG CELLS

    Science.gov (United States)

    RATIONALE. Ultrafine particulate matter (PM) is reported to be more strongly correlated with adverse health effects relative to larger particle size fractions. These epidemiological findings are supported by toxicological studies suggesting that particle size is inversely associa...

  10. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.

    Science.gov (United States)

    Warheit, David B; Donner, E Maria

    2015-11-01

    The basic tenets for assessing health risks posed by nanoparticles (NP) requires documentation of hazards and the corresponding exposures that may occur. Accordingly, this review describes the range and types of potential human exposures that may result from interactions with titanium dioxide (TiO2) particles or NP - either in the occupational/workplace environment, or in consumer products, including food materials and cosmetics. Each of those applications has a predominant route of exposure. Very little is known about the human impact potential from environmental exposures to NP - thus this particular issue will not be discussed further. In the workplace or occupational setting inhalation exposure predominates. Experimental toxicity studies demonstrate low hazards in particle-exposed rats. Only at chronic overload exposures do rats develop forms of lung pathology. These findings are not supported by multiple epidemiology studies in heavily-exposed TiO2 workers which demonstrate a lack of correlation between chronic particle exposures and adverse health outcomes including lung cancer and noncancerous chronic respiratory effects. Cosmetics and sunscreens represent the major application of dermal exposures to TiO2 particles. Experimental dermal studies indicate a lack of penetration of particles beyond the epidermis with no consequent health risks. Oral exposures to ingested TiO2 particles in food occur via passage through the gastrointestinal tract (GIT), with studies indicating negligible uptake of particles into the bloodstream of humans or rats with subsequent excretion through the feces. In addition, standardized guideline-mandated subchronic oral toxicity studies in rats demonstrate very low toxicity effects with NOAELs of >1000 mg/kg bw/day. Additional issues which are summarized in detail in this review are: 1) Methodologies for implementing the Nano Risk Framework - a process for ensuring the responsible development of products containing nanoscale

  11. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment.

    Science.gov (United States)

    Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen

    2015-09-01

    The release of fine zerovalent iron (ZVI) particles in the environment after being introduced for in-situ treatment of compounds like chlorinated aliphatic hydrocarbons (CAHs) may raise questions toward environmental safety, especially for nanoscale materials. Classical single-species ecotoxicity tests do focus on aerobic conditions and are only relevant for the scenario when ZVI-particles reach surface water. Herein, we present an alternative approach where a CAH-degrading mixed bacterial culture was used as test-organisms relevant for the anaerobic subsurface. The impact of different ZVI particles on the bacterial culture was evaluated mainly by quantifying ATP, a reporter molecule giving a general indication of the microbial activity. These lab-scale batch tests were performed in liquid medium, without protecting and buffering aquifer material, as such representing worst-case scenario. The activity of the bacterial culture was negatively influenced by nanoscale zerovalent iron at doses as low as 0.05 g L(-1). On the other hand, concentrations up to 2 g L(-1) of several different types of microscale zerovalent iron (mZVI) particles stimulated the activity. However, very high doses of 15-30 g L(-1) of mZVI showed an inhibiting effect on the bacterial community. Negative effects of ZVIs were confirmed by H2 accumulation in the batch reactors and the absence of lactate consumption. Observed inhibition also corresponded to a pH increase above 7.5, explicable by ZVI corrosion that was found to be dose-dependent. The obtained results suggest that low doses of mZVIs will not show severe inhibition effects on the microbial community once used for in-situ treatment of CAHs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  13. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  14. Electrokinetic aspects of water filtration by AlOOH-coated siliceous particles with nanoscale roughness

    Directory of Open Access Journals (Sweden)

    Leonid A. Kaledin

    2017-03-01

    Full Text Available The vast majority of analytical and numerical models developed to explain pressure-driven electrokinetic phenomena assume that the local electrical double layer field over heterogenious surfaces is independent of the flow field and described by the Poison-Boltzman equation. However, for pressure-driven flow over a surface with heterogeneous patches with combined microscale and nanoscale structures the local electrical double layer fields are different above the patch and in the region between the patches. The nonuniform surface charge produces distortions in the equilibrium electrostatic field. The characteristic symptom of field distortion is the generation of flow velocities in all three coordinate directions, including a circulation pattern perpendicular to the main flow axis therefore severely distorting the Poisson-Boltzmann double layer. The result is an exceptionally high microbes and ions removal efficiencies from aqueous suspension by the alumina’s surfaces with combined microscale and nanoscale structures that strongly suggests existence of a coupling effect of the local electrical double layer (EDL field with the local flow field.

  15. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    2006-12-31

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of iron catalyst particles and the formation of ultra-fine particles.

  16. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software.

    Science.gov (United States)

    Gontard, Lionel C; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E

    2016-10-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi2(PO4)3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention.

    Science.gov (United States)

    Silva, Rona M; Teesy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E; Pinkerton, Kent E

    2013-01-01

    Titanium dioxide (TiO2) is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic, and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to (1) establish a lowest-observed-effect level (LOEL) for nano-scale TiO2, (2) determine TiO2 uptake in the lungs, and (3) estimate toxicity based on physicochemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were administered TiO2 (0, 20, 70, or 200 μg) via intratracheal instillation. Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 d post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB displayed any significant degree of inflammation seen in BALF at the 1-d time point. This inflammation resolved by 7 d, although TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB produced cellular changes at d 1 that were still evident at d 7. Data indicate TiO2-NB is the most inflammatory with a LOEL of 200 μg at 1 d post instillation.

  18. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles.

    Science.gov (United States)

    Warheit, David B

    2013-07-04

    Due to its multifunctional applications, titanium dioxide particles have widespread use in commerce. The particle-types function as sources of pigment color, in food products, anti-bacterial components, ultraviolet radiation scavengers, catalysts, as well as in cosmetics. Because of its inherent properties in a diverse number of products, exposures may occur via any of the major point-of-entry routes, i.e., inhalation, oral or dermal. Although the majority of TiO2 applications are known to exist in the pigment-grade form, nanoscale forms of TiO2 are also common components in several products. This brief review is designed to identify relevant toxicology and risk-related issues which inform health effects assessments on the various forms of titanium dioxide particles. While there has been an abundance of hazard data generated on titanium dioxide particulates, many of the published reports have limited informational value for assessing health effects due, in large part, to shortcomings in experimental design issues, such as: (1) inadequate material characterization of test samples; (2) questionable relevance of experimental systems employed to simulate human exposures; (3) applications of generally high doses, exclusive focus on acute toxicity endpoints, and a lack of reference benchmark control materials, to afford interpretation of measured results; and/or (4) failure to recognize fundamental differences between hazard and risk concepts. Accordingly, a number of important toxicology issues are identified and integrated herein to provide a more comprehensive assessment of the health risks of different forms of pigment-grade and nanoscale titanium dioxide particles. It is important to note that particle-types of different TiO2 compositions may have variable toxicity potencies, depending upon crystal structure, particle size, particle surface characteristics and surface coatings. In order to develop a more robust health risk evaluation of TiO2 particle exposures, this

  19. The synthesis and characterization of water-reducible nanoscale Colloidal Unimolecular Polymer (CUP) particles

    Science.gov (United States)

    Riddles, Cynthia Jeannette

    The coatings industry has adapted to more stringent guidelines in paint formulations. Current VOC (volatile organic compound) limits placed by the federal government have pushed the industry toward the development of paint formulations which have very little to no VOC's. The development of Colloidal Unimolecular Polymer (CUP) particles is a step in the direction of providing a resin system which exists in zero VOC aqueous dispersion. The CUP particles are a part of the polymer field of Single Chain Nano Particles (SCNP) and ranged in diameters of 3-9 nm. The research presented in this dissertation describes the synthesis and design of these particles along with the various means of instrumentation used to gain insight into the structure and nature of these particles when suspended in aqueous medium.

  20. CSSTag: Optical Nanoscale Radar and Particle Tracking for In-Body and Microfluidic Systems with Vibrating Graphene and Resonance Energy Transfer

    OpenAIRE

    Gulbahar, Burhan; Memisoglu, Gorkem

    2017-01-01

    Single particle tracking systems monitor cellular processes with great accuracy in nano-biological systems. The emissions of the fluorescent molecules are detected with cameras or photodetectors. However, state-of-the-art imaging systems have challenges in the detection capability, collection and analysis of imaging data, penetration depth and complicated set-ups. In this article, a \\textit{signaling based nanoscale acousto-optic radar and microfluidic particle tracking system} is proposed ba...

  1. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  2. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  3. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...

  4. Synthesis of iron oxide/manganese oxide composite particles and their magnetic properties

    Science.gov (United States)

    Ullrich, Aladin; Hohenberger, Stefan; Özden, Ayberk; Horn, Siegfried

    2014-08-01

    We have investigated the synthesis and structural as well as magnetic properties of composite nanoparticles, including core-shell particles, consisting of iron and manganese oxides. The synthesis is based on thermal decomposition of suitable metal oleates in a high boiling solvent. Seed particles are used to avoid homogeneous nucleation and to initiate the formation of heterogeneous systems. The as-synthesized particles were characterized by energy filtered transmission electron microscopy (EFTEM) and SQUID magnetometry. The synthesized nanoparticles had diameters between 10 and 20 nm and consisted of manganese oxide and iron oxide.

  5. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Ubaidillah, E-mail: ubaidillah@uns.ac.id [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126, Central Java, Surakarta (Indonesia)

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmental Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.

  6. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality.

    Science.gov (United States)

    Rahman, M Safiur; Gagnon, Graham A

    2014-01-01

    Discoloration of water resulting from suspended iron particles is one of the main customer complaints received by water suppliers. However, understanding of the mechanisms of discoloration as well as role of materials involved in the process is limited. In this study, an array of bench scale experiments were conducted to evaluate the impact of the most common variables (pH, PO4, Cl2 and DOM) on the properties of iron particles and suspensions derived from the oxygenation of Fe(II) ions in NaHCO3 buffered synthetic water systems. The most important factors as well as their rank influencing iron suspension color and turbidity formation were identified for a range of water quality parameters. This was accomplished using a 2(4) full factorial design approach at a 95% confidence level. The statistical analysis revealed that phosphate was found to be the most significant factor to alter color (contribution: 37.9%) and turbidity (contribution: 45.5%) in an iron-water system. A comprehensive study revealed that phosphate and chlorine produced iron suspension with reduced color and turbidity, made ζ-potential more negative, reduced the average particle size, and increased iron suspension stability. In the presence of DOM, color was observed to increase but a reverse trend was observed to decrease the turbidity and to alter particle size distribution. HPSEC results suggest that higher molecular weight fractions of DOM tend to adsorb onto the surfaces of iron particles at early stages, resulting in alteration of the surface charge of iron particles. This in turn limits particles aggregation and makes iron colloids highly stable. In the presence of a phosphate based corrosion inhibitor, this study demonstrated that color and turbidity resulting from suspended iron were lower at a pH value of 6.5 (compared to pH of 8.5). The same trend was observed in presence of DOM. This study also suggested that iron colloid suspension color and turbidity in chlorinated drinking water

  7. CSSTag: Optical Nanoscale Radar and Particle Tracking for In-Body and Microfluidic Systems With Vibrating Graphene and Resonance Energy Transfer.

    Science.gov (United States)

    Gulbahar, Burhan; Memisoglu, Gorkem

    2017-12-01

    Biological particle tracking systems monitor cellular processes or particle behaviors with the great accuracy. The emissions of fluorescent molecules or direct images of particles are captured with cameras or photodetectors. The current imaging systems have challenges in detection, collection, and analysis of imaging data, penetration depth, and complicated set-ups. In this paper, a signaling-based nanoscale acousto-optic radar and microfluidic multiple particle tracking (MPT) system is proposed based on the theoretical design providing nanoscale optical modulator with vibrating Förster resonance energy transfer and vibrating cadmium selenide/zinc sulfide quantum dots (QDs) on graphene resonators. The modulator combines significant advantages of graphene membranes having wideband resonance frequencies with QDs having broad absorption spectrum and tunable properties. The solution denoted by chirp spread spectrum(CSS) Tag utilizes classical radar target tracking approaches in nanoscale environments based on the capability to generate CSS sequences identifying different bio-particles. Monte Carlo simulations show significant performance for MPT with a modulator of dimension and several picograms of weight, the signal-to-noise ratio in the range from -7 to 10 dB, simple light emitting diode sources with power less than 4 W/cm 2 and high speed tracking for microfluidic environments.

  8. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  9. Effect of particle size on kinetics crystallization of an iron-rich glass

    OpenAIRE

    Romero, Maximina; Kovacova, Milota; Rincón López, Jesús María

    2008-01-01

    The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent of the glass particle size, being 100µm the critical size. Glass fractions with particle size >100µm sho...

  10. Elemental compositions of suspended particles released from iron and steel works

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira; Kubota, Torahide

    1980-01-01

    Suspended particles released from iron and steel works were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry, and their characteristics in elemental composition were examined in detail. Elemental compositions of suspended particles from electric furnaces producing medium steel and special steel were rather similar with each other. The suspended particles from these electric steel furnaces were found to be enriched in the elements listed below. Fe (Geometric mean of measured concentrations: 16%), Zn (5.2%), Ca (4.5%), Cl (3.4%), Mn (2.2%), Na (1.4%), Pb (1.4%), K (1.3%), Al (1.0%), Cu (0.4%), Cr (0.3%), Ni (0.3%) and Ti (0.1%). elemental compositions of suspended particles from cupolas were found to be similar with those of the suspended particles from the electric steel furnaces, but, it was noticed that the cupola particles were condiderably higher in Si concentration (--25%). Suspended particles from heating furnaces for processing various iron and steel products, which are heated by oil combustion, were found to be quite similar in elemental composition with suspended particles released from heavy oil boilers, as was expected, being quite different from the particles from the electric steel furnaces and the cupolas. The electric steel furnace particles were 15 to 180 times more enriched in the elements, Cl, K, Ca, Sc, Cr, Mn, Fe, Zn, Br, Sb and Pb, and one 70th less enriched in the element V than oil boiler particles. The contributions of iron and steel works to aerosols over two big cities, Osaka and Kawasaki, in a particle size range below several micron, were roughly estimated under simple assumptions. High contributions of iron and steel works were found for various elements, being especially large for Cr, Mn, Ni, Zn, Cl, Fe and so on. (J.P.N.)

  11. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  12. Carboxymethyl Cellulose Stabilized Nano-scale Zero Valent Iron Transport in Porous Media: An Experimental and Modeling Study

    Science.gov (United States)

    Mondal, P.; Rrokaj, E.; Sleep, B. E.

    2013-12-01

    An experimental and modeling study is being conducted to evaluate carboxymethyl cellulose (CMC) stabilized nano-scale zero valent iron (nZVI) transport in porous media. A two-dimensional water-saturated glass-walled sandbox (55 cm x 45 cm x 1.3 cm in size) is being used for the study. The sandbox was packed uniformly with silica sand (600 μm to 425 μm grain diameter) under water-saturated conditions. From a series of hydraulic tests permeability of the system was calculated to be 1.0 x 10-12 m2. The transport tests are being conducted at pore-water velocities of 3, 5, and 10 m.d-1 to identify any shear-thinning effects associated with the CMC (MW = 90,000) solution, and effects of velocity on nZVI attachment to the porous media. A set of transport tests is being carried out using LissamineTM Green B (LGB) dye and CMC mixtures to characterize the CMC transport without nZVI. The transport tests are being conducted at various CMC concentrations ranging from 0.2% to 0.8% (w/v) to determine the effect of CMC concentration on nZVI transport under flowing conditions. For the CMC stabilized nZVI transport tests, nZVI is synthesized freshly in CMC solution before each experiment using sodium borohydride and ferrous sulfate. The synthesized nZVI concentrations range from 0.1 to 2.5 g.L-1. While higher nZVI concentration is desired for higher contaminant degradation, the higher nZVI concentration may cause greater aggregation and attachment to the porous media limiting the delivery distance for nZVI. In each transport experiment, the LGB-CMC solution or nZVI-CMC solution is injected into the sandbox as a pulse of 0.25 pore volume (PV). For LGB, the mass recovery was calculated to be ~ 96.5% indicating non-reactive transport in silica sand. The preliminary results also show that increased concentration of CMC (from 0.2% to 0.4 %) causes higher pressure drop across the sandbox, indicating that use of high CMC concentrations will limit injection rates with a corresponding

  13. Darkfield-Confocal Microscopy detection of nanoscale particle internalization by human lung cells

    Directory of Open Access Journals (Sweden)

    Samet James M

    2011-01-01

    Full Text Available Abstract Background Concerns over the health effects of nanomaterials in the environment have created a need for microscopy methods capable of examining the biological interactions of nanoparticles (NP. Unfortunately, NP are beyond the diffraction limit of resolution for conventional light microscopy (~200 nm. Fluorescence and electron microscopy techniques commonly used to examine NP interactions with biological substrates have drawbacks that limit their usefulness in toxicological investigation of NP. EM is labor intensive and slow, while fluorescence carries the risk of photobleaching the sample and has size resolution limits. In addition, many relevant particles lack intrinsic fluorescence and therefore can not be detected in this manner. To surmount these limitations, we evaluated the potential of a novel combination of darkfield and confocal laser scanning microscopy (DF-CLSM for the efficient 3D detection of NP in human lung cells. The DF-CLSM approach utilizes the contrast enhancements of darkfield microscopy to detect objects below the diffraction limit of 200 nm based on their light scattering properties and interfaces it with the power of confocal microscopy to resolve objects in the z-plane. Results Validation of the DF-CLSM method using fluorescent polystyrene beads demonstrated spatial colocalization of particle fluorescence (Confocal and scattered transmitted light (Darkfield along the X, Y, and Z axes. DF-CLSM imaging was able to detect and provide reasonable spatial locations of 27 nm TiO2 particles in relation to the stained nuclei of exposed BEAS 2B cells. Statistical analysis of particle proximity to cellular nuclei determined a significant difference between 5 min and 2 hr particle exposures suggesting a time-dependant internalization process. Conclusions DF-CLSM microscopy is an alternative to current conventional light and electron microscopy methods that does not rely on particle fluorescence or contrast in electron

  14. Nanoscale texture analysis of d-HDDR processed Nd-Fe-B powder particles

    OpenAIRE

    Duerrschnabel, Michael; Bruder, Enrico; Güth, Konrad; Gauss, Roland K.; Gutfleisch, Oliver; Molina-Luna, Leopoldo

    2016-01-01

    A strong texture in polycrystalline Nd-Fe-B powder particles processed by dynamic hydrogenation disproportionation desorption and recombination (d-HDDR) method is of importance for enhanced macroscopic magnetic properties [1]. This heavily depends on the processing parameters such as the hydrogen partial pressure [2]. The initial and the final step of the HDDR process has already been extensively studied by electron backscatter diffraction (EBSD) technique in the scanning electron microscope ...

  15. Particle-Hole Transformation in Strongly-Doped Iron-Based Superconductors

    OpenAIRE

    Rodriguez, J. P.

    2016-01-01

    An exact particle-hole transformation is discovered in a local-moment description of a single layer in an iron-based superconductor. Application of the transformation to a surface layer of heavily electron-doped FeSe predicts a surface-layer high-temperature superconductor at strong hole doping. Comparison with existing low-T_c iron superconductors suggests that the critical temperature at heavy hole doping can be increased by increasing direct ferromagnetic exchange in between nearest neighb...

  16. In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.

    Science.gov (United States)

    Vazquez, M E; Kirk, E

    2000-01-01

    The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle.

  17. Astrophysical detection of heavy-particle-induced spectral shifts in muonic iron

    International Nuclear Information System (INIS)

    Guffin, J.; Nixon, G.; Fischbach, E.; Javorsek, D. II; Colafrancesco, S.

    2002-01-01

    By significantly increasing the nuclear mass, a strongly interacting massive particle (SIMP) bound to an iron nucleus would cause a characteristic change in the spectrum of muonic iron. At temperatures high enough that such atoms are completely stripped of electrons, the effect is directly observable as a 0.2% shift in the energies of high angular momentum states. This phenomenon provides a new test for the existence of SIMPs, which have been proposed as dark matter candidates, and as candidates for the lightest supersymmetric particle

  18. Implication of surface modified NZVI particle retention in the porous ...

    Indian Academy of Sciences (India)

    Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle ...

  19. Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution.

    Science.gov (United States)

    Jiang, Huaidong; Xu, Rui; Chen, Chien-Chun; Yang, Wenge; Fan, Jiadong; Tao, Xutang; Song, Changyong; Kohmura, Yoshiki; Xiao, Tiqiao; Wang, Yong; Fei, Yingwei; Ishikawa, Tetsuya; Mao, Wendy L; Miao, Jianwei

    2013-05-17

    We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with nanoscale resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S phases in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate phases but also paves the way for quantitative 3D imaging of materials at nanoscale resolution under extreme pressures and temperatures.

  20. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    Science.gov (United States)

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-04

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels.

  1. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  2. Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility

    OpenAIRE

    M. Oakes; R. J. Weber; B. Lai; A. Russell; E. D. Ingall

    2012-01-01

    Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edg...

  3. An investigation of the possible influence of particles on the corrosion of iron in a sodium loop

    International Nuclear Information System (INIS)

    Polley, M.V.

    1975-11-01

    At the present time it is not possible to explain why the observed corrosion of iron in sodium loop experiments is so small if currently recommended values of the solubility of iron in sodium are accepted. One possible explanation investigated is that the concentration of dissolved iron in the sodium may be held very close to saturation by the presence of a large number of particles in the sodium. A model for pipe wall and particle mass transfer is presented and a computer programme, which calculates mass transfer rates whilst following the sodium around an iron loop, is described. Dissolved iron is assumed to condense on and dissolve from foreign parent particles present in the sodium since it is shown that homogeneous nucleation of pure iron particles is most unlikely to occur. Mass transfer, to both particles and pipe walls, is assumed to be diffusion controlled. Computed corrosion rates are presented as a function of particle size and number density, showing that corrosion of iron cannot be sufficiently inhibited by the presence of particles to reconcile calculations of iron corrosion rates, based on recommended solubility values, with observed corrosion rates. Alternative explanations of observed iron corrosion phenomena are discussed. (author)

  4. Wear Behaviour of Iron Matrix Composite Reinforced by ZTA Particles in Impact Abrasion

    Science.gov (United States)

    Qiu, B.; Xing, S. M.; Dong, Q.

    2017-11-01

    Zirconia toughened alumina (ZTA) particles reinforced high chromium cast iron composites (ZTA/Iron composites) were prepared by a two-step processing method, i.e. mixing particles by the molten metal and cohering by high pressure, which based on the squeeze casting process. The impact wear resistance under different impact energies were investigated using dynamically loaded abrasive wear tester at room temperature. For comparison, the wear tests of high chromium cast iron were also carried out under the same conditions. Worn surfaces of the samples were observed under scanning electron microscopy equipped with an energy dispersive detector. The results showed that the composites have better impact wear resistance than that of high Cr cast iron regardless of impact energy level, and the wear resistance of the two materials all decrease with the increase of the impact energy. The main wear mechanisms of the high Cr cast iron were micro-cutting and fatigue peeling, while the wear of composites occurred through micro-cutting of the matrix (lower impact energy) and breaking and shedding of the reinforced particles (higher impact energy).

  5. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practical......-field-cooled magnetization and isothermal remanence decay, is influenced by interactions and strongly dependent on the applied magnetic field....

  6. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  7. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States); March, Katia [Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, 91405 Orsay Cedex (France); Crozier, Peter A., E-mail: CROZIER@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States)

    2017-07-15

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO{sub 2} anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO{sub 2} showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60 nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1 eV above the MgO valence band. At the surfaces of TiO{sub 2} nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. - Highlights: • Bandgap states detected with aloof beam monochromated EELS on oxide nanoparticle surfaces. • Dielectric theory applied to simulate the spectra and interpret surface structure. • Density of states models also be employed to understand the surface electronic structure. • In MgO, one states associate with water species was found close to the valence band edge. • In anatase, two mid-gap states associated with point defects were found.

  8. Transformation of iron containing constituent intermetallic particles during hydrothermal treatment

    DEFF Research Database (Denmark)

    Borgaonkar, Shruti; Din, Rameez Ud; Kasama, Takeshi

    2018-01-01

    Aluminium alloys AA3102 and AA9108 were treated with high temperature steam, which resulted in the formation of an oxide layer of average thickness of 300–400 nm. Hydrothermal steam treatment resulted in the removal or oxidation of Al (Fe) Mn and Al (Fe-Si) Mn type intermetallic particles present...... in the alloys. Furthermore, electron energy loss spectroscopy analysis revealed that the during the steam treatment, the Fe enriched areas of the Al (Fe-Si) Mn type intermetallic particles were transformed into Fe2O3 and Fe3O4 phases, while energy-dispersive X-ray spectroscopy line profile measurements...

  9. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  10. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-01-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites

  11. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Geelen, Tessa; Duimel, Hans; Bomans, Paul H. H.; Frederik, Peter M.; Sanders, Honorius M. H. F.; Deckers, Niko M.; Deckers, Roel; Reutelingsperger, Chris P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid

  12. Iron Particle Size Effects for Direct Production of Lower Olefins from Synthesis Gas

    NARCIS (Netherlands)

    Torres Galvis, H.M.|info:eu-repo/dai/nl/314116249; Bitter, J.H.|info:eu-repo/dai/nl/160581435; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2012-01-01

    The Fischer–Tropsch synthesis of lower olefins (FTO) is an alternative process for the production of key chemical building blocks from non-petroleum-based sources such as natural gas, coal, or biomass. The influence of the iron carbide particle size of promoted and unpromoted carbon nanofiber

  13. The effect of particle size on green pellet properties of iron ore fines

    Directory of Open Access Journals (Sweden)

    Satyananda Patra

    2017-01-01

    Full Text Available Recently, the grade of iron ore deposits has deteriorated and further development of low grade deposits is desired. Presently, the most effective and often followed route taken to utilize such deposits is the provision of beneficiation plants for upgrading iron ore and pelletizing plants for agglomerating. The iron ore fines cannot be directly used in the blast furnace as they severely reduce the permeability of the blast furnace bed and bring down the efficiency of the furnace. To overcome this, agglomeration of high grade iron ore fines is done to serve as blast furnace burden. Both the beneficiation and pelletization techniques are key process in utilization of low grade iron ores. This study deals with the beneficiation and agglomeration of the low grade iron ore; up to the extent such that it becomes an ideal blast furnace feed. Effect of particle size on pellet quality during pellet making has also been aimed and studied along with the development of flowsheet for beneficiation of low grade iron ore.

  14. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-09-30

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The shakedown phase of the pilot-scale filtration platform was completed at the end of the last reporting period. A study of various molecular weight waxes was initiated to determine the effect of wax physical properties on the permeation rate without catalyst present. As expected, the permeation flux was inversely proportional to the nominal average molecular weight of the polyethylene wax. Even without catalyst particles present in the filtrate, the filtration membranes experience fouling during an induction period on the order of days on-line. Another long-term filtration test was initiated using a batch of iron catalyst that was previously activated with CO to form iron carbide in a separate continuous stirred tank reactor (CSTR) system. The permeation flux stabilized more rapidly than that experienced with unactivated catalyst tests.

  15. A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging.

    Science.gov (United States)

    Chen, Chih-Lung; Zhang, Haosen; Ye, Qing; Hsieh, Wen-Yuan; Hitchens, T Kevin; Shen, Hsin-Hsin; Liu, Li; Wu, Yi-Jen; Foley, Lesley M; Wang, Shian-Jy; Ho, Chien

    2011-10-01

    In this study, we investigated the labeling efficiency and magnetic resonance imaging (MRI) signal sensitivity of a newly synthesized, nano-sized iron oxide particle (IOP) coated with polyethylene glycol (PEG), designed by Industrial Technology Research Institute (ITRI). Macrophages, bone-marrow-derived dendritic cells, and mesenchymal stem cells (MSCs) were isolated from rats and labeled by incubating with ITRI-IOP, along with three other iron oxide particles in different sizes and coatings as reference. These labeled cells were characterized with transmission electron microscopy (TEM), light and fluorescence microscopy, phantom MRI, and finally in vivo MRI and ex vivo magnetic resonance microscopy (MRM) of transplanted hearts in rats infused with labeled macrophages. The longitudinal (r (1)) and transverse (r (2)) relaxivities of ITRI-IOP are 22.71 and 319.2 s(-1) mM(-1), respectively. TEM and microscopic images indicate the uptake of multiple ITRI-IOP particles per cell for all cell types. ITRI-IOP provides sensitivity comparable or higher than the other three particles shown in phantom MRI. In vivo MRI and ex vivo MRM detect punctate spots of hypointensity in rejecting hearts, most likely caused by the accumulation of macrophages labeled by ITRI-IOP. ITRI-IOP, the nano-sized iron oxide particle, shows high efficiency in cell labeling, including both phagocytic and non-phagocytic cells. Furthermore, it provides excellent sensitivity in T(2)*-weighted MRI, and thus can serve as a promising contrast agent for in vivo cellular MRI.

  16. Directional fidelity of nanoscale motors and particles is limited by the 2nd law of thermodynamics—Via a universal equality

    Science.gov (United States)

    Wang, Zhisong; Hou, Ruizheng; Efremov, Artem

    2013-07-01

    Directional motion of nanoscale motors and driven particles in an isothermal environment costs a finite amount of energy despite zero work as decreed by the 2nd law, but quantifying this general limit remains difficult. Here we derive a universal equality linking directional fidelity of an arbitrary nanoscale object to the least possible energy driving it. The fidelity-energy equality depends on the environmental temperature alone; any lower energy would violate the 2nd law in a thought experiment. Real experimental proof for the equality comes from force-induced motion of biological nanomotors by three independent groups - for translational as well as rotational motion. Interestingly, the natural self-propelled motion of a biological nanomotor (F1-ATPase) known to have nearly 100% energy efficiency evidently pays the 2nd law decreed least energy cost for direction production.

  17. Hybrid Adsorptive and Oxidative Removal of Natural Organic Matter Using Iron Oxide-Coated Pumice Particles

    Directory of Open Access Journals (Sweden)

    Sehnaz Sule Kaplan Bekaroglu

    2016-01-01

    Full Text Available The aim of this work was to combine adsorptive and catalytic properties of iron oxide surfaces in a hybrid process using hydrogen peroxide and iron oxide-coated pumice particles to remove natural organic matter (NOM in water. Experiments were conducted in batch, completely mixed reactors using various original and coated pumice particles. The results showed that both adsorption and catalytic oxidation mechanisms played role in the removal of NOM. The hybrid process was found to be effective in removing NOM from water having a wide range of specific UV absorbance values. Iron oxide surfaces preferentially adsorbed UV280-absorbing NOM fractions. Furthermore, the strong oxidants produced from reactions among iron oxide surfaces and hydrogen peroxide also preferentially oxidized UV280-absorbing NOM fractions. Preloading of iron oxide surfaces with NOM slightly reduced the further NOM removal performance of the hybrid process. Overall, the results suggested that the tested hybrid process may be effective for removal of NOM and control disinfection by-product formation.

  18. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  19. The field-dependent rheological properties of magnetorheological fluids featuring plate-like iron particles

    Directory of Open Access Journals (Sweden)

    Seung-Bok eChoi

    2014-10-01

    Full Text Available This study is concerned with an investigation of the plate-like iron particles based MR suspensions under the application of magnetic fields to ascertain the influence of particle size in the rheological performance. A novel synthesis route to prepare magnetorheological fluid (MRF using two different sizes of plate-like iron particles is described in detail. Two different kinds of MRF are then prepared and their rheological properties are presented and discussed extensively. Steady shear flow and small amplitude dynamic oscillatory measurements are carried out in the presence of magnetic field. This experimental study reveals and highlights the importance of exploiting some parameters such as magnetic field strength, effect of particle size, magneto-viscous and visco-elastic properties of the suspending fluid. The magnetization of the fluids is also performed to explain the effect of particle size in the magnetic field which is directly correlated with the yield stress. In the absence of magnetic field, the properties of fluid are isotropic and upon the application of magnetic field the magnetized particles form a strong-chain like structures in the field direction which promotes the appearance of yield stress. This material is known as smart material whose properties amend from liquid to solid immediately after applying the magnetic field. It is found from this work that the large size particle based MRF exhibits high yield stress and strong chain structuration under the applying magnetic field.

  20. Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts

    Directory of Open Access Journals (Sweden)

    A. Vijaya Bhaskar Reddy

    2013-01-01

    Full Text Available Degradation of the insecticide chlorpyrifos in contaminated soils was investigated using laboratory synthesized zero-valent nano iron (ZVNI particles. The synthesized ZVNI particles were characterized as nanoscale sized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The zero-valent state (Fe0 of iron was confirmed by EDAX analysis and the morphology of the ZVNI particles was studied by XRD. Batch experiments were conducted by treating the chlorpyrifos contaminated soil with ZVNI, our results indicate that 90% of chlorpyrifos was degraded after 10 days of incubation. Only 32% degradation was observed with micro zero-valent iron (mZVI and no considerable degradation was attained without ZVNI. The degradation of chlorpyrifos followed the first-order kinetics with a rate constant and a half-life of 0.245 day−1 and 2.82 days, respectively. Degradation was monitored at two different pH values, that is, pH 10 and pH 4. Chlorpyrifos degradation rate constant increased as the pH decreases from 10 to 4. The corresponding rate constant and half-lives were 0.43 day−1 and 1.57days for pH 4, 0.18 day−1 and 3.65 days for pH 10. In addition, an attempt was made by augmenting Al2(SO43 with ZVNI and it was found that the degradation rate of chlorpyrifos was greatly enhanced and the rate constant was rapidly increased from 0.245 day−1 to 0.60 day−1. Hydrolysis and stepwise dechlorination pathway of chlorpyrifos with ZVNI was the dominant reaction.

  1. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  2. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  3. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...

  4. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    Science.gov (United States)

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  5. Trypsin purification using magnetic particles of azocasein-iron composite.

    Science.gov (United States)

    Alves, Maria Helena Menezes Estevam; Nascimento, Gabriela Ayres; Cabrera, Mariana Paola; Silvério, Sara Isabel da Cruz; Nobre, Clarisse; Teixeira, José António; de Carvalho, Luiz Bezerra

    2017-07-01

    This work presents an inexpensive, simple and fast procedure to purify trypsin based on affinity binding with ferromagnetic particles of azocasein composite (mAzo). Crude extract was obtained from intestines of fish Nile tilapia (Oreochromis niloticus) homogenized in buffer (01g tissue/ml). This extract was exposed to 100mg of mAzo and washed to remove unbound proteins by magnetic field. Trypsin was leached off under high ionic strength (3M NaCl). Preparation was achieved containing specific activity about 60 times higher than that of the crude extract. SDS-PAGE showed that the purified protein had molecular weight (24kDa) in concordance with the literature for the Nile tilapia trypsin. The mAzo composite can be reused and applied to purify trypsin from other sources. Copyright © 2016. Published by Elsevier Ltd.

  6. One-Step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity

    Science.gov (United States)

    Ye, Baoyun; An, Chongwei; Zhang, Yuruo; Song, Changkun; Geng, Xiaoheng; Wang, Jingyu

    2018-02-01

    A one-step method which involves exfoliating graphite materials (GIMs) off into graphene materials (GEMs) in aqueous suspension of CL-20 and forming CL-20/graphene materials (CL-20/GEMs) composites by using ball milling is presented. The conversion of mixtures to composite form was monitored by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The impact sensitivities of CL-20/GEM composites were contrastively investigated. It turned out that the energetic nanoscale composites based on CL-20 and GEMs comprising few layers were accomplished. The loading capacity of graphene (reduced graphene oxide, rGO) is significantly less than that of graphene oxide (GO) in CL-20/GEM composites. The formation mechanism was proposed. Via this approach, energetic nanoscale composites based on CL-20 and GO comprised few layers were accomplished. The resulted CL-20/GEM composites displayed spherical structure with nanoscale, ɛ-form, equal thermal stabilities, and lower sensitivities.

  7. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  8. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  9. Effect of the Lifting Velocity and Container Shape on Angle of Repose of Iron Ore Particles

    Directory of Open Access Journals (Sweden)

    Tongqing Li

    2017-01-01

    Full Text Available To investigate the impact of lifting velocity and container shape on angle of repose, the fixed-base cylinder method was performed using three types of container shape. The container shape was lifted a series of lifting velocities. Six size fractions of iron ore particles ranging from coarser to fine particles were used as the test materials. And the sand-pile calibration method was then used to calibrate the contact parameters of iron ore particles. Results show angle of repose decreased exponentially with the lifting velocity, while it appeared approximately to be invariant to particle shape, for all size fractions. The sand pile highly depends on the container shape at a low lifting velocity but appears to be invariant to particle size for a high lifting velocity. And then a predictive equation is established and a very close agreement between the predicted and measured angle of repose is attained. Finally, a series of DEM simulations considering the irregular particle shape are conducted by means of sphere clump method to calibrate the contact parameters and are in good visual agreement with the experimental results, indicating the “tuned” contact parameters as well as the applicability of the predicted equation.

  10. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    Science.gov (United States)

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  11. [Preparation of polyvinyl alcohol film inlaid with silk fibroin peptide nano-scale particles and evaluation of its function to promote cell growth].

    Science.gov (United States)

    Chen, Zhongmin; Hao, Xuefei; Fan, Kai

    2010-12-01

    Nano-scale particles of silk fibroin peptide (SFP) were prepared from discarded materials of cocoon or filature by dissolving and enzymolysis. Polyvinyl Alcohol films inlaid with silk fibroin peptide nano-scale particles (SFP in PVA) were prepared by blending nano-SFP and PVA in water according to different blending ratios. The films' characteristics and their promoting cell growth functions were investigated. Silk fibroin fiber was dissolved in 60% NaSCN solution, and was decomposed with alpha-Chymotrypsin, Trypsin and Neutral, respectively. The uniformity of size of SFP nano-particles prepared by Neutral was better and appeared about 80-150 nm. (SFP in PVA) films were characterized by infrared spectroscopy (IR) measurement which demonstrated the combination of SFP and PVA. Scanning electron microscopy revealed the PVA films already inlaid with SFP micro-segment. The surface and form stability in water of the (SFP in PVA) films with blending ratios of 10/90, 20/80, 30/70 and 40/60 were observed. And the results showed that SFP/PVA film with the blending ratio of 30/70 has smoother surface and better stability in water. The Chinese hamster ovary (CHO) cells were cultured, and the promoting cell growth function of (SFP in PVA) films was assessed by MTT colorimetric assay. These findings indicate that SFP/PVA (30/70) film has excellent function of promoting cell growth.

  12. Impact of iron particles in groundwater on the UV inactivation of bacteriophages MS2 and T4.

    Science.gov (United States)

    Templeton, M R; Andrews, R C; Hofmann, R

    2006-09-01

    To investigate the impact of iron particles in groundwater on the inactivation of two model viruses, bacteriophages MS2 and T4, by 254-nm ultraviolet (UV) light. One-litre samples of groundwater with high iron content (from the Indianapolis Water Company, mean dissolved iron concentration 1.3 mg l(-1)) were stirred vigorously while exposed to air, which oxidized and precipitated the dissolved iron. In parallel samples, ethylenediaminetetra-acetic acid (EDTA) was added to chelate the iron and prevent formation of iron precipitate. The average turbidity in the samples without EDTA (called the 'raw' samples) after 210 min of stirring was 2.7 +/- 0.1 NTU while the average turbidity of the samples containing EDTA (called the 'preserved' samples) was 1.0 +/- 0.1 NTU. 'Raw' and 'preserved' samples containing bacteriophage MS2 were exposed to 254-nm UV light at doses of 20, 40, or 60 mJ (cm(2))(-1), while samples containing bacteriophage T4 were exposed to 2 or 5 mJ (cm(2))(-1), using a low pressure UV collimated beam. The UV inactivation of both phages in the 'raw' groundwater was lower than in the EDTA-'preserved' groundwater to a statistically significant degree (alpha = 0.05), due to the association of phage with the UV-absorbing iron precipitate particles. A phage elution technique confirmed that a large fraction of the phage that survived the UV exposures were particle-associated. Phages that are associated with iron oxide particles in groundwater are shielded from UV light to a measurable and statistically significant degree at a turbidity level of 2.7 NTU when the phage particle association is induced under experimental conditions. While the particle association of the phage in this study was induced experimentally, the findings provide further evidence that certain particles in natural waters and wastewaters (e.g. iron oxide particles) may have the potential to shield viruses from UV light.

  13. Synthesis and characterization of iron nano particles for the arsenic removal in water

    International Nuclear Information System (INIS)

    Gutierrez M, O. E.

    2011-01-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  14. Ionic charge state distribution of helium, carbon, oxygen, and iron in an energetic storm particle enhancement

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1982-01-01

    An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.

  15. Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G.

    Science.gov (United States)

    Lin, Jiajiang; Sun, Mengqiang; Liu, Xinwen; Chen, Zuliang

    2017-10-01

    Kaolin supported nanoscale zero-valent iron (K-nZVI) is synthesized and applied as the Fenton-like oxidation catalyst to degrade a model azo dye, Direct Black G (DBG). The characterization of K-nZVI by the high resolution transmission electronmicroscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy Diffraction Spectrum (EDS) and X-ray diffraction (XRD) show that kaolin as a support material not only reduces the aggregation of zero-valent iron (nZVI) but also facilitates the Fenton-like oxidation by increasing the local concentration of DBG in the vicinity of nZVI. Pseudo first-order and pseudo second-order kinetic models are employed to reveal the adsorption and degradation of the DBG using K-nZVI as the catalyst. A better fit with pseudo second-order model for the adsorption process and equal excellent fits with pseudo first-order and pseudo second-order models for the degradation process are observed; the adsorption process is found to be the rate limiting step for overall reactions. The adsorption, evaluated by isotherms and thermodynamic parameters is a spontaneous and endothermic process. High-performance liquid chromatography-mass spectrometry (LC-MS) analysis was used to test degraded products in the degradation of DGB by K-nZVI. A removal mechanism based on the adsorption and degradation is proposed, including (i) prompt adsorption of DBG onto the K-nZVI surface, and (ii) oxidation of DBG by hydroxyl radicals at the K-nZVI surface. The application of K-nZVI to treat real wastewater containing azo dyes shows excellent degradation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-01-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176

  17. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

    DEFF Research Database (Denmark)

    Lee, Young-Chul; Lee, Kyubock; Hwang, Yuhoon

    2014-01-01

    Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay/nZVI ratios), the stability of nZVI was investigated as a function......ZVI composite (ratio 1.0) exhibited a highly positively charged surface (~+40 mV) and a ferromagnetic property (~30 emu/g). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g/L loading under a magnetic field. In a scaled-up (24L) microalga harvesting...... process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay-nZVI composites, can be applied in a continuous harvesting mode....

  18. Fabrication of hybrid biosorbent nanoscale zero-valent iron-Sargassum swartzii biocomposite for the removal of crystal violet from aqueous solution.

    Science.gov (United States)

    Jerold, M; Vasantharaj, K; Joseph, Daisy; Sivasubramanian, V

    2017-03-04

    A novel nanoscale zero-valent iron-Sargassum swartzii (nZVI-SS) biocomposite was synthesized and evaluated for its ability to adsorb crystal violet (CV) from aqueous solutions. Involvement of various functional groups of the biosorbent in preferential adsorption of cationic dye was observed using Fourier transform infrared (FTIR) spectroscopy. Morphological changes occurring on the biocomposite materials were characterized using scanning electron microscopy (SEM). Significant increase (∼90%) in the biosorption of cationic dye was observed with gradual increase in pH of the medium from 3 to 12. The effect of biosorbent concentration, initial pH, temperature, agitation rate, adsorption time, and initial dye concentration was studied for the biosorption of CV using nZVI biocomposite. During the optimization study, maximum biosorption capacity was observed at pH of 8. At various initial CV concentrations (20-100 mg/L), attainment of batch sorption equilibrium was observed within 120 min of reaction time. The Langmuir isotherm model expressed high coefficient of determination (R 2 = 0.999). The maximum dye uptake of 200 mg/g was reported at pH 8. Kinetics and temperature profiles were evaluated and reported. Desorption study was carried out with 0.1 M HCl. Investigations proved that nZVI-SS is an excellent biosorbent for the sequestration of CV in aqueous media.

  19. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles.

    Science.gov (United States)

    Chen, Xi; Yao, Xiaoyan; Yu, Chunna; Su, Xiaomei; Shen, Chaofeng; Chen, Chen; Huang, Ronglang; Xu, Xinhua

    2014-04-01

    Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2',4,4',5,5'-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2',4,4',5,5'-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.

  20. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  1. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.

    Science.gov (United States)

    Lefevre, Emilie; Bossa, Nathan; Wiesner, Mark R; Gunsch, Claudia K

    2016-09-15

    The increasing use of strategies incorporating nanoscale zero valent iron (nZVI) for soil and groundwater in situ remediation is raising some concerns regarding the potential adverse effects nZVI could have on indigenous microbial communities and ecosystem functioning. This review provides an overview of the current literature pertaining to the impacts of nZVI applications on microbial communities. Toxicity studies suggest that cell membrane disruption and oxidative stress through the generation of Fe(2+) and reactive oxygen species by nZVI are the main mechanisms contributing to nZVI cytotoxicity. In addition, nZVI has been shown to substantially alter the taxonomic and functional composition of indigenous microbial communities. However, because the physico-chemical conditions encountered in situ highly modulate nZVI toxicity, a better understanding of the environmental factors affecting nZVI toxicity and transport in the environment is of primary importance in evaluating the ecological consequences that could result from a more extensive use of nZVI. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Majlesi Monireh

    2017-12-01

    Full Text Available The phenolic compounds are known as priority pollutants, even in low concentrations, as a result of their toxicity and non-biodegradability. For this reason, strict standards have been established for them. In addition, chlorophenols are placed in the 38th to 43th in highest priority order of toxic pollutants. As a consequence, contaminated water or wastewaters with phenolic compounds have to be treated before discharging into the receiving water. In this study, Response Surface Methodology (RSM has been used in order to optimize the effect of main operational variables responsible for the higher 4-chlorophenol removal by Activated Carbon-Supported Nanoscale Zero Valent Iron (AC/NZVI. A Box-Behnken factorial Design (BBD with three levels was applied to optimize the initial concentration, time, pH, and adsorbent dose. The characterization of adsorbents was conducted by using SEM-EDS and XRD analyses. Furthermore, the adsorption isotherm and kinetics of 4-chlorophenol on AC and AC/NZVI under various conditions were studied. The model anticipated 100% removal efficiency for AC/NZVI at the optimum concentration (5.48 mg 4-chlorophenol/L, pH (5.44, contact time (44.7 min and dose (0.65g/L. Analysis of the response surface quadratic model signified that the experiments are accurate and the model is highly significant. Moreover, the synthetic adsorbent is highly efficient in removing of 4-chlorophenol.

  3. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells.

    Science.gov (United States)

    van Tilborg, Geralda A F; Geelen, Tessa; Duimel, Hans; Bomans, Paul H H; Frederik, Peter M; Sanders, Honorius M H F; Deckers, Niko M; Deckers, Roel; Reutelingsperger, Chris P M; Strijkers, Gustav J; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid phosphatidylserine, which is exposed in the outer leaflet of the apoptotic cell membrane. When co-exposed to apoptotic stimuli, this protein was shown to internalize into endocytic vesicles. Therefore in the present study we investigated the possible internalization of commercially available annexin A5-functionalized iron oxide particles (r1 = 34.0 +/- 2.1 and r2 = 205.0 +/- 10.4 mm(-1) s(-1) at 20 MHz), and the effects of their spatial distribution on relaxation rates R2*, R2 and R1. Two different incubation procedures were performed, where (1) Jurkat cells were either incubated with the contrast agent after induction of apoptosis or (2) Jurkat cells were simultaneously incubated with the apoptotic stimulus and the contrast agent. Transmission electron microscopy images and relaxation rates showed that the first incubation strategy mainly resulted in binding of the annexin A5-iron oxide particles to the cell membrane, whereas the second procedure allowed extensive membrane-association as well as a small amount of internalization. Owing to the small extent of internalization, only minor differences were observed between the DeltaR2*/DeltaR2 and DeltaR2/DeltaR1 ratios of cell pellets with membrane-associated or internalized annexin A5 particles. Only the increase in R1 (DeltaR1) appeared to be diminished by the internalization. Internalization of annexin A5-iron oxide particles is also expected to occur in vivo, where the apoptotic stimulus and the contrast agent are simultaneously present. Where the extent of internalization in vivo is similar to that observed in the present study, both T2- and T2*-weighted MR sequences are considered suitable for the detection of these

  4. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    Directory of Open Access Journals (Sweden)

    Yi Li

    2015-07-01

    Full Text Available The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  5. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  6. Sequestration of Ag(I) from aqueous solution as Ag(0) nanostructures by nanoscale zero valent iron (nZVI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yalei, E-mail: zhangyalei2003@163.com [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China); Yan, Jing [Tongji University, Modern Agricultural Science and Engineering Institute (China); Dai, Chaomeng, E-mail: daichaomeng@163.com, E-mail: daichaomeng@tongji.edu.cn [Tongji University, College of Civil Engineering (China); Li, Yuting; Zhu, Yan [Tongji University, Modern Agricultural Science and Engineering Institute (China); Zhou, Xuefei [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China)

    2015-11-15

    This study investigates the application of nanoparticle zero valent iron (nZVI) to sequester Ag(I) as Ag(0) nanostructures from aqueous solution. Batch experiments were performed with nZVI exposed to aqueous Ag(I) to investigate the effects of environmental parameters, including nZVI dose, temperature and pH. High temperature facilitates Ag(I) sequestration, and the rate constants are determined to be 0.02, 0.12, and 0.31 mg L/m{sup 2} at 30, 50, and 60 °C, respectively. Ag(I) sequestration was adversely affected by adding nitric acid to the solution due to significant acid washing, decreasing the available nZVI active sites. Characterization techniques including TEM, XRD, and HR-XPS revealed that nZVI is oxidized to lepidocrocite and magnetite/maghemite and confirmed the formation of nanocrystalline silver. HR-XPS analysis indicated that Ag{sub 2}O forms rapidly as an intermediate due to Ag(I) adsorption onto the FeOOH layer. The Ag(0) nanostructures that are formed are fractal, spherical, and dendritic or rod-like, respectively, in morphology by FE-TEM images at different Ag/Fe mass ratios. A general reaction model for the interaction Ag(I) with nZVI is proposed. Our results suggest that nZVI is effective for Ag(I) removal.

  7. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  8. Numerical study on iron particles behaviour injected in an argon plasma from an electric transferred arc

    Energy Technology Data Exchange (ETDEWEB)

    Douce, A.; Flour, I.

    1995-11-01

    In the scope of the Research and Development Project `Control of Plasma/Product Interaction`, the aim of this study is to analyze the behaviour of iron particles injected in an argon plasma flow from an electric transferred arc. It includes particle trajectories and, heat and mass transfer (as the particle undergoes smelting and evaporation), using a 3 dimensional Lagrangian simulation with the numerical code ESTET. The plasma flow is a result of a calculation done using Melodie, a 2 dimensional axisymmetrical software, in the scope of a modelling bath heating with plasma transferred arc. The first step consists of an analysis on the forces applied to a single particle. Simulations show that equation of motion would reduce, finally, to the sum of the drag force and the gravitational effects. In a second step, special attention is given to the effect of steep temperature gradients (across the boundary layer around the particle) on the evaluation of the plasma properties, the drag coefficient, and the heat and mass transfer coefficients. The comparison of several correlations show that the definition of the mean temperature mainly controls the calculation of plasma properties across the boundary layer around the particle.At least, several particle injection conditions are tested on four different sizes particles (50, 100, 150 et 200{mu}m), showing that the 200 {mu}m particle is the only one falling into the bath, without being completely evaporated. However, taking into account the `blow-up effect`, induced by evaporation, leads to a decrease of the heat transfer coefficient which slow down the evaporation, and then modify the conclusion made before. (authors). 18 refs., 41 figs., 5 tabs., 4 appends.

  9. Submicrometric Iron Particles for the Removal of Pharmaceuticals from Water: Application to b-Lactam Antibiotics

    International Nuclear Information System (INIS)

    Ghauch, A.; Baydoun, H.; Tuqan, M.; Ayoub, Gh.; Naim, S.

    2011-01-01

    Sub-micrometric iron particles (Fe0) and amended Fe0 (Cu0Fe0) were tested for the aqueous removal of b-lactam antibiotics. Comparative batch experiments were performed separately on aqueous solutions of dicloxacillin (DCX), cloxacillin (CLX) and oxacillin (OXA). Three different initial concentrations (1, 5 and 10 mg L-1) and four different iron loads (r = 10, 20, 40 and 53 g L-1) were tested. Furthermore, two different mixing regimes were tested: (i) non-disturbed conditions, and (ii) vortex mixing. This experimental design enabled the confirmation of the crucial role of in-situ formed iron corrosion products (Fe oxides) on the removal process. The dynamic process of Fe oxides formation induces adsorption and enmeshment (sequestration or co-precipitation) of dissolved antibiotics. Results clearly delineated the superiority of Cu0Fe0 bimetallics compared to Fe0. For example, after 4 h of contact with iron particles at r = 40 g L-1, OXA, CLX and DCX (10 mg L-1 each) disappeared to an extent of 31, 46 and 71%. However, quantitative antibiotic removal (∼ 90%) was noticed when Cu0Fe0 bimetallic was used at lesser load (r = 20 g L-1) under vortex mixing. On the other hand, non-disturbed systems showed partial removal (∼ 25%) of antibiotics over 7 h of reaction at r = 10 g L-1 (Fe0) while almost complete removals were noticed for the Cu0Fe0 bimetallic system for the same metal load and period e.g. 75, 79 and 86% removal for OXA, CLX and DCX respectively. (author)

  10. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  11. Oxidation and evaporation of sulfur species at atmospheric entry of iron sulfide fine particles

    Science.gov (United States)

    Isobe, H.; Murozono, K.

    2017-12-01

    Micrometeorites have the most abundant flux in current accumulation of planetary materials to the Earth. Micrometeorites are heated and reacted with upper atmosphere at atmospheric entry. Evaporation of meteoritic materials, especially sulfur species, may have environmental effect at upper atmosphere (e.g. Court and Sephton, 2011; Tomkins et al., 2016). Troilite is typical FeS phase in chondritic meteorites. In this study, quick heating and cooling experiments of FeS reagent particles were carried out with a fine particles free falling apparatus with controlled gas flow (Isobe and Gondo, 2013). Starting material reagent is inhomogeneous mixture of troilite, iron oxide and iron metal. Oxygen fugacity was controlled to FMQ +1.5 log unit. Maximum temperature of the particles was higher than 1400°C for approximately 0.5 seconds. Run products with rounded shape and smooth surface show the particles were completely melted. Chemical compositions of particles analyzed on cross sections are generally well homogenized from inhomogeneous starting materials by complete melting. Molar ratios of Fe in melted regions are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Distribution of compositions of melted regions in Fe-S-O system is plotted in liquidus compositions of FeO and FeS saturated melt. Troilite in micrometeorite is melted and oxidized by atmospheric entry. Compositions of FeS melt in fine spherules are following Fe-S-O phase relations even in a few seconds. Molar ratios of Fe in melt are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Evaporation of sulfur from meteoritic materials in atmospheric entry heating may depend on oxygen fugacity of the upper atmosphere. Sulfur supply from meteoritic materials to atmosphere may be limited on planets with oxygen

  12. Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites Used for Pb(II Removal

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2016-08-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were prepared by chemical deposition method and were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption and X-ray photoelectron spectroscopy (XPS. Operating parameters for the removal process of Pb(II ions, such as temperature (20–40 °C, pH (3–5, initial concentration (400–600 mg/L and contact time (20–60 min, were optimized using a quadratic model. The coefficient of determination (R2 > 0.99 obtained for the mathematical model indicates a high correlation between the experimental and predicted values. The optimal temperature, pH, initial concentration and contact time for Pb(II ions removal in the present experiment were 21.30 °C, 5.00, 400.00 mg/L and 60.00 min, respectively. In addition, the Pb(II removal by nZVI/rGO composites was quantitatively evaluated by using adsorption isotherms, such as Langmuir and Freundlich isotherm models, of which Langmuir isotherm gave a better correlation, and the calculated maximum adsorption capacity was 910 mg/g. The removal process of Pb(II ions could be completed within 50 min, which was well described by the pseudo-second order kinetic model. Therefore, the nZVI/rGO composites are suitable as efficient materials for the advanced treatment of Pb(II-containing wastewater.

  13. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2006-03-31

    The morphological and chemical nature of ultrafine iron catalyst particles (3-5 nm diameters) during activation/FTS was studied by HRTEM, EELS, and Moessbauer spectroscopy. With the progress of FTS, the carbide re-oxidized to magnetite and catalyst activity gradually decreased. The growth of oxide phase continued and average particle size also increased simultaneously. The phase transformation occurred in a ''growing oxide core'' manner with different nano-zones. The nano-range carbide particles did not show fragmentation or attrition as generally observed in micrometer range particles. Nevertheless, when the dimension of particles reached the micrometer range, the crystalline carbide phase appeared to be sprouted on the surface of magnetite single crystal. In the previous reporting period, a design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. During the current reporting period, we have started construction of the new filtration system and began modifications to the 4 liter slurry bubble column reactor (SBCR) reactor. The system will utilize a primary wax separation device followed by a Pall Accusep or Membralox ceramic cross-flow membrane. As of this writing, the unit is nearly complete except for the modification of a moyno-type pump; the pump was shipped to the manufacturer to install a special leak-free, high pressure seal.

  14. Linear arrangements of nano-scale ferromagnetic particles spontaneously formed in a copper-base Cu–Ni–Co alloy

    Science.gov (United States)

    Sakakura, Hibiki; Kim, Jun-Seop; Takeda, Mahoto

    2018-03-01

    We have investigated the influence of magnetic interactions on the microstructural evolution of nano-scale granular precipitates formed spontaneously in an annealed Cu-20at%Ni-5at%Co alloy and the associated changes of magnetic properties. The techniques used included transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry, magneto-thermogravimetry (MTG), and first-principles calculations based on the method of Koster–Korringa–Rostker with the coherent potential approximation. Our work has revealed that the nano-scale spherical and cubic precipitates which formed on annealing at 873 K and 973 K comprise mainly cobalt and nickel with a small amount of copper, and are arranged in the 〈1 0 0〉 direction of the copper matrix. The SQUID and MTG measurements suggest that magnetic properties such as coercivity and Curie temperature are closely correlated with the microstructure. The combination of results suggests that magnetic interactions between precipitates during annealing can explain consistently the observed precipitation phenomena.

  15. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry.

    Science.gov (United States)

    Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un

    2013-11-05

    Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.

  16. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Khani, Omid, E-mail: omidkhani@mut-es.ac.ir [Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran (Iran, Islamic Republic of); Shoushtari, Morteza Zargar [Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran (Iran, Islamic Republic of); Ackland, Karl; Stamenov, Plamen [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2017-04-15

    An increase in microwave permeability is a prerequisite for reducing the thickness of radar absorber coatings. The aim of this paper is to increase the magnetic loss of commercial carbonyl iron particles for fabricating wideband microwave absorbers with a multilayer structure. For this purpose, carbonyl iron particles were milled and their static and dynamic magnetic properties were studied before and after milling. A distinct morphological change from spherical to flake-like particles is measured with increased milling time, whereas no distinct changes in magnetic properties are measured with increased milling time. The imaginary part of the permeability (µ'') of the milled carbonyl iron particles increased from 1.23 to 1.88 and showed a very broad peak over the entire frequency range 1–18 GHz. The experimental results were modeled using the Rousselle effective medium theory (EMT) in the Neo formulation. The theoretical predictions showed good agreement with the experimental results. Two layer absorbers were designed according to the measured microwave parameters and the multilayer design. The results revealed that a thin multilayer with a thickness of 1.75 mm can effectively absorb microwaves in both the entire X and Ku frequency bands. The results suggest that microwave absorbers with excellent absorption properties could be mass-produced, using commercial carbonyl iron particles. - Highlights: • The microwave properties of carbonyl iron particles can be controlled effectively by particles shape. • Milling process transforms the carbonyl iron particle morphology from spherical to flake-like. • No appreciable differences in the magnetic and chemical local environments were detected by means of Mossbauer spectroscopy. • The two layer design showed appropriate absorptions in a rather wide frequency range.

  17. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  18. Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers

    Science.gov (United States)

    Kumar, Vineet; Lee, Dong-Joo

    2017-11-01

    Rubber specimens were prepared by mixing micron-sized iron particles dispersed in room-temperature-vulcanized (RTV) silicone rubber by solution mixing. The possible correlations of the particle volume, size, and distribution with the mechanical properties of the specimens were examined. An isotropic mechanical test shows that at 60 phr, the elastic modulus was 3.29 MPa (electrolyte), 2.92 MPa (carbonyl), and 2.61 MPa (hybrid). The anisotropic effect was examined by curing the specimen under magnetic fields of 0.5-2.0 T at 90° relative to the applied strain. The measurements show anisotropic effects of 11% (carbonyl), 9% (electrolyte), and 6% (hybrid) at 40 phr and 1 T. At 80 phr, the polymer-filler compatibility factor (c-factor) was estimated using the Pythagorean theorem as 0.53 (regular) and 0.73 (anisotropic studies). The improved features could be useful in applications such as controlled damping, vibrational absorption, or automotive bushings.

  19. Identification of Mg2Cu particles in Cu-alloyed austempered ductile iron

    Science.gov (United States)

    Górny, Marcin; Tyrała, Edward; Sikora, Gabriela; Rogal, Łukasz

    2018-01-01

    In the present work, the Mg2Cu precipitates in copper-alloyed austempered ductile iron (ADI) were identified by analyzing techniques such as TEM and SEM with EDS. It was revealed that, in castings made of ADI-containing copper, highly dispersed particles of Mg2Cu are formed, whose size does not exceed TEM. In addition to this, the exhibited impact properties of castings with Cu, Ni, and Cu+Ni were also determined. This study casts a new light on the formation of the structure of Cu-alloyed ADI. The highly-dispersive and brittle Mg2Cu particles that are located in the vicinity of the graphite nodules have a negative effect on the impact properties of ADI. It has also been shown that impact strength decreases from levels of 160-180 J (for copper-free ADI) to 90-120 J (for copper-and copper-nickel-alloyed ADI).

  20. Synthesis, Characterization and Reactivity of Nanostructured Zero-Valent Iron Particles for Degradation of Azo Dyes

    Science.gov (United States)

    Mikhailov, Ivan; Levina, Vera; Leybo, Denis; Masov, Vsevolod; Tagirov, Marat; Kuznetsov, Denis

    Nanostructured zero-valent iron (NSZVI) particles were synthesized by the method of ferric ion reduction with sodium borohydride with subsequent drying and passivation at room temperature in technical grade nitrogen. The obtained sample was characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering studies. The prepared NSZVI particles represent 100-200nm aggregates, which consist of 20-30nm iron nanoparticles in zero-valent oxidation state covered by thin oxide shell. The reactivity of the NSZVI sample, as the removal efficiency of refractory azo dyes, was investigated in this study. Two azo dye compounds, namely, orange G and methyl orange, are commonly detected in waste water of textile production. Experimental variables such as NSZVI dosage, initial dye concentration and solution pH were investigated. The kinetic rates of degradation of both dyes by NSZVI increased with the decrease of solution pH from 10 to 3 and with the increase of NSZVI dosage, but decreased with the increase of initial dye concentration. The removal efficiencies achieved for both orange G and methyl orange were higher than 90% after 80min of treatment.

  1. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique

    Directory of Open Access Journals (Sweden)

    karina Donadel

    2009-06-01

    Full Text Available Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP were coated with hydroxyapatite (HAp by spray-drying using two IOMP/HAp ratios (0.7 and 3.2. The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction. The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.As partículas de óxido de ferro têm sido extensivamente usadas em diagnósticos médicos como agente de contraste para imagem por ressonância magnética e na terapia do câncer, dentre estas, liberação de fármacos em sitos alvos e hipertermia magnética. Neste estudo nós reportamos a preparação e caracterização de partículas magnéticas de óxido de ferro revestidas com a biocerâmica hidroxiapatita. As partículas magnéticasde óxido de ferro (PMOF foram revestidas com hidroxiapatita por spray-drying usando duas razões PMOF/HAp (0,7 e 3,2. As partículas magnéticas foram caracterizadas por microscopia eletrônica de varredura, energia dispersiva de raios X, difração de raios X, espectroscopia de absorção no infra

  2. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: New possibilities for mannan-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Keiko, E-mail: keikot@belle.shiga-medac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Nitta, Norihisa, E-mail: r34nitta@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Otani, Hideji, E-mail: otani@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Takahashi, Masashi, E-mail: masashi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Murata, Kiyoshi, E-mail: murata@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Shiomi, Masashi, E-mail: ieakusm@med.kobe-u.ac.jp [Institute for Experimental Animals, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Tyuoku, Kobe, Hyogo 650-0017 (Japan); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Syogoin-Kawahara-cho, Sakyoku, Kyoto 606-8507 (Japan); Nohara, Satoshi, E-mail: s-nohara@meito-sangyo.co.jp [The Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Nishibiwajima-cho, Kiyosu, Aichi 452-0067 (Japan)

    2013-11-01

    Purpose: We used magnetic resonance imaging (MRI) and histologic techniques to compare the uptake by the rabbit atherosclerotic wall of 4 types of superparamagnetic iron oxide (SPIO) particles, i.e. SPIO, mannan-coated SPIO (M-SPIO), ultrasmall SPIO (USPIO), and mannan-coated USPIO (M-USPIO). Materials and methods: All experimental protocols were approved by our institutional animal experimentation committee. We intravenously injected 12 Watanabe heritable hyperlipidemic rabbits with one of the 4 types of SPIO (0.8 mmol Fe/kg). Two other rabbits served as the control. The rabbits underwent in vivo contrast-enhanced magnetic resonance angiography (MRA) before- and 5 days after these injections; excised aortae were subjected to in vitro MRI. In the in vivo and in vitro studies we assessed the signal intensity of the vessels at identical regions of interest (ROI) and calculated the signal-to-noise ratio (SNR). For histologic assessment we evaluated the iron-positive regions in Prussian blue-stained specimens. Results: There were significant differences in iron-positive regions where M-USPIO > USPIO, M-SPIO > SPIO, USPIO > SPIO (p < 0.05) but not between M-USPIO and M-SPIO. The difference between the pre- and post-injection SNR was significantly greater in rabbits treated with M-USPIO than USPIO and in rabbits injected with M-SPIO than SPIO (p < 0.05). On in vitro MRI scans SNR tended to be lower in M-USPIO- and M-SPIO- than USPIO- and SPIO-treated rabbits (p < 0.1). Conclusion: Histologic and imaging analysis showed that mannan-coated SPIO and USPIO particles were taken up more readily by the atherosclerotic rabbit wall than uncoated SPIO and USPIO.

  3. Pyrene Removal from Contaminated Soils by Modified Fenton Oxidation Using Iron Nano Particles

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2013-07-01

    Full Text Available Background:The problems related to conventional Fenton oxidation, including low pH required and production of considerable amounts of sludge have led researchers to investigate chelating agents which might improve the operating range of pH and the use of nano iron particle to reduce the excess sludge. The pyrene removal from contaminated soils by modified Fenton oxidation at neutral pH was defined as the main objective of the current study.Methods:Varying concentrations of H2O2 (0-500 mM and iron nano oxide (0-60 mM, reaction times of 0.5-24 hours and variety of chelating agents including sodium pyrophosphate, sodium citrate, ethylene diamine tetraacetic, fulvic and humic acid were all investigated at pyrene concentration levels of 100 – 500 mg/kg.Results:By applying the following conditions (H2O2 concentration of 300 mM, iron nano oxide of 30 mM, sodium pyrophosphate as chelating agent, pH 3 and reaction time of 6 hours the pyrene removal efficiency at an initial concentration of 100 mg/kg was found to be 99%. As a result, the pyrene concentration was reduced from 100 to 93 mg/kg once the above optimum conditions are met.Conclusions:In this research, the modified Fenton oxidation using iron nano oxide at optimum conditions is introduced as an efficient alternative method in lab scale for chemical remediation or pre-treatment of soils contaminated by pyrene at neutral pH.

  4. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    Science.gov (United States)

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  5. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  6. Sustaining 1,2-Dichloroethane Degradation in Nanoscale Zero-Valent Iron induced Fenton system by using Sequential H2O2 Addition at Natural pH

    Science.gov (United States)

    Phenrat, T.; Le, T. S. T.

    2017-12-01

    1,2-Dichloroethane (1,2-DCA) is a prevalent subsurface contaminant found in groundwater and soil around the world. Nanoscale zero-valent iron (NZVI) is a promising in situ remediation agent for chlorinated organics. Nevertheless, 1,2-DCA is recalcitrant to reductive dechlorination using NZVI. Chemical oxidation using Fenton's reaction with conventional Fe2+ is a valid option for 1,2-DCA remediation with a major technical challenge, i.e. aquifer acidification is needed to maintain Fe2+ for catalytic reaction. In this work, NZVI Fenton's process at neutral pH was applied to degrade 1,2-DCA at high concentration (2,000 mg/L) representing dissolved 1,2-DCA concentration close to non-aqueous phase liquid source zone. Instead of using acidification to maintain dissolved Fe2+ concentration, NZVI Fenton's process is self-catalytic based on oxidative dissolution of NZVI in the present of H2O2. Interfacial H+ is produced at NZVI surface to provide appropriate local pH which continuously releases Fe2+ for Fenton's reaction. Approximately, 87% of 1,2-DCA was degraded at neutral pH with the pseudo first-order rate constant of 0.98 hour-1 using 10 g/L of NZVI and 200 mM of H2O2. However, the reaction was prohibited quickly within 3 hours presumably due to the rapid depletion of H2O2. The application of sequential H2O2 addition provided a better approach to prevent rapid inhibition via controlling the H2O2 concentration in the system to be sufficient but not excess, thus resulting in the higher degradation efficiency (the pseudo first-order rate constant of 0.49 hour-1 and 99 % degradation in 8 hours). Using NZVI with sequential H2O2 addition was also successful in degrading 1,2-DCA sorbed on to soil, yielding 99% removal of 1,2-DCA within 16 hours at the rate constant of 0.23 hour-1, around two times slower than in the system without soil presumably due to rate-limited 1,2-DCA desorption from soil. Mechanistic understanding of how sequential addition of H2O2, in comparison to

  7. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Acuña, Melissa [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States); Maldonado-Camargo, Lorena [University of Florida, Department of Chemical Engineering (United States); Dobson, Jon; Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2016-09-15

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle–cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  8. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    International Nuclear Information System (INIS)

    Cruz-Acuña, Melissa; Maldonado-Camargo, Lorena; Dobson, Jon; Rinaldi, Carlos

    2016-01-01

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle–cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  9. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    International Nuclear Information System (INIS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-01-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1–18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum −11.85 dB at 1.5 mm and −15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: ► The added GP increased the permittivity and permeability of composites filled with CIPs. ► The enhancement was owing to interactions of the two absorbents and the fabrication process. ► The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. ► The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  10. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  11. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  12. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    Science.gov (United States)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s-1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  13. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M.W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  14. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  15. Experimental Study of MR Suspensions of Carbonyl Iron Powders with Different Particle Sizes

    Science.gov (United States)

    Bombard, A. J. F.; Alcântara, M. R.; Knobel, M.; Volpe, P. L. O.

    Magnetorheological suspensions (MRS) based on mixtures of two commercial carbonyl iron powders (BASF grades CL and SU) as magnetic phase and hydrocarbon oil as liquid phase were prepared. CL and SU are both soft magnetic powders, but CL is a coarse powder, while SU is a fine one. The total mass fraction of iron was 80% w/w each formulation. Hydrophilic fumed silica (5% w/w of Aerosil® 200) was used to reduce the settling. The mixing ratios were: CL 0%, CL 20%, CL 40%, CL 60%, CL 80% and CL 100%. A MRS, the mixture CL 80%, showed considerable reduction of the plastic viscosity without field, in the range of 100 - 500 s-1, when compared to the MRS with just one powder. The yield stress values under applied field H ~ 340 kA/m were: 18.1 kPa for the MRS CL 0%, 18.3 kPa for the MRS's CL 20% and CL 40%, 20.0 kPa for the MRS CL 60%, 22.3 kPa for the MRS CL 80% and 23.3 kPa for the MRS CL 100%, respectively. For comparison, a sample of commercial MRF-132LD (Lord Corp.) in the same conditions showed yield value of 21.2 ± 0.6 kPa. On the other hand, another MRS, CL 60%, showed an increment of ~ 33% on the normal force, with relation to the MRS prepared with just CL or just SU powders, above 150 kA/m. Therefore, mixing carbonyl iron powders with different particle sizes can improve the performance of MRS, decreasing the 'off' plastic viscosity, and increasing the MR effect.

  16. Application of the direct simulation Monte Carlo method to nanoscale heat transfer between a soot particle and the surrounding gas

    International Nuclear Information System (INIS)

    Yang, M.; Liu, F.; Smallwood, G.J.

    2004-01-01

    Laser-Induced Incandescence (LII) technique has been widely used to measure soot volume fraction and primary particle size in flames and engine exhaust. Currently there is lack of quantitative understanding of the shielding effect of aggregated soot particles on its conduction heat loss rate to the surrounding gas. The conventional approach for this problem would be the application of the Monte Carlo (MC) method. This method is based on simulation of the trajectories of individual molecules and calculation of the heat transfer at each of the molecule/molecule collisions and the molecule/particle collisions. As the first step toward calculating the heat transfer between a soot aggregate and the surrounding gas, the Direct Simulation Monte Carlo (DSMC) method was used in this study to calculate the heat transfer rate between a single spherical aerosol particle and its cooler surrounding gas under different conditions of temperature, pressure, and the accommodation coefficient. A well-defined and simple hard sphere model was adopted to describe molecule/molecule elastic collisions. A combination of the specular reflection and completely diffuse reflection model was used to consider molecule/particle collisions. The results obtained by DSMC are in good agreement with the known analytical solution of heat transfer rate for an isolated, motionless sphere in the free-molecular regime. Further the DSMC method was applied to calculate the heat transfer in the transition regime. Our present DSMC results agree very well with published DSMC data. (author)

  17. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  18. Stabilization of Iron (MicroParticles with Polyhydroxybutyrate for In Situ Remediation Applications

    Directory of Open Access Journals (Sweden)

    Laura Chronopoulou

    2016-12-01

    Full Text Available Groundwater is an extremely important resource that may, however, contain a variety of toxic and bioaccumulative contaminants. Traditional “Pump and Treat” technologies for treating contaminated groundwater are no longer time- or cost-effective; therefore, new technologies are needed. In this work, we synthesized core–shell materials of micrometric dimensions based on the interaction of iron particles (the core and fermentable biopolymers such as polyhydroxybutyrate (PHB, the surrounding shell to be used in permeable reactive barriers for the removal of chlorinated pollutants from contaminated groundwater. The materials were prepared by precipitation techniques that allowed stable preparations to be obtained, whose chemico-physical properties were thoroughly characterized by scanning electron microscopy, porosimetry, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analyses, disc centrifuge analysis, and dynamic light scattering. The properties of the prepared materials are very promising, and may enhance the performance of permeable reactive barriers towards chlorinated compounds.

  19. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The visible spectroscopy of iron oxide minerals in dust particles from ice cores on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Guangjian Wu

    2016-03-01

    Full Text Available Goethite (Gt and hematite (Hm are the most abundant forms of iron oxides in dust and the major light absorbers in the shortwave spectrum in air and snow. Diffuse reflectance spectrometry was performed to investigate the reflectance spectra of goethite and hematite in dust particles from ice cores, aerosol samples and glacier cryoconite on the northern and central Tibetan Plateau. The results showed that two peaks in the first derivative value of the spectra at 430 and 560 nm were determined to be goethite and hematite, respectively. The high iron content samples have a higher first derivative value, and prominent and much more distinct peaks for Hm and Gt. We propose that the strength of the Hm and Gt peaks may probe the iron content, and then in our samples hematite has a stronger correlation than goethite. However, when the iron content reaches a threshold, the iron oxides have little or no impact on the reflectance spectra. The fine fraction of glacier dust has a greater abundance of iron, and the first derivative values of hematite are higher than goethite, indicating that hematite might be concentrated in the fine fraction. The distinguishable differences in the Hm/Gt ratio among these ice core samples and other aerosol data indicate the regional to continental difference in composition, which can be used to simplify the iron oxides in snow radiation models.

  1. Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application

    Science.gov (United States)

    Esmaeilzare, Amir; Rezaei, Seyed Mehdi; Ramezanzadeh, Bahram

    2018-04-01

    Magnetorheological fluid is composed of micro-size carbonyl iron (CI) particles for polishing of optical substrates. In this paper, the corrosion resistance of carbonyl iron (CI) particles modified with three inorganic thin films based on rare earth elements, including cerium oxide (CeO2), lanthanum oxide (La2O3) and praseodymium oxide (Pr2O3), was investigated. The morphology and chemistry of the CI-Ce, CI-Pr and CI-La particles were examined by high resolution Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of CI particles in aquatic environment. In addition, the Vibrating Sample Magnetometer (VSM) technique was utilized for determination of magnetic saturation properties of the coated particles. Afterwards, gas pycnometry and contact angle measurement methods were implemented to evaluate the density and hydrophilic properties of these particles. The results showed that deposition of all thin films increased the hydrophilic nature of these particles. In addition, it was observed that the amount of magnetic saturation properties attenuation for Pr2O3 and La2O3 films is greater than the CeO2 film. The EIS and polarization tests results confirmed that the CI-Ce had the maximum corrosion resistant among other samples. In addition, the thermogravimetric analysis (TGA) showed that the ceria coating provided particles with enhanced surface oxidation resistance.

  2. In-situ Lead Removal by Iron Nano Particles Coated with Nickel

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fadaei-tehrani

    2016-01-01

    Full Text Available This study investigates the potential of nano-zero-valent iron particles coated with nickel in the removal of lead (Pb2+ from porous media. For this purpose, the nano-particles were initially synthesized and later stablilized using the strach biopolymer prior to conducting batch and continuous experiments. The results of the batch experiments revealed that the reaction kinetics fitted well with the pseudo-first-order adsorption model and that the reaction rate ranged from 0.001 to 0.035 g/mg/min depending on solution pH and the molar ratio of Fe/Pb. Continuous experiments showed that lead remediation was mostly influenced not only by seepage velocity but also by the quantity and freshness of nZVI as well as the grain type of the porous media. Maximum Pb2+ removal rates obtained in the batch and lab models were 95% and 80%, respectively. Based on the present study, S-nZVI may be suggested as an efficient agent for in-situ remediation of groundwater contaminated with lead.

  3. Effects of plasma parameters and collection region on synthesis of iron and nickel aluminide composite particles during thermal plasma processing

    Science.gov (United States)

    Suresh, K.; Selvarajan, V.

    2010-02-01

    Iron and Nickel aluminide composite particles were synthesized by non-transferred DC plasma spray torch at atmospheric pressure. Irregular shaped ball milled, micron sized powders were fed in to the plasma flame using argon as carrier gas. The particles got molten and vaporized. The vapour condensed on the walls of the reaction chamber and nanoparticles were formed. The molten particles got spheroidized due to surface tension forces. Powders as formed were collected in the plasma reactor at three different sections (Section A, B and C). These powder particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size and morphology of the composite particles strongly varied depending on the processing parameters and collection region. The results were discussed.

  4. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy.

    Science.gov (United States)

    Armini, Silvia; Vakarelski, Ivan U; Whelan, Caroline M; Maex, Karen; Higashitani, Ko

    2007-02-13

    Atomic force microscopy was employed to probe the mechanical properties of surface-charged polymethylmethacrylate (PMMA)-based terpolymer and composite terpolymer core-silica shell particles in air and water media. The composite particles were achieved with two different approaches: using a silane coupling agent (composite A) or attractive electrostatic interactions (composite B) between the core and the shell. Young's moduli (E) of 4.3+/-0.7, 11.1+/-1.7, and 8.4+/-1.7 GPa were measured in air for the PMMA-based terpolymer, composite A, and composite B, respectively. In water, E decreases to 1.6+/-0.2 GPa for the terpolymer; it shows a slight decrease to 8.0+/-1.2 GPa for composite A, while it decreases to 2.9+/-0.6 GPa for composite B. This trend is explained by considering a 50% swelling of the polymer in water confirmed by dynamic light scattering. Close agreement is found between the absolute values of elastic moduli determined by nanoindentation and known values for the corresponding bulk materials. The thickness of the silica coating affects the mechanical properties of composite A. In the case of composite B, because the silica shell consists of separate particles free to move in the longitudinal direction that do not individually deform when the entire composite deforms, the elastic properties of the composites are determined exclusively by the properties of the polymer core. These results provide a basis for tailoring the mechanical properties of polymer and composite particles in air and in solution, essential in the design of next-generation abrasive schemes for several technological applications.

  5. Soluble iron modulates iron oxide particle-induced inflammatory responses via prostaglandin E2 synthesis: In vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Mayer Paula

    2009-12-01

    Full Text Available Abstract Background Ambient particulate matter (PM-associated metals have been shown to play an important role in cardiopulmonary health outcomes. To study the modulation of PM-induced inflammation by leached off metals, we investigated intracellular solubility of radio-labeled iron oxide (59Fe2O3 particles of 0.5 and 1.5 μm geometric mean diameter. Fe2O3 particles were examined for the induction of the release of interleukin 6 (IL-6 as pro-inflammatory and prostaglandin E2 (PGE2 as anti-inflammatory markers in cultured alveolar macrophages (AM from Wistar Kyoto (WKY rats. In addition, we exposed male WKY rats to monodispersed Fe2O3 particles by intratracheal instillation (1.3 or 4.0 mg/kg body weight to examine in vivo inflammation. Results Particles of both sizes are insoluble extracellularly in the media but moderately soluble in AM with an intracellular dissolution rate of 0.0037 ± 0.0014 d-1 for 0.5 μm and 0.0016 ± 0.0012 d-1 for 1.5 μm 59Fe2O3 particles. AM exposed in vitro to 1.5 μm particles (10 μg/mL for 24 h increased IL-6 release (1.8-fold; p 2 synthesis (1.9-fold; p 2 synthesis (2.5-fold, p 2 synthesis by indomethacin caused a pro-inflammatory phenotype as noted by increased IL-6 release from AM exposed to 0.5 μm particles (up to 3-fold; p Conclusions Fe2O3 particle-induced neutrophilic inflammatory response in vivo and pro-inflammatory cytokine release in vitro might be modulated by intracellular soluble iron via PGE2 synthesis. The suppressive effect of intracellular released soluble iron on particle-induced inflammation has implications on how ambient PM-associated but soluble metals influence pulmonary toxicity of ambient PM.

  6. Thermally induced alloying processes in a bimetallic system at the nanoscale: AgAu sub-5 nm core-shell particles studied at atomic resolution.

    Science.gov (United States)

    Lasserus, Maximilian; Schnedlitz, Martin; Knez, Daniel; Messner, Roman; Schiffmann, Alexander; Lackner, Florian; Hauser, Andreas W; Hofer, Ferdinand; Ernst, Wolfgang E

    2018-01-25

    Alloying processes in nanometre-sized Ag@Au and Au@Ag core@shell particles with average radii of 2 nm are studied via high resolution Transmission Electron Microscopy (TEM) imaging on in situ heatable carbon substrates. The bimetallic clusters are synthesized in small droplets of superfluid helium under fully inert conditions. After deposition, they are monitored during a heating cycle to 600 K and subsequent cooling. The core-shell structure, a sharply defined feature of the TEM High-Angle Annular Dark-Field images taken at room temperature, begins to blur with increasing temperature and transforms into a fully mixed alloy around 573 K. This transition is studied at atomic resolution, giving insights into the alloying process with unprecedented precision. A new image-processing method is presented, which allows a measurement of the temperature-dependent diffusion constant at the nanoscale. The first quantification of this property for a bimetallic structure <5 nm sheds light on the thermodynamics of finite systems and provides new input for current theoretical models derived from bulk data.

  7. Nanoscale size dependence in the conjugation of amyloid beta and ovalbumin proteins on the surface of gold colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K; Briglio, N M; Hartati, D Sri; Tsang, S M W; MacCormac, J E; Welchons, D R [Department of Chemistry, State University of New York College at Geneseo, One College Circle, Geneseo, NY 14454 (United States)], E-mail: yokoyama@geneseo.edu

    2008-09-17

    Absorption spectroscopy was utilized to investigate the conjugation of amyloid {beta} protein solution (A{beta}{sub 1-40}) and chicken egg albumin (ovalbumin) with various sizes of gold colloidal nanoparticles for various pHs, ranging from pH 2 to pH 10. The pH value that indicates the colour change, pH{sub o}, exhibited colloidal size dependence for both A{beta}{sub 1-40} and ovalbumin coated particles. In particular, A{beta}{sub 1-40} coated gold colloidal particles exhibited non-continuous size dependence peaking at 40 and 80 nm, implying that their corresponding cage-like structures provide efficient net charge cancellation at these core sizes. Remarkably, only the pH{sub o} value for ovalbumin coated 80 nm gold colloid was pH>7, and a specific cage-like structure is speculated to have a positive net charge facing outward when ovalbumin self-assembles over this particular gold colloid. The previously reported reversible colour change between pH 4 and 10 took place only with A{beta}{sub 1-40} coated 20 nm gold colloids; this was also explored with ovalbumin coated gold colloids. Interestingly, gold colloidal nanoparticles showed a quasi-reversible colour change when they were coated with ovalbumin for all test sizes. The ovalbumin coated gold colloid was found to maintain reversible properties longer than A{beta}{sub 1-40} coated gold colloid.

  8. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodwill, Patrick [University of California, Dept. of Bioengineering, Berkeley, CA (United States); Konkle, Justin; Lu, Kuan; Zheng, Bo [UC Berkeley (UCSF), Joint Graduate Group in Bioengineering, CA (United States); Conolly, Steven [University of California, Berkeley Bioengineering, Electrical Engineering, and Computer Science, CA (United States)

    2014-07-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  9. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    International Nuclear Information System (INIS)

    Goodwill, Patrick; Konkle, Justin; Lu, Kuan; Zheng, Bo; Conolly, Steven

    2014-01-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  10. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  11. Soluble Iron in Alveolar Macrophages Modulates Iron Oxide Particle-Induced Inflammatory Response via Prostaglandin E2 Synthesis

    Science.gov (United States)

    Ambient particulate matter (PM)-associated metals have been shown to play an important role in cardiopulmonary health outcomes. To study the modulation of inflammation by PM-associated soluble metal, we investigated intracellular solubility of radiolabelled iron oxide (59

  12. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.

    Science.gov (United States)

    Boparai, Hardiljeet K; Joseph, Meera; O'Carroll, Denis M

    2011-02-15

    Nano zerovalent iron (nZVI) is an effective adsorbent for removing various organic and inorganic contaminants. In this study, nZVI particles were used to investigate the removal of Cd(2+) in the concentration range of 25-450 mg L(-1). The effect of temperature on kinetics and equilibrium of cadmium sorption on nZVI particles was thoroughly examined. Consistent with an endothermic reaction, an increase in the temperature resulted in increasing cadmium adsorption rate. The adsorption kinetics well fitted using a pseudo second-order kinetic model. The calculated activation energy for adsorption was 54.8 kJ mol(-1), indicating the adsorption process to be chemisorption. The intraparticle diffusion model described that the intraparticle diffusion was not the only rate-limiting step. The adsorption isotherm data could be well described by the Langmuir as well as Temkin equations. The maximum adsorption capacity of nZVI for Cd(2+) was found to be 769.2 mg g(-1) at 297 K. Thermodynamic parameters (i.e., change in the free energy (ΔG(o)), the enthalpy (ΔH(o)), and the entropy (ΔS(o))) were also evaluated. The overall adsorption process was endothermic and spontaneous in nature. EDX analysis indicated the presence of cadmium ions on the nZVI surface. These results suggest that nZVI could be employed as an efficient adsorbent for the removal of cadmium from contaminated water sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize

    Directory of Open Access Journals (Sweden)

    Juan Estrada-Urbina

    2018-04-01

    Full Text Available In this research, quasi-spherical-shaped zinc oxide nanoparticles (ZnO NPs were synthesized by a simple cost-competitive aqueous precipitation method. The engineered NPs were characterized using several validation methodologies: UV–Vis spectroscopy, diffuse reflection UV–Vis, spectrofluorometry, transmission electron microscopy (TEM, nanoparticle tracking analysis (NTA, and Fourier transform infrared (FTIR spectroscopy with attenuated total reflection (ATR. A procedure was established to coat a landrace of red maize using gelatinized maize starch. Each maize seed was treated with 0.16 mg ZnO NPs (~7.7 × 109 particles. The standard germination (SG and accelerated aging (AA tests indicated that ZnO NP-treated maize seeds presented better physiological quality (higher percentage of normal seedlings and sanitary quality (lower percentage of seeds contaminated by microorganisms as compared to controls. The application of ZnO NPs also improved seedling vigor, correlated to shoot length, shoot diameter, root length, and number of secondary roots. Furthermore, shoots and roots of the ZnO NP-treated maize seeds showed a marked increment in the main active FTIR band areas, most notably for the vibrations associated with peptide-protein, lipid, lignin, polysaccharide, hemicellulose, cellulose, and carbohydrate. From these results, it is concluded that ZnO NPs have potential for applications in peasant agriculture to improve the quality of small-scale farmers’ seeds and, as a result, preserve germplasm resources.

  15. Formation of Nanoscale Metallic Glassy Particle Reinforced Al-Based Composite Powders by High-Energy Milling

    Directory of Open Access Journals (Sweden)

    Weiwen Zhang

    2017-10-01

    Full Text Available The initial microstructure and mechanical properties of composite powders have a vital role in determining the microstructure and mechanical properties of the subsequent consolidated bulk composites. In this work, Al-based matrix composite powders with a dense and uniform distribution of metallic glass nanoparticles were obtained by high-energy milling. The results show that high-energy milling is an effective method for varying the microstructure and mechanical properties of the composite powders, thereby offering the ability to control the final microstructure and properties of the bulk composites. It was found that the composite powders show a deformed layer combined with an undeformed core after milling. The reinforcements, metallic glass microparticles, are fractured into dense distributed nanoparticles in the deformed layer, owing to the severe plastic deformation, while in the undeformed core, the metallic glass microparticles are maintained. Therefore, a bimodal structure was obtained, showing a mechanical bimodal structure that has much higher hardness in the outer layer than the center core. The hardness of the composite particles increases significantly with increasing milling time, due to dispersion strengthening and work hardening.

  16. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection

    International Nuclear Information System (INIS)

    Wu Yihang; Song Mengjie; Zhang Xiaoqing; Zhang Yu; Wang Chunyu; Gu Ning; Xin Zhuang; Li Suyi

    2011-01-01

    Dimercaptosuccinic acid (DMSA) modified ultra-small particles of iron oxide (USPIO) were synthesized through a two-step process. The first step: oleic acid (OA) capped Fe 3 O 4 (OA-USPIO) were synthesized by a novel oxidation coprecipitation method in H 2 O/DMSO mixing system, where DMSO acts as an oxidant simultaneously. The second step: OA was replaced by DMSA to obtain water-soluble nanoparticles. The as-synthesized nanoparticles were characterized by TEM, FTIR, TGA, VSM, DLS, EDS and UV-vis. Hydrodynamic sizes and Peroxidase-like catalytic activity of the nanoparticles were investigated. The hydrodynamic sizes of the nanoparticles (around 24.4 nm) were well suited to developing stable nanoprobes for bio-detection. The kinetic studies were performed to quantitatively evaluate the catalytic ability of the peroxidase-like nanoparticles. The calculated kinetic parameters indicated that the DMSA-USPIO possesses high catalytic activity. Based on the high activity, immunohistochemical experiments were established: using low-cost nanoparticles as the enzyme instead of expensive HRP, Nimotuzumab was conjugated onto the surface of the nanoparticles to construct a kind of ultra-small nanoprobe which was employed to detect epidermal growth factor receptor (EGFR) over-expressed on the membrane of esophageal cancer cell. The proper sizes of the probes and the result of membranous immunohistochemical staining suggest that the probes can be served as a useful diagnostic reagent for bio-detection.

  17. Multi-scale three-dimensional characterization of iron particles in dusty olivine: Implications for paleomagnetism of chondritic meteorites

    DEFF Research Database (Denmark)

    Einsle, Joshua F.; Harrison, Richard J.; Kasama, Takeshi

    2016-01-01

    Dusty olivine (olivine containing multiple sub-micrometer inclusions of metallic iron) in chondritic meteorites is considered an ideal carrier of paleomagnetic remanence, capable of maintaining a faithful record of pre-accretionary magnetization acquired during chondrule formation. Here we show how......-dimensional (3D) volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including...... axes of the particles and the remanence vector imparted in different fields. Although the orientation of the vortex core is determined largely by the ellipsoidal geometry (i.e., parallel to the major axis for prolate ellipsoids and parallel to the minor axis for oblate ellipsoids), the core...

  18. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles.

    Science.gov (United States)

    Kim, Hyejung; Kim, Min Gyu; Jeong, Hu Young; Nam, Haisol; Cho, Jaephil

    2015-03-11

    Structural degradation of Ni-rich cathode materials (LiNi(x)M(1-x)O2; M = Mn, Co, and Al; x > 0.5) during cycling at both high voltage (>4.3 V) and high temperature (>50 °C) led to the continuous generation of microcracks in a secondary particle that consisted of aggregated micrometer-sized primary particles. These microcracks caused deterioration of the electrochemical properties by disconnecting the electrical pathway between the primary particles and creating thermal instability owing to oxygen evolution during phase transformation. Here, we report a new concept to overcome those problems of the Ni-rich cathode material via nanoscale surface treatment of the primary particles. The resultant primary particles' surfaces had a higher cobalt content and a cation-mixing phase (Fm3̅m) with nanoscale thickness in the LiNi0.6Co0.2Mn0.2O2 cathode, leading to mitigation of the microcracks by suppressing the structural change from a layered to rock-salt phase. Furthermore, the higher oxidation state of Mn(4+) at the surface minimized the oxygen evolution at high temperatures. This approach resulted in improved structural and thermal stability in the severe cycling-test environment at 60 °C between 3.0 and 4.45 V and at elevated temperatures, showing a rate capability that was comparable to that of the pristine sample.

  19. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234 ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  20. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  1. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...... to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal...... fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All...

  2. Nanoscale magnetoreceptors in birds

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Greiner, Walter

    2012-01-01

    The Earth's magnetic field provides an important source of directional information for many living organisms, especially birds, but the sensory receptor responsible for magnetic field detection still has to be identified. Recently, magnetic iron oxide particles were detected in dendritic endings...... field, by a bird....

  3. Nanoscale flexoelectricity.

    Science.gov (United States)

    Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Purohit, Prashant K; McAlpine, Michael C

    2013-02-20

    Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next-generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size-dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano-bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Humic Acid Adsorption Onto Iron Oxide Magnetic Nano Particles in Aquious Solution

    Directory of Open Access Journals (Sweden)

    Maryam Foroghi

    2013-12-01

    Full Text Available Background & Objectives: Humic Acid (HA compounds affects water quality, such as color, taste and odor. The compounds not only react with disinfectants to produce disinfection by-products (DBPs harmful to human health. Iron oxide magnetic nanoparticles (MNPs have a high adsorption capacity to adsorb to organic matter. In this study HA removal by IOMNPs was surveyed in aqueous solutions. Methods:  The effects of pH value, agitation rate, adsorbent dose, contact time and the adsorbate concentration on the adsorption efficiency were studied as critical parameters. In addition, effect of ionic strength on the adsorption process and effluent turbidity was surveyed. The MNPs was characterized by X-ray diffraction. Results: Results revealed that at HA concentration of 10 mg/L, pH 4.5, adsorbent dose of 2.7 g/l, agitation rate of 250 rpm and contact time of 90 min at presence of 0.1 M NaCl as an ionic strength agent, the HA removal reached to about 98%. Also, the turbidity of treated samples was increased with increasing of HA loading. On the other hand, increases of ionic strength resulting in increase of removal efficiency and decrees of effluent turbidity. Conclusion: With increasing HA concentration, adsorption capacity of MNPs was increased and HA removal efficiency was decreased. Increasing of ionic strength leads to increase of removal efficiency and decrease of nano particles release. MNPs are easily attracted to the magnetic field application leads to easy separation from aquatic environment.

  5. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, P.; Loeff, M.M.R. van der.; Cassar, N.; Vandromme, P.; d'Ovidio, F.; Stemmann, L.; Rengarajan, R.; Soares, M.A.; Gonzalez, H.E.; Ebersbach, F.; Lampitt, R.S.; Sanders, R.; Barnett, B.A.; Smetacek, V.; Naqvi, S.W.A.

    for particulate 234Th is to total 238U in the water sample. [19] Since In- and Out-patch 234Th measurements did not differ, they were not affected by dilution. 2.5. Sediment Traps [20] Neutrally buoyant PELAGRA traps [Lampitt et al., 2008b] were deployed inside... on the conductivity- temperature-depth downcast [Picheral et al., 2010]. Custom software calculates equivalent spherical diameter (ESD) and volume of all particles ≥100 μm and classes particles ≥ 630 μm ESD as either aggregates, fecal sticks/pellets, or live...

  6. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  7. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-05-01

    Full Text Available In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45 # steel > μHigh chromium cast iron/45 # steel > μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.

  8. Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages.

    Science.gov (United States)

    Saito, Shigeyoshi; Tsugeno, Mana; Koto, Daichi; Mori, Yuki; Yoshioka, Yoshichika; Nohara, Satoshi; Murase, Kenya

    2012-01-01

    Magnetic resonance imaging (MRI) using contrast agents like superparamagnetic iron oxide (SPIO) is an extremely versatile technique to diagnose diseases and to monitor treatment. This study tested the relative importance of particle size and surface coating for the optimization of MRI contrast and labeling efficiency of macrophages migrating to remote inflammation sites. We tested four SPIO and ultrasmall superparamagnetic iron oxide (USPIO), alkali-treated dextran magnetite (ATDM) with particle sizes of 28 and 74 nm, and carboxymethyl dextran magnetite (CMDM) with particle sizes of 28 and 72 nm. Mouse macrophage RAW264 cells were incubated with SPIOs and USPIOs, and the labeling efficiency of the cells was determined by the percentage of Berlin blue-stained cells and by measuring T(2) relaxation times with 11.7-T MRI. We used trypan blue staining to measure cell viability. Analysis of the properties of the nanoparticles revealed that ATDM-coated 74 nm particles have a lower T(2) relaxation time than the others, translating into a higher ability of MRI negative contrast agent. Among the other three candidates, CMDM-coated particles showed the highest T(2) relaxation time once internalized by macrophages. Regarding labeling efficiency, ATDM coating resulted in a cellular uptake higher than CMDM coating, independent of nanoparticle size. None of these particle formulations affected macrophage viability. This study suggests that coating is more critical than size to optimize the SPIO labeling of macrophages. Among the formulations tested in this study, the best MRI contrast and labeling efficiency are expected with ATDM-coated 74 nm nanoparticles.

  9. Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane-modified carbonyl iron particles with enhanced wettability

    Science.gov (United States)

    Cvek, Martin; Moucka, Robert; Sedlacik, Michal; Pavlinek, Vladimir

    2017-10-01

    Soft carbonyl iron (CI) particles were successfully modified with a thin layer of tetraethoxysilane (TEOS) to enhance the wettability of their surface in hydrophobic media. The contact angle investigations and tensiometric analysis revealed and helped quantify the significantly enhanced wettability and, thus, the better interfacial adhesion of the TEOS-coated CI particles (CI-TEOS) with the non-polar siloxane-based materials. Therefore, stable magnetorheological elastomers (MREs) based on CI-TEOS particles and polydimethyl siloxane matrix were fabricated. The prepared composites had different particle loadings and microstructural characteristics: isotropic and anisotropic. These structural differences were confirmed by scanning electron microscopy and were found to considerably affect dielectric properties of the MREs due to various charge transport mechanisms within the particle clusters. Furthermore, the magnetorheological (MR) performances of isotropic MRE variants were analysed before and after exposure to acidic environment. After the corrosion test, the MRE based on bare CI particles exhibited dramatically decreased relative MR effect and mechanical properties when compared with its analogue containing CI-TEOS.

  10. The inhalation of insoluble iron oxide particles in the sub-micron ranges. Part II - Plutonium-237 labelled aerosols

    International Nuclear Information System (INIS)

    Waite, D.A.; Ramsden, D.

    1971-10-01

    The results of a series of inhalation studies using iron oxide particles in the size range 0.1 to 0.3 um (count median diameter) are described. In this series the aerosols were labelled with plutonium 237. In vivo detection, excretion analysis and crude location studies were obtainable and the results compared to the earlier studies using chromium 51 labelled aerosols. Plutonium 237 can be considered as a simulator for plutonium 239 and attempts are made to extrapolate the results to the problem of the estimation of plutonium 239 in the human lung. (author)

  11. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min

    2008-01-01

    Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of...

  12. Controlled Synthesis and Magnetic Properties of Uniform Hierarchical Polyhedral α-Fe2O3 Particles

    Science.gov (United States)

    Long, Nguyen Viet; Yang, Yong; Thi, Cao Minh; Phuc, Le Hong; Nogami, Masayuki

    2017-06-01

    The controlled synthesis of uniform hierarchical polyhedral iron (Fe) micro-/nanoscale oxide particles with the α-Fe2O3 structure is presented. The hierarchical polyhedral iron oxide particles were synthesized by modified polyol methods with sodium borohydride as a powerful and efficient reducing agent. A critical heat treatment process used during the synthesis allowed for the interesting formation of α-Fe2O3 hematite with a micro-/nanoscale structure. The structure and weak ferromagnetism of the α-Fe2O3 particles were investigated by x-ray diffraction with whole pattern fitting and Rietveld refinement, scanning electron microscopy, and by vibrating sample magnetometry. The as-prepared α-Fe2O3 particles and the three dimensional models presented have promising practical applications for energy storage and conversion in batteries, capacitors, and fuel cells, and related spintronic devices and technologies.

  13. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites.

    Science.gov (United States)

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian

    2017-05-17

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R² value than the pseudo-first-order model.

  14. Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles

    Science.gov (United States)

    Lin, Yung-Hsiang; Yang, Chun-Yu; Lin, Sheng-Feng; Tseng, Wei-Hsuan; Bao, Qiaoliang; Wu, Chih-I.; Lin, Gong-Ru

    2014-05-01

    We demonstrate the nanoscale p-type Bi2Te3 powder-based saturable absorber-induced passive mode-locking of the erbium-doped fiber laser (EDFL) with sub-picosecond pulsewidth. Such a nanoscale topological insulator powder is obtained by polishing the bulk p-type Bi2Te3 in a commercial thermoelectric cooler (TE cooler). This is then directly brushed onto the end-face of a single-mode fiber patchcord, to avoid any mis-connecting loss caused by laser beam divergence, which can result in a mode-locked pulsewidth of 436 fs in the self-amplitude modulation mode of a TE cooler. To further shorten the pulse, the soliton compression is operated by well-controlling the group delay dispersion and self-phase modulation, providing the passively mode-locked EDFL with a pulsewidth as short as 403 fs.

  15. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, E.; Pospíšková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, February (2017), s. 1342-1346 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : Leptothrix * magnetic modification * iron oxide * high aspect ratio material Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Material s engineering Impact factor: 4.164, year: 2016

  16. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian

    2016-01-01

    floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline...

  17. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles.

    Science.gov (United States)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva

    2015-11-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ignition of steel alloys by impact of low-velocity iron/inert particles in gaseous oxygen

    Science.gov (United States)

    Benz, Frank J.; Mcilroy, Kenneth; Williams, Ralph E.

    1988-01-01

    The ignition of carbon steel and 316 and 304 stainless steels caused by the impact of low-velocity particles (a standard mixture consisting of 2 g of iron and 3 g of inert materials) in gaseous oxygen was investigated using NASA/White Sands Test Facility for the ignition test, and a subsonic particle impact chamber to accelerate the particles that were injected into flowing oxygen upstream of the target specimen. It was found that the oxygen velocities required to ignite the three alloys were the same as that required to ignite the particle mixture. Ignition occurred at oxygen velocities greater than 45 m/sec at 20 to 24 MPa and was found to be independent of pressure between 2 and 30 MPa. Comparison of the present results and the past results from Wegener (1964) with the Compressed Gas Association (CGA) oxygen velocity limits for safe operations indicates that the CGA limits may be excessively conservative at high pressures and too liberal at low pressures.

  19. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  20. Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    .g. for chlorinated solvents hotspots. In this study, water-solubilized magnesium-aminoclay (MgAC) was applied for the first time as a stabilizing agent in the synthesis of nZVI. With increased doses of Mg-aminoclay applied in the synthesis mixture, nZVI particle growth was inhibited and thin sheathed grape-like n...

  1. Monitoring the injection of microscale zero-valent iron particles for groundwater remediation by means of complex electrical conductivity imaging

    Science.gov (United States)

    Flores Orozco, A.; Velimirovic, M.; Tosco, T.; Kemna, A.; Sapion, H.; Klaas, N.; Sethi, R.; Bastiaens, L.

    2015-12-01

    The injection of nano- and microscale zerovalent iron (ZVI) particles has emerged as a promising technique for groundwater remediation. In particular, ZVI injections offer a suitable alternative for the remediation of areas not accessible with other techniques, such as areas characterized by low hydraulic conductivity. In such cases, the injection is performed at high pressure in order to create preferential flow paths (i.e., fractures). Particle injection via fracturing demands an adequate monitoring of the ZVI delivery to track the migration path of the particles as well as to delineate the extension and distribution of the iron slurry. However, characterization of ZVI injections is to date based mainly on the analysis of groundwater and soil samples, thus, limiting the spatio-temporal resolution of the investigation and making it not suitable for real-time monitoring. To overcome this, here we present the application of the complex conductivity (CC) imaging method to characterize the delivery of guar gum stabilized microscale ZVI (GG-mZVI) particles during a field-scale injection by hydraulic fracturing. Our results demonstrated that CC images provide not only an improved characterization of the contaminant distribution, but also valuable information to identify the migration pathway of the injected GG-mZVI. The relatively short acquisition time of CC datasets permitted to obtain monitoring data with enhanced temporal resolution, i.e., after each injection (every ~15 minutes), while still covering an extended area of investigation in comparison to conventional geochemical monitoring by means of soil and water samples. As presented in Figure 1, the CC images revealed an increase (~20%) in the induced electrical polarization (Φ), upon delivery of ZVI into the targeted area, due to the accumulation of ZVI. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through

  2. Trends in the evolution of particle morphology with size in colluvial deposits overlying channel iron deposits

    Directory of Open Access Journals (Sweden)

    Linero Sandra

    2017-01-01

    Full Text Available Size limitations of testing equipment often impliy that samples of coarse granular materials must be scalped or scaled, to reduce the size of the constitutive particles, before they can be tested either by triaxial or direct shear in the laboratory. The objective of the investigation is to evaluate the particle shapes in a natural sample of colluvial sediments, to identify potential correlation(s between shape and size, that could impact shear strength of scaled samples. The material investigated is derived from eroded ancient sedimentary rocks from the Pilbara region of Australia. The fragments have a particle shape ranging from slabs to sub-equant blocks. The observation indicates that there is an increase in the tendency for slabshapes in larger particles. Therefore, scaling inevitably alters the characteristic shapes of the material particles as it implies substituting larger (slabs particles by smaller (sub-equant particles. Changes in particle shape distribution may induce changes in material fabric and shear strength and therefore may need to be considered when scaling samples.

  3. Trends in the evolution of particle morphology with size in colluvial deposits overlying channel iron deposits

    Science.gov (United States)

    Linero, Sandra; Fityus, Stephen; Simmons, John; Lizcano, Arcesio; Cassidy, Jessica

    2017-06-01

    Size limitations of testing equipment often impliy that samples of coarse granular materials must be scalped or scaled, to reduce the size of the constitutive particles, before they can be tested either by triaxial or direct shear in the laboratory. The objective of the investigation is to evaluate the particle shapes in a natural sample of colluvial sediments, to identify potential correlation(s) between shape and size, that could impact shear strength of scaled samples. The material investigated is derived from eroded ancient sedimentary rocks from the Pilbara region of Australia. The fragments have a particle shape ranging from slabs to sub-equant blocks. The observation indicates that there is an increase in the tendency for slabshapes in larger particles. Therefore, scaling inevitably alters the characteristic shapes of the material particles as it implies substituting larger (slabs) particles by smaller (sub-equant) particles. Changes in particle shape distribution may induce changes in material fabric and shear strength and therefore may need to be considered when scaling samples.

  4. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    Science.gov (United States)

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  5. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area.

    Science.gov (United States)

    Swain, James H; Newman, Samuel M; Hunt, Janet R

    2003-11-01

    Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.

  6. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, Eva; Pospišková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, FEB (2017), s. 1342-1346 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA14-11516S; GA MŠk(CZ) LD14075 Institutional support: RVO:67179843 Keywords : removal * Leptothrix * Magnetic modification * Iron oxide * High aspect ratio material Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Environmental science s (social aspects to be 5.7) Impact factor: 4.164, year: 2016

  7. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, Petra; Filip, Petr; Vesel, A.

    2011-01-01

    Roč. 387, 1-3 (2011), s. 99-103 ISSN 0927-7757 Grant - others:GA ČR(CZ) GD104/09/H080; OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Program:GD Institutional research plan: CEZ:AV0Z20600510 Keywords : carbonyl iron * magnetorheological fluid * plasma * viscoelasticity Subject RIV: BK - Fluid Dynamics Impact factor: 2.236, year: 2011

  8. ALTERED IRON HOMEOSTATIS AND THE MECHANISM OF BIOLOGIC EFFECT BY PARTICLES

    Science.gov (United States)

    Several features of the clinical presentation and changes in physiology and pathology following exposure to many diverse ambient air pollution particles are comparable, suggesting a common mechanism for their biological effect. We propose that a mechanism of biological effect com...

  9. Quantitative image analysis of laminin immunoreactivity in skin basement membrane irradiated with 1 GeV/nucleon iron particles.

    Science.gov (United States)

    Costes, S; Streuli, C H; Barcellos-Hoff, M H

    2000-10-01

    We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.

  10. Vitality of pancreatic islets labeled for magnetic resonance imaging with iron particles.

    Science.gov (United States)

    Berkova, Z; Kriz, J; Girman, P; Zacharovova, K; Koblas, T; Dovolilova, E; Saudek, F

    2005-10-01

    We previously described an in vivo method for pancreatic islet visualization using magnetic resonance imaging with the aid of superparamagnetic nanoparticles of iron oxide (Resovist) or by magnetic beads precoated with antibodies (Dynabeads). The aim of this study was to investigate the in vitro effect of islet labeling on their quality. Isolated rat islets were cultivated for 48 hours with a contrast agent or, in the case of magnetic antibody-coated beads, for only 2 hours. The ability to secrete insulin was tested by a static insulin release assay and the results were expressed as a stimulation index. Staining with propidium iodide and acridine orange was performed to determine the ratio of live to dead cells. Stimulation indices in the Resovist islets (n = 23) vs controls (n = 14) were 15.3 and 15.0, respectively, and in the Dynabeads islets (n = 15) vs controls (n = 12) 21.3 and 19.9, respectively. The vitality of the Resovist islets vs controls determined by live/dead cells ratio was 90.8% and 91.1%, respectively (n = 20), and in the Dynabeads islets vs controls was 89.4% and 91.8%, respectively (n = 11). Islet labeling with the contrast agent as well as with specific antibodies with iron beads did not change the vitality and insulin-secreting capacity assessed in vitro (P > .05). Magnetic resonance using iron nanoparticles represents the only method for in-vivo visualization of transplanted islets so far. Our data represent an important contribution for its clinical use.

  11. Grain size, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer

    Directory of Open Access Journals (Sweden)

    Alfredo Jaramillo-Vélez

    2016-09-01

    Full Text Available Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level, the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt. Dominant minerals were iron oxy-hydroxides, silicates and Ca-Mg carbonates. A relative increase of iron mineral particles (hematite and goethite was detected in the mixed layer, reflecting a higher permanence of iron in the water column despite the greater relative density of these minerals in comparison with the other minerals. This higher iron particle permanence does not appear to be explained by physical processes. The retention of this metal by colloids or microorganisms is suggested to explain its long residence time in the mixed layer.

  12. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology.

    Science.gov (United States)

    Fang, Hongwei; Cui, Zhenghui; He, Guojian; Huang, Lei; Chen, Minghong

    2017-12-15

    Particle morphology plays an important role in solid-water interface adsorption, which affects the fate and behavior of phosphorus (P) in rivers and lakes and the resulting eutrophication. In this paper, three minerals including kaolinite, montmorillonite and hematite were considered to investigate the contributions of particle morphology to P adsorption using adsorption experiments and microscopic examinations. The Taylor expansion method is applied to quantitatively characterize the heterogeneity of surface morphology. The results reveal that local concave or convex micro-morphology characterized by the second order term of Taylor expansion F 2 , can affect the local adsorption capacity due to its effect on the distribution of surface charge and reactive sites. Moreover, the adsorbed P at different F 2 here fits to a Weibull distribution, which can further define the representative average adsorption onto individual particles. A weighted average morphology factor F 2a is derived to characterize the surface heterogeneity, and correlated with average P adsorption of particular mineral particles. In addition, the Sips model can successfully fit the experimental data of different minerals, and the heterogeneity parameters γ and adsorption capacity Q m in the model are proved to be functions with the basic mineral properties, including particle size, surface site density and morphology characterization as well. It is concluded that the complex surface morphology plays a significant role in particle adsorption and the morphological role need to be considered in the adsorption model in order to better describe the adsorption in system with heterogeneous solid surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA)

    Science.gov (United States)

    Shi, Xuedan; Ruan, Wenqian; Hu, Jiwei; Fan, Mingyi; Cao, Rensheng; Wei, Xionghui

    2017-01-01

    Rhodamine B (Rh B) is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time) on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA). The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0%) was determined using the ANN-GA model, which was compatible with the experimental value (86.4%). Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model. PMID:28587196

  14. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA).

    Science.gov (United States)

    Shi, Xuedan; Ruan, Wenqian; Hu, Jiwei; Fan, Mingyi; Cao, Rensheng; Wei, Xionghui

    2017-06-03

    Rhodamine B (Rh B) is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N₂-sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time) on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA). The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0%) was determined using the ANN-GA model, which was compatible with the experimental value (86.4%). Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model.

  15. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2017-05-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The nZVI/rGO composites prepared were utilized for Cd(II removal from aqueous solutions in batch mode at different initial Cd(II concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA were used for modeling the removal efficiency of Cd(II and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II, the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R isotherms. It was found that the Cd(II adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II removal with a good R2 value than the pseudo-first-order model.

  16. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO Using an Artificial Neural Network-Genetic Algorithm (ANN-GA

    Directory of Open Access Journals (Sweden)

    Xuedan Shi

    2017-06-01

    Full Text Available Rhodamine B (Rh B is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA. The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0% was determined using the ANN-GA model, which was compatible with the experimental value (86.4%. Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model.

  17. Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo

    Science.gov (United States)

    Brooks, A.; Bao, S.; Rithidech, K.; Couch, L. A.; Braby, L. A.

    2001-01-01

    One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE

  18. Magnetic properties of iron catalyst particles in HiPco single wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Bittová, Barbara; Poltierová Vejpravová, Jana; Kalbáč, Martin; Burianová, Simona; Mantlíková, A.; Daniš, S.; Doyle, S.

    2011-01-01

    Roč. 115, č. 35 (2011), s. 17303-17309 ISSN 1932-7447 R&D Projects: GA ČR GAP204/10/1677 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : metal catalyst particles * carbon nanotubes * superparamagnet * core - shell model * inter-particle interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.805, year: 2011 http://pubs.acs.org/doi/abs/10.1021/jp203365g

  19. Transport of iron particles generated during milling operations in multilateral wells; Transporte de particulas de aco geradas pela abertura de janelas em pocos multilaterais

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre Leibsohn; Rezende, Carla Leonor Teixeira; Leal, Rafael Amorim Ferreira; Lourenco, Fabio Gustavo Fernandes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: aleibsohn@cenpes.petrobras.com.br; rezenc@hotmail.com; ramorim@cenpes.petrobras.com.br; fabiolou@urbi.com.br

    2000-07-01

    This paper presents a series of numerical simulations aimng the definition of requirements (flow rate and fluid properties) to remove iron particles both in the inclined sections and in the riser annulus. Additionally, experimental work was developed in a pilot scale flow loop in order tocompare the behavior of water and sinthetic oil baed fluids in milling operations. (author)

  20. Growth of airway epithelial cells at an air-liquid interface changes both the response to particle exposure and iron homeostasis

    Science.gov (United States)

    We tested the hypothesis that 1) relative to submerged cells, airway epithelial cells grown at an air-liquid interface and allowed to differentiate would have an altered response to particle exposure and 2) that these differences would be associated with indices of iron homeostas...

  1. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  2. Iron ore particles on four seaweed species from Camburi Beach (Espírito Santo state, Brazil

    Directory of Open Access Journals (Sweden)

    Cristina Aparecida Gomes Nassar

    2006-09-01

    Full Text Available The present study estimated the iron-ore concentration found on four species of seaweed. The species tested grow on a site heavily contaminated by this ore, in the city of Vitória, state of Espírito Santo, Brazil. Under natural conditions, the iron ore reached a temperature 5.0ºC higher than the sand on a sunny day. All the species had iron ore adhered to their fronds. Udotea cyathiformis was the species with the highest iron-ore concentration varing from 0.07 to 0.90 g wet weight, followed by Lobophora variegata (from 0.07 to 0.62 g wet weight, Padina gymnospora (from 0.08 to 0.55 g wet weight and Ulva fasciata (from 0.05 to 0.25 g wet weight. Even after four changes of water over a 12-hour period, the fronds still had particles adhered to their outside cell wall. All the species showed similar tendencies to release the iron, with the highest percentage of particles (40 to 60% released in the first change of water.Minério de ferro particulado sobre quatro macroalgas da Praia de Camburi (Estado do Espírito Santo-Brasil. O presente trabalho determinou a concentração de minério de ferro presente em quatro macroalgas. As espécies testadas ocorrem em um local extremamente contaminado por este particulado, na cidade de Vitória, Estado do Espírito Santo, Brasil. Sob condições naturais, o minério de ferro alcançou um temperatura de até 5,0ºC acima da temperatura da areia em um dia ensolarado.Todas as espécies estudadas apresentavam minério em suas paredes externas. A espécie Udotea cyathiformis apresentou a maior concentração de minério em sua fronde variando de 0,07 a 0,90 g massa úmida, seguida por Lobophora variegata (de 0,07 a 0,62 g massa úmida, Padina gymnospora (de 0,08 a 0,55 g massa úmida e Ulva fasciata (de 0,05 a 0,25 g massa úmida. Mesmo após sucessivas trocas de água, as frondes ainda apresentavam partículas aderidas às suas paredes celulares externas. As espécies apresentaram a mesma tendência de libera

  3. Effect of rhodium traces on the reducibility of silica-supported iron particles

    KAUST Repository

    Bonnefille, Eric

    2012-06-19

    Fe/SiO 2 and Rh-Fe/SiO 2 catalysts with increasing Fe/Rh ratio have been prepared and characterized by TEM, XRD, oxygen adsorption and Mössbauer spectroscopy. It was confirmed that Fe/SiO 2 catalysts cannot be reduced under hydrogen flow, to more than 50 % whatever the temperature in the 200-500 °C range and shown that the presence of even a small amount of Rh (Fe/Rh ≤2,000) promoted the reduction of iron up to 85-95 %. This promoting effect also took place with a Fe/SiO 2 + Rh/SiO 2 physical mixture (Fe/Rh B2,000). Therefore, the occurrence of a hydrogen spillover effect may be involved in the observed process. © 2012 Springer Science+Business Media, LLC.

  4. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Roohi F

    2012-08-01

    Full Text Available Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin DasslerMR and CT Contrast Media Research, Bayer Pharma AG, Berlin, GermanyPurpose: Magnetic resonance imaging (MRI, one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs, the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs.Methods: Eleven different SPIOs were synthesized for this study. In the first set (a, seven carboxydextran (CDX-coated SPIOs of different sizes (19–86 nm were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b contained three SPIOs of identical size (50 nm that were stabilized with different coating materials, polyacrylic acid (PAA, polyethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry.Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the

  5. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  6. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy.

    Science.gov (United States)

    Wu, Yong; Petrochenko, Peter; Chen, Lynn; Wong, Sook Yee; Absar, Mohammad; Choi, Stephanie; Zheng, Jiwen

    2016-05-30

    Understanding physicochemical properties of intravenous (IV) iron drug products is essential to ensure the manufacturing process is consistent and streamlined. The history of physicochemical characterization of IV iron complex formulations stretches over several decades, with disparities in iron core size and particle morphology as the major source of debate. One of the main reasons for this controversy is room temperature sample preparation artifacts, which affect accurate determination of size, shape and agglomeration/aggregation of nanoscale iron particles. The present study is first to report the ultra-fine iron core structures of four IV iron complex formulations, sodium ferric gluconate, iron sucrose, low molecular weight iron dextran and ferumoxytol, using a cryogenic transmission electron microscopy (cryo-TEM) preservation technique, as opposed to the conventional room temperature (RT-TEM) technique. Our results show that room temperature preparation causes nanoparticle aggregation and deformation, while cryo-TEM preserves IV iron colloidal suspension in their native frozen-hydrated and undiluted state. In contrast to the current consensus in literature, all four IV iron colloids exhibit a similar morphology of their iron oxide cores with a spherical shape, narrow size distribution and an average size of 2nm. Moreover, out of the four tested formulations, ferumoxytol exhibits a cluster-like community of several iron carbohydrate particles which likely accounts for its large hydrodynamic size of 25nm, measured with dynamic light scattering. Our findings outline a suitable method for identifying colloidal nanoparticle core size in the native state, which is increasingly important for manufacturing and design control of complex drug formulations, such as IV iron drug products. Published by Elsevier B.V.

  7. Charge state distributions of iron in gradual solar energetic particle events

    Science.gov (United States)

    Ostryakov, V. M.; Stovpyuk, M. F.

    1999-11-01

    The energy and charge spectra of Fe ions accelerated in gradual events are calculated numerically. Our results are compared with the available observations. Stripping of Fe ions by thermal electrons and protons during ion acceleration in the solar corona results in the dependence of mean charge \\barq_Fe on energy. We consider the influence of varying plasma parameters (temperature T, number density N, and spectral index of turbulence S) on the charge distribution of iron. Our calculations indicate T~10^6 K and N~(0.5-1)x10^10 cm^-3 at the accelerating site, provided the characteristic acceleration time is about 1 s. The calculated charge spectra for S>2 and S<2 turn out to be different, but some theoretical and experimental uncertainties do not yet allow this parameter to be extracted from observational data. The theoretically obtained charge distributions of Fe could be important in the light of ACE spacecraft data which are currently available for analysis.

  8. Dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Gavartin, J.L.

    2007-01-01

    However fascinating structures may be at the nanoscale, time-dependent behaviour at the nanoscale has far greater importance. Some of the dynamics is random, with fluctuations controlling rate processes and making thermal ratchets possible. Some of the dynamics causes the transfer of energy, of signals, or of charge. Such transfers are especially efficiently controlled in biological systems. Other dynamical processes occur when we wish to control the nanoscale, e.g., to avoid local failures of gate dielectrics, or to manipulate structures by electronic excitation, to use spin manipulation in quantum information processing. Our prime purpose is to make clear the enormous range and variety of time-dependent nanoscale phenomena

  9. Nanoscale thermal probing

    Directory of Open Access Journals (Sweden)

    Yanan Yue

    2012-03-01

    Full Text Available Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem.

  10. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    Science.gov (United States)

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

  11. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    Science.gov (United States)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  12. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Huang Z

    2015-03-01

    Full Text Available Zheyong Huang,1,* Chenguang Li,1,* Shan Yang,2 Jianfeng Xu,1 Yunli Shen,3 Xinxing Xie,4 Yuxiang Dai,1 Hao Lu,1 Hui Gong,5 Aijun Sun,1 Juying Qian,1 Junbo Ge1 1Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China; 4Department of Cardiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China; 5Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: The long-lasting hypointensities in cardiac magnetic resonance (CMR were believed to originate from superparamagnetic iron oxide (SPIO-engulfed macrophages during long-term stem cell tracking. However, the iron clearance capacity of the ischemic heart was limited. Therefore, we speculated that the extracellular SPIO particles may also be involved in the generation of false-positive signals.Methods and results: Male swine mesenchymal stem cells (MSCs were incubated with SPIO for 24 hours, and SPIO labeling had no significant effects on either cell viability or differentiation. In vitro studies showed that magnetic resonance failed to distinguish SPIO from living SPIO-MSCs or dead SPIO-MSCs. Two hours after the establishment of the female swine acute myocardial infarction model, 2×107 male SPIO-labeled MSCs (n=5 or unlabeled MSCs (n=5 were transextracardially injected into the infarcted myocardium at ten distinct sites. In vivo CMR with T2 star weighted imaging-flash-2D sequence revealed a signal void corresponding to the initial SPIO-MSC injection sites. At 6 months after transplantation, CMR identified 32 (64% of the 50 injection sites, where massive Prussian blue-positive iron

  13. Particle size distribution of iron nanomaterials in biological medium by SR-SAXS method

    International Nuclear Information System (INIS)

    Jing Long; Feng Weiyue; Wang Bing; Wang Meng; Ouyang Hong; Zhao Yuliang; Chai Zhifang; Wang Yun; Wang Huajiang; Zhu Motao; Wu Zhonghua

    2009-01-01

    A better understanding of biological effects of nanomaterials in organisms requests knowledge of the physicochemical properties of nanomaterials in biological systems. Affected by high concentration salts and proteins in biological medium, nanoparticles are much easy to agglomerate,hence the difficulties in characterizing size distribution of the nanomaterials in biological medium.In this work, synchrotron radiation small angle X-ray scattering(SR-SAXS) was used to determine size distributions of Fe, Fe 2 O 3 and Fe 3 O 4 nanoparticles of various concentrations in PBS and DMEM culture medium. The results show that size distributions of the nanomaterials could perfectly analyzed by SR-SAXS. The SR-SAXS data were not affected by the particle content and types of the dispersion medium.It is concluded that SR-SAXS can be used for size measurement of nanomaterials in unstable dispersion systems. (authors)

  14. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents.

    Science.gov (United States)

    Smolensky, Eric D; Park, Hee-Yun E; Zhou, Yue; Rolla, Gabriele A; Marjańska, Małgorzata; Botta, Mauro; Pierre, Valérie C

    2013-06-14

    The magnetic properties of iron oxide nanoparticles govern their relaxivities and efficacy as contrast agents for MRI. These properties are in turn determined by their composition, size and morphology. Herein we present a systematic study of the effect of particle size and shape of magnetite nanocrystals synthesized by thermal decompositions of iron salts on both their magnetism and their longitudinal and transverse relaxivities, r 1 and r 2 , respectively. Faceted nanoparticles demonstrate superior magnetism and relaxivities than spherical nanoparticles of similar size. For faceted nanoparticles, but not for spherical ones, r 1 and r 2 further increase with increasing particle size up to a size of 18 nm. This observation is in accordance with increasing saturation magnetization for nanoparticles increasing in size up to 12 nm, above which a plateau is observed. The NMRD (Nuclear Magnetic Resonance Dispersion) profiles of MIONs (Magnetic Iron Oxide Nanoparticles) display an increase in longitudinal relaxivity with decreasing magnetic field strength with a plateau below 1 MHz. The transverse relaxivity shows no dependence on the magnetic field strength between 20 MHz and 500 MHz. These observations translate to phantom MR images: in T 1 -weighted SWIFT (SWeep imaging with Fourier Transform) images MIONs have a positive contrast with little dependence on particle size, whereas in T 2 -weighted gradient-echo images MIONs create a negative contrast which increases in magnitude with increasing particle size. Altogether, these results will enable the development of particulate MRI contrast agents with enhanced efficacy for biomedical and clinical applications.

  15. Selective nanoscale growth of lattice mismatched materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  16. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  17. Macrophage Uptake of Ultra-Small Iron Oxide Particles for Magnetic Resonance Imaging in Experimental Acute Cardiac Transplant Rejection

    Energy Technology Data Exchange (ETDEWEB)

    Penno, E.; Johnsson, C.; Johansson, L.; Ahlstroem, H. [Uppsala Univ. Hospital (Sweden). Depts. of Diagnostic Radiology and of Transplantation Surgery

    2006-04-15

    Purpose: To discriminate between acutely rejecting and non-rejecting transplanted hearts using a blood pool contrast agent and T2 magnetic resonance imaging (MRI) in a clinical 1.5T scanner. Material and Methods: Allogeneic and syngeneic heterotopic heart transplantations were performed in rats. One allogeneic and one syngeneic group each received either the ultra-small iron oxide particle (USPIO), at two different doses, or no contrast agent at all. MRI was performed on postoperative day 6. Immediately after the MR scanning, contrast agent was injected and a further MRI was done 24 h later. Change in T2 was calculated. Results: No significant difference in change in T2 could be seen between rejecting and non-rejecting grafts in either of the doses, or in the control groups. There was a difference between the allogeneic group that received the higher contrast agent dose and the allogeneic group that did not receive any contrast agent at all. Conclusion: In our rat model, measurements of T2 after myocardial macrophage uptake of AMI-227 in a clinical 1.5T scanner were not useful for the diagnosis of acute rejection.

  18. Stability and aggregation of nanoscale titanium dioxide particle (nTiO2): Effect of cation valence, humic acid, and clay colloids.

    Science.gov (United States)

    Tang, Zhong; Cheng, Tao

    2018-02-01

    Fate and transport of engineered nanoscale titanium dioxide (nTiO 2 ) have received much attention during the past decade. The aggregation and stability of nTiO 2 in water with complicated components, however, have not been fully examined. The objective of this paper is to determine the individual and synergistic effect of cation valence, humic acid, and clay colloids on nTiO 2 stability and aggregation, and elucidate the related mechanisms. We conducted systematic laboratory experiments to determine nTiO 2 stability and aggregation in NaCl and MgCl 2 solutions, both in the absence and presence of humic acid and illite colloids. Results showed that Mg 2+ , in comparison to Na + , could make the zeta potential of nTiO 2 more positive, and shift the point of zero charge of nTiO 2 (pH pzc,TiO2 ) towards higher pH. We also found that nTiO 2 are destabilized by illite colloids at pH < pH pzc,TiO2 through formation of illite-nTiO 2 hetero-aggregates, but are not interfered by illite colloids at higher pH. HA was found to make nTiO 2 stable via electrostatic and steric effects, both in the absence and presence of illite colloids. Calculated interaction energy based on DLVO theory revealed that instability of the nTiO 2 suspensions is mainly caused by primary minima, and that secondary minima normally do not destabilize the suspension, even though they are found to promote aggregation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans

    Science.gov (United States)

    Hartman, P. S.; Hlavacek, A.; Wilde, H.; Lewicki, D.; Schubert, W.; Kern, R. G.; Kazarians, G. A.; Benton, E. V.; Benton, E. R.; Nelson, G. A.

    2001-01-01

    The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.

  20. Synthesis and characterization of iron nano particles for the arsenic removal in water; Sintesis y caracterizacion de nanoparticulas de hierro para la remocion de arsenico en agua

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez M, O. E.

    2011-07-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  1. Degradation of bisphenol-A by dielectric barrier discharge system: influence of polyethylene glycol stabilized nano zero valent iron particles

    Science.gov (United States)

    Tijani, Jimoh O.; Mouele, Massima E. S.; Fatoba, Ojo O.; Babajide, Omotola O.; Petrik, Leslie F.

    2017-09-01

    In this study we report the synthesis and catalytic properties of polyethylene glycol stabilized nano zero valent iron particles (PEG-nZVI) added to the dielectric barrier discharge (DBD) system to induce photo-Fenton process in the degradation of bisphenol A (BPA) in aqueous solution. The influence of operating parameters such as solution pH, initial concentration of the modelled pollutant and PEG-nZVI dosage on the extent of BPA degradation was investigated. The residual concentration of BPA and its intermediates were determined using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LCMS). The high resolution scanning electron microscope (HRSEM), x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and x-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of filamentous, high surface area iron nanoparticles in the zero valent state. The BPA mineralization rate was monitored using total organic carbon (TOC) analyser. 100% BPA removal was achieved with DBD/PEG-nZVI system within 30 min compared to 67.9% (BPA) with DBD alone after 80 min. The complete BPA removal within a short reaction time was attributed to the existence of a synergetic effect in the combined DBD/PEG-nZVI system. Five new transformation products of BPA namely: 4-nitrophenol (C6H5NO3), 4-nitrosophenolate (C6H4NO2), 4-(prop-1-en-2-yl) cyclohexa-3,5-diene-1,2-dione, (C9H8O2), 4-(2-hydroxylpropan-2-yl)cyclohexane-3,5-diene-1,2-dione (C9H10O3), and 1,2-dimethyl-4-(2-nitropropan-2-yl)benzene (C9H10NO4) were identified. BPA degradation proceeded via ozonation, hydroxylation, dimerization, and decarboxylation and nitration step. The combined DBD/photo-Fenton-induced process was found to be the most efficient in the elimination of BPA in aqueous solutions and DBD alone.

  2. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Science.gov (United States)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-10-01

    The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV-vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core-shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like sbnd NH, sbnd Cdbnd O, sbnd Cdbnd N and sbnd Cdbnd C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  3. Transport and Development of Microemulsionand Surfactant Stabilized Iron Nanoparticles for In Situ Remediation

    Science.gov (United States)

    Hsu, Dennis

    This work describes the mobility assessments of microemulsion-stabilized iron oxide nanoparticles and anionic surfactant sodium diethyl hexyl phosphate (SDEHP)-stabilized nanoscale zero valent iron (NZVI) particles in laboratory porous media. The two formulations tested in this work achieved stable iron nanoparticle suspensions for months and prepared via a simple "one-pot" synthesis method developed by Wang et al. Both formulations were tested under field scale velocity of 5 m/day with no mechanical aid during the injection. A three-compartment model, involving colloid diffusion theory, diffusion theory and tailing was applied to describe the breakthrough curves of the studies. The obtained breakthrough curves of both formulations implied excellent transport in porous media with steady plateau C/Co at 0.8-0.9 and recovery of up to 0.95 for SDEHP stabilized NZVI. Post analysis on the retention of iron on the porous media implied ideal transport with consistent data to the breakthrough curves.

  4. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    Science.gov (United States)

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  5. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  6. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  7. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-16

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  8. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids.

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary alpha-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary alpha-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (beta-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  9. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  10. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Studies, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002, Gujarat (India); Gandhi, Pooja, E-mail: poojagandhi.3090@gmail.com [Department of Environmental Sciences, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, Gujarat, 388121 (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, 411008 (India)

    2014-10-30

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  11. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    Science.gov (United States)

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  12. Electric arc furnace dust utilization in iron ore sintering: influence of particle size; Utilizacao da poeira de aciaria eletrica na sinterizacao de minerio de ferro: influencia da granulometria

    Energy Technology Data Exchange (ETDEWEB)

    Telles, V.B.; Junca, E.; Rodrigues, G.F.; Espinosa, D.C.R.; Tenorio, J.A.S., E-mail: victor_bridit@hotmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The aim of this work was to study the utilization of electric arc furnace dust (EAFD) generated in steelmaking by electric arc furnace (EAF) as raw material in iron ore sintering. The waste was characterized by size, chemical composition and X-ray diffraction. The physical characterization showed that 90% of the particles have a size less then 1,78 {mu}m and the material have the tendency to agglomerate. The waste were submitted to a pre-agglomeration prior to its incorporation in the sinter. The influence on the addition of the waste with different granulometry in the iron or sinter production were analyzed by sinter characterization and sintering parameters. (author)

  13. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component...... of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper....... First, a ma terial equivalent to the ductile cast iron matrix is manufactured and subjected to dilato- metric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between...

  14. Stability of tris-1,10-phenanthroline iron (II) complex in biomineral particles produced by Klebsiella oxytoca

    International Nuclear Information System (INIS)

    Anghel, L.V.; Balasoiu, M.; Lazar, D.M.; Ishchenko, L.A.

    2011-01-01

    The composition of composites has a huge impact on the stability of tris-1,10-phenanthroline iron (II) complex during the determination of total iron content. The subject of this work is the determination of the stability of tris-1,10-phenanthroline iron (II) complex in samples of biominerals produced by bacteria Klebsiella oxytoca. The stability of this complex was monitored in the time period of 0-60 min. The aim of this work is to determine the concentration of the biogenic ferrihydrite in the samples and the time interval in which the absorbance of the complex is highest. The UV-Vis spectrophotometric method was used for the determination. Obtained results indicate that for more exact estimations of the concentration of biogenic ferrihydrite, absorbance of tris-1,10-phenanthroline iron (II) complex should be measured within 25 min from the moment ortho-phenanthroline was added

  15. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  16. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  17. Obtaining of iron particles of nanometer size in a natural zeolite; Obtencion de particulas de hierro de tamano nanometrico en una zeolita natural

    Energy Technology Data Exchange (ETDEWEB)

    Xingu C, E. G.

    2013-07-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  18. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  19. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  20. Particle size dependence of chemical compositions of metal-containing ultrafine particles synthesized from a gaseous mixture of iron pentacarbonyl and carbon disulfide

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Takeyasu, Y.; Šubrt, Jan

    2008-01-01

    Roč. 197, č. 1 (2008), s. 88-93 ISSN 1010-6030 R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : ultraline particles * gas phase photochemical reaction * particle size Subject RIV: CA - Inorganic Chemistry Impact factor: 2.362, year: 2008

  1. Effects of surface chemistry on coagulation of submicron iron oxide particles (α-Fe_2O_3) in water

    OpenAIRE

    Liang, Liyuan

    1988-01-01

    Particles in the colloidal size range, i.e. smaller than 10^(-6) meter, are of interest in environmental science and many other fields of science and engineering. Since aqueous oxide particles have high specific surface areas they adsorb ions and molecules from water, and may remain stable in the aqueous phase with respect to coagulation. Submicron particles collide as a result of their thermal energy, and the effective collision rate is slowed by electric repulsion forces. A key to understan...

  2. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  3. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques...... of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent...

  4. Iron or iron oxide grains in the interstellar medium?

    International Nuclear Information System (INIS)

    Jones, A.P.

    1990-01-01

    Iron grains have often been proposed as a component of circumstellar and interstellar grains. It is apparent that 'cosmic abundance' circumstellar shells should condense iron-rich particles such as metallic iron, iron/nickel alloys and iron carbides. It is not, however, clear that these grains can survive in this state in the interstellar medium. In this paper the chemistry of iron particles in the diffuse interstellar medium is examined and it is concluded that these grains cannot survive as pristine metallic iron-rich entities. The reactivity of iron, and in particular its reaction with interstellar gas-phase oxygen and sulphur species, will result in the rapid degradation of the metal to an oxide, sulphide or even sulphate. The lack of metallic phases in the mineralogy of primitive interplanetary dust particles is consistent with the absence of metallic particles in the interstellar medium. (author)

  5. Screening of oxygen-carrier particles based on iron-, manganese-, copper- and nickel oxides for use in chemical-looping technologies

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Marcus

    2007-07-01

    Capture and storage of carbon dioxide from combustion will likely be used in the future as a method of reducing emissions of greenhouse gases and thus be part of the overall strategy to stabilize the atmospheric levels of CO{sub 2}. Chemical-looping combustion is a method of combustion where CO{sub 2} is inherently separated from the non-condensable components in the flue gas without the need for an energy intensive air separation unit. This is because nitrogen from the combustion air is never mixed with the fuel. Instead, oxygen carriers, in the form of metal oxide particles, circulate between two interconnected fluidized reactors and transfer oxygen from the air to the fuel through heterogeneous gas-solid redox reactions. The technology could also be adapted for the production of hydrogen from fossil fuels with CO{sub 2} separation, i.e. chemical-looping reforming. 108 different oxygen-carriers based on iron-, manganese-, copper- and nickel oxides have been investigated. These carriers are prepared with inert material to increase the lifetime and performance of the particles. All particles but one have been produced by a freeze-granulation method. In order to optimize the performance of the particles, the sintering temperature of the particles was varied between 950 deg C and 1600 deg C. Normally particles of the size range of 125-180 squarem have been used for the reactivity investigations. Screening tests were performed in a laboratory fluidized-bed reactor of quartz placed in a furnace. The particles were exposed to an environment simulating a real chemical looping combustor, by alternating between reducing (50% CH{sub 4} - 50 % H{sub 2}O) and oxidizing conditions (5% O{sub 2} in N{sub 2}). The temperature was varied in the range 600 - 950 deg C with most experiments conducted at 950 deg C. In addition the particles were characterized with respect to strength, physical appearance and chemical structure before and after the experiments. Some suitable oxygen

  6. Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Ilčíková, M.; Pavlínek, V.; Mosnáček, J.; Peer, Petra; Filip, Petr

    2013-01-01

    Roč. 396, april (2013), s. 146-151 ISSN 0021-9797 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : covalent coating * carbonyl iron * cholesteryl chloroformate * thermooxidation * Magnetorheology Subject RIV: BK - Fluid Dynamics Impact factor: 3.552, year: 2013

  7. Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field

    Czech Academy of Sciences Publication Activity Database

    Mrlik, M.; Ilčíková, M.; Sedlačík, M.; Mosnáček, J.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 292, č. 9 (2014), s. 2137-2143 ISSN 0303-402X R&D Projects: GA ČR(CZ) GP14-32114P Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : carbonyl iron * cholesteryl chloroformate * silicone oil suspensions * viscoelasticity * magnetorheology Subject RIV: BK - Fluid Dynamics Impact factor: 1.865, year: 2014

  8. Nanoscale Vacuum Channel Transistor.

    Science.gov (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  9. Ellipsometry at the nanoscale

    CERN Document Server

    Hingerl, Kurt

    2013-01-01

    This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics...

  10. Control of friction at the nanoscale

    Science.gov (United States)

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  11. Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials?

    Energy Technology Data Exchange (ETDEWEB)

    Sayes, Christie M.; Reed, Kenneth L. [DuPont Haskell Global Centers for Health and Environmental Sciences (United States); Subramoney, Shekhar; Abrams, Lloyd [DuPont Corporate Center for Analytical Services (United States); Warheit, David B., E-mail: David.B.Warheit@USA.dupont.co [DuPont Haskell Global Centers for Health and Environmental Sciences (United States)

    2009-02-15

    Risk evaluations for nanomaterials require the generation of hazard data as well as exposure assessments. Most of the validated nanotoxicity studies have been conducted using in vivo experimental designs. It would be highly desirable to develop in vitro pulmonary hazard tests to assess the toxicity of fine and nanoscale particle-types. However, in vitro evaluations for pulmonary hazards are known to have limited predictive value for identifying in vivo lung toxicity effects. Accordingly, this study investigated the capacity of in vitro screening studies to predict in vivo pulmonary toxicity of several fine or nanoparticle-types following exposures in rats. Initially, complete physicochemical characterization of particulates was conducted, both in the dry and wet states. Second, rats were exposed by intratracheal instillation to 1 or 5 mg/kg of the following particle-types: carbonyl iron, crystalline silica, amorphous silica, nanoscale zinc oxide, or fine zinc oxide. Inflammation and cytotoxicity endpoints were measured at 24 h, 1 week, 1 month and 3 months post-instillation exposure. In addition, histopathological analyses of lung tissues were conducted at 3 months post-exposure. Pulmonary cell in vitro studies consisted of three different culture conditions at 4 different time periods. These included (1) rat L2 lung epithelial cells, (2) primary rat alveolar macrophages, and (3) alveolar macrophage-L2 lung epithelial cell co-cultures which were incubated with the same particles as tested in the in vivo study for 1, 4, 24, or 48 h. Cell culture fluids were evaluated for cytotoxicity endpoints and inflammatory cytokines at the different time periods in an attempt to match the biomarkers assessed in the in vivo study. Results of in vivo pulmonary toxicity studies demonstrated that instilled carbonyl iron particles produced little toxicity. Crystalline silica and amorphous silica particle exposures produced substantial inflammatory and cytotoxic effects initially, but

  12. Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials?

    International Nuclear Information System (INIS)

    Sayes, Christie M.; Reed, Kenneth L.; Subramoney, Shekhar; Abrams, Lloyd; Warheit, David B.

    2009-01-01

    Risk evaluations for nanomaterials require the generation of hazard data as well as exposure assessments. Most of the validated nanotoxicity studies have been conducted using in vivo experimental designs. It would be highly desirable to develop in vitro pulmonary hazard tests to assess the toxicity of fine and nanoscale particle-types. However, in vitro evaluations for pulmonary hazards are known to have limited predictive value for identifying in vivo lung toxicity effects. Accordingly, this study investigated the capacity of in vitro screening studies to predict in vivo pulmonary toxicity of several fine or nanoparticle-types following exposures in rats. Initially, complete physicochemical characterization of particulates was conducted, both in the dry and wet states. Second, rats were exposed by intratracheal instillation to 1 or 5 mg/kg of the following particle-types: carbonyl iron, crystalline silica, amorphous silica, nanoscale zinc oxide, or fine zinc oxide. Inflammation and cytotoxicity endpoints were measured at 24 h, 1 week, 1 month and 3 months post-instillation exposure. In addition, histopathological analyses of lung tissues were conducted at 3 months post-exposure. Pulmonary cell in vitro studies consisted of three different culture conditions at 4 different time periods. These included (1) rat L2 lung epithelial cells, (2) primary rat alveolar macrophages, and (3) alveolar macrophage-L2 lung epithelial cell co-cultures which were incubated with the same particles as tested in the in vivo study for 1, 4, 24, or 48 h. Cell culture fluids were evaluated for cytotoxicity endpoints and inflammatory cytokines at the different time periods in an attempt to match the biomarkers assessed in the in vivo study. Results of in vivo pulmonary toxicity studies demonstrated that instilled carbonyl iron particles produced little toxicity. Crystalline silica and amorphous silica particle exposures produced substantial inflammatory and cytotoxic effects initially, but

  13. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  14. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    Energy Technology Data Exchange (ETDEWEB)

    Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Andrle, Marek; Oplustil, Frantisek [Military Institute VOP-026 Sternberk, Division in Brno, Rybkova 8, 602 00 Brno (Czech Republic); Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Sharma, Virender K., E-mail: vsharma@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Center of Ferrate Excellence, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. Black-Right-Pointing-Pointer Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). Black-Right-Pointing-Pointer Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Moessbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3 Prime -imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants ({approx}10{sup -2} s{sup -1}) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10{sup -8}-10{sup -6} s{sup -1}). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  15. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    International Nuclear Information System (INIS)

    Zboril, Radek; Andrle, Marek; Oplustil, Frantisek; Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek; Sharma, Virender K.

    2012-01-01

    Highlights: ► Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. ► Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). ► Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3′-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (∼10 −2 s −1 ) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10 −8 –10 −6 s −1 ). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  16. Magnetochromic sensing and size-dependent collective excitations in iron oxide nanoparticles

    Science.gov (United States)

    O'Neal, Kenneth R.; Patete, Jonathan M.; Chen, Peng; Nanavati, Ruhani; Holinsworth, Brian S.; Smith, Jacqueline M.; Marques, Carlos; Simonson, Jack W.; Aronson, Meigan C.; McGill, Stephen A.; Wong, Stanislaus S.; Musfeldt, Janice L.

    2017-03-01

    We combine optical and magneto-optical spectroscopies with complementary vibrational and magnetic property measurements to reveal finite length scale effects in nanoscale α -Fe2O3 . Analysis of the d -to-d on-site excitations uncovers enhanced color contrast at particle sizes below approximately 75 nm due to size-induced changes in spin-charge coupling that are suppressed again below the superparamagnetic limit. These findings provide a general strategy for amplifying magnetochromism in α -Fe2O3 and other iron-containing nanomaterials that may be useful for advanced sensing applications. We also unravel the size dependence of collective excitations in this iconic antiferromagnet.

  17. Magneto-piezoresistivity in iron particle-filled silicone: An alternative outlook for reading magnetic field intensity and direction

    Directory of Open Access Journals (Sweden)

    V. Iannotti

    2016-01-01

    Full Text Available Elastomagnetic effect (strain induced by magnetic field application and piezoresistivity (change of electron conductivity due to an induced strain are coupled in composite materials constituted by magnetic and conductive microparticles into an elastic matrix. On the basis of these effects, the principle of a new method to read magnetization direction changes, in a random sequence, is proposed and experimentally demonstrated. We have produced new composite magnetopiezoresistive samples, constituted of thin chip shaped Fe microparticles inside a silicone matrix, which under an applied magnetic field along their longitudinal axis, undergo an induced strain depending on the local magnetization direction. The resulting resistivity change can be easily detected and used to deduce the local magnetization direction. The magnetization and strain processes are reversible so that after the removal of external magnetizing field the sample is ready for new measurements. A demonstrator prototype has been conceived, produced and tested. The experimental results provide interesting data encouraging to continue the research towards nano-scale devices in order to pursue the intriguing perspective to achieve a magnetic field gradient sensitivity able to reveal magnetization of semipermanent nanomagnets, polarized ‘up’ and ‘down’.

  18. Respiratory Effects of Inhaled Single-Walled Carbon Nanotubes: The Role of Particle Morphology and Iron Content

    Science.gov (United States)

    Madl, Amy Kathleen

    Nanotechnology provides promise for significant advancements in a number of different fields including imaging, electronics, and therapeutics. With worldwide production of carbon nanotubes (CNTs) exceeding over 500 metric tons annually and industry growth expecting to double over the next 5 yr, there are concerns our understanding of the hazards of these nanomaterials may not be keeping pace with market demand. The physicochemical properties of CNTs may delineate the key features that determine either toxicity or biocompatibility and assist in evaluating the potential health risks posed in industrial and consumer product settings. We hypothesized that the iron content and morphology of inhaled single-walled carbon nanotubes (SWCNTs) influences the extent of cellular injury and alters homeostasis in the lung. To address this hypothesis, (1) an aerosol system was developed to deliver carbon-based nanomaterials in a manner of exposure that is physiologically and environmentally relevant (e.g., inhalation), (2) acute (1 d) and subacute (10 d) nose-only inhalation studies to a well-characterized aerosol of iron-containing (FeSWCNT) versus cleaned (iron removed, cSWCNTs) SWCNTs were conducted to evaluate the time-course patterns of possible injury through measurement of markers of cytotoxicity, inflammation, and cellular remodeling/homeostasis, and (3) the effects of SWCNTs were compared to other well-studied materials (e.g. non-fibrous, low-iron content ultrafine carbon black and fibrous, high-iron content, highly persistent, durable and potent carcinogen crocidolite) to offer insights into the relative toxicity of these nanomaterials as well as the possible mechanisms by which the effects occur. Rats (SD) were exposed to either aerosolized SWCNTs (raw FeSWCNT or purified cSWCNT), carbon black (CB), crocidolite, or fresh air via nose-only inhalation. Markers of inflammation and cytotoxicity in lung lavage, mucin in different airway generations, and collagen in the

  19. A plasmon ruler based on nanoscale photothermal effect.

    Science.gov (United States)

    Zhang, Weichun; Li, Qiang; Qiu, Min

    2013-01-14

    The determination of nanoscale distances or distance changes necessitates a nanoscale ruler. In the present paper, distance dependence of particle temperature in an optically heated gold nanoparticle pair is quantitatively investigated to explore the possibility of creating a plasmon ruler based on this effect. The two origins of the distance-dependence, i.e., electromagnetic coupling and thermal accumulative effect, are studied. For the particle temperature, a scaling behavior is found, and it suggests that the decay of particle temperature with the interparticle gap for different particle sizes follows a common exponential decay equation. This scaling behavior is qualitatively explained with a simple dipolar-coupling model combined with a point heat source interaction model. On the basis of this scaling behavior of absorption power, we further establish a plasmon ruler equation relating the particle temperature and the interparticle distance. Our findings can serve as an excellent guideline for designing and optimizing temperature-based plasmon rulers.

  20. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    Science.gov (United States)

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.

  1. Effects on suspensions dispersed particles & water purification produced by Cardon Dato mucilage, Iron Chloride, alum, and their combinations

    OpenAIRE

    Henríquez-Rodríguez, Manuel; Gascó Montes, José María; Pérez Arias, Juana; Rodríguez Rodríguez, Orlando

    2008-01-01

    Pressure to use dispersive soils has increased worldwide, soil conservation against erosion is crucial and water contamination by eroded materials is a relevant problem. Organic and inorganic conditioners reduce soils’ particles dispersion, improve soils´ structure and permeability, and reduce water sources contamination. The effects of a Cardon Dato (Stenocereus griseus (Haw.) F. Buxb) mucilage (CD), FeCl3.6H2O and AlCl3.6H2O, on flocculating suspensions and arrangement of suspended particle...

  2. Iron Chelation

    Science.gov (United States)

    Skip to main content Menu Donate Treatments Therapies Iron Chelation Iron chelation therapy is the main treatment ... have iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you ...

  3. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  4. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  5. Flexoelectricity in Nanoscale Ferroelectrics

    Science.gov (United States)

    Catalan, Gustau

    2012-02-01

    All ferroelectrics are piezoelectric and thus have an intrinsic coupling between polarization and strain. There exists an additional electromechanical coupling, however, between polarization and strain gradients. Strain gradients are intrinsically vectorial fields and, therefore, they can in principle be used to modify both the orientation and the sign of the polarization, thanks to the coupling known as flexoelectricity. Flexoelectricity is possible even in paraelectric materials, but is generally stronger in ferroelectrics on account of their high permittivity (the flexoelectric coefficient is proportional to the dielectric constant). Moreover, strain gradients can be large at the nanoscale due to the smallness of the relaxation length and, accordingly, strong flexoelectric effects can be expected in nanoscale ferroelectrics. In this talk we will present two recent results that highlight the above features. In the first part, I will show how polarization tilting can be achieved in a nominally tetragonal ferroelectric (PbTiO3) thanks to the internal flexoelectric fields generated in nano-twinned epitaxial thin films. Flexoelectricity thus offers a purely physical means of achieving rotated polarizations, which are thought to be useful for enhanced piezoelectricity. In the second part, we will show how the large strain gradients generated by pushing the sharp tip of an atomic force microscope against the surface of a thin ferroelectric film can be used to actively switch its polarity by 180^o. This enables a new concept for ``multiferroic'' memory operation in which the memory bits are written mechanically and read electrically.

  6. Using particle counters for pretreatment optimization, iron transport monitoring, condenser leak detection, and carryover monitoring - a synopsis of experiences

    International Nuclear Information System (INIS)

    Bryant, R.L.

    2008-01-01

    Steam generating systems all require clean water. The effects of particulate material in the steam/water cycle on metal corrosion, erosion, cracking, and deposition are frequently observed. However, the physical/chemical mechanisms are often difficult to correlate with a specific plant event, since the periodic ''grab'' samples from various areas of the water/steam process which are generally conducted do not allow real time continuous on-line particulate monitoring and data collection. This paper introduces the concept of using particulate measuring instruments to monitor the steam generation cycle, and presents case histories of real world plant situations where on-line particulate measurement using particle counters and particle monitors has defined the source of a problem, quantified the severity of a problem, and provided a solution to a problem. (orig.)

  7. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  8. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    Science.gov (United States)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  9. Investigation of Pb(II Removal from Aqueous Solutions Using Modified Nano Zero-Valent Iron Particles

    Directory of Open Access Journals (Sweden)

    Amirhossein Ramezanpoor

    2014-05-01

    Full Text Available This research was conducted in experimental scale with the aim of investigation effect of polyacrylic acid-stabilized zero-valent iron nanoparticles (PAA-nZVI on lead removal from aqueous solution. In this regards, NZVI was synthesized with polyacrylic acid and their size and morphological characteristics were examined via X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Fourier Transmission Infrared Spectroscopy (FTIR. To study the effect of PAA-nZVI on lead removal, pH of aqueous solution, contact time, PAA-NZVI concentration  and initial Pb(II concentration were considered as variables. Furthermore, the experimental data of Pb(II  removal were fitted using three kinetic models, namely Zero-order, First-order and Second-order.The results of experiments showed that maximum Pb(II removal efficiency was observed at pH=5, 15 min contact time and 5 g/L PAA-nZVI concentration. Moreover, the results of kinetic studies indicated that among all applied kinetic models, First-order kinetic model had more better prediction than other kinetic models ofPb(II removal. Based on the results of present research, PAA-NZVI is an efficient agent to remove Pb(II from aqueous solutions.

  10. Nano-sized iron particles may induce multiple pathways of cell death following generation of mistranscripted RNA in human corneal epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Chae, Jae-Byoung; Kang, Seuyoung; Lyu, Jungmook; Jeong, Uiseok; Yeom, Changjoo; Kim, Younghun; Chang, Jaerak

    2017-08-01

    Iron is closely associated with an ambient particulate matters-induced inflammatory response, and the cornea that covers the front of the eye, is among tissues exposed directly to ambient particulate matters. Prior to this study, we confirmed that nano-sized iron particles (FeNPs) can penetrate the cornea. Thus, we identified the toxic mechanism of FeNPs using human corneal epithelial cells. At 24h after exposure, FeNPs located inside autophagosome-like vacuoles or freely within human corneal epithelial cells. Level of inflammatory mediators including nitric oxide, cytokines, and a chemokine was notably elevated accompanied by the increased generation of reactive oxygen species. Additionally, cell proliferation dose-dependently decreased, and level of multiple pathways of cell death-related indicators was clearly altered following exposure to FeNPs. Furthermore, expression of gene encoding DNA binding protein inhibitor (1, 2, and 3), which are correlated to inhibition of the binding of mistranscripted RNA, was significantly down-regulated. More importantly, expression of p-Akt and caspase-3 and conversion to LC3B-II from LC3B-I was enhanced by pretreatment with a caspase-1 inhibitor. Taken together, we suggest that FeNPs may induce multiple pathways of cell death via generation of mistranscripted RNA, and these cell death pathways may influence by cross-talk. Furthermore, we propose the need of further study for the possibility of tumorigenesis following exposure to FeNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Nanoscale Tale

    Science.gov (United States)

    Serrano, Elba

    2008-10-01

    Experimentalists constantly seek to overcome technical limitations. This is especially true in the world of biophysics, where the drive to study molecular targets such as ion channels, a type of membrane transport protein, has resulted in methodological breakthroughs that have merited the Nobel Prize (Hodgkin and Huxley, 1963; Neher and Sakmann, 1991). In this presentation I will explain how nanoscale phenomena that are essential for sensory perception underlie the ability of dancers, gymnasts, and musicians to excel at their artistic endeavors. I will describe how our investigations of sensory mechanotransduction and the quest for improved signal amplification inspired a scientific journey that has culminated in an exciting new line of collaborative NIH-funded research with nanomaterials (quantum dots). I will conclude with a general discussion of how training in physics offers an ideal foundation for interdisciplinary research in health related fields, such as those that deal with neuroscience and disorders of the nervous system.

  12. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Science.gov (United States)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  13. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Safia, E-mail: safia_anjum@hotmail.com [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Tufail, Rabia [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Rashid, Khalid [PCSIR Laboratories Lahore (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Riaz, S. [Centre for Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2017-06-15

    Highlights: • The stability of Co{sub x}Fe{sub (2-x)}O{sub 3} nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co{sup 2+} ions in magnetite Fe{sub 3}O{sub 4} nano-particles with stoichiometric formula Co{sub x}Fe{sub 3-x}O{sub 4} where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co{sup 2+} doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles with the major band at 887 cm{sup −1}, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co{sup 2+} content. The decrease in enthalpy with increase in Co{sup 2+} concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co{sup 2+} content in B-site of Fe{sub 3}O{sub 4} structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  14. Nanoscale friction and wear maps.

    Science.gov (United States)

    Tambe, Nikhil S; Bhushan, Bharat

    2008-04-28

    Friction and wear are part and parcel of all walks of life, and for interfaces that are in close or near contact, tribology and mechanics are supremely important. They can critically influence the efficient functioning of devices and components. Nanoscale friction force follows a complex nonlinear dependence on multiple, often interdependent, interfacial and material properties. Various studies indicate that nanoscale devices may behave in ways that cannot be predicted from their larger counterparts. Nanoscale friction and wear mapping can help identify some 'sweet spots' that would give ultralow friction and near-zero wear. Mapping nanoscale friction and wear as a function of operating conditions and interface properties is a valuable tool and has the potential to impact the very way in which we design and select materials for nanotechnology applications.

  15. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri.

    Science.gov (United States)

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment.

  16. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale.

    Science.gov (United States)

    Roose, Dimitri; Leroux, Frederic; De Vocht, Nathalie; Guglielmetti, Caroline; Pintelon, Isabel; Adriaensen, Dirk; Ponsaerts, Peter; Van der Linden, Annemie; Bals, Sara

    2014-01-01

    In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9 months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1 week and in the olfactory bulb at 9 months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9 months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  18. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    Science.gov (United States)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  19. Nanoscale waveguiding methods

    Directory of Open Access Journals (Sweden)

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  20. Visualizing copper assisted graphene growth in nanoscale

    Science.gov (United States)

    Rosmi, Mohamad Saufi; Yusop, Mohd Zamri; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-01-01

    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp2 hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction. PMID:25523645

  1. An approach to the impact of nanoscale vat coloration of cotton on reducing agent account.

    Science.gov (United States)

    Hakeim, O A; Nassar, S H; Raghab, A A; Abdou, L A W

    2013-02-15

    Aqueous dispersions of nanoscale vat dyes were successfully prepared through ball milling and ultrasonication of three test dyes in the presence of dispersing agent. Critical factors included the time of ball milling and ultrasonication and the molecular structure of the vat dyes have been studied. These dispersions were characterized by morphological structures with particle size determination and quality was evaluated by shelf-life stability using digital images. The nanoscale vat dyes have been applied in dyeing and printing of cotton to evaluate the effect of nanoscale dispersion on the reducing agent account and the difference of coloration performance of a nanoscale and conventionally dispersed vat dyes. Results showed that use of sodium dodecyl sulfate (SDS) maintained a high stability of dispersion with storage. The size and stability of nanoscale dispersion were greatly influenced by molecular structure of the vat dyes. Ultrasonication was helpful in decreasing average particle size. Nanoscale vat dye dispersions gave a much higher color yield than conventional vat dyes. Fastness properties were excellent for washing effects. It is clear that coloration using nanoscale vat dye dispersions offer a number of advantages in terms of reducing agent requirement, improved appearance and also in environmental protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

    DEFF Research Database (Denmark)

    Lee, Nara; Choi, Kyunghoon; Uthuppu, Basil

    2014-01-01

    This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with spe......This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP....../VA with specific weight ratios to iron contents. Colloidal stability was investigated based on the rate of sedimentation, hydrodynamic radius and zeta potential measurement. The characteristic time, which demonstrated dispersivity of particles resisting aggregation, increased from 21.2 min (bare nZVI) to 97.8 min...... with increasing amount of PVP/VA (the ratios of 2). For the most stable nZVI coated by PVP/VA, its reactivity was examined by nitrate reduction in a closed batch system. The pseudo-first-order kinetic rate constants for the nitrate reduction by the nanoparticles with PVP/VA ratios of 0 and 2 were 0.1633 and 0...

  3. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  4. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  5. Iron nanoparticles grown in a carbon arc discharge

    NARCIS (Netherlands)

    Zhang, G.L.; du Marchie van Voorthuysen, E.H.; Szymanski, K.; Boom, G; Verwerft, M.G M; Jonkman, H.T.; Niesen, L

    1996-01-01

    Iron particles, encapsulated by graphite layers, were produced by means of the Kratschmer are discharge method in an iron pentacarbonyl atmosphere. The Mossbauer effect is dominated by the vibration of the particles as a whole. Superparamagnetism is dominant for iron oxide particles. No endohedral

  6. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    Science.gov (United States)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  7. Hydrogenation using iron oxide-based nanocatalysts for the synthesis of amines.

    Science.gov (United States)

    Jagadeesh, Rajenahally V; Stemmler, Tobias; Surkus, Annette-Enrica; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2015-04-01

    In this protocol, we describe the preparation of nanoscale iron oxide-based materials and their use in the catalysis of different hydrogenation reactions. Pyrolysis of a Fe(OAc)2-phenanthroline complex on carbon at 800 °C under argon atmosphere results in the formation of nanoscale Fe2O3 particles surrounded by nitrogen-doped graphene layers. By applying these catalysts, the hydrogenation of structurally diverse and functionalized nitroarenes to anilines proceeds with excellent selectivity. Furthermore, we have shown that one-pot reductive amination of carbonyl compounds with nitroarenes is also possible in the presence of these iron oxide catalysts. We report herein the synthesis of more than 40 amines, which are important feedstocks and key intermediates for pharmaceuticals, agrochemicals and polymers. The detailed preparation of the catalysts and the procedures for the hydrogenation processes are presented. The overall time required for the catalyst preparation and for the hydrogenation reactions are 35 h and 20-35 h, respectively.

  8. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  9. Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties.

    Science.gov (United States)

    Coker, Victoria S; Telling, Neil D; van der Laan, Gerrit; Pattrick, Richard A D; Pearce, Carolyn I; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E P; Lloyd, Jonathan R

    2009-07-28

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe(2)O(4)) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼10(6) erg cm(-3) can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies.

  10. Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8+ T Cells in a Diameter-Dependent Manner.

    Science.gov (United States)

    Karuturi, Bala V K; Tallapaka, Shailendra B; Yeapuri, Pravin; Curran, Stephen M; Sanderson, Sam D; Vetro, Joseph A

    2017-05-01

    The diameter of biodegradable particles used to coencapsulate immunostimulants and subunit vaccines affects the magnitude of memory CD8 + T cells generated by systemic immunization. Possible effects on the magnitude of CD8 + T cells generated by mucosal immunization or memory subsets that potentially correlate more strongly with protection against certain pathogens, however, are unknown. In this study, we conjugated our novel host-derived mucosal immunostimulant, EP67, to the protective MCMV CTL epitope, pp89, through a lysosomal protease-labile double arginine linker (pp89-RR-EP67) and encapsulated in PLGA 50:50 micro- or nanoparticles. We then compared total magnitude, effector/central memory (CD127/KRLG1/CD62L), and IFN-γ/TNF-α/IL-2 secreting subsets of pp89-specific CD8 + T cells as well as protection of naive female BALB/c mice against primary respiratory infection with MCMV 21 days after respiratory immunization. We found that decreasing the diameter of encapsulating particle from ∼5.4 μm to ∼350 nm (i) increased the magnitude of pp89-specific CD8 + T cells in the lungs and spleen; (ii) partially changed CD127/KLRG1 effector memory subsets in the lungs but not the spleen; (iii) changed CD127/KRLG1/CD62L effector/central memory subsets in the spleen; (iv) changed pp89-responsive IFN-γ/TNF-α/IL-2 secreting subsets in the lungs and spleen; (v) did not affect the extent to which encapsulation increased efficacy against primary MCMV respiratory infection over unencapsulated pp89-RR-EP67. Thus, although not observed under our current experimental conditions with MCMV, varying the diameter of nanoscale biodegradable particles may increase the efficacy of mucosal immunization with coencapsulated immunostimulant/subunit vaccines against certain pathogens by selectively increasing memory subset(s) of CD8 + T cells that correlate the strongest with protection.

  11. EXAFS and XANES analysis of oxides at the nanoscale

    Directory of Open Access Journals (Sweden)

    Alexei Kuzmin

    2014-11-01

    Full Text Available Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.. As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs and iron oxide nanoparticles.

  12. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  13. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    the computations that follow have been made by assuming that a stellar core, existing just prior to core collapse, consists primarily of highly compressed and very hot iron nuclei and electrons. Although nuclei near iron in atomic number, as well as smaller concentrations of other subatomic particles, may also exist in a stellar ...

  14. Nanoscale strontium titanate photocatalysts for overall water splitting.

    Science.gov (United States)

    Townsend, Troy K; Browning, Nigel D; Osterloh, Frank E

    2012-08-28

    SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  15. Bioinspired, functional nanoscale materials

    Science.gov (United States)

    Jun, In-Kook

    Functional nanomaterials in nature exhibit many unique functions and optical and mechanical properties. Examples of this include the dry adhesion of a gecko's foot, the reduced drag on a shark's skin, the high strength and toughness of nacre, and the superhydrophobic self-cleaning of a lotus leaf. This dissertation is devoted to creating unique and enhanced properties by mimicking such functional materials. We have developed a novel self-pumping membrane, which does not require an applied voltage. The self-pumping membrane harvests chemical energy from a surrounding fluid and uses it for accelerated mass transport across the membrane. A device such as this has promising applications in implantable or remotely operating autonomous devices and membrane-based purification systems. Reproducible and highly active surface enhanced Raman scattering (SERS) substrates were developed using a bottom-up self-assembly technology. With their high sensitivity and good reproducibility, the developed nanostructures (gold nanoparticle and nanohole arrays) as SERS substrates are very promising for applications such as ultra-sensitive detectors for chemicals and reproducible sensors for chemical and biological molecules. Binary colloidal crystals were created using a simple, fast, and scalable spin-coating technology. Although further investigation of the procedure is needed to improve the ordering of particles in the individual layers, the developed assembly technology has a promising outlook in applications such as optical integrated circuits and high-speed optical computing. Inorganic-organic nanocomposites were realized by assembling synthesized gibbsite nanoplatelets using the electrophoretic deposition and infiltration of a monomer followed by polymerization. Via surface modifications of gibbsite nanoplatelets, nanocomposites were further reinforced with covalent linkages between the inorganic platelets and organic matrix.

  16. Characterization and fluoride uptake studies of nano-scale iron ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 8 (2010) >. Log in or Register to get access to full text downloads.

  17. Field Effect Transistor in Nanoscale

    Science.gov (United States)

    2017-04-26

    significant alteration in transport behaviour of these molecular junctions. 15. SUBJECT TERMS Theory , Nanoscale, Field Effect Transistor (FET), Devices...Density Functional Theory (DFT), Non-equilibrium Green Function 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES     13...Keep in mind the amount of funding you received relative to the amount of effort you put into the report. References: 1. J. R. Heath and M

  18. Technological Convergence from the Nanoscale

    Science.gov (United States)

    Bainbridge, William

    A series of scientific conferences and book-length publications predict that nanoscience will have its greatest impact through the convergence of four fields where research progress and engineering applications are expected to be especially significant. These are the so-called NBIC fields of nanotechnology, biotechnology, information technology, and new technologies based on cognitive science. This chapter is a first sociological reconnaissance of the convergenist movement in science and technology, based on the unity of nature at the nanoscale.

  19. Accelerated dissolution of iron oxides in ice

    OpenAIRE

    D. Jeong; K. Kim; W. Choi

    2012-01-01

    Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a~new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4), the dissolution of iron oxides was greatly enhanced in the ice phas...

  20. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  1. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in

  2. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  3. Nanolithography using nanoscale ridge apertures

    Science.gov (United States)

    Wang, Liang

    There is a continuous effort to develop techniques for nanoscale feature definition below the diffraction limit. Nanolithography has been a key technique because of its precision and cost effective. A sub-wavelength hole in an opaque screen can be used to provide a small light source with the optical resolution beyond the diffraction limit in the near field. However, a nanometer-sized hole in circular or square shapes is plagued by low transmission and poor contrast. This drawback limits the nanoscale apertures from being employed in nanolithography applications. Ridge apertures in C, H and bowtie shapes, on the other hand, have been numerically and experimentally demonstrated to show the ability of achieving both enhanced light transmission and sub-wavelength optical resolution down to nanometer domain benefiting from the existence of waveguide propagation mode confined in the gap between the ridges. In this report, the detailed field distributions in contact nanolithography are analyzed using finite difference time domain (FDTD) simulations. It was found that the high imaging contrast, which is necessary for successful lithography, is achieved close to the mask exit plane and decays quickly with the increase of the distance from the mask exit plane. Simulations are also performed for comparable regular shaped apertures and different shape bowtie apertures. Design rules are proposed to optimize the bowtie aperture for producing a sub-wavelength, high transmission field with high imaging contrast. High resolution contact nanolithography was carried on a home constructed lithography setup. It has been experimentally demonstrated that nanoscale bowtie and C apertures can be used for contact lithography to achieve nanometer scale resolution due to its intrinsic advantages of achieving enhanced optical transmission and concentrating light far beyond the diffraction limit. It also has shown the advantages of bowtie and C apertures over conventional apertures in both

  4. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  5. Preface: Charge transport in nanoscale junctions

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  6. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    Science.gov (United States)

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  7. Magnetic field effect on chemical compositions of spherical Fe/Co fine particles synthesized from a gaseous mixture of iron pentacarbonyl and cobalt tricarbonyl nitrosyl

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Kasai, A.; Šubrt, Jan; Bastl, Zdeněk

    2009-01-01

    Roč. 206, 2-3 (2009), s. 205-212 ISSN 1010-6030 R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : gas phase photochemical reaction * aerosol particle * particle wire Subject RIV: CA - Inorganic Chemistry Impact factor: 2.553, year: 2009

  8. Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Lentini, C.J.; Waychunas, G.A.

    2008-09-15

    The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.

  9. Integrated Nanozero Valent Iron and Biosurfactant-Aided Remediation of PCB-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    He Zhang

    2016-01-01

    Full Text Available Polychlorobiphenyls (PCBs have been identified as environmental hazards for years. Due to historical issues, a considerable amount of PCBs was released deep underground in Canada. In this research, a nanoscale zero valent iron- (nZVI- aided dechlorination followed by biosurfactant enhanced soil washing method was developed to remove PCBs from soil. During nZVI-aided dechlorination, the effects of nZVI dosage, initial pH level, and temperature were evaluated, respectively. Five levels of nZVI dosage and two levels of initial pH were experimented to evaluate the PCB dechlorination rate. Additionally, the temperature changes could positively influence the dechlorination process. In soil washing, the presence of nanoiron particles played a key role in PCB removal. The crude biosurfactant was produced using a bacterial stain isolated from the Atlantic Ocean and was applied for soil washing. The study has led to a promising technology for PCB-contaminated soil remediation.

  10. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Paula S. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)], E-mail: pferreira@lnls.br; Martins, Tatiana M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil); Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); D' Souza-Li, Lilia [Laboratorio de Endocrinologia Pediatrica da Faculdade de Ciencias Medicas (FCM), UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Li, Li M. [Departamento de Neurologia da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Metze, Konradin; Adam, Randall L. [Grupo interdisciplinar ' Patologia Analitica Celular' , Departamento de Anatomia Patologica da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Knobel, Marcelo [Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); Zanchet, Daniela [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)

    2008-05-01

    The present work reports the synthesis, characterization and properties of magnetic iron oxide nanoparticles for biomedical applications, correlating the nanoscale tunabilities in terms of size, structure, and magnetism. Magnetic nanoparticles in different conditions were prepared through thermal decomposition of Fe(acac){sub 3} in the presence of 1,2 hexadecanodiol (reducing agent) and oleic acid and oleylamine (ligands) in a hot organic solvent. The 2,3-dimercaptosuccinic acid (DMSA) was exchanged onto the nanocrystal surface making the particles stable in water. Nanoparticles were characterized by X-ray diffraction (XRD) measurements, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Preliminary tests of incorporation of these nanoparticles in cells and their magnetic resonance image (MRI) were also carried out. The magnetization characterizations were made by isothermal magnetic measurements.

  11. The Effect of Time on the Stability of Iron Oxide Nanoparticles in Environmental Acids.

    Science.gov (United States)

    Rabajczyk, Anna; El Yamani, Naouale; Dusinska, Maria

    2017-05-01

      Advanced technologies seek for development of new materials and substances with extraordinary physicochemical properties at nanoscale level that boosts their increased use in everyday life. Manufacture of metal nanomaterials, including iron, carries the risk of their emission to surface waters. Suspended particulate matter (SPM) plays an important role in the transport of pollutants, such as metals which are an essential component of surface waters. The humic substances (HA), part of the SPM, interact with metal ions present in the aquatic environment. However, the previously available data on these compounds were obtained at the macro level and only scant information exist on nanomaterials. Thus, the present work has focused on the relationship between humic substances and nanosized particles, such as n-Fe2O3, in environmental acids.

  12. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications

    International Nuclear Information System (INIS)

    Haddad, Paula S.; Martins, Tatiana M.; D'Souza-Li, Lilia; Li, Li M.; Metze, Konradin; Adam, Randall L.; Knobel, Marcelo; Zanchet, Daniela

    2008-01-01

    The present work reports the synthesis, characterization and properties of magnetic iron oxide nanoparticles for biomedical applications, correlating the nanoscale tunabilities in terms of size, structure, and magnetism. Magnetic nanoparticles in different conditions were prepared through thermal decomposition of Fe(acac) 3 in the presence of 1,2 hexadecanodiol (reducing agent) and oleic acid and oleylamine (ligands) in a hot organic solvent. The 2,3-dimercaptosuccinic acid (DMSA) was exchanged onto the nanocrystal surface making the particles stable in water. Nanoparticles were characterized by X-ray diffraction (XRD) measurements, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Preliminary tests of incorporation of these nanoparticles in cells and their magnetic resonance image (MRI) were also carried out. The magnetization characterizations were made by isothermal magnetic measurements

  13. Surface Chemistry in Nanoscale Materials

    Science.gov (United States)

    Biener, Jürgen; Wittstock, Arne; Baumann, Theodore F.; Weissmüller, Jörg; Bäumer, Marcus; Hamza, Alex V.

    2009-01-01

    Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  14. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza

    2009-12-01

    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  15. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  16. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  17. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  18. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    The nano iron oxides have been synthesized by almost all the known wet chemical methods which include precipitation at ambient/elevated temperatures, surfactant mediation, emulsion/micro-emulsion, electro-deposition etc. Iron oxides in nano-scale have exhibited great potential for their applications as catalytic ...

  19. Nanoscale alterations of corneocytes indicate skin disease

    DEFF Research Database (Denmark)

    Franz, J; Beutel, M; Gevers, K

    2016-01-01

    , we extended the phenotypic perspective down to the nanoscale. METHODS: Corneocyte samples were obtained non-invasively by a standard tape stripping procedure from 21 indviduals. Scanning electron (SEM) and atomic force microcopy (AFM) were used to record nanoscale topography. Circular nano...

  20. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  1. Synthesis and in vacuo deposition of iron oxide nanoparticles by microplasma-assisted decomposition of ferrocene

    International Nuclear Information System (INIS)

    Schaefer, Michael; Kumar, Ajay; Mohan Sankaran, R.; Schlaf, Rudy

    2014-01-01

    Microplasma-assisted gas-phase nucleation has emerged as an important new approach to produce high-purity, nanometer-sized, and narrowly dispersed particles. This study aims to integrate this technique with vacuum conditions to enable synthesis and deposition in an ultrahigh vacuum compatible environment. The ultimate goal is to combine nanoparticle synthesis with photoemission spectroscopy-based electronic structure analysis. Such measurements require in vacuo deposition to prevent surface contamination from sample transfer, which can be deleterious for nanoscale materials. A homebuilt microplasma reactor was integrated into an existing atomic layer deposition system attached to a surface science multi-chamber system equipped with photoemission spectroscopy. As proof-of-concept, we studied the decomposition of ferrocene vapor in the microplasma to synthesize iron oxide nanoparticles. The injection parameters were optimized to achieve complete precursor decomposition under vacuum conditions, and nanoparticles were successfully deposited. The stoichiometry of the deposited samples was characterized in situ using X-ray photoelectron spectroscopy indicating that iron oxide was formed. Additional transmission electron spectroscopy characterization allowed the determination of the size, shape, and crystal lattice of the particles, confirming their structural properties.

  2. CEMS and XRD studies on changing shape of iron nano-particles by irradiation of Au ions of Fe-implanted Al2O3 granular layer

    International Nuclear Information System (INIS)

    Kato, T.; Wakabayashi, H.; Hashimoto, M.; Toriyama, T.; Taniguchi, S.; Hayashi, N.; Sakamoto, I.

    2007-01-01

    In order to observe an inverse Ostwald ripening of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers, 3 MeV Au ions were irradiated to Fe nano-particles in these layers with doses of 0.5x and 1.5x10 16 ions/cm 2 . It was found by Conversion Electron Mossbauer Spectroscopy (CEMS) that the inverse Ostwald ripening occurred by fractions of percentages and the magnetic anisotropy of Fe nano-particles was induced to the direction of Au ion beam, i.e. perpendicular to the granular plane. The average crystallite diameters of Fe nano-particles for Au ions unirradiated and irradiated samples were measured using Scherrer's formula from FWHM of Fe (110) X-ray Diffraction (XRD) patterns obtained by 2θ and 2θ/θ methods. It was confirmed that the average crystallite diameters of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers were extended by Au ions irradiation. (author)

  3. Effect of mechanical milling on particle size, magnetic susceptibility and dielectric of synthetic toner colorant magnetite extracted from Indonesian iron sand

    Science.gov (United States)

    Zulaikah, S.; Mufti, N.; Fuad, A.; Dwi, L. D.

    2014-09-01

    As a colorant and additive substance for toner, magnetite (Fe3O4) has become main mineral that can produce electrical charge on printing process. In this research, we reports the effect of mechanical milling time to magnetic susceptibility, morphology and dielectric properties of synthetic toner The standard of the grain size of toner including of magnetite dissolved, are ranged from 2 to 10 micron or less, depending on the kind of toner. The results of this research show that the average of particle size decreases from 15μm to 5 μm by milling time between 6 hour to 9 hour and almost constant up to 12 hour. The magnetic susceptibility of the sample decreases as decreasing particle size, while the dielectric constant increases as decreasing particle size.

  4. Nanoscale cryptography: opportunities and challenges.

    Science.gov (United States)

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  5. Nanoscale biophysics of the cell

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  6. Ion Discrimination by Nanoscale Design

    Science.gov (United States)

    Rempe, Susan; Rogers, David

    2013-03-01

    Proteins that form membrane-spanning channels excel at discriminating between molecules on the basis of subtle structural and chemical differences. For example, some channels distinguish between water and ions; others between Na+ (sodium) and K+ (potassium) despite identical charges and only sub-Angstrom differences in size. If we could understand these structure/function relationships, we could potentially harness biological design principles in robust nanoscale devices that mimic biological function for efficient separations. Using ab initio molecular simulations, we have interrogated the link between channel structure and selective transport, both in cellular channels and polymer membranes. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites, as well as the coordination chemistry of the binding site for raising or lowering the free energy barrier to transport in both systems. Support for Sandia Laboratory Research & Development Program is gratefully acknowledged.

  7. Rational control of nano-scale metal-catalysts for biomass conversion.

    Science.gov (United States)

    Wang, Yunzhu; De, Sudipta; Yan, Ning

    2016-05-07

    Nano-scale metal particles have huge potential due to their wide range of diverse catalytic applications. Recently, they have found numerous applications in the field of biomass conversion. The proposed contribution is aimed at providing a brief account of remarkable recent findings and advances in the design of metal-based nanocatalysts for biomass valorization. We have discussed the rational control of the size, shape, composition and surface properties of nano-scale metal catalysts. Following that, the interplay between various structural parameters and the catalytic properties in the transformation of cellulose, chitin, lignin and lipids has been critically discussed.

  8. Removal of both dissolved and particulate iron from groundwater

    OpenAIRE

    H. van Dijk; H. Leijssen; L. Rietveld; A. Abrahamse; K. Teunissen

    2008-01-01

    Iron is the primary source for discolouration problems in the drinking water distribution system. The removal of iron from groundwater is a common treatment step in the production of drinking water. Even when clear water meets the drinking water standards, the water quality in the distribution system can deteriorate due to settling of iron (hydroxide) particles or post-treatment flocculation of dissolved iron. Therefore it is important to remove dissolved and particulate iron to a large exten...

  9. Adsorption of surfactants and polymers on iron oxides:implications for flotation and agglomeration of iron ore

    OpenAIRE

    Potapova, Elisaveta

    2011-01-01

    Iron ore pellets are an important refined product used as a raw material in the production of steel. In order to meet the requirements of the processes for iron production, the iron ore is upgraded in a number of steps including, among others, reverse flotation. Under certain circumstances the flotation collector may inadvertently adsorb on the iron ore particles increasing the hydrophobicity of the iron ore concentrate, which in turn has been shown to have an adverse effect on pellet strengt...

  10. Iron refractory iron deficiency anemia

    Science.gov (United States)

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  11. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    Science.gov (United States)

    2014-03-27

    records the count rate of particles emitted by the source during each measurement. In 1984, a boron -lined proportional counter reportedly served as...of only 6 Li and 127 I. This was based upon the MCNP4 input used by Mares and Schraube [29] and provides a set of isotopes with cross sections

  12. Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging.

    Science.gov (United States)

    Tetienne, Jean-Philippe; Lombard, Alain; Simpson, David A; Ritchie, Cameron; Lu, Jianing; Mulvaney, Paul; Hollenberg, Lloyd C L

    2016-01-13

    Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.

  13. Magnetic study of iron sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, F.J. E-mail: osoro@posta.unizar.es; Larrea, A.; Abadia, A.R.; Romero, M.S

    2002-09-01

    A magnetic study of iron sorbitol, an iron-containing drug to treat the iron deficiency anemia is presented. Transmission electron microscopy reveals that the system contains nanometric particles with an average diameter of 3 nm whose composition is close to two-line ferrihydrite. The characterisation by magnetisation and AC susceptibility measurements indicates superparamagnetic behaviour with progressive magnetic blocking starting at 8 K. The quantitative analysis of the magnetic results indicates that the system consists of an assembly of very small magnetic moments, presumably originated by spin uncompensation of the antiferromagnetic nanoparticles, with Arrhenius type magnetic dynamics.

  14. PREFACE: Nanoscale science and technology

    Science.gov (United States)

    Bellucci, Stefano

    2008-11-01

    , nanopowders) were discussed. Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches were illustrated by Yu F Zhukovskii. M B Muradov talked about nanoparticles of cadmium selenide and cadmium sulfide, which yield one of the perspective materials for application to solar cell elements, high-speed computing systems, catalyses and biomarkers in medicine. In the presentation, the process of transformation of nanoparticles cadmium of sulfide to nanoparticles of cadmium selenide by an ionic exchange from solutions of electrolytes was considered. The size of particles was controlled by the quantity of growth cycles. After manufacturing, the structures were investigated by atomic force microscope (AFM). Structures CdS:polymer transformed into CdSe:polymer with the help of ion-exchange. For the realization of the process of ionic exchange, solutions were prepared containing bivalent ions of selenium as follows: NaBH4 and Se in a weight parity 2:1 added in water 4NaBH4+2Se+7H2O→2NaHSe+Na2B4O7+14H2 In the prepared solution nanostructures CdS:polymer were immersed. Time of endurance was 2 h. After an ionic exchange the obtained structures were investigated by means of EDAX on a chemical composition. Results of analyses have shown that atoms of sulfur are completely replaced by selenium. The band gap of nanoparticles in comparison with initial samples is displaced in the long-wave area. It is connected with the fact that the width of the band gap of bulk crystals CdSe (1.74 eV) is smaller than the band gap of CdS (2.42 eV). Optical microscopy with spatial resolution beyond the diffraction limit obtained by using near field techniques was the subject of S Prato's talk. Scanning near field optical microscopy (SNOM) has developed into a powerful tool to investigate local optical properties that depend on heterogeneity of materials at nanoscale and to study nanoenvironment of biosystems. Crucial topics in SNOM are: force sensitivity and

  15. Development of Nanoscale Graphitic Devices and The Transport Characterization

    International Nuclear Information System (INIS)

    Gunasekaran, Venugopal

    2011-02-01

    This dissertation describes the development of graphitic based nanoscale devices with its fabrication and transport characterization results. It covers graphite nano-scale stacked-junctions fabricated using focused ion beam (FIB) 3-D etching technique, a single layer graphite layer (graphene) preparation and its electrical transport characterization results and the synthesis and investigation of electrical transport behavior of graphene oxide based thin film devices. The first chapter describes the basic information about the carbon family in detail in which the electronic properties and structure of graphite, graphene and graphene oxide are discussed. In addition, the necessity of developing nanoscale graphitic devices is given. The second chapter explains the experimental techniques used in this research for fabricating nanoscale devices which includes focused ion beam 3-D fabrication procedures, mechanical exfoliation technique and photolithographic methods. In third chapter, we have reported the results on temperature dependence of graphite planar-type structures fabricated along ab-plane. In the fourth and fifth chapters, the fabrication and electrical transport characteristics of large in-plane area graphite planar-type structures (fabricated along ab-plane and c-axis) were discussed and their transport anisotropy properties were investigated briefly. In the sixth chapter, we focused the fabrication of the submicron sized graphite stacked junctions and their electrical transport characterization studies. In which, FIB was used to fabricated the submicron junctions with various in-plane area (with same stack height) are and their transport characteristics were compared. The seventh chapter reports investigation of electrical transport results of nanoscale graphite stacked-junctions in which the temperature dependent transport (R-T) studies, current-voltage measurements for the various in-plane areas and for various stack height samples were analyzed. The

  16. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  17. Reductive transformation of profenofos with nanoscale Fe/Ni particles.

    Science.gov (United States)

    Tariq, Saadia Rashid; Nisar, Laiba

    2018-02-07

    Profenofos is an abundantly used organophosphate pesticide in agriculture but its excessive use may lead to hazardous effects on environment. Thus, the present study focused on the reductive transformation of this pesticide in the presence of Fe/Ni bimetallic nanoparticles by optimizing the process parameters such as stirring time, nanoparticles dose, pH, and initial pesticide concentration. The results of reductive transformation were compared with photodegradation studies. It was found that with the increase in UV irradiation time, the percent degradation was increased. After 660 min, a 78% photodegradation of 100 μM solution of pesticide was observed. On increasing the initial pesticide concentration to 200 μM, the maximum degradation was achieved in 570 min, but here, only 73% degradation was observed. The rates of photodegradation observed with 100 to 400 μM solutions were 1.4 × 10 -3 , 1.5 × 10 -3 , 1.5 × 10 -3 , and 5 × 10 -4  min -1 respectively.In case of reductive transformation carried out in the presence of Fe/Ni bimetallic nanoparticles, the degradation was observed to be increased from 78 to 93.9% in only 180 min. A further increase in pesticide concentration led to a decrease in degradation. Under these conditions, the rate of reaction was found to be 1.09 × 10 -2  min -1 . A 93% degradation of profenofos was further increased to 98% when the quantity of nanoparticles was increased twice; hence, a significant reduction in time of irradiation was observed. Reductive transformation of pesticide thus provided an efficient and cheaper method for reducing the burden of profenofos from the environment.

  18. Chaotic behavior appearing in dynamic motions of nanoscale particles

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M [Innovation Plaza Tokai, Japan Science and Technology Agency, 23-1 Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan); Harada, R [Department of Physics, Aichi University of Education, Hirosawa 1, Igaya-cho, Kariya 448-8542 (Japan); Kato, M [Innovation Plaza Tokai, Japan Science and Technology Agency, 23-1 Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan); Sasaki, N [Department of Applied Physics, Faculty of Science and Engineering, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Miura, K [Innovation Plaza Tokai, Japan Science and Technology Agency, 23-1 Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan)

    2007-11-15

    The case of one-directional motion, under which graphite and mica flakes are driven on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. The dynamical forces needed to move these bodies increase linearly with the logarithm of scanning velocity, which are typical energy dissipation process. A transition from quasi-periodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid. On the other hand, there do not appear chaotic motions in the dynamics of a mica flake because the contact area between a mica flake and an OMCTS liquid surface is larger than that between a graphite flake and an OMCTS liquid surface.

  19. Chaotic behavior appearing in dynamic motions of nanoscale particles

    International Nuclear Information System (INIS)

    Ishikawa, M; Harada, R; Kato, M; Sasaki, N; Miura, K

    2007-01-01

    The case of one-directional motion, under which graphite and mica flakes are driven on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. The dynamical forces needed to move these bodies increase linearly with the logarithm of scanning velocity, which are typical energy dissipation process. A transition from quasi-periodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid. On the other hand, there do not appear chaotic motions in the dynamics of a mica flake because the contact area between a mica flake and an OMCTS liquid surface is larger than that between a graphite flake and an OMCTS liquid surface

  20. Chaotic behavior appearing in dynamic motions of nanoscale particles

    Science.gov (United States)

    Ishikawa, M.; Harada, R.; Kato, M.; Sasaki, N.; Miura, K.

    2007-11-01

    The case of one-directional motion, under which graphite and mica flakes are driven on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. The dynamical forces needed to move these bodies increase linearly with the logarithm of scanning velocity, which are typical energy dissipation process. A transition from quasi-periodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid. On the other hand, there do not appear chaotic motions in the dynamics of a mica flake because the contact area between a mica flake and an OMCTS liquid surface is larger than that between a graphite flake and an OMCTS liquid surface.

  1. Towards Nanoscale Biomedical Devices in Medicine

    DEFF Research Database (Denmark)

    Parracino, A.; Gajula, G.P.; di Gennaro, A.K.

    2011-01-01

    Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report ...

  2. Nanoscale Vacuum Electronics: Back to the Future?

    Data.gov (United States)

    National Aeronautics and Space Administration — This CIF project developed nanoscale vacuum devices for potential radiation-immune electronics ideal for space applications. Vacuum is superior to any semiconductor...

  3. Nanoscale Architectures for Energy Applications

    Science.gov (United States)

    Wong, Stanislaus

    2009-03-01

    In my group, we have developed a number of different potential architecture systems for gaining insights into energy storage and photovoltaics. In one manifestation of our efforts, generating a heterojunction comprising nanotubes and nanocrystals, externally bound and connected, has been significant. The unique, innovative, and important aspect of this particular nanoscale architecture is that it takes advantage of the tunability, in terms of size, shape, and chemistry, of nanotubes and nanocrystals, to create a sharp junction interface, whose properties are inherently manipulable, tailorable, and hence, predictable. For example, the electrical resistance of nanotube-nanoparticle networks is dependent on the nanoscale junctions that exist between these constituent nanomaterials as well as on microscale and macroscale connectivity. Thus, rational design of these nanomaterials is critical to a fundamental understanding of charge transport in single molecules and the determination of their conductance. Results on these systems can therefore be used to increase understanding of intrinsic factors affecting carrier mobility, such as electronic structure, carrier trapping, and delocalization. In a second manifestation, three-dimensional, dendritic micron- scale spheres of alkali metal hydrogen titanate 1D nanostructures (i.e.: nanowires and nanotubes) have been generated using a modified hydrothermal technique in the presence of hydrogen peroxide and an alkali metal hydroxide solution. Sea-urchin-like assemblies of these 1D nanostructures have been transformed into their hydrogen titanate analogues by neutralization as well as into their corresponding semiconducting, anatase titania nanostructured counterparts through a moderate high-temperature annealing dehydration process without destroying the 3D hierarchical structural motif. The as-prepared hollow spheres of titanate and titania 1D nanostructures have overall diameters, ranging from 0.8 μm to 1.2 μm, while the

  4. Magnetic Properties of Molecular and Nanoscale Magnets

    OpenAIRE

    Krupskaya, Yulia

    2011-01-01

    The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and op...

  5. High-performance planar nanoscale dielectric capacitors

    OpenAIRE

    Ciraci, S.; Özçelik, V. Ongun

    2016-01-01

    We propose a model for planar nanoscale dielectric capacitor consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene - BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from othe...

  6. Nanoscale Inhomogeneous Superconductivity in Fe(Te1-xSex) Probed by Nanostructure Transport.

    Science.gov (United States)

    Yue, Chunlei; Hu, Jin; Liu, Xue; Sanchez, Ana M; Mao, Zhiqiang; Wei, Jiang

    2016-01-26

    Among iron-based superconductors, the layered iron chalcogenide Fe(Te1-xSex) is structurally the simplest and has attracted considerable attention. It has been speculated from bulk studies that nanoscale inhomogeneous superconductivity may inherently exist in this system. However, this has not been directly observed from nanoscale transport measurements. In this work, through simple micromechanical exfoliation and high-precision low-energy ion milling thinning, we prepared Fe(Te0.5Se0.5) nanoflakes with various thicknesses and systematically studied the correlation between the thickness and superconducting phase transition. Our result revealed a systematic thickness-dependent evolution of superconducting transition. When the thickness of the Fe(Te0.5Se0.5) flake is reduced to less than the characteristic inhomogeneity length (around 12 nm), both the superconducting current path and the metallicity of the normal state in Fe(Te0.5Se0.5) atomic sheets are suppressed. This observation provides the first transport evidence for the nanoscale inhomogeneous nature of superconductivity in Fe(Te1-xSex).

  7. Analytical TEM investigations of nanoscale magnetic materials

    International Nuclear Information System (INIS)

    Meingast, A.

    2015-01-01

    Analytical transmission electron microscopy has been applied within this thesis to investigate several novel approaches to design and fabricate nanoscale magnetic materials. As the size of the features of interest rank in the sub-nanometer range, it is necessary to employ techniques with a resolution – both spatial and analytical – well below this magnitude. Only at this performance level it is possible to examine material properties, necessary for the further tailoring of materials. Within this work two key aspects have been covered: First, analytical TEM (transmission electron microscopy) investigations were carried out to get insight into novel magnetic materials with high detail. Second, new analytical and imaging possibilities enabled with the commissioning of the new ASTEM (Austrian scanning transmission electron microscope) were explored. The aberration corrected TITAN® microscope (© FEI Company) allows resolving features in scanning transmission mode (STEM) with 70 pm distance. Thereby, direct imaging of light elements in STEM mode by using the annular bright field method becomes possible. Facilitated through high beam currents within the electron probe, an increased acquisition speed of analytical signals is possible. For energy dispersive X-ray spectroscopy (EDXS) a new four detector disc geometry around the specimen was implemented, which increases the accessible collection angle. With the integration of the latest generation of image filter and electron spectrometer (GIF QuantumERS), electron energy loss spectroscopy (EELS) is boosted through the high acquisition speed and the dual spectroscopy mode. The high acquisition speed allows to record up to 1000 spectra per second and the possibility to record atomically resolved EELS maps is at hand. Hereby it is important to avoid beam damage and alteration of the material during imaging and analysis. With the simultaneous acquisition of the low and the high loss spectral region, an extended range for

  8. Molecular Photovoltaics in Nanoscale Dimension

    Directory of Open Access Journals (Sweden)

    Andrei V. Pakoulev

    2011-01-01

    Full Text Available This review focuses on the intrinsic charge transport in organic photovoltaic (PVC devices and field-effect transistors (SAM-OFETs fabricated by vapor phase molecular self-assembly (VP-SAM method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures.

  9. Molecular photovoltaics in nanoscale dimension.

    Science.gov (United States)

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V

    2011-01-05

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures.

  10. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sarah; Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, POB 11365-4563, Tehran (Iran, Islamic Republic of)

    2010-02-15

    A novel continuous process is used for production of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CVD) of methane on iron floating catalyst in situ deposited on MgO in a fluidized bed reactor. In the hot zone of the reactor, sublimed ferrocene vapors were contacted with MgO powder fluidized by methane feed to produce Fe/MgO catalyst in situ. An annular tube was used to enhance the ferrocene and MgO contacting efficiency. Multi-wall as well as single-wall CNTs was grown on the Fe/MgO catalyst while falling down the reactor. The CNTs were continuously collected at the bottom of the reactor, only when MgO powder was used. The annular tube enhanced the contacting efficiency and improved both the quality and quantity of CNTs. The SEM and TEM micrographs of the products reveal that the CNTs are mostly entangled bundles with diameters of about 10-20 nm. Raman spectra show that the CNTs have low amount of amorphous/defected carbon with I{sub G}/I{sub D} ratios as high as 10.2 for synthesis at 900 deg. C. The RBM Raman peaks indicate formation of single-walled carbon nanotubes (SWNTs) of 1.0-1.2 nm diameter.

  11. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    International Nuclear Information System (INIS)

    Ogawa, T.; Morev, M.N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  12. Ratcheted electrophoresis of Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Kowalik, Mikołaj; Bishop, Kyle J. M., E-mail: kjmbishop@engr.psu.edu [Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-05-16

    The realization of nanoscale machines requires efficient methods by which to rectify unbiased perturbations to perform useful functions in the presence of significant thermal noise. The performance of such Brownian motors often depends sensitively on their operating conditions—in particular, on the relative rates of diffusive and deterministic motions. In this letter, we present a type of Brownian motor that uses contact charge electrophoresis of a colloidal particle within a ratcheted channel to achieve directed transport or perform useful work against an applied load. We analyze the stochastic dynamics of this model ratchet to show that it functions under any operating condition—even in the limit of strong thermal noise and in contrast to existing ratchets. The theoretical results presented here suggest that ratcheted electrophoresis could provide a basis for electrochemically powered, nanoscale machines capable of transport and actuation of nanoscale components.

  13. Techniques and instruments used for real-time analysis of atmospheric nanoscale molecular clusters: A review

    Directory of Open Access Journals (Sweden)

    Xue Li

    2015-11-01

    Full Text Available The extremely high concentrations of PM2.5 (particulate matter with an aerodynamic meter ≤ 2.5 μm during severe and persistent haze events in China have been closely related to the formation of secondary aerosols (SA. New particle formation (NPF is the critical initial step of SA formation. New particles are commonly formed from gas-phase precursors (e.g., SO2, volatile organic compounds via nucleation and initial growth, in which molecular clusters with a mobility diameter smaller than 3 nm (hereafter referred to nanoscale molecular clusters will be involved throughout the whole process. Recently, significant breakthroughs have been obtained on NPF studies, which are mostly attributed to the technical development in the real-time analysis of size-resolved number concentration and chemical composition of nanoscale molecular clusters. Regarding the detection of size-resolved number concentrations of nanoscale molecular clusters, both methods and instruments have been well built up; practical application in laboratory-scale experiments and field measurements have also been successfully demonstrated. In contrast, real-time analysis of chemical composition of nanoscale molecular clusters has still encountered the great challenges caused by the complex organic compositions of the clusters, and improvement of present analytical strategies is urgently required. The better understanding in NPF will not only benefit the atmospheric modeling and climate predictions but also the source control of SA.

  14. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging

    International Nuclear Information System (INIS)

    Pedersen, Michael; Aarhus Univ.; Univ. Victor Segalen Bordeaux 2; Laustsen, Christoffer; Perot, Vincent; Grenier, Nicolas; Basseau, Fabrice; Moonen, Chrit

    2010-01-01

    Mild or severe renal arterial occlusion is a phenomenon occasionally observed in daily clinical practice, potentially leading to renal ischemia and a general impairment of renal function. Secondly, closing the blood flow to the kidneys can also occur during kidney transplantation procedures. However, the exact physiological effects of these conditions on renal blood perfusion as well as the renal oxygen handling are poorly understood. The objectives of this study were therefore to measure the lateral changes of renal blood perfusion in rats subjected to transient unilateral arterial occlusion (RAS), and in addition, to measure the consequences on the intrarenal oxygenation. Experimental studies were performed using sixteen adolescent rats. The left renal artery was exposed through a flank incision and acute RAS for 45 min was achieved by placing a ligature around the renal artery. MRI was performed 3 days after the surgical procedure, where a blood oxygenation sensitive sequence (BOLD MRI) was performed, followed by a perfusion-weighted imaging sequence using a single bolus of the iron-oxide nanoparticle Sinerem. The renal oxygenation of blood was indirectly measured by the BOLD-parameter R2 * , and perfusion measures include relative renal blood flow, relative renal blood volume and mean transit time. Histopathologic changes through the outer stripe of the outer medulla showing typical histopathologic findings of ischemia. This study demonstrated that rats with transient renal arterial stenosis (for 45 min) showed a reduction in intrarenal oxygenation and intrarenal blood flow three days after the surgical procedure. A decreased R2 * was measured within the ipsilateral medulla in parallel with a decreased medullary blood flow, is probably related to a lower reabsorption load within the ipsilateral kidney. MRI may therefore be a promising tool in long-term evaluation of RAS. (orig.)

  15. Sedimentary particulate iron: the missing micronutrients ?

    Science.gov (United States)

    Beghoura, Houda; Gorgues, Thomas; Aumont, Olivier; Planquette, Hélène

    2017-04-01

    Iron is known to regulate the marine primary production and to impact the structure of ecosystems. Indeed, iron is the limiting nutrient for the phytoplankton growth over about 30% of the global ocean. However, the nature of the external sources of iron to the ocean and their quantification remain uncertain. Among these external sources, the sediment sources have been recently shown to be underestimated. Besides, since the operationally defined dissolved iron (which is the sum of truly dissolved and colloidal iron) was traditionally assumed to be the only form available to phytoplankton and bacteria, most studies have focused on the supply of dissolved iron to the ocean, the role of the particulate fraction of iron being largely ignored. This traditional view has been recently challenged, noticeably, by observational evidences. Indeed, in situ observations have shown that large amounts of particulate iron are being resuspended from continental margins to the open ocean thanks to fine grained particles' transport over long distances. A fraction of this particulate iron may dissolve and thereby fuel the phytoplankton growth. The magnitude of the sedimentary sources of particulate iron and the releasing processes affecting this iron phase are not yet well constrained or quantified. As a consequence, the role of sedimentary particulate iron in the biogeochemical cycles is still unclear despite its potentially major widespread importance. Here, we propose a modeling exercise to assess the first order impacts of this newly considered particulate sedimentary iron on global ocean biogeochemistry. We designed global experiments with a coupled dynamical-biogeochemical model (NEMO-PISCES). First, a control simulation that includes only a sediment source of iron in the dissolved phase has been run. Then, this control simulation is being compared with simulations, in which we include a sediment source of iron in both phases (dissolved as well as particulate). Those latter

  16. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    CERN Document Server

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  17. Attosecond physics at the nanoscale.

    Science.gov (United States)

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10 -18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  18. Sorption of PAHs to humic acid- and iron(III)carbon ate particles by using passive dosing vials for investigating the transport of organic contamination in stormwater runoff

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mikkelsen, Peter Steen; Baun, Anders

    2013-01-01

    During the last decades, the growing urbanisation a nd increasing anthropogenic activities in urban areas have turned urban stormwater runoff int o a surface water quality contamination problem. The concerns of urban stormwater runoff as a source of contamination in the receiving surface water...... (lakes, rivers or sea) have been raised by researchers throughout the world (e.g. Broman et. al., 1987, and Xanthopoulos et. al., 1990), and have in Europe gained increased interest in relation to the implementatio n of the Water Framework Directive (WFD, 2000/60/EC). Particles (often defined as >0.45 μm...... abundance, and knowledge about their facilitated transport of persistent organic polluti on in natural waters, they are likely to diminish the efficiency of engineered treatment sys tems unless appropriately accounted for. In this work organic and inorganic nanosized partic les were investigated...

  19. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy

    Science.gov (United States)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang

    2017-12-01

    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  20. Nanoscale hierarchical optical interactions for secure information

    Directory of Open Access Journals (Sweden)

    Tate Naoya

    2016-12-01

    Full Text Available There is increasing demand for novel physical security that can differentiate between real and false specific artifact that have been added to bank bills, certifications, and other vouchers. The most simple and effective method for improving the security level is to scale down the elemental structures so that they cannot be duplicated by attackers. While there is a paradox that the achieved fabrication resolution by a defender can also be realized by an attacker, further improvement in security is possible by the functional fusion of artifact metrics and nanophotonics. The fundamental advantages of this concept are the high-level clone resistance and individuality of nanoscale artifacts, which are based on the super-resolution fabrication and nanoscale hierarchical structure of optical near-field interactions, respectively. In this paper, the basis for the fabrication of nanoscale artifacts by utilizing random phenomena is described, and a quantitative evaluation of the security level is presented. An experimental demonstration using a nano-/macro-hierarchical hologram is presented to demonstrate the fundamental procedure for retrieving nanoscale features as hidden information. Finally, the concept and a simple demonstration of non-scanning probe microscopy are described as a practical application of the retrieval and authentication of nanoscale artifact metrics.

  1. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  2. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    International Nuclear Information System (INIS)

    Hilty, F M; Hurrell, R F; Zimmermann, M B; Teleki, A; Buechel, R; Pratsinis, S E; Krumeich, F

    2009-01-01

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe 2 O 4 ) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  3. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    Science.gov (United States)

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  4. Effectiveness of hand washing on the removal of iron oxide nanoparticles from human skin ex vivo.

    Science.gov (United States)

    Lewinski, Nastassja A; Berthet, Aurélie; Maurizi, Lionel; Eisenbeis, Antoine; Hopf, Nancy B

    2017-08-01

    In this study, the effectiveness of washing with soap and water in removing nanoparticles from exposed skin was investigated. Dry, nanoscale hematite (α-Fe 2 O 3 ) or maghemite (γ-Fe 2 O 3 ) powder, with primary particle diameters between 20-30 nm, were applied to two samples each of fresh and frozen ex vivo human skin in two independent experiments. The permeation of nanoparticles through skin, and the removal of nanoparticles after washing with soap and water were investigated. Bare iron oxide nanoparticles remained primarily on the surface of the skin, without penetrating beyond the stratum corneum. Skin exposed to iron oxide nanoparticles for 1 and 20 hr resulted in removal of 85% and 90%, respectively, of the original dose after washing. In the event of dermal exposure to chemicals, removal is essential to avoid potential local irritation or permeation across skin. Although manufactured at an industrial scale and used extensively in laboratory experiments, limited data are available on the removal of engineered nanoparticles after skin contact. Our finding raises questions about the potential consequences of nanoparticles remaining on the skin and whether alternative washing methods should be proposed. Further studies on skin decontamination beyond use of soap and water are needed to improve the understanding of the potential health consequences of dermal exposure to nanoparticles.

  5. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  6. Quantitative nanoscale electrostatics of viruses.

    Science.gov (United States)

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-07

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.

  7. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many...... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....

  8. Development of Nanoscale Ceramics for Advanced Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Leffler; Joseph Helble

    1999-09-30

    Bulk structures of unstabilized ZrO{sub 2-x}, with x in the range of 0 {<=} x {<=} 0.44, at ambient pressure have been found to exist in three different structures. (monoclinic, tetragonal and cubic.). At ambient temperature and elevated pressures above 3.5 GPa, unstabilized zirconia at these same compositions is found as a fourth phase, the orthorhombic phase. Work done in this project has demonstrated that nanoscale zirconia particles containing the orthorhombic phase in addition to amorphous material can be produced through solgel methods. Extensive characterization of this material including recent high temperature x-ray diffraction work has indicated that the structure of the synthesized zirconia appears to be linked to the oxygen vacancy population in the material, and that water appears to be a critical factor in determining the type of material formed during synthesis. These results suggest that surface energy alone is not the controlling factor in determining crystal phase.

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, ... can help prevent overdosing in children. Because recent research supports concerns that iron deficiency during infancy and ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. ... other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  13. Iron-Deficiency Anemia

    Science.gov (United States)

    ... Home / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drawings also can cause iron-deficiency anemia. Poor Diet The best sources of iron are meat, poultry, ... more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat the ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... The best sources of iron are meat, poultry, fish, and iron-fortified foods (foods that have iron ... you: Follow a diet that excludes meat and fish, which are the best sources of iron. However, ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  1. Iron-Deficiency Anemia

    Science.gov (United States)

    ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. ... Treatment may need to be done in a hospital. The goals of treating iron-deficiency anemia are ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat sources ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...