WorldWideScience

Sample records for nanoscale drug carriers

  1. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang; Abu Samra, Dina Bashir Kamil; Merzaban, Jasmeen; Khashab, Niveen M.

    2013-01-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug

  2. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  3. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    Science.gov (United States)

    Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.

    2013-04-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  4. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    International Nuclear Information System (INIS)

    Stoika, R; Boiko, N; Panchuk, R; Filyak, Y; Senkiv, Y; Finiuk, N; Shlyakhtina, Y; Bilyy, R; Kit, Y; Skorohyd, N; Klyuchivska, O; Zaichenko, A; Mitina, N; Ryabceva, A

    2013-01-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  5. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  6. Nanoscale drug delivery for targeted chemotherapy.

    Science.gov (United States)

    Xin, Yong; Huang, Qian; Tang, Jian-Qin; Hou, Xiao-Yang; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan

    2016-08-28

    Despite significant improvements in diagnostic methods and innovations in therapies for specific cancers, effective treatments for neoplastic diseases still represent major challenges. Nanotechnology as an emerging technology has been widely used in many fields and also provides a new opportunity for the targeted delivery of cancer drugs. Nanoscale delivery of chemotherapy drugs to the tumor site is highly desirable. Recent studies have shown that nanoscale drug delivery systems not only have the ability to destroy cancer cells but may also be carriers for chemotherapy drugs. Some studies have demonstrated that delivery of chemotherapy via nanoscale carriers has greater therapeutic benefit than either treatment modality alone. In this review, novel approaches to nanoscale delivery of chemotherapy are described and recent progress in this field is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin

    Science.gov (United States)

    Sivakumar, P.; Priyatharshni, S.; Nagashanmugam, K. B.; Thanigaivelan, A.; Kumar, K.

    2017-08-01

    In recent years nanoscale metal-organic frameworks (NMOFs) are contributing as an effective material for use in drug delivery and imaging applications due to their porous surfaces and easy surface modifications. In this work, Fe-MIL-88B-NH2 NMOFs were successfully synthesized on facile hydrothermal route and 2-aminoterephthalic acid (NH2-BDC) was employed as a bridging ligand to activate amine functional groups on the surface. Amine functional groups not only serve as a structure stabilizing agent but also enhance the loading efficiency of the doxorubicin (DOX) anticancer drug. A pH responsive DOX release was realized by introducing a positively charged chitosan (Chi) capping layer. Upon Chi-coating, cleavage was observed in the Fe-MIL-88B-NH2 structure at acidic pH, while gel-like insoluble structure was formed at basic pH. By utilizing this phenomenon, a pH responsive DOX release system was developed by using Chi capped Fe-MIL-88B-NH2 NMOFs under the designed pH (4.0-8.0). The results suggest the Chi capped Fe-MIL-88B-NH2 can be a promising candidate for future pH responsive drug delivery systems.

  8. Choosing mineral carrier of nanoscale additives for asphalt concrete

    Directory of Open Access Journals (Sweden)

    Inozemtsev Sergey Sergeevich

    2014-03-01

    Full Text Available At present time the operation life of the majority of roads is essentially shorter than required. The reason for it is the increase in traffic intensity and axle loads of automobile transport. The obvious reasons for early wear of roads are the low quality of the components used and low industrial standards while producing asphalt pavement. In this paper the mineral material was selected as a carrier of nanoscale additives for asphalt. The optimal modes for grinding mineral materials were identified, which provide correspondence of their structure parameters with the developed model. The influence of different mineral nanomodifier carriers on the structure formation processes was estimated. It is shown that among a number of mineral materials diatomite has high activity in relation to the bitumen, because it has a highly porous structure. It is also shown that as a result of lighter fractions of bitumen adsorption on the border of phase interface, diatomite and bitumen changes from the free state to the film, and solvate shell of bitumen is saturated with asphaltenes. With the help of IR spectroscopy the authors defined the nature of the diatomite and bitumen interaction and proved that in the process of their interaction there occurs physical adsorption with additional absorption of bitumen components into the pore space of diatomite grains.

  9. Cyclodextrins in drug carrier systems.

    Science.gov (United States)

    Uekama, K; Otagiri, M

    1987-01-01

    One of the important characteristics of cyclodextrins is the formation of an inclusion complex with a variety of drug molecules in solution and in the solid state. As a consequence of intensive basic research, exhaustive toxic studies, and realization of industrial production during the past decade, there seem to be no more barriers for the practical application of natural cyclodextrins in the biomedical field. Recently, a number of cyclodextrin derivatives and cyclodextrin polymers have been prepared to obtain better inclusion abilities than parent cyclodextrins. The natural cyclodextrins and their synthetic derivatives have been successfully utilized to improve various drug properties, such as solubility, dissolution and release rates, stability, or bioavailability. In addition, the enhancement of drug activity, selective transfer, or the reduction of side effects has been achieved by means of inclusion complexation. The drug-cyclodextrin complex is generally formed outside of the body and, after administration, it dissociates, releasing the drug into the organism in a fast and nearly uniform manner. In the biomedical application of cyclodextrins, therefore, particular attention should be directed to the magnitude of the stability constant of the inclusion complex. In the case of parenteral application, a rather limited amount of work has been done because the cyclodextrins in the drug carrier systems have to be more effectively designed to compete with various biological components in the circulatory system. However, the works published thus far apparently indicate that the inclusion phenomena of cyclodextrin analogs may allow the rational design of drug formulation and that the combination of molecular encapsulation with other carrier systems will become a very effective and valuable method for the development of a new drug delivery system in the near future.

  10. Hybrid nanostructured drug carrier with tunable and controlled drug release

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2012-01-01

    We describe here a transformative approach to synthesize a hybrid nanostructured drug carrier that exhibits the characteristics of controlled drug release. The synthesis of the nanohybrid architecture involved two steps. The first step involved direct crystallization of biocompatible copolymer along the long axis of the carbon nanotubes (CNTs), followed by the second step of attachment of drug molecule to the polymer via hydrogen bonding. The extraordinary inorganic–organic hybrid architecture exhibited high drug loading ability and is physically stable even under extreme conditions of acidic media and ultrasonic irradiation. The temperature and pH sensitive characteristics of the hybrid drug carrier and high drug loading ability merit its consideration as a promising carrier and utilization of the fundamental aspects used for synthesis of other promising drug carriers. The higher drug release response during the application of ultrasonic frequency is ascribed to a cavitation-type process in which the acoustic bubbles nucleate and collapse releasing the drug. Furthermore, the study underscores the potential of uniquely combining CNTs and biopolymers for drug delivery. - Graphical abstract: Block-copolymer crystallized on carbon nanotubes (CNTs). Nanohybrid drug carrier synthesized by attaching doxorubicin (DOX) to polymer crystallized CNTs. Crystallized polymer on CNTs provide mechanical stability. Triggered release of DOX. Highlights: ► The novel synthesis of a hybrid nanostructured drug carrier is described. ► The drug carrier exhibits high drug loading ability and is physically stable. ► The high drug release is ascribed to a cavitation-type process.

  11. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  12. Organized polysaccharide fibers as stable drug carriers

    Science.gov (United States)

    Janaswamy, Srinivas; Gill, Kristin L.; Campanella, Osvaldo H.; Pinal, Rodolfo

    2013-01-01

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non–toxic. PMID:23544530

  13. Nanoscale isoindigo-carriers: self-assembly and tunable properties

    Directory of Open Access Journals (Sweden)

    Tatiana N. Pashirova

    2017-02-01

    Full Text Available Over the last decade isoindigo derivatives have attracted much attention due to their high potential in pharmacy and in the chemistry of materials. In addition, isoindigo derivatives can be modified to form supramolecular structures with tunable morphologies for the use in drug delivery. Amphiphilic long-chain dialkylated isoindigos have the ability to form stable solid nanoparticles via a simple nanoprecipitation technique. Their self-assembly was investigated using tensiometry, dynamic light scattering, spectrophotometry, and fluorometry. The critical association concentrations and aggregate sizes were measured. The hydrophilic–lipophilic balance of alkylated isoindigo derivatives strongly influences aggregate morphology. In the case of short-chain dialkylated isoindigo derivatives, supramolecular polymers of 200 to 700 nm were formed. For long-chain dialkylated isoindigo derivatives, micellar aggregates of 100 to 200 nm were observed. Using micellar surfactant water-soluble forms of monosubstituted 1-hexadecylisoindigo as well as 1,1′-dimethylisoindigo were prepared for the first time. The formation of mixed micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials.

  14. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  15. [Drug delivery systems using nano-sized drug carriers].

    Science.gov (United States)

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  16. Solid lipid nanoparticles: A drug carrier system

    Directory of Open Access Journals (Sweden)

    Rashmi R Kokardekar

    2011-01-01

    Full Text Available Solid lipid nanoparticles (SLN are a type of nanoparticles. They are submicron colloidal carriers which are composed of physiological lipids, dispersed in water or in aqueous surfactant solutions. SLN have wide range of advantages over other types of nanoparticles. These include availability of large-scale production methods and no signs of cytotoxicity, which are main hindrances in the application of other types of nanoparticles. Hot and cold homogenization techniques are mainly employed for its production. They are mainly evaluated on the basis of their drug release profile and particle internal structure. The products based on SLN are under development. They have a very wide range of applications in cosmetics and pharmaceuticals. They can be applied for any purpose, for which nanoparticles have a distinct advantage. Thus, SLN can be used extensively as an alternative to the existing drug carrier systems, providing more flexibility with respect to the area of applications and also aspects for commercialization.

  17. POLYURETHANE COMPOSITES AS DRUG CARRIERS:: RELEASE PATTERNS

    Directory of Open Access Journals (Sweden)

    M. V. Grigoreva

    2013-10-01

    Full Text Available Biodegradable polyurethanes attract interest of those developing composite materials for biomedical applications. One of their features is their ability to serve as carriers, or matrixes, for medicines and other bioactive compounds to produce a therapeutic effect in body through targeted and/or prolonged delivery of these compounds in the process of their controlled release from matrix. The review presents polyurethane composites as matrices for a number of drugs. The relation between structure of the composites and their degradability both in vitro and in vivo and the dependence of drug release kinetics on physicochemical properties of polyurethane matrix are highlighted. The release of drugs (cefazolin, naltrexone and piroxicam from the composites based on cross-linked polyurethanes (synthesized from laprols, Mw between 1,500 and 2,000 Da and toluylene diisocyanate demonstrated more or less the same pattern (about 10 days in vitro and three to five days in vivo. In contrast, the composites with dioxydine based on a linear polyurethanes (synthesized from oligotetramethilene glycol, Mw 1,000 Da, diphenylmethane-4,4’-diisocyanate and 1,4-butanediol retained their antimicrobial activity at least 30 days. They also showed a significantly higher breaking strength as compared to that of the composites based on cross-linked polyurethanes.

  18. Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems

    Directory of Open Access Journals (Sweden)

    Wang K

    2014-10-01

    Full Text Available Kai Wang,1–3 Jianping Qi,1 Tengfei Weng,1,2 Zhiqiang Tian,1 Yi Lu,1 Kaili Hu,4 Zongning Yin,2 Wei Wu1 1School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education, Shanghai, People’s Republic of China; 2West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 3Tropical Crops Genetic Resources Institute, Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, People’s Republic of China; 4Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaAbstract: A variety of nanoscale delivery systems have been shown to enhance the oral absorption of poorly water-soluble and poorly permeable drugs. However, the performance of these systems has seldom been evaluated simultaneously. The aim of this study was to compare the bioavailability enhancement effect of lipid-based nanocarriers with poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs to highlight the importance of the lipid composition, with cyclosporine A (CyA as a model drug. CyA-loaded PLGA NPs, nanostructured lipid carriers (NLCs, and self-microemulsifying drug-delivery systems (SMEDDS were prepared. The particle size of PLGA NPs (182.2±12.8 nm was larger than that of NLCs (89.7±9.0 nm and SMEDDS (26.9±1.9 nm. All vehicles are charged negatively. The entrapment efficiency of PLGA NPs and NLCs was 87.6%±1.6% and 80.3%±0.6%, respectively. In vitro release tests indicated that the cumulative release of CyA was lower than 4% from all vehicles, including Sandimmun Neoral®, according to the dialysis method. Both NLCs and SMEDDS showed high relative oral bioavailability, 111.8% and 73.6%, respectively, after oral gavage administration to beagle dogs, which was not statistically different from commercial Sandimmun Neoral®. However, PLGA NPs

  19. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

    International Nuclear Information System (INIS)

    Liu Hongwei; Wang Runsheng; Huang Ru; Zhang Xing

    2010-01-01

    This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (μ 0 ) and the low-field mean free path (λ 0 ), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ 0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ 0 is nearly a constant, and λ 0 can be used as the 'entry criterion' to determine whether the device begins to operate under quasi-ballistic transport to some extent. (semiconductor devices)

  20. Cyclodextrin-based nanosponges as drug carriers

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2012-11-01

    Full Text Available Cyclodextrin-based nanosponges, which are proposed as a new nanosized delivery system, are innovative cross-linked cyclodextrin polymers nanostructured within a three-dimensional network. This type of cyclodextrin polymer can form porous insoluble nanoparticles with a crystalline or amorphous structure and spherical shape or swelling properties. The polarity and dimension of the polymer mesh can be easily tuned by varying the type of cross-linker and degree of cross-linking. Nanosponge functionalisation for site-specific targeting can be achieved by conjugating various ligands on their surface. They are a safe and biodegradable material with negligible toxicity on cell cultures and are well-tolerated after injection in mice. Cyclodextrin-based nanosponges can form complexes with different types of lipophilic or hydrophilic molecules. The release of the entrapped molecules can be varied by modifying the structure to achieve prolonged release kinetics or a faster release. The nanosponges could be used to improve the aqueous solubility of poorly water-soluble molecules, protect degradable substances, obtain sustained delivery systems or design innovative drug carriers for nanomedicine.

  1. Chitosan nanoparticles as drug delivery carriers for biomedical engineering

    International Nuclear Information System (INIS)

    Shi, L.E.S.; Chen, M.; XINF, L.Y.; Guo, X.F.; Zhao, L.M.

    2011-01-01

    Chitosan is a rather abundant material, which has been widely used in food industrial and bioengineering aspects, including in encapsulating active food ingredients, in enzyme immobilization, and as a carrier for drug delivery, due to its significant biological and chemical properties such as biodegradable, biocompatible, bioactive and polycationic. This review discussed preparation and applications of chitosan nanoparticles in the biomedical engineering field, namely as a drug delivery carrier for biopharmaceuticals. (author)

  2. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  3. Biomacromolecules as carriers in drug delivery and tissue engineering.

    Science.gov (United States)

    Zhang, Yujie; Sun, Tao; Jiang, Chen

    2018-01-01

    Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.

  4. Compact modeling of nanoscale triple-gate junctionless transistors covering drift-diffusion to quasi-ballistic carrier transport

    Science.gov (United States)

    Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.

    2018-04-01

    In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.

  5. Perfluorocarbon (PFC) emulsions as potential drug carriers

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Goodman, R.L.; Moore, R.E.

    1984-01-01

    PFC emulsions have excellent oxygen transporting properties and have been reported to enhance the response of murine tumors to both radiation and BCNU. While the presently available emulsions are far too toxic to the immune system to be used in cancer therapy, they can be used to investigate the overall potential of this approach. As an example, the authors have found that these emulsions can alter drug availability. The lipophilicity of both the PFC and the drug in question determine the partitioning of the drug between the organic and aqueous phases of an emulsion. In vitro, this can reduce drug effectiveness by reducing the amount of drug available to the cells. In vivo, however, this partitioning may produce sustained drug exposure, which could be of benefit in cancer therapy and other applications. In brief, as the drug is absorbed from the circulating aqueous phase, additional drug would leach from the PFC, thereby providing a sustained drug exposure similar to that obtained with liposomes. While a great deal more work will be required to evaluate the practicality of this approach, the existence of this phenomenon must be taken into account in both the design and interpretation of efficacy studies in which anesthetics, chemotherapeutics, etc are employed

  6. Elastic liposomes as novel carriers: recent advances in drug delivery

    Science.gov (United States)

    Hussain, Afzal; Singh, Sima; Sharma, Dinesh; Webster, Thomas J; Shafaat, Kausar; Faruk, Abdul

    2017-01-01

    Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. PMID:28761343

  7. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  8. DNA origami as a carrier for circumvention of drug resistance.

    Science.gov (United States)

    Jiang, Qiao; Song, Chen; Nangreave, Jeanette; Liu, Xiaowei; Lin, Lin; Qiu, Dengli; Wang, Zhen-Gang; Zou, Guozhang; Liang, Xingjie; Yan, Hao; Ding, Baoquan

    2012-08-15

    Although a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use. Here we present a novel drug carrier system based on self-assembled, spatially addressable DNA origami nanostructures that confronts these limitations. Doxorubicin, a well-known anti-cancer drug, was non-covalently attached to DNA origami nanostructures through intercalation. A high level of drug loading efficiency was achieved, and the complex exhibited prominent cytotoxicity not only to regular human breast adenocarcinoma cancer cells (MCF 7), but more importantly to doxorubicin-resistant cancer cells, inducing a remarkable reversal of phenotype resistance. With the DNA origami drug delivery vehicles, the cellular internalization of doxorubicin was increased, which contributed to the significant enhancement of cell-killing activity to doxorubicin-resistant MCF 7 cells. Presumably, the activity of doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites. Our results suggest that DNA origami has immense potential as an efficient, biocompatible drug carrier and delivery vehicle in the treatment of cancer.

  9. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    Science.gov (United States)

    Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  10. Structural and chemical aspects of HPMA copolymers as drug carriers.

    Science.gov (United States)

    Ulbrich, Karel; Subr, Vladimír

    2010-02-17

    Synthetic strategies and chemical and structural aspects of the synthesis of HPMA copolymer conjugates with various drugs and other biologically active molecules are described and discussed in this chapter. The discussion is held from the viewpoint of design and structure of the polymer backbone and biodegradable spacer between a polymer and drug, structure and methods of attachment of the employed drugs to the carrier and structure and methods of conjugation with targeting moieties. Physicochemical properties of the water-soluble polymer-drug conjugates and polymer micelles including mechanisms of drug release are also discussed. Detailed description of biological behavior of the polymer-drug conjugates as well as application of the copolymers for surface modification and targeting of gene delivery vectors are not included, they are presented and discussed in separate chapters of this issue. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Antimicrobial drug susceptibility of Neisseria meningitidis strains isolated from carriers

    Directory of Open Access Journals (Sweden)

    Dayamí García

    2000-06-01

    Full Text Available When it is necessary to determine the susceptibility of Neisseria meningitidis (Nm strains to antimicrobial drugs, it is important to consider that it should be analyzed in a double context. One of them related to the use of drugs in a specific medical treatment; and the other; to chemoprophylatic drugs, both with the same purpose: the accurate selection of the “in vivo” antimicrobial agent. This requires the study of the sensitivity and resistance of strains isolated in both carriers and patients. With the aim of further studying the behavior of the strains that currently circulate in Cuba, an antimicrobial drug susceptibility study was conducted in 90 strains isolated from carriers during the first half of 1998. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs to: penicillin, ampicillin, rifampin, sulfadiazine, chloramphenicol, ciprofloxacin, ceftriaxone, cefotaxime. The study of the three latter drugs was done for the first time in our country. The search for β- lactamase-producer strains was also performed. There was a predominance of penicillin sensitive strains (82,2% with an intermediate sensitivity to ampicillin (57,8%, while 70% of the strains were sensitive to sulfadiazine. Regarding the rest of the antimicrobial drugs, 100% of the strains were sensitive. The paper shows the MICs for each drug as well as the phenotypic characteristics of the strains with the penicillin and sulfadiazine sensitivity and resistance patterns. No β-lactamase-producer strains were found.

  12. INTERPOLYELECTROLYTE COMPLEXES AS PROSPECTIVE CARRIERS FOR CONTROLLED DRUG DELIVERY

    OpenAIRE

    Kaur Jasmeet; Harikumar S.L.; Kaur Amanpreet

    2012-01-01

    In the current scenario, polymers as carriers have revolutionized the drug delivery system. A more successful approach, to exploit the different properties of polymers in a solitary system is the complexation of polymers to form polyelectrolyte complexes. These complexes circumvent the use of chemical crosslinking agents, thereby reducing the risk of toxicity. The complex formed is generally applied in different dosage forms for the formulation of stable aggregated macromolecules. There are t...

  13. Elastic liposomes as novel carriers: recent advances in drug delivery

    Directory of Open Access Journals (Sweden)

    Hussain A

    2017-07-01

    Full Text Available Afzal Hussain,1,2 Sima Singh,1 Dinesh Sharma,3 Thomas J Webster,4 Kausar Shafaat,2 Abdul Faruk5 1Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; 2Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India; 3Zifam Pyrex Myanmar Co. Ltd., Yangon, Myanmar; 4Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 5Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India Abstract: Elastic liposomes (EL are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. Keywords: elastic liposomes, drug delivery, topical, transdermal, enhanced delivery 

  14. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ana Grenha

    2012-09-01

    Full Text Available Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures.

  15. Preparation of nanoscale pulmonary drug delivery formulations by spray drying

    DEFF Research Database (Denmark)

    Bohr, Adam; Ruge, Christian A; Beck-Broichsitter, Moritz

    2014-01-01

    and can offer controlled drug release. There are numerous methods for producing therapeutic nanoparticles, each with their own advantages and suitable application. Liquid atomization techniques such as spray drying can produce nanoparticle formulations in a dry powder form suitable for pulmonary...... administration in a direct one-step process. This chapter describes the different state-of-the-art techniques used to prepare drug nanoparticles (with special emphasize on spray drying techniques) and the strategies for administering such unique formulations to the pulmonary environment....

  16. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    International Nuclear Information System (INIS)

    Li Yanan; An Feifei; Zhang Xiaohong; Yang Yinlong; Liu Zhuang; Zhang Xiujuan

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines. (paper)

  17. [Pharmaceutical application of cyclodextrins as multi-functional drug carriers].

    Science.gov (United States)

    Uekama, Kaneto

    2004-12-01

    Owing to the increasingly globalized nature of the cyclodextrin (CyD)-related science and technology, development of the CyD-based pharmaceutical formulation is rapidly progressing. The pharmaceutically useful CyDs are classified into hydrophilic, hydrophobic, and ionic derivatives. Because of the multi-functional characteristics and bioadaptability, these CyDs are capable of alleviating the undesirable properties of drug molecules through the formation of inclusion complexes or the form of CyD/drug conjugates. This review outlines the current application of CyDs in drug delivery and pharmaceutical formulation, focusing on the following evidences. 1) The hydrophilic CyDs enhance the rate and extent of bioavailability of poorly water-soluble drugs. 2) The amorphous CyDs such as 2-hydroxypropyl-beta-CyD are useful for inhibition of polymorphic transition and crystallization rates of drugs during storage. 3) The delayed release formulation can be obtained by the use of enteric type CyDs such as O-carboxymethyl-O-ethyl-beta-CyD. 4) The hydrophobic CyDs are useful for modification of the release site and/or time profile of water-soluble drugs with prolonged therapeutic effects. 5) The branched CyDs are particularly effective in inhibiting the adsorption to hydrophobic surface of containers and aggregation of polypeptide and protein drugs. 6) The combined use of different CyDs and/or pharmaceutical additives can serve as more functional drug carriers, improving efficacy and reducing side effects. 7) The CyD/drug conjugates may provide a versatile means for the constructions of not only colonic delivery system but also site-specific drug release system, including gene delivery. On the basis of the above-mentioned knowledge, the advantages and limitations of CyDs in the design of advanced dosage forms will be discussed.

  18. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  19. NEOGLYCOPROTEINS AS CARRIERS FOR ANTIVIRAL DRUGS - SYNTHESIS AND ANALYSIS OF PROTEIN DRUG CONJUGATES

    NARCIS (Netherlands)

    Molema, Grietje; Jansen, Robert W.; Visser, Jan; Herdewijn, Piet; Moolenaar, Frits; Meijer, Dirk K.F.

    In order to investigate whether neoglycoproteins can potentially act as carriers for targeting of antiviral drugs to certain cell types in the body, various neoglycoproteins were synthesized using thiophosgene-activated p-aminophenyl sugar derivatives. These neoglycoproteins were conjugated with the

  20. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  1. Rhodamine/Nanodiamond as a System Model for Drug Carrier.

    Science.gov (United States)

    Reina, G; Orlanducci, S; Cairone, C; Tamburri, E; Lenti, S; Cianchetta, I; Rossi, M; Terranova, M L

    2015-02-01

    In this paper we present some strategies that are being developed in our labs towards enabling nanodiamond-based applications for drug delivery. Rhodamine B (RhB) has been choosen as model molecule to study the loading of nanodiamonds with active moieties and the conditions for their controlled release. In order to test the chemical/physical interactions between functionalized detonation nanodiamond (DND) and complex molecules, we prepared and tested different RhB@DND systems, with RhB adsorbed or linked by ionic bonding to the DND surface. The chemical state of the DND surfaces before conjugation with the RhB molecules, and the chemical features of the DND-RhB interactions have been deeply analysed by coupling DND with Au nanoparticles and taking advantage of surface enhanced Raman spectroscopy SERS. The effects due to temperature and pH variations on the process of RhB release from the DND carrier have been also investigated. The amounts of released molecules are consistent with those required for effective drug action in conventional therapeutic applications, and this makes the DND promising nanostructured cargos for drug delivery applications.

  2. Archaeosomes: an excellent carrier for drug and cell delivery.

    Science.gov (United States)

    Kaur, Gurmeet; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-09-01

    Archaeosomes as liposomes made with one or more ether lipids that are unique to the domain of Archaeobacteria, found in Archaea constitute a novel family of liposome. Achaean-type lipids consist of archaeol (diether) and/or caldarchaeol (tetraether) core structures. Archaeosomes can be produced using standard procedures (hydrated film submitted to sonication, extrusion and detergent dialysis) at any temperature in the physiological range or lower, therefore making it possible to encapsulate thermally stable compounds. Various physiological as well as environmental factors affect its stability. Archaeosomes are widely used as drug delivery systems for cancer vaccines, Chagas disease, proteins and peptides, gene delivery, antigen delivery and delivery of natural antioxidant compounds. In this review article, our major aim was to explore the applications of this new carrier system in pharmaceutical field.

  3. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    Science.gov (United States)

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  4. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  5. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets

    NARCIS (Netherlands)

    Srinarong, Parinda; Kouwen, Sander; Visser, Marinella R; Hinrichs, Wouter L J; Frijlink, Henderik W

    2010-01-01

    The objective of this study was to compare the dissolution behavior of tablets prepared from solid dispersions with and without drug-carrier interactions. Diazepam and nifedipine were used as model drugs. Two types of carriers were used; polyvinylpyrrolidone (PVP K12, K30 and K60) and saccharides

  6. Erythrocytes as Carriers for Drugs and Contrast Agents

    Directory of Open Access Journals (Sweden)

    Mauro Magnani

    2014-01-01

    Full Text Available Erythrocytes, also known as Red Blood Cells (RBC, are typically used in transfusion medicine to replace lost blood in patients who underwent different kinds of medical treatments as well as those involved in accidents resulting in blood loss. In addition to these common uses, RBC are being used for a variety of new applications either as therapeutics or as diagnostics. Most of these novel approaches are made possible due to the peculiar properties of these cells. We have invented a technology that allows cells to be opened and resealed without affecting their main physiological characteristics with a minimal amount of patient blood.  Uses of processed RBCs in biomedical engineering include work with drugs, biomedical compounds and/or nanomaterials. These constructs are a new armamentarium available to the physicians for the release of drugs in circulation, for targeting drugs to selected sites in the body, or for in vivo diagnostic procedures based on magnetic and/or optical methods. Autologous human RBC loaded with dexamethasone (EryDex, a common corticosteroid,  have been used in the treatment of Cystic Fibrosis, Crohn’s Disease, and other severe inflammatory conditions. Benefits and safety of this technology have been documented in over 2,500 treatments. EryDel SpA is a company focused on developing and commercializing innovative therapies and diagnostics based on the use of autologous RBCs as agent carriers. More recently, EryDel SpA completed a Phase II Proof of Concept study in patients with Ataxia Telangiectasia (AT, a rare progressive neurological autosomal recessive disorder that leads to mortality in most patients at an early age, with significant benefit seen on primary and secondary end-points. EryDex treatment has received Orphan Drug Designation by EMA for the treatment of Cystic Fibrosis and both by EMA and FDA for the treatment of AT. The encapsulation of superparamagnetic nanoparticles within RBC has lead to the generation

  7. Functionalized nanoscale oil bodies for targeted delivery of a hydrophobic drug

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chung-Jen; Lin, Che-Chin; Lu, Tzu-Li; Wang, Hesin-Fu, E-mail: cjchiang@mail.cmu.edu.tw [Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsue-Shih Road, Taichung 40402, Taiwan (China)

    2011-10-14

    Effective formulations of hydrophobic drugs for cancer therapies are challenging. To address this issue, we have sought to nanoscale artificial oil bodies (NOBs) as an alternative. NOBs are lipid-based particles which consist of a central oil space surrounded by a monolayer of oleosin (Ole)-embedded phospholipids (PLs). Ole was first fused with the anti-HER2/neu affibody (Ole-ZH2), and the resulting hybrid protein was overproduced in Escherichia coli. ZH2-displayed NOBs were then assembled by sonicating the mixture containing plant oil, PLs, and isolated Ole-ZH2 in one step. To illustrate their usefulness, functionalized NOBs were employed to encapsulate a hydrophobic anticancer drug, Camptothecin (CPT). As a result, these CPT-loaded NOBs remained stable in serum and the release of CPT at the non-permissive condition exhibited a sustained and prolonged profile. Moreover, plain NOBs were biocompatible whereas CPT-loaded NOBs exerted a strong cytotoxic effect on HER2/neu-positive cells in vitro. Administration of xenograft nude mice with CPT-loaded NOBs also led to the regression of solid tumors in an effective way. Overall, the result indicates the potential of NOBs for targeted delivery of hydrophobic drugs.

  8. Caleosin-based nanoscale oil bodies for targeted delivery of hydrophobic anticancer drugs

    International Nuclear Information System (INIS)

    Chiang, Chung-Jen; Lin, Li-Jen; Chen, Chih-Jung

    2011-01-01

    Nanoscale artificial oil bodies (NOBs) could be assembled from plant oil, phospholipids (PLs), and oleosin (Ole) as previously reported. NOBs have a lipid-based structure that contains a central oil space enclosed by a monolayer of Ole-bound PLs. As an oil structural protein, Ole functions to maintain the integrity of NOBs. Like Ole, caleosin (Cal) is a plant oil-associated protein. In this study, we investigated the feasibility of NOBs assembled by Cal for targeted delivery of drugs. Cal was first fused with anti-HER2/neu affibody (ZH2), and the resulting fusion gene (Cal–ZH2) was then expressed in Escherichia coli. Consequently, NOBs assembled with the fusion protein were selectively internalized by HER2/neu-positive tumor cells. The internalization efficiency could reach as high as 90%. Furthermore, a hydrophobic anticancer drug, Camptothecin (CPT), was encapsulated into Cal-based NOBs. These CPT-loaded NOBs had a size around 200 nm and were resistant to hemolysis. Release of CPT from NOBs at the non-permissive condition followed a sustained and prolonged profile. After administration of the CPT formulation, Cal–ZH2-displayed NOBs exhibited a strong antitumor activity toward HER2/neu-positive cells both in vitro and in vivo. The result indicates the potential of Cal-based NOBs for targeted delivery of hydrophobic drugs.

  9. Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers

    Directory of Open Access Journals (Sweden)

    Like Zeng

    2011-01-01

    Full Text Available Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.

  10. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  11. Drug targeting and the carriers. Application to chemoembolization and medical imaging

    International Nuclear Information System (INIS)

    Puisieux, F.; Benoit, J.P.; Roblot-Treupel, L.

    1987-01-01

    The last fifteen years have seen an increased interest in drug targeting which can be considered as a new way to control the body distribution of drugs when associated with an appropriate carrier. The systems currently studied possess different structures (macromolecular, vesicular and particular) and can be classified into carriers of first, second and third generation. After a brief review of the three types of carriers, this paper focuses on their respective interest in the different fields of radiology: carriers of first generation (microcapsules, microspheres) in chemoembolization, carriers of second generation (liposomes, nanocapsules, nanospheres) in conventional radiology, in computerized tomography, in scintigraphy, in RMN; carriers of third generation (monoclonal antibodies...) in immunoscintigraphy of tumors [fr

  12. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    Science.gov (United States)

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac ® 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac ® 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac ® 40). The resulting finer composite powders (sub-100μm) based on GranuLac ® 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. (Glyco)-protein drug carriers with an intrinsic therapeutic activity : The concept of dual targeting

    NARCIS (Netherlands)

    Meijer, D.K F; Molema, Ingrid; Moolenaar, Frits; de Zeeuw, D; Swart, P.J

    Dual targeting can in principle be achieved by using intrinsically active carriers that not only deliver the conjugated drug but also otherwise influence the pathological process. Potential carriers of this kind are monoclonal antibodies, certain interferons and interleukins, as well as certain

  14. CHARACTERIZATION OF TERNARY SYSTEM OF POORLY SOLUBLE DRUG IN VARIOUS HYDROPHILIC CARRIERS

    OpenAIRE

    Vijay Kumar; Shankaraiah MM; Venkatesh JS; Rangaraju D; C.Nagesh

    2011-01-01

    The present study aims to experiment the solid dispersion of poorly water soluble drug fenbendazole as model drug. Fenbendazole is an Antihelmintic drug (BCS class 2).The purpose of this study was to enhance the dissolution of Fenbendazole by solid dispersions consisting of the drug, a polymeric carrier, Binary and ternary system were prepared by kneading method using hydrophilic polymers like polyvinylpyrrolidone K-25 (PVP K25), beta-cyclodextrin (BCD),mannitol and urea. The prepared form...

  15. Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging.

    Science.gov (United States)

    Abdul Manaf, Shoriya Aruni; Hegde, Gurumurthy; Mandal, Uttam Kumar; Wui, Tin Wong; Roy, Partha

    2017-01-01

    Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application. The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications. This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques. The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure. Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. In vivo imaging of passively tumor targeted polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 90 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA MZd(CZ) NV16-28594A Institutional support: RVO:61389013 Keywords : polymer drug carrier * tumor targeting * enzymatic release Subject RIV: FD - Oncology ; Hematology

  17. Dissolution Enhancement of Drugs. Part II: Effect of Carriers ...

    African Journals Online (AJOL)

    Recent high throughput screening and combinatorial and parallel synthesis are increasing the number of drug molecules which are highly lipophilic. The oral route is the most preferred route of drug administration due to its convenience, good patient compliance and low medicine production costs. The challenges to ...

  18. Nanomaterial-based drug delivery carriers for cancer therapy

    CERN Document Server

    Feng, Tao

    2017-01-01

    This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.

  19. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    OpenAIRE

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  20. Structural and chemical aspects of HPMA copolymers as drug carriers

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Šubr, Vladimír

    2010-01-01

    Roč. 62, č. 17 (2010), s. 150-166 ISSN 0169-409X R&D Projects: GA AV ČR KAN200200651; GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505 Keywords : drug-delivery systems * N-(2-hydroxypropyl)methacrylamide * polymer drug conjugates Subject RIV: CD - Macromolecular Chemistry Impact factor: 13.577, year: 2010

  1. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  2. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  3. Polymeric micelles as a drug carrier for tumor targeting

    Directory of Open Access Journals (Sweden)

    Neha M Dand

    2013-01-01

    Full Text Available Polymeric micelle can be targeted to tumor site by passive and active mechanism. Some inherent properties of polymeric micelle such as size in nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor make polymeric micelles to be targeted at the tumor site by passive mechanism called enhanced permeability and retention effect. Polymeric micelle formed from the amphiphilic block copolymer is suitable for encapsulation of poorly water soluble, hydrophobic anticancer drugs. Other characteristics of polymeric micelles such as separated functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. Polymeric micelles can be conjugated with many ligands such as antibodies fragments, epidermal growth factors, α2 -glycoprotein, transferrine, and folate to target micelles to cancer cells. Application of heat and ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be done to tumor angiogenesis which is the potentially promising target for anticancer drugs. This review summarizes about recently available information regarding targeting the anticancer drug to the tumor site using polymeric micelles.

  4. [Plasma lipoproteins as drug carriers. Effect of phospholipid formulations].

    Science.gov (United States)

    Torkhovskaia, T I; Ipatova, O M; Medvedeva, N V; Ivanov, V S; Ivanova, L I

    2010-01-01

    The extensive development of nanotechnologies in the last two decades has brought about new understanding of plasma lipoproteins (LP) as natural drug nanocarriers that escape interaction with immune and reticuloendothelial systems. Drugs bound to LP (especially LDL) can more actively penetrate into cells of many cancer and inflammation tissues with enhanced expression or/and dysregulation of B,E receptors or possibly scavenger SR-BI receptors. Relevant studies are focused on the development of new dosage forms by conjugating lipophilic drugs either with isolated plasma LP or with their model formulations, such as nanoemulsions, mimetics, lipid nanospheres, etc. Some authors include in these particles serum or recombinant apoproteins, peptides, and modified polymer products. As shown recently, protein-free lipid nanoemulsions in plasma take up free apoA and apoE. Complexes with various LP also form after direct administration of lypophilic drugs into blood especially those enclosed in phospholipid formulations, e.g. liposomes. Results of evaluation of some lipophilic dugs (mainly cytostatics, amphotericin B, cyclosporine A, etc.) are discussed. Original data are presented on the influence of phospholipid formulations on the distribution of doxorubicin and indomethacin between LP classes after in vitro incubation in plasma. On the whole, the review illustrates the importance of research on LP and phospholi pid forms as drug nanocarriers to be used to enhance effect of therapy.

  5. [In vitro drug release behavior of carrier made of porous glass ceramics].

    Science.gov (United States)

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  6. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers.

    Science.gov (United States)

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2017-06-06

    The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

    Science.gov (United States)

    Chen, Xinli; Liu, Lisha; Jiang, Chen

    2016-07-01

    Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

  8. Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier

    Directory of Open Access Journals (Sweden)

    L. I. Kоbylinska

    2016-02-01

    Full Text Available The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833 and doxorubicin (positive control in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals. Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.

  9. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Kyeong-Ok Choi

    2016-05-01

    Full Text Available The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  10. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs.

    Science.gov (United States)

    Choi, Kyeong-Ok; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon

    2016-05-20

    The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC) to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  11. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin.

    Science.gov (United States)

    Liu, Ying; Wang, Lan; Zhao, Yiqing; He, Man; Zhang, Xin; Niu, Mengmeng; Feng, Nianping

    2014-12-10

    Nanostructured lipid carriers and microemulsions effectively deliver poorly water-soluble drugs. However, few studies have investigated their ability and difference in improving drug bioavailability, especially the factors contributed to the difference. Thus, this study was aimed at investigating their efficiency in bioavailability enhancement based on studying two key processes that occur in NLC and ME during traverse along the intestinal tract: the solubilization process and the intestinal permeability process. The nanostructured lipid carriers and microemulsions had the same composition except that the former were prepared with solid lipids and the latter with liquid lipids; both were evaluated for particle size and zeta potential. Transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction were performed to characterize their properties. Furthermore, in vitro drug release, in situ intestinal absorption, and in vitro lipolysis were studied. The bioavailability of luteolin delivered using nanostructured lipid carriers in rats was compared with that delivered using microemulsions and suspensions. The in vitro analysis revealed different release mechanisms for luteolin in nanostructured lipid carriers and microemulsions, although the in situ intestinal absorption was similar. The in vitro lipolysis data indicated that digestion speed and extent were higher for microemulsions than for nanostructured lipid carriers, and that more of the former partitioned to the aqueous phase. The in vivo bioavailability analysis in rats indicated that the oral absorption and bioavailability of luteolin delivered using nanostructured lipid carriers and microemulsions were higher than those of luteolin suspensions. Nanostructured lipid carriers and microemulsions improved luteolin's oral bioavailability in rats. The rapid lipid digestion and much more drug solubilized available for absorption in microemulsions may contribute to better absorption and

  12. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast.

    Science.gov (United States)

    Lanthaler, Karin; Bilsland, Elizabeth; Dobson, Paul D; Moss, Harry J; Pir, Pınar; Kell, Douglas B; Oliver, Stephen G

    2011-10-24

    The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  13. Controlled Fabrication of Gelatin Nanoparticles as Drug Carriers

    Science.gov (United States)

    Jahanshahi, M.; Sanati, M. H.; Minuchehr, Z.; Hajizadeh, S.; Babaei, Z.

    2007-08-01

    In recent years, significant effort has been devoted to develop nanotechnology for drug delivery since it offers a suitable means of delivering small molecular weight drugs, as well as macromolecules such as proteins, peptides or genes by either localized or targeted delivery to the tissue of interest. Nanotechnology focuses on formulating therapeutic agents in biocompatible nanocomposites such as nanoparticles, nanocapsules, micellar systems, and conjugates. Protein nanoparticles (BSA, HAS and gelatin) generally vary in size from 50-300 nm and they hold certain advantages such as greater stability during storage, stability in vivo, non-toxicity, non-antigen and ease to scale up during manufacture over the other drug delivery systems. The primary structure of gelatin offers many possibilities for chemical modification and covalent drug attachment. Here nanoparticles of gelatin type A were prepared by a two-step desolvation method as a colloidal drug delivery system and the essential parameters in fabrication were considered. Gelatin was dissolved in 25 mL distilled water under room temperature range. Then acetone was added to the gelatin solution as a desolvating agent to precipitate the high molecular weight (HMW) gelatin. The supernatant was discarded and the HMW gelatin re-dissolved by adding 25 mL distilled water and stirring at 600 rpm. Acetone were added drop-wise to form nanoparticles. At the end of the process, glutaraldehyde solution was used for preparing nanoparticles as a cross-linking agent, and stirred for 12h at 600 rpm. For purification stage we use centrifuge with 600rpm for 3 times. The objective of the present study is consideration of some factors such as temperature, gelatin concentration, agitation speed and the amount of acetone and their effects on size and distribution of nanoparticles. Among the all conditions, 60° C, 50 mg/ml gelatin concentration, 75 ml acetone had the best result and the nanoparticle size was under 170 nm. The effect

  14. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication.

    Science.gov (United States)

    Gill, Kanwaldeep K; Kaddoumi, Amal; Nazzal, Sami

    2015-04-01

    PEG-lipid micelles, primarily conjugates of polyethylene glycol (PEG) and distearyl phosphatidylethanolamine (DSPE) or PEG-DSPE, have emerged as promising drug-delivery carriers to address the shortcomings associated with new molecular entities with suboptimal biopharmaceutical attributes. The flexibility in PEG-DSPE design coupled with the simplicity of physical drug entrapment have distinguished PEG-lipid micelles as versatile and effective drug carriers for cancer therapy. They were shown to overcome several limitations of poorly soluble drugs such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Therefore, considerable efforts have been made to exploit the full potential of these delivery systems; to entrap poorly soluble drugs and target pathological sites both passively through the enhanced permeability and retention (EPR) effect and actively by linking the terminal PEG groups with targeting ligands, which were shown to increase delivery efficiency and tissue specificity. This article reviews the current state of PEG-lipid micelles as delivery carriers for poorly soluble drugs, their biological implications and recent developments in exploring their active targeting potential. In addition, this review sheds light on the physical properties of PEG-lipid micelles and their relevance to the inherent advantages and applications of PEG-lipid micelles for drug delivery.

  15. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs

    Czech Academy of Sciences Publication Activity Database

    Angelov, Borislav; Garamus, V.M.; Drechsler, M.; Angelova, A.

    2017-01-01

    Roč. 235, Jun (2017), s. 83-89 ISSN 0167-7322 R&D Projects: GA MŠk EF15_003/0000447; GA MŠk EF15_008/0000162 Grant - others:OP VVV - ELIBIO(XE) CZ.02.1.01/0.0/0.0/15_003/0000447; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : self-assembled nanocarriers * liquid crystalline phase transitions * cationic lipids * macromolecular drugs Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.648, year: 2016

  16. Nano carriers for drug transport across the blood-brain barrier.

    Science.gov (United States)

    Li, Xinming; Tsibouklis, John; Weng, Tingting; Zhang, Buning; Yin, Guoqiang; Feng, Guangzhu; Cui, Yingde; Savina, Irina N; Mikhalovska, Lyuba I; Sandeman, Susan R; Howel, Carol A; Mikhalovsky, Sergey V

    2017-01-01

    Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully

  17. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  18. A water-soluble pillar[5]arene as a new carrier for an old drug.

    Science.gov (United States)

    Barbera, Lucia; Franco, Domenico; De Plano, Laura M; Gattuso, Giuseppe; Guglielmino, Salvatore P P; Lentini, Germana; Manganaro, Nadia; Marino, Nino; Pappalardo, Sebastiano; Parisi, Melchiorre F; Puntoriero, Fausto; Pisagatti, Ilenia; Notti, Anna

    2017-04-11

    The remarkable affinity of deca-carboxylatopillar[5]arene WP5 towards the aminoglycoside antibiotic, amikacin, in aqueous media is reported; in vitro studies on Gram-positive bacteria (Staphylococcus aureus) show that drug entrapment inside WP5 also takes place in the presence of the microrganisms, thus pointing to WP5 as an appealing carrier for amikacin targeted delivery.

  19. Crystal engineering of lactose using electrospray technology: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil; Mahadik, Abhijeet; Nalawade, Pradeep; More, Priyesh

    2017-12-01

    Dry powder inhalers (DPIs) consisting of a powder mixture containing coarse carrier particles (generally lactose) and micronized drug particles are used for lung drug delivery. The effective drug delivery to the lungs depends on size and shape of carrier particles. Thus, various methods have been proposed for engineering lactose particles to enhance drug delivery to lungs. The objective of current work was to assess suitability of electrospray technology toward crystal engineering of lactose. Further, utility of the prepared lactose particles as a carrier in DPI was evaluated. Saturated lactose solutions were electrosprayed to obtain electrosprayed lactose (EL) particles. The polymorphic form of EL was determined using Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry. In addition, morphological, surface textural, and flow properties of EL were determined using scanning electron microscopy and Carr's index, respectively. The aerosolization properties of EL were determined using twin-stage impinger and compared with commercial lactose particles [Respitose ® (SV003, Goch, Germany)] used in DPI formulations. EL was found to contain both isomers (α and β) of lactose having flow properties comparable to Respitose ® (SV003). In addition, the aerosolization properties of EL were found to be significantly improved when compared to Respitose ® (SV003) which could be attributed to morphological (high elongation ratio) and surface characteristic (smooth surface) alterations induced by electrospray technology. Electrospray technology can serve as an alternative technique for continuous manufacturing of engineered lactose particles which can be used as a carrier in DPI formulations.

  20. Evaluation of Biosourced Alkyd Nanoemulsions as Drug Carriers

    Directory of Open Access Journals (Sweden)

    Siew Yong Teo

    2015-01-01

    Full Text Available Novel oil-in-water (O/W nanoemulsions were formulated using short, medium, and long oil length alkyds synthesized from palm kernel oil by a two-stage alcoholysis-polyesterification reaction. Alkyd/surfactant/water ternary phase diagrams identified a composition of 1% alkyd, 9% Tween 80, and 90% water where spontaneous production of nanoemulsions occurred. The pH, droplet size, and zeta potential of all formulations were in the range of 6.4–6.6, 11–14 nm, and −6 mV to −8 mV, respectively. Rheological studies showed that the nanoemulsions displayed non-Newtonian shear thinning behavior at low shear rates up to 20 s−1 with conversion to Newtonian behavior above this shear rate. All nanoemulsions were found to be stable against phase separation on storage at 4°C and 25°C for three months. Short oil length alkyd nanoemulsions exhibited significantly higher stability compared with medium and long oil length alkyd nanoemulsions, as demonstrated by an absence of phase separation and only minor changes of droplet size on storage at an elevated temperature of 45°C for 3 months. The drug carrying capacity and storage stability of the nanoemulsions were assessed using phenytoin. The entrapment efficiency of alkyd nanoemulsions was in excess of 90% and loss of phenytoin content was restricted to less than 4% during storage of the nanoemulsions for three months at 4°C, 25°C, and 45°C. Taken together, these findings indicate that nanoemulsions prepared from palm kernel oil-based alkyds offer potential as nanocarriers for drug delivery applications.

  1. Characterization of Different Functionalized Lipidic Nanocapsules as Potential Drug Carriers

    Directory of Open Access Journals (Sweden)

    José Manuel Peula-García

    2012-02-01

    Full Text Available Lipid nanocapsules (LNC based on a core-shell structure consisting of an oil-filled core with a surrounding polymer layer are known to be promising vehicles for the delivery of hydrophobic drugs in the new therapeutic strategies in anti-cancer treatments. The present work has been designed as basic research about different LNC systems. We have synthesized—and physico-chemically characterized—three different LNC systems in which the core was constituted by olive oil and the shell by different phospholipids (phosphatidyl-serine or lecithin and other biocompatible molecules such as Pluronic® F68 or chitosan. It is notable that the olive-oil-phosphatidyl-serine LCN is a novel formulation presented in this work and was designed to generate an enriched carboxylic surface. This carboxylic layer is meant to link specific antibodies, which could facilitate the specific nanocapsule uptake by cancer cells. This is why nanoparticles with phosphatidyl-serine in their shell have also been used in this work to form immuno-nanocapsules containing a polyclonal IgG against a model antigen (C-reactive protein covalently bounded by means of a simple and reproducible carbodiimide method. An immunological study was made to verify that these IgG-LNC complexes showed the expected specific immune response. Finally, a preliminary in vitro study was performed by culturing a breast-carcinoma cell line (MCF-7 with Nile-Red-loaded LNC. We found that these cancer cells take up the fluorescent Nile-Red molecule in a process dependent on the surface properties of the nanocarriers.

  2. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  3. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  4. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  5. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks.

    Science.gov (United States)

    Zhang, Rui Xue; Ahmed, Taksim; Li, Lily Yi; Li, Jason; Abbasi, Azhar Z; Wu, Xiao Yu

    2017-01-26

    Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.

  6. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs--A Review.

    Science.gov (United States)

    Reddy, B Pavan Kumar; Yadav, Hemant K S; Nagesha, Dattatri K; Raizaday, Abhay; Karim, Abdul

    2015-06-01

    Polymeric micelles are used as 'smart drug carriers' for targeting certain areas of the body by making them stimuli-sensitive or by attachment of a specific ligand molecule onto their surface. The main aim of using polymeric micelles is to deliver the poorly water soluble drugs. Now-a-days they are used especially in the areas of cancer therapy also. In this article we have reviewed several aspects of polymeric micelles concerning their mechanism of formation, chemical nature, preparation and characterization techniques, and their applications in the areas of drug delivery.

  7. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Budko, Andrei P. [Oncological Center, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kovarskii, Alexander L. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Zontov, Sergei V. [Oncological Center, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kogan, Boris Ya. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com

    2009-05-15

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  8. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A.; Budko, Andrei P.; Kovarskii, Alexander L.; Zontov, Sergei V.; Kogan, Boris Ya.; Kuznetsov, Oleg A.

    2009-01-01

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  9. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    Directory of Open Access Journals (Sweden)

    Murilo L Bello

    Full Text Available Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation. We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.

  10. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Zhou, Ninglin, E-mail: zhouninglin@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505 (China)

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. - Highlights: • Hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed as a drug carrier. • The prepared PTX-loaded nanospheres can be dispersed in aqueous medium stably. • The GO-COO-HP-β-CD nanospheres are safe for blood-contact applications. • This newly developed PTX-delivery system could confer significantly improved cytotoxicity against tumor cells.

  11. Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain.

    Science.gov (United States)

    Salunkhe, Sachin S; Bhatia, Neela M; Bhatia, Manish S

    2016-05-01

    The aim of present investigation was to formulate and develop lipid-based nanostructured carriers (NLCs) containing Idebenone (IDE) for delivery to brain. Attempts have been made to evaluate IDE NLCs for its pharmacokinetic and pharmacodynamic profile through the objective of enhancement in bioavailability and effectivity of drug. Nanoprecipitation technique was used for development of drug loaded NLCs. The components solid lipid Precirol ATO 5, oil Miglyol 840, surfactants Tween 80 and Labrasol have been screened out for formulation development by consideration of preformulation parameters including solubility, Required Hydrophilic lipophilic balance (HLB) of lipids and stability study. Developed IDE NLCs were subjected for particle size, zeta potential, entrapment efficiency (%EE), crystallographic investigation, transmission electron microscopy, in vitro drug release, pharmacokinetics, in vivo and stability study. Formulation under investigation has particle size 174.1 ± 2.6 nm, zeta potential -18.65 ± 1.13 mV and% EE 90.68 ± 2.90. Crystallographic studies exemplified for partial amorphization of IDE by molecularly dispersion within lipid crust. IDE NLCs showed drug release 93.56 ± 0.39% at end of 24 h by following Higuchi model which necessitates for appropriate drug delivery with enhancement in bioavailability of drug by 4.6-fold in plasma and 2.8-fold in brain over plain drug loaded aqueous dispersions. In vivo studies revealed that effect of drug was enhanced by prepared lipid nanocarriers. IDE lipid-based nanostructured carriers could have potential for efficient drug delivery to brain with enhancement in bioavailability of drug over the conventional formulations.

  12. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    Science.gov (United States)

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Cyclodextrins as drug carriers in Pharmaceutical Technology: The state of the art.

    Science.gov (United States)

    Conceição, Jaime; Adeoye, Oluwatomide; Cabral-Marques, Helena Maria; Lobo, Jose Manuel Sousa

    2017-12-18

    Cyclodextrins (CDs) are versatile excipients with an essential role in drug delivery, as they can form non-covalently bonded inclusion complexes (host-guest complexes) with several drugs either in solution or in the solid state. The main purpose of this publication was to carry out a state of the art of CDs as complexing agents in drug carrier systems. In this way, the history, properties and pharmaceutical applications of the CDs were highlighted with typical examples. The methods to enhance the complexation efficiency (CE) and the CDs applications in solid dosage forms were emphasized in more detail. The main advantages of using these cyclic oligosaccharides are as follows: (1) to enhance solubility/dissolution/ bioavailability of poorly soluble drugs; (2) to enhance drug stability; (3) to modify the drug release site and/or time profile; and (4) to reduce drug side effects (for example, gastric or ocular irritation). These compounds present favorable toxicological profile for human use and therefore there are various medicines containing CDs approved by regulatory authorities worldwide. On the other hand, the major drawback of CDs is the increase in formulation bulk, once the CE is, in general, very low. This aspect is particularly relevant in solid dosage forms and limits the use of CDs to potent drugs. CDs have great potential as drug carriers in Pharmaceutical Technology and can be used by the formulator in order to improve the drug properties such as solubility, bioavailability and stability. Additionally, recent studies have shown that these compounds can be applied as active pharmaceutical ingredients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Crosslinked hydrogels?a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    OpenAIRE

    Sun, Dajun D.; Lee, Ping I.

    2014-01-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a ...

  15. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Juan P de Macêdo

    2015-05-01

    Full Text Available Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug

  16. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles.

    Science.gov (United States)

    Kolesnikova, Tatiana A; Skirtach, Andre G; Möhwald, Helmuth

    2013-01-01

    Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.

  17. Interaction of tricyclic drugs with copper phthalocyanine dye immobilized on magnetic carriers

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Šafařík, Ivo

    3(Suppl.2), - (2002), s. 188-191 ISSN 1473-2262. [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /4./. Tallahassee, 09.05.2002-11.05.2002] R&D Projects: GA MŠk OC 523.80; GA AV ČR IBS6087204 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic * tricyclic drugs * phthalocyanine Subject RIV: CE - Biochemistry

  18. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier.

    Science.gov (United States)

    Menzel, Claudia; Bernkop-Schnürch, Andreas

    2018-01-15

    The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modified local diatomite as potential functional drug carrier--A model study for diclofenac sodium.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Čalija, Bojan; Vasiljević, Bojana Nedić; Dobričić, Vladimir; Daković, Aleksandra; Antonijević, Milan D; Milić, Jela

    2015-12-30

    Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems.

    Science.gov (United States)

    Malekzad, Hedieh; Mirshekari, Hamed; Sahandi Zangabad, Parham; Moosavi Basri, S M; Baniasadi, Fazel; Sharifi Aghdam, Maryam; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.

  1. {beta}-TCP porous pellets as an orthopaedic drug delivery system: ibuprofen/carrier physicochemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Baradari, Hiba; Damia, Chantal; Dutreih-Colas, Maggy; Champion, Eric; Chulia, Dominique; Viana, Marylene, E-mail: hiva.baradari@etu.unilim.fr [SPCTS-Centre Europeen de la Ceramique, 12 Rue Atlantis, 87068 Limoges CEDEX (France)

    2011-10-15

    Calcium phosphate bone substitute materials can be loaded with active substances for in situ, targeted drug administration. In this study, porous {beta}-TCP pellets were investigated as an anti-inflammatory drug carrier. Porous {beta}-TCP pellets were impregnated with an ethanolic solution of ibuprofen. The effects of contact time and concentration of ibuprofen solution on drug adsorption were studied. The ibuprofen adsorption equilibrium time was found to be one hour. The adsorption isotherms fitted to the Freundlich model, suggesting that the interaction between ibuprofen and {beta}-TCP is weak. The physicochemical characterizations of loaded pellets confirmed that the reversible physisorption of ibuprofen on {beta}-TCP pellets is due to Van der Waals forces, and this property was associated with the 100% ibuprofen release.

  2. β-TCP porous pellets as an orthopaedic drug delivery system: ibuprofen/carrier physicochemical interactions

    International Nuclear Information System (INIS)

    Baradari, Hiba; Damia, Chantal; Dutreih-Colas, Maggy; Champion, Eric; Chulia, Dominique; Viana, Marylene

    2011-01-01

    Calcium phosphate bone substitute materials can be loaded with active substances for in situ, targeted drug administration. In this study, porous β-TCP pellets were investigated as an anti-inflammatory drug carrier. Porous β-TCP pellets were impregnated with an ethanolic solution of ibuprofen. The effects of contact time and concentration of ibuprofen solution on drug adsorption were studied. The ibuprofen adsorption equilibrium time was found to be one hour. The adsorption isotherms fitted to the Freundlich model, suggesting that the interaction between ibuprofen and β-TCP is weak. The physicochemical characterizations of loaded pellets confirmed that the reversible physisorption of ibuprofen on β-TCP pellets is due to Van der Waals forces, and this property was associated with the 100% ibuprofen release.

  3. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications.

    Science.gov (United States)

    Bugnicourt, Loïc; Ladavière, Catherine

    2017-06-28

    Chitosan and lipid colloids have separately shown a growing interest in the field of drug delivery applications. Their success is mainly due to their interesting physicochemical behaviors, as well as their biological properties such as bioactivity and biocompatibility. While chitosan is a well-known cationic polysaccharide with the ability to strongly interact with drugs and biological matrices through mainly electrostatic interactions, lipid colloids are carriers particularly recognized for the drug vectorization. In recent years, the combination of both entities has been considered because it offers new systems which gather the advantages of each of them to efficiently deliver various types of bioactive species. The purpose of this review is to describe these associations between chemically-unmodified chitosan chains (solubilized or dispersed) and lipid colloids (as nanoparticles or organized in lipid layers), as well as their potential in the drug delivery area so far. Three assemblies have mainly been reported in the literature: i) lipid nanoparticles (solid lipid nanoparticles or nanostructured lipid carriers) coated with chitosan chains, ii) lipid vesicles covered with chitosan chains, and iii) chitosan chains structured in nanoparticles with a lipid coating. Their elaboration processes, their physicochemical characterization, and their biological studies are detailed and discussed herein. The different bioactive species (drugs and bio(macro)molecules) incorporated in these assemblies, their maximal incorporation efficiency, and their loading capacity are also presented. This review reveals the versatility of these assemblies. Depending on the organization of lipids (i.e., nanoparticles or vesicles) and the state of polymer chains (i.e., solubilized or dispersed under the form of nanoparticles), a large variety of drugs can be successfully incorporated, and various routes of administration can be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2013-01-01

    Full Text Available Diclofenac sodium loaded solid lipid nanoparticles (SLNs were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG and plain carbopol gel containing drug (CG for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1 and stearic acid nanoparticle 1 (SAN-1 gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3 showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher Cmax than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile.

  5. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms.

    Science.gov (United States)

    Liu, Lin; Yao, WenDong; Rao, YueFeng; Lu, XiaoYang; Gao, JianQing

    2017-11-01

    Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.

  6. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  7. An overview on the delivery of antitumor drug doxorubicin by carrier proteins.

    Science.gov (United States)

    Agudelo, D; Bérubé, G; Tajmir-Riahi, H A

    2016-07-01

    Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  9. Scintigraphic evaluation of the pharmacokinetics of a soluble polymeric drug carrier

    International Nuclear Information System (INIS)

    Pimm, M.V.; Perkins, A.C.; Hudecz, F.

    1992-01-01

    There is a growing interest in the use of macromolecular carriers for therapeutic agents. If these carriers can be labelled with an appropriate gamma-emitter, their biodistribution could be followed by scintigraphy. We have imaged the biodistribution of a synthetic branched polypeptide, based on a poly-L-lysine backbone (average molecular mass 45 kDa). The polymer was conjugated to diethylene triamine penta-acetic acid and labelled by chelation with indium-111. Mice were injected i.v. with labelled material and imaged with a gamma-camera with a pin-hole collimator. Images showed the majority of tracer remaining in the blood pool, but about 35% appeared in the urinary bladder within 1.5 h. When the 111 In-polymer was fractionated by gel filtration chromatography on S-300, the imaging showed that the early eluting material was retained, the intermediate showed some renal clearance, and the late was rapidly excreted. These findings show the value of gamma-scintigraphy for biodistribution studies with such polymeric drug carriers and its potential for clinical pharmacokinetic studies. (orig.)

  10. Walnut kernel-like mesoporous silica nanoparticles as effective drug carrier for cancer therapy in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Kun; Ren, Huihui; Sun, Wentong [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China); Zhao, Qi [Hebei University, College of Clinical Science (China); Jia, Guang [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China); Zang, Aimin [Affiliated Hospital of Hebei University (China); Zhang, Cuimiao, E-mail: cmzhanghbu@163.com; Zhang, Jinchao, E-mail: jczhang6970@163.com [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China)

    2016-03-15

    In drug delivery systems, nanocarriers could reduce the degradation and renal clearance of drugs, increase the half-life in the bloodstream and payload of drugs, control the release patterns, and improve the solubility of some insoluble drugs. In particular, mesoporous silica nanoparticles (MSNs) are considered to be attractive nanocarriers for application of delivery systems because of their large surface areas, large pore volume, tunable pore sizes, good biocompatibility, and the ease of surface functionalization. However, the large-scale synthesis of monodisperse MSNs that are smaller than 200 nm remains a challenge. In this study, monodisperse walnut kernel-like MSNs with diameters of approximately 100 nm were synthesized by a sol–gel route on a large scale. The morphology and structure of MSNs were characterized by scanning electron microscope, and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms, Zeta potentials, and dynamic light scattering. Drug loading and release profile, cellular uptake, subcellular localization, and anticancer effect in vitro were further investigated. The results indicated that the loading efficiency of doxorubicinhydrochloride (DOX) into the MSNs was 57 %. The MSNs–DOX delivery system exhibited a drug-pronounced initial burst release within 12 h, followed by the slow sustained release of DOX molecules; moreover, MSNs could improve DOX release efficiency in acidic medium. Most free DOX was localized in the cytoplasm, whereas the MSNs–DOX was primarily distributed in lysosome. MSNs–DOX exhibited a potential anticancer effect against MCF-7, HeLa, and A549 cells in dose- and time-dependent manners. In summary, the as-synthesized MSNs may have well function as a promising drug carrier in drug delivery fields.Graphical Abstract.

  11. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite.

    Science.gov (United States)

    Hao, Xiaohong; Hu, Xixue; Zhang, Cuimiao; Chen, Shizhu; Li, Zhenhua; Yang, Xinjian; Liu, Huifang; Jia, Guang; Liu, Dandan; Ge, Kun; Liang, Xing-Jie; Zhang, Jinchao

    2015-10-27

    Potential bioaccumulation is one of the biggest limitations for silica nanodrug delivery systems in cancer therapy. In this study, a mesoporous silica nanoparticles/hydroxyapatite (MSNs/HAP) hybrid drug carrier, which enhanced the biodegradability of silica, was developed by a one-step method. The morphology and structure of the nanoparticles were characterized by TEM, DLS, FT-IR, XRD, N2 adsorption-desorption isotherms, and XPS, and the drug loading and release behaviors were tested. TEM and ICP-OES results indicate that the degradability of the nanoparticles has been significantly improved by Ca(2+) escape from the skeleton in an acid environment. The MSNs/HAP sample exhibits a higher drug loading content of about 5 times that of MSNs. The biological experiment results show that the MSNs/HAP not only exhibits good biocompatibility and antitumor effect but also greatly reduces the side effects of free DOX. The as-synthesized hybrid nanoparticles may act as a promising drug delivery system due to their good biocompatibility, high drug loading efficiency, pH sensitivity, and excellent biodegradability.

  12. Coordination conjugates of therapeutic proteins with drug carriers: A new approach for versatile advanced drug delivery

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Bříza, T.; Králová, Jarmila; Poučková, P.; Kral, A.; Martásek, P.; Král, V.

    2011-01-01

    Roč. 21, č. 18 (2011), s. 5514-5520 ISSN 0960-894X R&D Projects: GA ČR GA203/09/1311 Grant - others:MPO(CZ) FR-TI3/521; AV ČR(CZ) KAN200100801 Program:FR; KA Institutional research plan: CEZ:AV0Z50520514 Keywords : combined cancer therapy * photodynamic therapy * targeted drug delivery Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.554, year: 2011

  13. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  14. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  15. [Carrier-mediated Transport of Cationic Drugs across the Blood-Tissue Barrier].

    Science.gov (United States)

    Kubo, Yoshiyuki

    2015-01-01

    Studies of neurological dysfunction have revealed the neuroprotective effect of several cationic drugs, suggesting their usefulness in the treatment of neurological diseases. In the brain and retina, blood-tissue barriers such as blood-brain barrier (BBB) and blood-retinal barrier (BRB) are formed to restrict nonspecific solute transport between the circulating blood and neural tissues. Therefore study of cationic drug transport at these barriers is essential to achieve systemic delivery of neuroprotective agents into the neural tissues. In the retina, severe diseases such as diabetic retinopathy and macular degeneration can cause neurological dysfunction that dramatically affects patients' QOL. The BRB is formed by retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (outer BRB). Blood-to-retina transport of cationic drugs was investigated at the inner BRB, which is known to nourish two thirds of the retina. Blood-to-retinal transport of verapamil suggested that the barrier function of the BRB differs from that of the BBB. Moreover, carrier-mediated transport of verapamil and pyrilamine revealed the involvement of novel organic cation transporters at the inner BRB. The identified transport systems for cationic drugs are sensitive to several cationic neuroprotective and anti-angiogenic agents such as clonidine and propranolol, and the involvement of novel transporters was also suggested in their blood-to-retina transport across the inner BRB.

  16. Physical stability, biocompatibility and potential use of hybrid iron oxide-gold nanoparticles as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Christopher M. [School of Pharmacy, Keele University (United Kingdom); Gueorguieva, Mariana [Institute of Medical Science and Technology, University of Dundee (United Kingdom); Lees, Martin R. [University of Warwick, Physics Department (United Kingdom); McGarvey, David J. [School of Physical and Geographical Sciences, Keele University, Lennard-Jones Laboratories (United Kingdom); Hoskins, Clare, E-mail: c.hoskins@keele.ac.uk [Institute for Science and Technology in Medicine, Keele University (United Kingdom)

    2013-06-15

    Hybrid nanoparticles (HNPs) such as iron oxide-gold nanoparticles are currently being exploited for their potential application in image-guided therapies. However, little investigation has been carried out into their physical or chemical stability and potential cytotoxicity in biological systems. Here, we determine the HNPs physical stability over 6 months and chemical stability in physiological conditions, and estimate the biological activity of uncoated and poly(ethylene glycol) coated nanoparticles on human pancreatic adenocarcinoma (BxPC-3) and differentiated human monocyte cells (U937). The potential of these HNPs to act as drug carrier vehicles was determined using the model drug 6-Thioguanine (6-TG). The data showed that the HNPs maintained their structural integrity both physically and chemically throughout the duration of the studies. In addition, negligible cytotoxicity or free radical production was observed in the cell lines tested. The 6-TG was successfully conjugated; with a ratio of 3:1:10 Fe:Au:6-TG (wt:wt:wt). After incubation with BxPC-3 cells, enhanced cellular uptake was reported with the 6-TG-conjugated HNPs compared with free drug along with a 10-fold decrease in IC{sub 50}. This exciting data highlights the potential of HNPs for use in image-guided drug delivery.

  17. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Shu [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Lu, Yu-Jen [Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC (China)

    2017-04-01

    A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe{sub 3}O{sub 4} magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which ~60% of DOX was released at pH 5.4 and ~10% was released at pH 7.4. In contrast, ~90% CPT-11 was released at pH 5.4 and ~70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy. - Highlights: • mGO was prepared by chemical co-precipitation of Fe{sub 3}O{sub 4} MNP on GO nano-platelets. • mGO was further modified by chitosan and mPEG-NHS to synthesize mGOC-PEG. • mGOC-PEG showed higher drug loading of doxorubicin (DOX) than irinotecan. • mGOC-PEG showed pH-responsive controlled release of chemotherapy drugs. • Magnetic targeting enhanced cytotoxicity of

  18. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

    International Nuclear Information System (INIS)

    Huang, Ya-Shu; Lu, Yu-Jen; Chen, Jyh-Ping

    2017-01-01

    A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe 3 O 4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which ~60% of DOX was released at pH 5.4 and ~10% was released at pH 7.4. In contrast, ~90% CPT-11 was released at pH 5.4 and ~70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy. - Highlights: • mGO was prepared by chemical co-precipitation of Fe 3 O 4 MNP on GO nano-platelets. • mGO was further modified by chitosan and mPEG-NHS to synthesize mGOC-PEG. • mGOC-PEG showed higher drug loading of doxorubicin (DOX) than irinotecan. • mGOC-PEG showed pH-responsive controlled release of chemotherapy drugs. • Magnetic targeting enhanced cytotoxicity of m

  19. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    International Nuclear Information System (INIS)

    Pentak, Danuta

    2016-01-01

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  20. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Pentak, Danuta, E-mail: danuta.pentak@us.edu.pl [University of Silesia, Department of Materials Chemistry and Chemical Technology, Institute of Chemistry (Poland)

    2016-05-15

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  1. Plant lectins as carriers for oral drugs: Is wheat germ agglutinin a suitable candidate?

    International Nuclear Information System (INIS)

    Dalla Pellegrina, Chiara; Rizzi, Corrado; Mosconi, Silvia; Zoccatelli, Gianni; Peruffo, Angelo; Chignola, Roberto

    2005-01-01

    Wheat germ agglutinin (WGA) is a plant protein that binds specifically to sugars expressed also by gastrointestinal epithelial cells. WGA is currently investigated as an anti-tumor drug and as a carrier for oral drugs. Information on whether it can cross the gastrointestinal epithelium and on its possible effects on the integrity of the epithelial layer is however scanty or lacking, and herein we address these issues. Differentiated Caco2 cells have been used as a model of polarized intestinal epithelium. WGA concentration at both the apical and the basolateral side of the epithelium has been quantified using a sensitive ELISA assay (sensitivity threshold 0.84 nM). Trans epithelial electrical resistance (TEER) has been measured to evaluate the integrity of the epithelium upon treatments with WGA. 3 H-Mannitol (182.2 Da) and FITC-dextran (3000 Da) have been used to measure the permeability of the epithelium. Cell viability has been measured by the MTT, by 7-AAD uptake, and Annexin-V binding assays. Up to a concentration of 5.6 μM, ∼0.1% of intact WGA molecules only could cross the epithelial layer. WGA perturbed the integrity of the epithelium and increased the permeability of the tissue in a dose- and time-dependent manner. WGA did not induce cell death but increased the permeability of individual cells to 7-AAD which is normally not uptaken by viable cells. These data allowed us to define a toxicity threshold for WGA on epithelial cells. WGA suitability as a carrier for oral drugs can therefore be evaluated on a rational basis

  2. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  3. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-01-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  4. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    Science.gov (United States)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  5. Preparation of Polysaccharide-Based Microspheres by a Water-in-Oil Emulsion Solvent Diffusion Method for Drug Carriers

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2013-01-01

    Full Text Available Polysaccharide-based microspheres of chitosan, starch, and alginate were prepared by the water-in-oil emulsion solvent diffusion method for use as drug carriers. Blue dextran was used as a water-soluble biomacromolecular drug model. Scanning electron microscopy showed sizes of the resultant microspheres that were approximately 100 μm or less. They were spherical in shape with a rough surface and good dispersibility. Microsphere matrices were shown as a sponge. Drug loading efficiencies of all the microspheres were higher than 80%, which suggested that this method has potential to prepare polysaccharide-based microspheres containing a biomacromolecular drug model for drug delivery applications.

  6. Investigating the Effects of Loading Factors on the In Vitro Pharmaceutical Performance of Mesoporous Materials as Drug Carriers for Ibuprofen

    Directory of Open Access Journals (Sweden)

    Junmin Lai

    2017-02-01

    Full Text Available The aim of the study was to investigate the effects of the loading factors, i.e., the initial drug loading concentration and the ratio of the drug to carriers, on the in vitro pharmaceutical performance of drug-loaded mesoporous systems. Ibuprofen (IBU was used as a model drug, and two non-ordered mesoporous materials of commercial silica Syloid® 244FP (S244FP and Neusilin® US2 (NS2 were selected in the study. The IBU-loaded mesoporous samples were prepared by a solvent immersion method with a rotary evaporation drying technique and characterized by polarized light microscopy (PLM, Fourier transform infrared (FTIR spectroscopy, X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC. Dissolution experiments were performed in simulated gastric media at 37 °C under non-sink conditions. The concentration of IBU in solution was determined by HPLC. The study showed that the dissolution rate of IBU can be improved significantly using the mesoporous S224FP carriers due to the conversion of crystalline IBU into the amorphous form. Both of the loading factors affected the IBU dissolution kinetics. Due to the molecular interaction between the IBU and NS2 carriers, the loading factors had little effects on the drug release kinetics with incomplete drug desorption recovery and insignificant dissolution enhancement. Care and extensive evaluation must therefore be taken when mesoporous materials are chosen as carrier delivery systems.

  7. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Khatamian, M. [Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of); Divband, B., E-mail: baharakdivband@yahoo.com [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of); Farahmand-zahed, F. [Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of)

    2016-09-01

    Current research has focused on the preparation of Zinc-clinoptilolite/Graphene Oxide (Zn-Clin/GO) hybrid nanostructure and investigating its biocompatibility for the first time. As prepared samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Thermo gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). In order to use it as a drug carrier two important factors were investigated: cytocompatibility of nanocomposites and their drug loading capacity. The results showed that the prepared nanocomposite is cytocompatible and its high loading capacity and slow release performance for Doxorubicin (DOX), as a cancer drug, proved that it can be used as a drug carrier. At last in-vitro toxicity of DOX loaded nanocomposite was compared with pure DOX. - Graphical abstract: Biocompatible Zn-clinoptilolite/Graphene oxide hybrid nanostructure as in vitro drug delivery systems (DDS) was able to store and release substantial amounts of doxorubicin to the lung cancer cell lines. Display Omitted - Highlights: • Zn-Clin/GO nanocomposite as a new in vitro drug carrier with high loading capacity is synthesized. • Two synthesis methods (Microwave assisted hydrothermal method and Reflux method) are used. • All of the carriers (Zn-Clin, Zn-Clin/GO, GO) showed high biocompatibility.

  8. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier

    International Nuclear Information System (INIS)

    Khatamian, M.; Divband, B.; Farahmand-zahed, F.

    2016-01-01

    Current research has focused on the preparation of Zinc-clinoptilolite/Graphene Oxide (Zn-Clin/GO) hybrid nanostructure and investigating its biocompatibility for the first time. As prepared samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Thermo gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). In order to use it as a drug carrier two important factors were investigated: cytocompatibility of nanocomposites and their drug loading capacity. The results showed that the prepared nanocomposite is cytocompatible and its high loading capacity and slow release performance for Doxorubicin (DOX), as a cancer drug, proved that it can be used as a drug carrier. At last in-vitro toxicity of DOX loaded nanocomposite was compared with pure DOX. - Graphical abstract: Biocompatible Zn-clinoptilolite/Graphene oxide hybrid nanostructure as in vitro drug delivery systems (DDS) was able to store and release substantial amounts of doxorubicin to the lung cancer cell lines. Display Omitted - Highlights: • Zn-Clin/GO nanocomposite as a new in vitro drug carrier with high loading capacity is synthesized. • Two synthesis methods (Microwave assisted hydrothermal method and Reflux method) are used. • All of the carriers (Zn-Clin, Zn-Clin/GO, GO) showed high biocompatibility.

  9. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers.

    Science.gov (United States)

    Han, Fei; Gao, Chunmei; Liu, Mingzhu

    2013-10-01

    Acetylated corn starch was successfully synthesized and optimized by the reaction of native corn starch with acetic anhydride and acetic acid in the presence of sulfuric acid as a catalyst. The optimal degree of substitution of 2.85 was obtained. Starch-based nanoparticles were fabricated by a simple and novel nanoprecipitation procedure, by the dropwise addition of water to acetone solution of acetylated starch under stirring. Fourier transform infrared spectrometry showed that acetylated starch had some new bands at 1750, 1375 and 1240 cm(-1) while acetylated starch nanoparticles presented the identical peaks as the drug-loaded acetylated starch nanoparticles and the acetylated starch. Wide angle X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of Acetylated starch and starch-based nanoparticles show the similar type pattern with the acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. The encapsulation efficiency and diameter of nanoparticle can be adjusted by the degree of substitution, the volume ratio of nonsolvent to solvent and the weight ratio of acetylated starch to drug. It was also depicted that the release behaviors of drug-loaded nanoparticles depend on the size of nanoparticles and the degree of substitution of the acetylated starch. Release studies prove that the starch-based nanoparticles with uniform size can be used for the encapsulation of hydrophobic drug and attained the sustained and controllable drug release carriers.

  10. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    Science.gov (United States)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  11. Multifunctional Amine Mesoporous Silica Spheres Modified with Multiple Amine as Carriers for Drug Release

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-01-01

    Full Text Available Mesoporous silica spheres were synthesized by using Stöber theory (MSN-40. Calcination of the mesostructured phase resulted in the starting solid. Organic modification with aminopropyl groups resulted in two MSN-40 materials: named MSN-NH2 and MSN-DQ-40, respectively. These two kinds of samples with different pore sizes (obtained from 3-[2-(2-aminoethylaminoethylamino]propyl-trimethox-ysilane (NQ-62 and modified NQ-62 showed control of the delivery rate of ibuprofen (IBU from the siliceous matrix. The obtained sample from modified NQ-62 has an increased loading rate and shows better control of the delivery rate of IBU than the obtained sample from NQ-62. These three solids were characterized using standard solid state procedures. During tests of in vitro drug release, an interesting phenomenon was observed: at high pH (pH 7.45, IBU in all carriers was released slowly; at low pH (pH 4.5, only a part of the IBU was slowly released from this carrier within 25 hours; most IBU was effectively confined in mesoporous material, but the remaining IBU was released rapidly and completely after 25 hours.

  12. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    Science.gov (United States)

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  13. Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific.

    Science.gov (United States)

    Gikanga, Benson; Adeniji, Nia S; Patapoff, Thomas W; Chih, Hung-Wei; Yi, Li

    2016-04-20

    Antibody-drug conjugates (ADCs) require thorough characterization and understanding of product quality attributes. The framework of many ADCs comprises one molecule of antibody that is usually conjugated with multiple drug molecules at various locations. It is unknown whether the drug release rate from the ADC is dependent on drug location, and/or local environment, dictated by the sequence and structure of the antibody carrier. This study addresses these issues with valine-citrulline-monomethylauristatin E (vc-MMAE)-based ADC molecules conjugated at reduced disulfide bonds, by evaluating the cathepsin B catalyzed drug release rate of ADC molecules with different drug distributions or antibody carriers. MMAE drug release rates at different locations on ADC I were compared to evaluate the impact of drug location. No difference in rates was observed for drug released from the V(H), V(L), or C(H)2 domains of ADC I. Furthermore, four vc-MMAE ADC molecules were chosen as substrates for cathepsin B for evaluation of Michaelis-Menten parameters. There was no significant difference in K(M) or k(cat) values, suggesting that different sequences of the antibody carrier do not result in different drug release rates. Comparison between ADCs and small molecules containing vc-MMAE moieties as substrates for cathepsin B suggests that the presence of IgG1 antibody carrier, regardless of its bulkiness, does not impact drug release rate. Finally, a molecular dynamics simulation on ADC II revealed that the val-cit moiety at each of the eight possible conjugation sites was, on average, solvent accessible over 50% of its maximum solvent accessible surface area (SASA) during a 500 ns trajectory. Combined, these results suggest that the cathepsin cleavage sites for conjugated drugs are exposed enough for the enzyme to access and that the drug release rate is rather independent of drug location or monoclonal antibody carrier. Therefore, the distribution of drug conjugation at different

  14. Comparison of different zeolite framework types as carriers for the oral delivery of the poorly soluble drug indomethacin.

    Science.gov (United States)

    Karavasili, Christina; Amanatiadou, Elsa P; Kontogiannidou, Eleni; Eleftheriadis, Georgios K; Bouropoulos, Nikolaos; Pavlidou, Eleni; Kontopoulou, Ioanna; Vizirianakis, Ioannis S; Fatouros, Dimitrios G

    2017-08-07

    Microporous zeolites of distinct framework types, textural properties and crystal morphologies namely BEA, ZSM and NaX, have been employed as carriers to assess their effect on modulating the dissolution behavior of a BCS II model drug (indomethacin). Preparation of the loaded carriers via the incipient wetness method induced significant drug amorphization for the BEA and NaX samples, as well as high drug payloads. The stability of the amorphous drug content was retained after stressing test evaluation of the porous carriers. The dissolution profile of loaded indomethacin was evaluated in simulated gastric fluid (pH 1.2) and simulated intestinal fluids FaSSIF (fasted) and FeSSIF (fed state) conditions and was found to be dependent on the aluminosilicate ratio of the zeolites and the degree of crystalline drug content. The feasibility of the zeolitic particles as oral drug delivery systems was appraised with cytocompatibility and cellular toxicity studies in Caco-2 cultures in a time- and dose-dependent manner by means of the MTT assay and flow cytometry analysis, respectively. Intracellular accumulation of the zeolite particles was observed with no apparent cytotoxic effects at the lower concentrations tested, rendering such microporous zeolites pertinent candidates in oral drug delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Design of colon targeting drug delivery systems using natural polymeric carriers and their evaluation by gamma scintigraphy technique

    International Nuclear Information System (INIS)

    Soni, P.S.; Sawarkar, S.P.; Deshpande, S.G.; Bajaj, A.N.

    2004-01-01

    Of late, there has been a great awareness in the concept of drug targeting and delivery to a specific site (organ, tissue or cell) in the body to maximize therapeutic effect and reduce toxicity. The various approaches of site-specific drug delivery are implantable pumps, adhesive patches impregnated with drugs, vesicle enclosed drugs and drug carriers. Colonic drug delivery is intended for local and systemic treatment in the diseases of colon like inflammatory bowel conditions. Several approaches using viz. pro-drugs, biodegradable polymers and pH sensitive polymer coatings have been used to achieve colonic delivery. Natural polysaccarides like guar gum and pectin are promising candidates because they are susceptible to degradation by colonic bacteria and thus can release the entrapped drug in the colonic region. These indigenous natural polymers are cheaply and readily available. They comprise of polygalactouronic acid and refractory to host enzymes present in the upper gastrointestinal tract and are degraded by the enzymes produced by the colonic microflora. They were evaluated as a colonic carrier using 5-amino salicylic acid (5-ASA) as a model drug. After successful in vitro testing, gamma scintigraphy technique was used to assess in-vivo behavior of the colon specific drug delivery after a coat of Guar gum and Pectin

  16. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  17. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nanovesicles released by Dictyostelium cells: a potential carrier for drug delivery.

    Science.gov (United States)

    Lavialle, Françoise; Deshayes, Sophie; Gonnet, Florence; Larquet, Eric; Kruglik, Sergei G; Boisset, Nicolas; Daniel, Régis; Alfsen, Annette; Tatischeff, Irène

    2009-10-01

    Nanovesicles released by Dictyostelium discoideum cells grown in the presence of the DNA-specific dye Hoechst 33342 have been previously shown to mediate the transfer of the dye into the nuclei of Hoechst-resistant cells. The present investigation extends this work by conducting experiments in the presence of hypericin, a fluorescent therapeutic photosensitizer assayed for antitumoral photodynamic therapy. Nanovesicles released by Dictyostelium cells exhibit an averaged diameter between 50 and 150 nm, as measured by transmission cryoelectron microscopy. A proteomic analysis reveals a predominance of actin and actin-related proteins. The detection of a lysosomal membrane protein (LIMP II) indicates that these vesicles are likely generated in the late endosomal compartment. The use of the hypericin-containing nanovesicles as nanodevices for in vitro drug delivery was investigated by fluorescence microscopy. The observed signal was almost exclusively located in the perinuclear area of two human cell lines, skin fibroblasts (HS68) and cervix carcinoma (HeLa) cells. Studies by confocal microscopy with specific markers of cell organelles, provided evidence that hypericin was accumulated in the Golgi apparatus. All these data shed a new light on in vitro drug delivery by using cell-released vesicles as carriers.

  19. Benzothiophen-pyrazine scaffold as a potential membrane targeting drug carrier

    International Nuclear Information System (INIS)

    Mazuryk, Olga; Niemiec, Elżbieta; Stochel, Grażyna; Gillaizeau, Isabelle; Brindell, Małgorzata

    2013-01-01

    The fluorescent properties of 2,5-di(benzo[b]thiophen-2-yl)pyrazine as a potential membrane targeting drug carrier were characterized and it was shown that its fluorescence intensity was much higher in organic solvent than in water. The embedding of studied compound by liposomes leads to ca. 2 orders of magnitude increase in its fluorescence intensity, suggesting its preferential accumulation in membranes. Preliminary biological studies showed its ability to accumulate in cells, and the concentration of 10 μM was sufficient for homogeneous staining of cells. The treatment of mouse carcinoma CT26 cells with studied compound up to 200 μM resulted in decreasing of viable cells by ca. 30%. Its reactivity towards albumin was found to be moderate with an association constant of 6×10 4 M −1 , while no interaction with DNA was observed. Our findings encourage for further studies on functionalization of this molecule to obtain a new class of anticancer drugs targeting membrane. Highlights: ► The fluorescence of 2,5-di(benzo[b]thiophen-2-yl)pyrazine is solvent dependent. ► Weak fluorescence is found in water while high in organic solvents (DMSO, chloroform). ► Embedding of compound in liposomes remarkably increased its fluorescence. ► No interaction with DNA is observed but moderate reactivity towards albumin is found. ► Homogeneous staining of cells is feasible using nontoxic dose of compound

  20. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    Science.gov (United States)

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  1. Simulations of magnetic capturing of drug carriers in the brain vascular system

    Energy Technology Data Exchange (ETDEWEB)

    Kenjeres, S., E-mail: S.Kenjeres@tudelft.nl [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands); Righolt, B.W. [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Blood flow and magnetic particles distributions in the brain vascular system simulated. Black-Right-Pointing-Pointer Numerical mesh generated from raw MRI images. Black-Right-Pointing-Pointer Significant increase in local capturing of magnetic particles obtained. Black-Right-Pointing-Pointer Promising technique for localised non-invasive treatment of brain tumours. - Abstract: The present paper reports on numerical simulations of blood flow and magnetic drug carrier distributions in a complex brain vascular system. The blood is represented as a non-Newtonian fluid by the generalised power law. The Lagrangian tracking of the double-layer spherical particles is performed to estimate particle deposition under influence of imposed magnetic field gradients across arterial walls. Two situations are considered: neutral (magnetic field off) and active control (magnetic field on) case. The double-layer spherical particles that mimic a real medical drug are characterised by two characteristic diameters - the outer one and the inner one of the magnetic core. A numerical mesh of the brain vascular system consisting of multi-branching arteries is generated from raw MRI scan images of a patient. The blood is supplied through four main inlet arteries and the entire vascular system includes more than 30 outlets, which are modelled by Murray's law. The no-slip boundary condition is applied for velocity components along the smooth and rigid arterial walls. Numerical simulations revealed detailed insights into blood flow patterns, wall-shear-stress and local particle deposition efficiency along arterial walls. It is demonstrated that magnetically targeted drug delivery significantly increased the particle capturing efficiency in the pre-defined regions. This feature can be potentially useful for localised, non-invasive treatment of brain tumours.

  2. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy.

    Science.gov (United States)

    Menjoge, Anupa R; Rinderknecht, Amber L; Navath, Raghavendra S; Faridnia, Masoud; Kim, Chong J; Romero, Roberto; Miller, Richard K; Kannan, Rangaramanujam M

    2011-03-30

    Dendrimers offer significant potential as nanocarriers for targeted delivery of drugs and imaging agents. The objectives of this study were to evaluate the transplacental transport, kinetics and biodistribution of PAMAM dendrimers ex-vivo across the human placenta in comparison with antipyrine, a freely diffusible molecule, using dually perfused re-circulating term human placental lobules. The purpose of this study is to determine if dendrimers as drug carriers can be used to design drug delivery systems directed at selectively treating either the mother or the fetus. The transplacental transfers of fluorescently (Alexa 488) tagged PAMAM dendrimer (16 kDa) and antipyrine (188 Da) from maternal to fetal circulation were measured using HPLC/dual UV and fluorescent detector (sensitivity of 10 ng/mL for dendrimer and 100 ng/mL for antipyrine respectively). C(max) for the dendrimer-Alexa (DA) in maternal perfusate (T(max)=15 min) was 18 times higher than in the fetal perfusate and never equilibrated with the maternal perfusate during 5.5 h of perfusion (n=4). DA exhibited a measurable but low transplacental transport of 2.26±0.12 μg/mL during 5.5h, where the mean transplacental transfer was 0.84±0.11% of the total maternal concentration and the feto-maternal ratio as percent was 0.073%±0.02. The biochemical and physiological analysis of the placentae perfused with DA demonstrated normal function throughout the perfusion. The immunofluorescence histochemistry confirmed that the biodistribution of DA in perfused placenta was sparsely dispersed, and when noted was principally seen in the inter-villous spaces and outer rim of the villous branches. In a few cases, DA was found internalized and localized in nuclei and cytoplasm of syncytiotrophoblast and inside the villous core; however, DA was mostly absent from the villous capillaries. In conclusion, the PAMAM dendrimers exhibited a low rate of transfer from maternal to the fetal side across the perfused human placenta

  3. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    International Nuclear Information System (INIS)

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-01-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  4. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    Science.gov (United States)

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  5. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery.

    Science.gov (United States)

    Lu, Wei; Zhang, Yan; Tan, Yu-Zhen; Hu, Kai-Li; Jiang, Xin-Guo; Fu, Shou-Kuan

    2005-10-20

    In this paper, a novel drug carrier for brain delivery, cationic bovine serum albumin (CBSA) conjugated with poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticle (CBSA-NP), was developed and its effects were evaluated. The copolymers of methoxy-PEG-PLA and maleimide-PEG-PLA were synthesized by ring opening polymerization of D,L-lactide initiated by methoxy-PEG and maleimide-PEG, respectively, which were applied to prepare pegylated nanoparticles by means of double emulsion and solvent evaporation procedure. Native bovine serum albumin (BSA) was cationized and thiolated, followed by conjugation through the maleimide function located at the distal end of PEG surrounding the nanoparticle's surface. Transmission electron micrograph (TEM) and dynamic light scattering results showed that CBSA-NP had a round and regular shape with a mean diameter around 100 nm. Surface nitrogen was detected by X-ray photoelectron spectroscopy (XPS), and colloidal gold stained around the nanoparticle's surface was visualized in TEM, which proved that CBSA was covalently conjugated onto its surface. To evaluate the effects of brain delivery, BSA conjugated with pegylated nanoparticles (BSA-NP) was used as the control group and 6-coumarin was incorporated into the nanoparticles as the fluorescent probe. The qualitative and quantitative results of CBSA-NP uptake experiment compared with those of BSA-NP showed that rat brain capillary endothelial cells (BCECs) took in much more CBSA-NP than BSA-NP at 37 degrees C, at different concentrations and time incubations. After a dose of 60 mg/kg CBSA-NP or BSA-NP injection in mice caudal vein, fluorescent microscopy of brain coronal sections showed a higher accumulation of CBSA-NP in the lateral ventricle, third ventricle and periventricular region than that of BSA-NP. There was no difference on BCECs' viability between CBSA-conjugated and -unconjugated pegylated nanoparticles. The significant results in vitro and in vivo showed that CBSA-NP was

  6. Dissolution rate enhancement of the poorly water-soluble drug Tibolone using PVP, SiO2, and their nanocomposites as appropriate drug carriers.

    Science.gov (United States)

    Papadimitriou, Sofia; Bikiaris, Dimitrios

    2009-09-01

    Creation of immediate release formulations for the poorly water-soluble drug Tibolone through the use of solid dispersions (SDs). SD systems of Tibolone (Tibo) with poly(vinylpyrrolidone) (PVP), fumed SiO(2) nanoparticles, and their corresponding ternary systems (PVP/SiO(2)/Tibo) were prepared and studied in order to produce formulations with enhanced drug dissolution rates. The prepared SDs were characterized by the use of differential scanning calorimetry and wide-angle X-ray diffractometry techniques. Also dissolution experiments were performed. From the results it was concluded that PVP as well as SiO(2) can be used as appropriate carriers for the amorphization of Tibo, even when the drug is used at high concentrations (20-30%, w/w). This is due to the evolved interactions taking place between the drug and the used carriers, as was verified by Fourier transform infrared spectroscopy. At higher concentrations the drug was recrystallized. Similar are the observations on the ternary PVP/SiO(2)/Tibo SDs. The dissolution profiles of the drug in PVP/Tibo and SiO(2)/Tibo SDs are directly dependent on the physical state of the drug. Immediately release rates are observed in SD with low drug concentrations, in which Tibo was in amorphous state. However, these release profiles are drastically changed in the ternary PVP/SiO(2)/Tibo SDs. An immediate release profile is observed for low drug concentrations and an almost sustained release as the concentration of Tibo increases. This is due to the weak interactions that take place between PVP and SiO(2), which result in alterations of the characteristics of the carrier (PVP/SiO(2) nanocomposites). Immediate release formulation was created for Tibolone as well as new nanocomposite matrices of PVP/SiO((2)), which drastically change the release profile of the drug to a sustained delivery.

  7. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    Science.gov (United States)

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  8. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  9. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  10. Organic solute carrier 22 (SLC22 family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs

    Directory of Open Access Journals (Sweden)

    Raymond E. Lai

    2018-04-01

    Full Text Available Many drugs, hormones, components of herbal medicines, environmental pesticides and toxins are Solute Carrier family 22 (SLC22 substrates. The last twenty years has seen great progress in determining SLC22 tissue expression profiles, membrane localization, energetics, substrate profiles and biopharmaceutical significance. However, much still remains to be answered in terms of SLC22 family member's roles in ‘normal’ physiology as compared to pathophysiological states, as well as in drug interactions that impact pharmacokinetics, efficacy and toxicity. This review begins with a brief synopsis of SLC22 family discovery, function and tissue expression. Subsequent sections provide examples establishing a role for SLC22 transporters in food-drug, herbal supplement-drug, endogenous substrate-drug and drug–drug interactions. Keywords: Hepatic transport, Nephrotoxicity, Organic anion transporter, Organic cation transporter, Renal transport

  11. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    International Nuclear Information System (INIS)

    Zhang, Z.; Huang, G.

    2012-01-01

    The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis

  12. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhiyue Zhang

    2012-01-01

    Full Text Available The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis.

  13. Copper-gold nanoparticles: Fabrication, characteristic and application as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Woźniak-Budych, Marta J., E-mail: marta.budych@amu.edu.pl; Langer, Krzysztof; Peplińska, Barbara; Przysiecka, Łucja; Jarek, Marcin; Jarzębski, Maciej; Jurga, Stefan

    2016-08-15

    In this investigation, the fabrication of porous core/shell nanostructures consisting of copper (core) and copper-gold nanoalloy (shell) for medical applications is presented. As a core triangular-shaped copper nanoparticles were used. The porous bimetallic nanoshell was prepared via galvanic reaction in the presence of oil-in water emulsion. It was proved that porous nanoalloy layer can be prepared at pH 7 and in the presence 0.1% and 0.5% oil-in water emulsion. The porous structure fabrication was mainly determined by volume fraction of hexadecane to acetone in the oil-in water emulsion and Zeta-potential of emulsion droplets (pH of emulsion). The influence of emulsion droplets size before galvanic reaction on porous structure preparation was negligible. It was found that doxorubicin could be easily introduced and released from porous core/shell nanostructures, due to spontaneous adsorption on the copper-gold nanoporous surface. The in vitro test showed that cytotoxic effect was more prominent once the doxorubicin was adsorbed on the porous copper-gold nanocarriers. It was demonstrated, that doxorubicin-loaded copper-gold nanostructures caused inhibition cell proliferation and viability of cancer cells, in a concentration-dependent manner. The results indicates that presented coper-gold nanocarrier have potential to be used in targeted cancer therapy, due to its porous structure and cytotoxic effect in cancer cells. - Highlights: • Porous copper-gold nanostructure as a cytostatic drug carrier was prepared. • Kinetics and thermodynamics of drug adsorption were studied. • DOX-loaded copper-gold nanoparticles showed a pH-controlled release rate. • DOX-loaded copper-gold NPs caused inhibition cell proliferation of cancer cells. • The Cu-Au NPs could serve as a theranostic platform for biomedical applications.

  14. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, Maria; Peschke, Peter; Strunz, Anke M.; Kuehnlein, Rainer; Debus, Juergen [Department of Radiation Oncology, E0505, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Subr, Vladimir; Ulbrich, Karel [Institute of Macromolecular Chemistry, Prague (Czech Republic); Friedrich, Eckhard [Division of Biology, University of Koblenz-Landau, Landau (Germany)

    2002-08-01

    Synthetic macromolecules such as copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) are potential carriers for the delivery of drugs owing to their ability to passively accumulate in solid tumours [enhanced permeation and retention (EPR) effect]. To gain further knowledge about the biodistribution and the cellular localisation, poly(HPMA) was prepared for labelling by introducing biotin molecules. Biotinylated pHPMA (5 mol%) was intravenously injected into tumour-bearing rats and the accumulation of biotin-pHPMA was visualised using a streptavidin-alkaline phosphatase technique at day 7 post injection. In spite of the high solubility of pHPMA copolymers and the lack of attachment to cell structures, the biotinylated polymer could be easily detected in tissues fixed in 10% paraformaldehyde-phosphate buffer at 4 C for 48 h. While biotin-pHPMA could be detected intracytoplasmically in liver and spleen, a predominantly interstitial localisation was observed within the anaplastic prostate carcinoma (Dunning R3327-AT1). How biotin as a label influences the biodistribution of poly(HPMA) was assessed by scintigraphy, autoradiography and histology comparing homopolymer poly(HPMA) with biotin-pHPMA. The organ distribution patterns of the two polymers correlated well, except with respect to kidney. It is assumed that the accumulation of biotin-pHPMA in the distal tubuli is due to a biotin transporter in the brush border membrane. The technique presented is useful for a more comprehensive understanding of the biodistribution of soluble macromolecules. (orig.)

  15. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    International Nuclear Information System (INIS)

    Kissel, Maria; Peschke, Peter; Strunz, Anke M.; Kuehnlein, Rainer; Debus, Juergen; Subr, Vladimir; Ulbrich, Karel; Friedrich, Eckhard

    2002-01-01

    Synthetic macromolecules such as copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) are potential carriers for the delivery of drugs owing to their ability to passively accumulate in solid tumours [enhanced permeation and retention (EPR) effect]. To gain further knowledge about the biodistribution and the cellular localisation, poly(HPMA) was prepared for labelling by introducing biotin molecules. Biotinylated pHPMA (5 mol%) was intravenously injected into tumour-bearing rats and the accumulation of biotin-pHPMA was visualised using a streptavidin-alkaline phosphatase technique at day 7 post injection. In spite of the high solubility of pHPMA copolymers and the lack of attachment to cell structures, the biotinylated polymer could be easily detected in tissues fixed in 10% paraformaldehyde-phosphate buffer at 4 C for 48 h. While biotin-pHPMA could be detected intracytoplasmically in liver and spleen, a predominantly interstitial localisation was observed within the anaplastic prostate carcinoma (Dunning R3327-AT1). How biotin as a label influences the biodistribution of poly(HPMA) was assessed by scintigraphy, autoradiography and histology comparing homopolymer poly(HPMA) with biotin-pHPMA. The organ distribution patterns of the two polymers correlated well, except with respect to kidney. It is assumed that the accumulation of biotin-pHPMA in the distal tubuli is due to a biotin transporter in the brush border membrane. The technique presented is useful for a more comprehensive understanding of the biodistribution of soluble macromolecules. (orig.)

  16. Molecular Dynamics Studies of Liposomes as Carriers for Photosensitizing Drugs: Development, Validation, and Simulations with a Coarse-Grained Model.

    Science.gov (United States)

    Jämbeck, Joakim P M; Eriksson, Emma S E; Laaksonen, Aatto; Lyubartsev, Alexander P; Eriksson, Leif A

    2014-01-14

    Liposomes are proposed as drug delivery systems and can in principle be designed so as to cohere with specific tissue types or local environments. However, little detail is known about the exact mechanisms for drug delivery and the distributions of drug molecules inside the lipid carrier. In the current work, a coarse-grained (CG) liposome model is developed, consisting of over 2500 lipids, with varying degrees of drug loading. For the drug molecule, we chose hypericin, a natural compound proposed for use in photodynamic therapy, for which a CG model was derived and benchmarked against corresponding atomistic membrane bilayer model simulations. Liposomes with 21-84 hypericin molecules were generated and subjected to 10 microsecond simulations. Distribution of the hypericins, their orientations within the lipid bilayer, and the potential of mean force for transferring a hypericin molecule from the interior aqueous "droplet" through the liposome bilayer are reported herein.

  17. Well-Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra- and Intracellular Drug Release on Chemotherapeutic Efficacy.

    Science.gov (United States)

    Yan, Guoqing; Wang, Jun; Qin, Jiejie; Hu, Liefeng; Zhang, Panpan; Wang, Xin; Tang, Rupei

    2017-07-01

    To compare the chemotherapeutic efficacy determined by extra- and intracellular drug release strategies, poly(ortho ester amide)-based drug carriers (POEAd-C) with well-defined main-chain lengths, are successfully constructed by a facile method. POEAd-C3-doxorubicin (DOX) can be rapidly dissolved to release drug at tumoral extracellular pH (6.5-7.2), while POEAd-C6-DOX can rapidly release drug following gradual swelling at intracellular pH (5.0-6.0). In vitro cytotoxicity shows that POEAd-C3-DOX exhibits more toxic effect on tumor cells than POEAd-C6-DOX at extracellular pH, but POEAd-C6-DOX has stronger tumor penetration and inhibition in vitro and in vivo tumor models. So, POEAd-C6-DOX with the intracellular drug release strategy has stronger overall chemotherapeutic efficacy than POEAd-C3-DOX with extracellular drug release strategy. It is envisioned that these poly(ortho ester amides) can have great potential as drug carriers for efficient chemotherapy with further optimization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  19. Improvement of dissolution behavior of poorly water soluble drugs by biodegradable polymeric submicron carriers containing sparingly methylated β-cyclodextrin.

    Science.gov (United States)

    Singhavi, Dilesh J; Khan, Shagufta; Yeole, Pramod G

    2013-04-01

    The objective of this study was to develop submicron carriers of two drugs that are practically insoluble in water, i.e. meloxicam and aceclofenac, to improve their dissolution behavior. The phase solubility of the drugs was studied using different concentrations of sparingly methylated β-cyclodextrin, Kleptose(®) Crysmeβ (Crysmeb), in the presence and absence of 0.2 % w/v water-soluble chitosan. Drug-loaded submicron particles (SMPs) were prepared using chitosan chlorhydrate and Crysmeb by the ionotropic gelation method. The SMPs were characterized in terms of powder X-ray diffraction, Fourier transforms infrared spectroscopy, size determination, process yield, drug loading, encapsulation efficiency, surface morphology and in vitro release. The drug loading in the SMPs was enhanced in the presence of Crysmeb. The in vitro drug release was found to be enhanced with SMPs prepared using higher concentrations of Crysmeb. These results indicate that SMPs formed from chitosan chlorhydrate and Crysmeb are promising submicron carriers for enhancing the dissolution of meloxicam and aceclofenac.

  20. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers.

    Science.gov (United States)

    Nair, Madhavan; Guduru, Rakesh; Liang, Ping; Hong, Jeongmin; Sagar, Vidya; Khizroev, Sakhrat

    2013-01-01

    Although highly active anti-retroviral therapy has resulted in remarkable decline in the morbidity and mortality in AIDS patients, inadequately low delivery of anti-retroviral drugs across the blood-brain barrier results in virus persistence. The capability of high-efficacy-targeted drug delivery and on-demand release remains a formidable task. Here we report an in vitro study to demonstrate the on-demand release of azidothymidine 5'-triphosphate, an anti-human immunodeficiency virus drug, from 30 nm CoFe2O4@BaTiO3 magneto-electric nanoparticles by applying a low alternating current magnetic field. Magneto-electric nanoparticles as field-controlled drug carriers offer a unique capability of field-triggered release after crossing the blood-brain barrier. Owing to the intrinsic magnetoelectricity, these nanoparticles can couple external magnetic fields with the electric forces in drug-carrier bonds to enable remotely controlled delivery without exploiting heat. Functional and structural integrity of the drug after the release was confirmed in in vitro experiments with human immunodeficiency virus-infected cells and through atomic force microscopy, spectrophotometry, Fourier transform infrared and mass spectrometry studies.

  1. Synthesis, characterization, and property of biodegradable PEG-PCL-PLA terpolymers with miktoarm star and triblock architectures as drug carriers.

    Science.gov (United States)

    Zhang, Yixin; Luo, Song; Liang, Yan; Zhang, Hai; Peng, Xinyu; He, Bin; Li, Sai

    2018-03-01

    A series of amphiphilic terpolymers with miktoarm star and triblock architectures of poly(ethylene glycol) (PEG), poly(ε-caprolactone) (PCL) and poly(l-lactide acid) (PLLA) or poly(DL-lactide acid) (PDLLA) terpolymers were synthesized as carriers for drug delivery. The architecture, molecular weight and crystallization behavior of the terpolymers were characterized. Anticancer drug doxorubicin was encapsulated in the micelles to investigate their drug loading properties. The miktoarm star terpolymers exhibited stronger crystallization capability, smaller size and better stability than that of triblock polymeric micelle, owing to the lower CMC values of miktoarm star polymeric micelle. Furthermore, the drug-loaded miktoarm star polymeric micelles showed the cumulative DOX release account of the micelles with PDLLA blocks was 65.3% while the release account of the corresponding micelles containing PLLA blocks was 45.2%. The IC 50 values of drug-loaded miktoarm star polymeric micelle were lower than triblock polymeric micelle. Meanwhile, Confocal laser scanning microscopy (CLSM) and Flow Cytometry results demonstrated that the miktoarm star micelles were more favorable for cellular internalization. The miktoarm star micelles with PDLLA blocks were promising carriers for anticancer drug delivery.

  2. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  3. Assessment of hupu gum for its carrier property in the design and evaluation of solid mixtures of poorly water soluble drug - rofecoxib.

    Science.gov (United States)

    Vadlamudi, Harini Chowdary; Raju, Y Prasanna; Asuntha, G; Nair, Rahul; Murthy, K V Ramana; Vulava, Jayasri

    2014-01-01

    There are no reports about the pharmaceutical applications of hupu gum (HG). Hence the present study was undertaken to test its suitability in the dissolution enhancement of poorly water soluble drug. Rofecoxib (RFB) was taken as model drug. For comparison solid mixtures were prepared with carriers such as poly vinyl pyrrolidone (PVP), sodium starch glycollate (SSG) and guar gum (GG). Physical mixing (PM), co-grinding (CG), kneading (KT) and solvent evaporation (SE) techniques were used to prepare the solid mixtures, using all the carriers in different carrier and drug ratios. The solid mixtures were characterized by powder X-ray diffraction (XRD) and Fourier-transformed infrared spectroscopy (FTIR). There was a significant improvement in the dissolution rate of solid mixtures of HG, when compared with the solid mixtures of other carriers. There was an increase in dissolution rate with increase in concentration of HG upto 1:1 ratio of carrier and drug. No drug-carrier interaction was found by FTIR studies. XRD studies indicated reduction in crystallinity of the drug with increase in HG concentration. Hence HG could be a useful carrier for the dissolution enhancement of poorly water soluble drugs.

  4. Passive tumor targeting of polymer therapeutics: in vivo imaging of both the polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2016-01-01

    Roč. 16, č. 11 (2016), s. 1577-1582 ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer drug carriers * tumor targeting * enzymatic release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.238, year: 2016

  5. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay

    DEFF Research Database (Denmark)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith

    2016-01-01

    Liposomes represent a versatile drug formulation approach e.g. for improving the water-solubility of poorly soluble drugs but also to achieve drug targeting and controlled release. For the latter applications it is essential that the drug remains associated with the liposomal carrier during transit...... in the vascular bed. A range of in vitro test methods has been suggested over the years for prediction of the release of drug from liposomal carriers. The majority of these fail to give a realistic prediction for poorly water-soluble drugs due to the intrinsic tendency of such compounds to remain associated...... the amount of drug remaining associated with the liposomal drug carrier as well as that transferred to the acceptor liposomes at distinct times of incubation, boththe kinetics of drug transfer and release to the water phase could be established for the model drug p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl...

  6. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers.

    Directory of Open Access Journals (Sweden)

    Gero Steinberg

    Full Text Available The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs. When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T(1/2~2 min. Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the

  7. Graft Polymerization of Acryloyloxystarch with Poly(D,L-lactide) Macromonomer--A Potential Drug Delivery Carrier for Oral Administration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Starch is the second largest natural biopolymer. Its unique biodegradable and biocompatible properties make it be increasingly applied to the field of biomedicine[1~4]. As one kind of polysaccharide, starch is easily degraded into small organic molecules by amylase in the alimentary canal. The fact that the activity of amylase is restrained in the high acid environment in stomach provides an opportunity to prepare an intestinal-specific delivery carrier with starch. In order to protect the drugs that are sensitive to the enzyms in alimentary canal, a hydrophobic layer should be constructed between the outer bioadhensive shell and the drug.

  8. Theoretical study on the cage-like nanostructures formed by amino acids and their potential applications as drug carriers

    Science.gov (United States)

    Weng, Pei Pei; Fan, Jian Fen; Lin, Hui Fang; Zhao, Xin; Si, Xia Lan

    2017-12-01

    The cage-like octamer, decamer and dodecamer constructed from aspartic acid monomers have been studied to explore their potential applications as drug carriers using the density functional theory. The calculation results indicate that these stable cage-like oligomers are mainly connected by the -C=O…HOOC- and -HN…HOOC- H-bonds and still keep stability and good drum-shaped topologies after the incorporation of 5-fluorouracil, paraldehyde and C24, respectively. The self-assembled cage-like oligomers may be applied to the preparation of new biological materials and the design of drug delivery systems.

  9. Cytotoxicity and Acute Gastrointestinal Toxicity of Bacterial Cellulose-Poly (acrylamide-sodium acrylate Hydrogel: A Carrier for Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Manisha Pandey 1,2 * , Hira Choudhury 1, Mohd Cairul Iqbal Mohd Amin 2

    2016-12-01

    Full Text Available Background: Preliminary safety evaluation of polymer intended to use as drug delivery carrier is essential. Methods: In this study polyacrylamide grafted bacterial cellulose (BC/AM hydrogel was prepared by microwave irradiation initiated free radical polymerization. The synthesized hydrogel was subjected to in vitro cytotoxicity and acute gastrointestinal toxicity studies to evaluate its biological safety as potential oral drug delivery carrier. Results: The results indicate that hydrogel was non cytotoxic and did not show any histopathological changes in GI tract after a high dose of oral administration. Conclusion: The results revealed that hydrogel composed of bacterial cellulose and polyacrylamide is safe as oral drug delivery carrier.

  10. The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers as drug carriers

    International Nuclear Information System (INIS)

    Ajun Wan; Yuxia, Kou

    2008-01-01

    The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers (HP-g-PEO) as drug carriers were investigated. The HP-g-PEO consisting of hydrophobic HP-g-PEO core and hydrophilic poly(ethylene glycol) arms was prepared by the cation ring-opening polymerization. A series of HP-g-PEO samples with different degree of branching (DB) were synthesized under various reaction temperatures. Nanoparticles (NP) were obtained by self-assembly of HP-g-PEO in aqueous media. The structure of resulting HP-g-PEO was characterized by IR, 13 CNMR and GPC. Dynamic light scattering and transmission electron microscopy were applied to characterize the sizes and size distributions of NP. The results demonstrated that the mean diameters of NP were less than 100 nm, which exhibited uniform spherical formations and narrow size distributions. Using hydrophobic drug Probucol (PRO) as model drug, the particle sizes of drug loaded NP were larger than relative blank NP. The drug loading efficiency (LE) and incorporation efficiency (IE) of these NP were achieved to 35 and 89%, respectively. The in vitro release of PRO from the NP exhibited a sustained release and the cumulative drugs released for more than 600 h. The most important factor to affect drug release was the value of DB of HP-g-PEO. With the DB of HP-g-PEO increasing, the size and size distribution of NP decreased as well as the release rate. However, the small DB was beneficial to the LE of NP. Nanoparticle size and size distribution, LE, IE, and drug release rate were slightly affected by the initial solution concentration of polyethers. The co-incorporated hydrophilic drug had influence slightly on the release of drug from drug loaded NP. The results of in vitro drug release suggested that the core/shell NP performed good controlled release behaviors with potential practice as novelty drug delivery vehicles

  11. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    Science.gov (United States)

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nanosuspension Technology for Solubilizing Poorly Soluble Drugs

    OpenAIRE

    Deoli Mukesh

    2012-01-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. It is estimated that around 40% of drugs in the pipeline cannot be delivered through the preferred route or in some cases, at all owing to poor water solubility. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor1 EL). To date, nanoscale systems f...

  13. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier.

    Directory of Open Access Journals (Sweden)

    Pei-Chun Chen

    effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells.

  14. Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow.

    Science.gov (United States)

    Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2013-09-03

    The blood vessel wall plays a prominent role in the development of many life-threatening diseases and as such is an attractive target for treatment. To target diseased tissue, particulate drug carriers often have their surfaces modified with antibodies or epitopes specific to vascular wall-expressed molecules, along with poly(ethylene glycol) (PEG) to improve carrier blood circulation time. However, little is known about the effect of poly(ethylene glycol) on carrier adhesion dynamics-specifically in blood flow. Here we examine the influence of different molecular weight PEG spacers on particle adhesion in blood flow. Anti-ICAM-1 or Sialyl Lewis(a) were grafted onto polystyrene 2 μm and 500 nm spheres via PEG spacers and perfused in blood over activated endothelial cells at physiological shear conditions. PEG spacers were shown to improve, reduce, or have no effect on the binding density of targeted-carriers depending on the PEG surface conformation, shear rate, and targeting moiety.

  15. Impulsion of nanoparticles as a drug carrier for the theoretical investigation of stenosed arteries with induced magnetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, S.; Ijaz, S., E-mail: shagufta.me2011@yahoo.com

    2016-07-15

    In this paper hemodynamics of stenosis are discussed to predict effect of atherosclerosis by means of mathematical models in the presence of uniform transverse magnetic field. The analysis is carried out using silver and copper nanoparticles as a drug carrier. Exact solution for the fluid temperature, velocity, axial induced magnetic field and current density distribution are obtained under mild stenosis approximation. The results indicate that with an increase in the concentration of nanoparticle hemodynamics effects of stenosis reduces throughout the inclined composite stenosed arteries. The considered analysis also summarizes that the drug silver nanoparticles is more efficient to reduce hemodynamics of stenosis when compare to the drug copper nanoparticle. In future this model could be helpful to predict important properties in some biomedical applications. - Highlights: • The contribution of copper and silver nanoparticles as drug carrier reveals that they are important to reduce hemodynamic of stenosis. • The heat is dissipated throughout the considered inclined artery with an increase in the nanoparticle volume fraction. • The stress on the wall of inclined arteries decreases with an increase in the magnetic Reynolds number and Strommers number.

  16. Novel flower-shaped albumin particles as controlled-release carriers for drugs to penetrate the round-window membrane.

    Science.gov (United States)

    Yu, Zhan; Yu, Min; Zhou, Zhimin; Zhang, Zhibao; Du, Bo; Xiong, Qingqing

    2014-01-01

    Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA) particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 μm to 100 μm, and most were 50-80 μm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug - rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment.

  17. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  18. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Science.gov (United States)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  19. Investigation of interaction of vanillin with Alpha, Beta and Gamma-cyclodextrin as drug delivery carriers: brief report

    Directory of Open Access Journals (Sweden)

    Batoolalsadat Mousavi Fard

    2015-05-01

    Methods: All theoretical calculations were performed on a Intel® Core™ i5 Processors computer at Kerman University using Gaussian 09 program package (Gaussian, Inc., Wallingford, USA in a three month period (February 2014 to May 2014. Starting geometries were generated employing GaussView software, version 5 (Gaussian, Inc., Wallingford, USA and then the resulting coordinates were optimized using density functional theory (DFT calculations. The natural bond orbital method (NBO program, under Gaussian 09 program package was carried out to study charge transfer energy associated with the intermolecular interactions. The quantum theory of atoms in molecules was applied for DFT results to get insight in the nature of interaction existing in the investigated systems. The calculations were carried out with AIM2000 program and AIMAll 14.10.27 package (Todd A. Keith, TK Gristmill software, Overland Park KS, USA to find and characterize bond critical points. Results: The vanillin molecule is adsorbed on the surface of carriers by hydrogen bonding between its oxygen atom and hydrogen atoms of cyclodextrin. The hydrogen of -OH group on the cyclodextrin can form hydrogen bond to the oxygen atom of carbonyl group of vanillin molecule. This study indicates a decrease of total energy with increasing surface of cyclodextrin. So gamma-cyclodextrin and its complex with the maximum surface in between carriers have the highest stabilities. The gamma-cyclodextrin shows the strongest interaction with vanillin. In all complexes of vanillin-cyclodextrin, the direction of charge transfer is from drug to carrier. Conclusion: Due to the high solubility of gamma-cyclodxtrin and its stronger interaction with the molecule vanillin, it can be the best option as drug carrier.

  20. Liposheres as a Novel Carrier for Lipid Based Drug Delivery: Current and Future Directions.

    Science.gov (United States)

    Swain, Suryakanta; Beg, Sarwar; Babu, Sitty M

    2016-01-01

    Researchers are facing challenges to develop robust formulation and to enhance the bioavailability of poorly water-soluble drugs towards clinical applications. The development of new drug molecule alone is not adequate to assure ample pharmacotherapy of various diseases. Considerable results obtained from in vitro studies are not supported by in vivo data due to inadequate plasma drug concentrations. This may occur due to limited drug solubility and absorption. To resolve these problems, development of new drug delivery systems will be a promising approach. One of the promising pharmaceutical strategies is the use of lipospheres drug delivery system to deliver the poorly water-soluble drugs. Therefore, the present review described the methodology for manufacturing of lipospheres and factors influencing the formulation to deliver the drugs to the targeted site. Apart from that, this review also enlisted briefly the various applications of liposphers in medical and biomedical fields and critically discussed the recent patent system.

  1. Lyophilized silica lipid hybrid (SLH) carriers for poorly water-soluble drugs: physicochemical and in vitro pharmaceutical investigations.

    Science.gov (United States)

    Yasmin, Rokhsana; Tan, Angel; Bremmell, Kristen E; Prestidge, Clive A

    2014-09-01

    Lyophilization was investigated to produce a powdery silica-lipid hybrid (SLH) carrier for oral delivery of poorly water-soluble drugs. The silica to lipid ratio, incorporation of cryoprotectant, and lipid loading level were investigated as performance indicators for lyophilized SLH carriers. Celecoxib, a nonsteroidal anti-inflammatory drug, was used as the model poorly soluble moiety to attain desirable physicochemical and in vitro drug solubilization properties. Scanning electron microscopy and confocal fluorescence imaging verified a nanoporous, homogenous internal matrix structures of the lyophilized SLH particles, prepared from submicron triglyceride emulsions and stabilized by porous silica nanoparticles (Aerosil 380), similar to spray-dried SLH. 20-50 wt % of silica in the formulation have shown to produce nonoily SLH agglomerates with complete lipid encapsulation. The incorporation of a cryoprotectant prevented irreversible aggregation of the silica-stabilized droplets during lyophilization, thereby readily redispersing in water to form micrometre-sized particles (water-soluble therapeutics is confirmed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design.

    Science.gov (United States)

    Kraisit, Pakorn; Sarisuta, Narong

    2018-04-23

    The aim of this present work was to prepare triamcinolone acetonide (TA)-loaded nanostructured lipid carriers (TA-loaded NLCs) for buccal drug delivery systems using the Box-Behnken design. A hot homogenization method was used to prepare the TA-loaded NLCs. Spermaceti (X₁), soybean oil (X₂), and Tween 80 (X₃) were used as solid lipid, liquid lipid, and stabilizer, respectively. The particle size of TA-loaded NLCs was lower than 200 nm and the zeta potential displayed the negative charge in all formulations. The percentage encapsulation efficiency (%EE) of the TA-loaded NLCs showed that it was higher than 80% for all formulations. Field emission scanning electron microscope (FESEM) confirmed that the size of TA-loaded NLCs was approximately 100 nm and energy-dispersive X-ray spectroscopy (EDS) confirmed that the TA could be incorporated in the NLC system. The Higuchi model gave the highest value of the R², indicating that this model was a fit for the TA release profiles of TA-loaded NLCs. Confocal laser scanning microscopy (CLSM) was used to observe the drug penetration within the porcine buccal mucosa and Nile red-loaded NLCs showed significantly higher penetration depth at 8 h than at 2 h. Therefore, TA-loaded NLCs could be an efficient carrier for drug delivery through the buccal mucosa.

  3. Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles

    DEFF Research Database (Denmark)

    York-Durán, María José; Gallardo, Maria Godoy; Labay, Cédric Pierre

    2017-01-01

    significant research attention and these assemblies are proposed as candidate materials for a range of biomedical applications. In this Review article, the recent successes of multicompartment architectures as carriers for the delivery of therapeutic cargo or the creation of micro- and nanoreactors that mimic...

  4. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2010-02-01

    is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1 omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2 omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3 superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4 limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5 lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.

  5. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers.

    Science.gov (United States)

    Muzzarelli, Riccardo A A

    2010-02-21

    amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.

  6. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study.

    Science.gov (United States)

    Deshmane, Subhash; Deshmane, Snehal; Shelke, Santosh; Biyani, Kailash

    2018-06-01

    Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50 ). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.

  7. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  8. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    Science.gov (United States)

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  9. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  10. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shu-Hui [Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China); Wen, Chih-Jen; Yen, Tzu-Chen [Animal Molecular Imaging Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan (China); Al-Suwayeh, S A; Fang, Jia-You [Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Chang, Hui-Wen, E-mail: fajy@mail.cgu.edu.tw [Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2010-10-08

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  11. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    International Nuclear Information System (INIS)

    Hsu, Shu-Hui; Wen, Chih-Jen; Yen, Tzu-Chen; Al-Suwayeh, S A; Fang, Jia-You; Chang, Hui-Wen

    2010-01-01

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  12. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices

    DEFF Research Database (Denmark)

    Genina, Natalja; Hollander, Jenny; Jukarainen, Harri

    2016-01-01

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS......) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug...... affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30 days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable...

  13. Novel flower-shaped albumin particles as controlled-release carriers for drugs to penetrate the round-window membrane

    Directory of Open Access Journals (Sweden)

    Yu Z

    2014-07-01

    Full Text Available Zhan Yu,1,* Min Yu,2,* Zhimin Zhou,3 Zhibao Zhang,3 Bo Du,3 Qingqing Xiong3 1Second Artillery General Hospital, Beijing, 2Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, College of Basic Medicine, China Medical University, Shenyang, 3Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Key Laboratory of Biomedical Material of Tianjin, Tianjin, People’s Republic of China *These authors contributed equallyto this work Abstract: Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 µm to 100 µm, and most were 50–80 µm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug – rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment. Keywords: bovine serum albumin (BSA, controlled release, local delivery, round-window membrane

  14. Characterization of the interaction forces in a drug carrier complex of doxorubicin with a drug-binding peptide.

    Science.gov (United States)

    Gocheva, Gergana; Ilieva, Nina; Peneva, Kalina; Ivanova, Anela

    2018-04-01

    Polypeptide-based materials are used as building blocks for drug delivery systems aimed at toxicity decrease in chemotherapeutics. A molecular-level approach is adopted for investigating the non-covalent interactions between doxorubicin and a recently synthesized drug-binging peptide as a key part of a system for delivery to neoplastic cells. Molecular dynamics simulations in aqueous solution at room and body temperature are applied to investigate the structure and the binding modes within the drug-peptide complex. The tryptophans are outlined as the main chemotherapeutic adsorption sites, and the importance of their placement in the peptide sequence is highlighted. The drug-peptide binging energy is evaluated by density functional theory calculations. Principal component analysis reveals comparable importance of several types of interaction for the binding strength. π-Stacking is dominant, but other factors are also significant: intercalation, peptide backbone stacking, electrostatics, dispersion, and solvation. Intra- and intermolecular H-bonding also stabilizes the complexes. The influence of solvent molecules on the binding energy is mild. The obtained data characterize the drug-to-peptide attachment as a mainly attractive collective process with interactions spanning a broad range of values. These results explain with atomistic detail the experimentally registered doxorubicin-binging ability of the peptide and outline the complex as a prospective carrying unit that can be employed in design of drug delivery systems. © 2017 John Wiley & Sons A/S.

  15. Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy.

    Directory of Open Access Journals (Sweden)

    Marwan Moussa

    Full Text Available To determine the effect of different drug-loaded nanocarriers (micelles and liposomes on delivery and treatment efficacy for radiofrequency ablation (RFA combined with nanodrugs.Fischer 344 rats were used (n = 196. First, single subcutaneous R3230 tumors or normal liver underwent RFA followed by immediate administration of i.v. fluorescent beads (20, 100, and 500 nm, with fluorescent intensity measured at 4-24 hr. Next, to study carrier type on drug efficiency, RFA was combined with micellar (20 nm or liposomal (100 nm preparations of doxorubicin (Dox; targeting HIF-1α or quercetin (Qu; targeting HSP70. Animals received RFA alone, RFA with Lipo-Dox or Mic-Dox (1 mg i.v., 15 min post-RFA, and RFA with Lipo-Qu or Mic-Qu given 24 hr pre- or 15 min post-RFA (0.3 mg i.v.. Tumor coagulation and HIF-1α or HSP70 expression were assessed 24 hr post-RFA. Third, the effect of RFA combined with i.v. Lipo-Dox, Mic-Dox, Lipo-Qu, or Mic-Qu (15 min post-RFA compared to RFA alone on tumor growth and animal endpoint survival was evaluated. Finally, drug uptake was compared between RFA/Lipo-Dox and RFA/Mic-Dox at 4-72 hr.Smaller 20 nm beads had greater deposition and deeper tissue penetration in both tumor (100 nm/500 nm and liver (100 nm (p<0.05. Mic-Dox and Mic-Qu suppressed periablational HIF-1α or HSP70 rim thickness more than liposomal preparations (p<0.05. RFA/Mic-Dox had greater early (4 hr intratumoral doxorubicin, but RFA/Lipo-Dox had progressively higher intratumoral doxorubicin at 24-72 hr post-RFA (p<0.04. No difference in tumor growth and survival was seen between RFA/Lipo-Qu and RFA/Mic-Qu. Yet, RFA/Lipo-Dox led to greater animal endpoint survival compared to RFA/Mic-Dox (p<0.03.With RF ablation, smaller particle micelles have superior penetration and more effective local molecular modulation. However, larger long-circulating liposomal carriers can result in greater intratumoral drug accumulation over time and reduced tumor growth. Accordingly

  16. Inorganically modified diatomite as a potential prolonged-release drug carrier.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Calija, Bojan; Dobričić, Vladimir; Daković, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milić, Jela

    2014-09-01

    Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (~250mg/g in 2h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8h from both DAMD comprimates (18% after 8h) and PMDMD comprimates (45% after 8h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers

    KAUST Repository

    Yan, Jingjing; Guo, Yong; Altawashi, Azza; Moosa, Basem; Lecommandoux, Sé bastien; Khashab, Niveen M.

    2012-01-01

    Nanodiamond (ND) and its derivatives have been widely used for drug, protein and gene delivery. Herein, experimental and theoretical methods have been combined to investigate the effect of pH on the delivery of doxorubicin (DOX) from fluorescein

  18. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    Science.gov (United States)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  19. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  20. Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil S; Mahadik, Kakasaheb R; Paradkar, Anant R

    2015-02-20

    The current work was undertaken to assess suitability of liquid crystalline phase for engineering of lactose crystals and their utility as a carrier in dry powder inhalation formulations. Saturated lactose solution was poured in molten glyceryl monooleate which subsequently transformed into gel. The gel microstructure was analyzed by PPL microscopy and SAXS. Lactose particles recovered from gels after 48 h were analyzed for polymorphism using techniques such as FTIR, XRD, DSC and TGA. Particle size, morphology and aerosolisation properties of prepared lactose were analyzed using Anderson cascade impactor. In situ seeding followed by growth of lactose crystals took place in gels with cubic microstructure as revealed by PPL microscopy and SAXS. Elongated (size ∼ 71 μm) lactose particles with smooth surface containing mixture of α and β-lactose was recovered from gel, however percentage of α-lactose was more as compared to β-lactose. The aerosolisation parameters such as RD, ED, %FPF and % recovery of lactose recovered from gel (LPL) were found to be comparable to Respitose® ML001. Thus LC phase (cubic) can be used for engineering of lactose crystals so as to obtain particles with smooth surface, high elongation ratio and further they can be used as carrier in DPI formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Renal targeting potential of a polymeric drug carrier, poly-L-glutamic acid, in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Chai HJ

    2017-01-01

    Full Text Available Hann-Juang Chai,1 Lik-Voon Kiew,1 Yunni Chin,1 Anwar Norazit,2 Suzita Mohd Noor,2 Yoke-Lin Lo,3,4 Chung-Yeng Looi,1 Yeh-Siang Lau,1 Tuck-Meng Lim,5 Won-Fen Wong,6 Nor Azizan Abdullah,1 Munavvar Zubaid Abdul Sattar,7 Edward J Johns,8 Zamri Chik,1 Lip-Yong Chung3 1Department of Pharmacology, 2Department of Biomedical Science, 3Department of Pharmacy, Faculty of Medicine, University of Malaya, 4School of Pharmacy, International Medical University, Kuala Lumpur, 5Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 6Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 7School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia; 8Department of Physiology, University College Cork, Cork, Republic of Ireland Background and purpose: Poly-L-glutamic acid (PG has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier.Experimental approach: 3H-deoxycytidine-labeled PGs (17 or 41 kDa and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido fluorescein (fluoresceinyl glycine amide-labeled PG (PG-AF. To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethylbenzenesulfonyl fluoride hydrochloride (AEBSF was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF.Results: In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular

  2. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.

    Science.gov (United States)

    Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V

    2009-12-01

    To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.

  4. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues

    Science.gov (United States)

    Tzur-Balter, Adi; Shatsberg, Zohar; Beckerman, Margarita; Segal, Ester; Artzi, Natalie

    2015-01-01

    Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance. PMID:25670235

  5. Gelucire Based In Situ Gelling Emulsions: A Potential Carrier for Sustained Stomach Specific Delivery of Gastric Irritant Drugs

    Directory of Open Access Journals (Sweden)

    Ashwin Saxena

    2013-01-01

    Full Text Available Non steroidal anti-inflammatory drugs (NSAIDs are commonly prescribed medications to the geriatric patients for the treatment of arthritis and other painful disorders. The major side effects of NSAIDs are related to their effects on the stomach and bowels. The present study concerns assessment of the potential of liquid in situ gelling emulsion formulations (emulgels as patient compliant stomach specific sustained release carrier for the delivery of highly gastric irritant drug, Piroxicam. Emulgels were prepared, without using any emulgent, by mixing different concentrations of molten Gelucire 39/01 with low viscosity sodium alginate solution prepared in deionized water at 50°C. CaCO3 was used as buoyancy imparting as well as crosslinking agent. Emulgels so prepared were homogenous, physically stable, and rapidly formed into buoyant gelled mass when exposed to simulated gastric fluid (SGF, pH 1.2. Drug release studies carried out in SGF revealed significant retardation (P<0.05 of Piroxicam release from emulgels compared to conventional in situ gelling formulations prepared without Gelucire 39/01. Pharmacodynamic studies carried out in albino rats revealed significantly increased analgesic/anti-inflammatory response from in situ emulgels compared to conventional in situ gelling formulations. Further, in vivo toxicity studies carried out in albino rats revealed no signs of gastric ulceration upon prolonged dosing.

  6. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer.

    Science.gov (United States)

    Nigam, Saumya; Bahadur, Dhirendra

    2017-07-01

    In recent years, functional nanomaterials have found an appreciable place in the understanding and treatment of cancer. This work demonstrates the fabrication and characterization of a new class of cationic, biocompatible, peptide dendrimers, which were then used for stabilizing and functionalizing magnetite nanoparticles for combinatorial therapy of cancer. The synthesized peptide dendrimers have an edge over the widely used PAMAM dendrimers due to better biocompatibility and negligible cytotoxicity of their degradation products. The surface engineering efficacy of the peptide dendrimers and their potential use as drug carriers were compared with their PAMAM counterparts. The peptide dendrimer was found to be as efficient as PAMAM dendrimers in its drug-carrying capacity, while its drug release profiles substantially exceeded those of PAMAM's. A dose-dependent study was carried out to assess their half maximal inhibitory concentration (IC 50 ) in vitro with various cancer cell lines. A cervical cancer cell line that was incubated with these dendritic nanoparticles was exposed to alternating current magnetic field (ACMF) to investigate the effect of elevated temperatures on the live cell population. The DOX-loaded formulations, in combination with the ACMF, were also assessed for their synergistic effects on the cancer cells for combinatorial therapy. The results established the peptide dendrimer as an efficient alternative to PAMAM, which can be used successfully in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Physicochemical characterisation and investigation of the bonding mechanisms of API-titanate nanotube composites as new drug carrier systems.

    Science.gov (United States)

    Sipos, Barbara; Pintye-Hódi, Klára; Kónya, Zoltán; Kelemen, András; Regdon, Géza; Sovány, Tamás

    2017-02-25

    Titanate nanotube (TNT) has recently been explored as a new carrier material for active pharmaceutical ingredients (API). The aim of the present work was to reveal the physicochemical properties of API-TNT composites, focusing on the interactions between the TNTs and the incorporated APIs. Drugs belonging to different Biopharmaceutical Classification System (BCS) classes were loaded into TNTs: diltiazem hydrochloride (BCS I.), diclofenac sodium (BCS II.), atenolol (BCS III.) and hydrochlorothiazide (BCS IV.). Experimental results demonstrated that it is feasible for spiral cross-sectioned titanate nanotubes to carry drugs and maintain their bioactivity. The structural properties of the composites were characterized by a range of analytical techniques, including FT-IR, DSC, TG-MS, etc. The interactions between APIs and TNTs were identified as electrostatic attractions, mainly dominated by hydrogen bonds. Based on the results, it can be stated that the strength of the association depends on the hydrogen donor strength of the API. The drug release of incorporated APIs was evaluated from compressed tablets and compared to that of pure APIs. Differences noticed in the dissolution profiles due to incorporation showed a correlation with the strength of interactions between the APIs and the TNTs observed in the above analytical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Aerodynamic Factors Responsible for the Deaggregation of Carrier-Free Drug Powders to form Micrometer and Submicrometer Aerosols

    Science.gov (United States)

    Longest, P. Worth; Son, Yoen-Ju; Holbrook, Landon; Hindle, Michael

    2013-01-01

    Purpose The objective of this study was to employ in vitro experiments combined with computational fluid dynamics (CFD) analysis to determine which aerodynamic factors were most responsible for deaggregating carrier-free powders to form micrometer and submicrometer aerosols from a capsule-based platform. Methods Eight airflow passages were evaluated for deaggregation of the aerosol including a standard constricted tube, impaction surface, 2D mesh, inward radial jets, and newly proposed 3D grids and rod arrays. CFD simulations were implemented to evaluate existing and new aerodynamic factors for deaggregation and in vitro experiments were used to evaluate performance of each inhaler. Results For the carrier-free formulation considered, turbulence was determined to be the primary deaggregation mechanism. A strong quantitative correlation was established between the mass median diameter (MMD) and newly proposed non-dimensional specific dissipation (NDSD) factor, which accounts for turbulent energy, inverse of the turbulent length scale, and exposure time. A 3D rod array design with unidirectional elements maximized NDSD and produced the best deaggregation with MMD<1μm. Conclusions The new NDSD parameter can be used to develop highly effective dry powder inhalers like the 3D rod array that can efficiently produce submicrometer aerosols for next-generation respiratory drug delivery applications. PMID:23471640

  9. Polylactide-based magnetic spheres as efficient carriers for anticancer drug delivery

    CSIR Research Space (South Africa)

    Mhlanga, N

    2015-09-01

    Full Text Available To improve traditional cancer therapies, we synthesized polylactide (PLA) spheres coencapsulating magnetic nanoparticles (MNPs, Fe(sub3)O(sub4)) and an anticancer drug (doxorubicin, DOX). The synthesis process involves the preparation of Fe(sub3)O...

  10. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals.

    Science.gov (United States)

    Shenoi, Rajesh A; Abbina, Srinivas; Kizhakkedathu, Jayachandran N

    2016-11-14

    Understanding the influence of degradable chemical moieties on in vivo degradation, tissue distribution, and excretion is critical for the design of novel biodegradable drug carriers. Polyketals have recently emerged as a promising therapeutic delivery platform due to their ability to degrade under mild acidic intracellular compartments and generation of nontoxic degradation products. However, the effect of chemical structure of the ketal groups on the in vivo degradation, biodistribution, and pharmacokinetics of water-soluble ketal-containing polymers has not been explored. In the present work, we synthesized high molecular weight, water-soluble biodegradable hyperbranched polyglycerols (BHPGs) through the incorporation of structurally different ketal groups into the main chain of highly biocompatible polyglycerols. BHPGs showed pH and ketal group structure dependent degradation in buffer solutions. When the polymers were intravenously administered in mice, a strong dependence of in vivo degradation, biodistribution, and clearance on the ketal group structure was observed. All the BHPGs demonstrated degradation and clearance in vivo, with minimal tissue accumulation. Interestingly, an unanticipated degradation behavior of BHPGs with structurally different ketal groups was observed in vivo in comparison to their degradation in buffer solutions. BHPGs with cyclohexyl ketal (CHK) and cyclopentyl ketal (CPK) groups degraded much faster and were cleared from circulation much rapidly, while BHPG with glycerol hydroxy butanone ketal (GHBK) group degraded at a much slower rate and exhibited similar plasma half-life as that of nondegradable HPG. BHPG-GHBK also showed significantly lower tissue accumulation than nondegradable HPG after 30 days of administration. The difference in in vivo degradation may be attributed to the difference in hydrophobic characteristics of different ketal containing polymers, which may change their interaction with proteins and cells in vivo

  11. Selective Release of anti–TB Drugs Complex from Smart Copolymeric Bioactive nano–carriers

    Directory of Open Access Journals (Sweden)

    Alejandro Arredondo–Peñaranda

    2014-07-01

    Full Text Available Smart nano–copolymeric matrices have been employed to load and release anti tuberculosis (anti – TB drugs combinated complexes of Ethambutol (EMB, Isoniazid (INH, Rifampicin (RMP and Pyrazinamide (PZA. Copolymeric nanocarriers were synthesized using a microemulsion polymerization method previously reported. These nanocarriers can show selective swelling–collapse response under changes in local environments such a temperature, pH, solvent composition and electrical stimuli. The employ of these kinds of systems permits a controlled and selective delivery and release on specific human tissues. High Performance Liquid Chromatography technique was used to allow the detection of combinated mixtures of different active principles of anti–TB drugs using an acetonitrile mobile phase at 0.5 mL/min of flow rate whit a Spherisorb ODS2, C18 column. The results obtained suggest that the employ of smart nanohydrogels is a novel method in several tuberculosis therapies.

  12. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers.

    Science.gov (United States)

    Sun, Baichuan; Barnard, Amanda S

    2016-08-07

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.

  13. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    OpenAIRE

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have...

  14. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    OpenAIRE

    Sandip Sapkal; Mahesh Narkhede; Mukesh Babhulkar; Gautam Mehetre; Ashish Rathi

    2013-01-01

    ABSTRACTNatural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are m...

  15. Cell membrane-inspired polymeric micelles as carriers for drug delivery.

    Science.gov (United States)

    Liu, Gongyan; Luo, Quanqing; Gao, Haiqi; Chen, Yuan; Wei, Xing; Dai, Hong; Zhang, Zongcai; Ji, Jian

    2015-03-01

    In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.

  16. pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor.

    Science.gov (United States)

    Li, Xin-Xin; Chen, Jing; Shen, Jian-Min; Zhuang, Ran; Zhang, Shi-Qi; Zhu, Zi-Yun; Ma, Jing-Bo

    2018-05-05

    Herein, a smart pH-sensitive nanoparticle (DGL-PEG-Tat-KK-DMA-DOX) was prepared to achieve the selective intracellular drug delivery. In this nanoparticle, a PEG-grafted cell penetrating peptide (PEG-Tat-KK) was designed and acted as the cell penetrating segment. By introducing the pH-sensitive amide bonds between the peptide and blocking agent (2,3-dimethylmaleic anhydride, DMA), the controllable moiety (PEG-Tat-KK-DMA) endowed the nanoparticle with a charge-switchable shell and temporarily blocked penetrating function, thus improving the specific internalization. Besides, dendrigraft poly-L-lysine (DGL) used as the skeleton can greatly improve the drug loading because of the highly dendritic framework. Under the stimuli of acidic pH, this nanoparticle exhibited a remarkable charge-switchable property. The drug release showed an expected behavior with little release in the neutral pH media but relatively fast release in the acidic media. The in vitro experiments revealed that the cellular uptake and cytotoxicity were significantly enhanced after the pH was decreased. In vivo biodistribution and antitumor research indicated that the nanoparticle had noteworthy specificity and antitumor efficacy with a tumor inhibition rate of 79.7%. These results verified this nanoparticle could efficiently improve the selective intracellular delivery and possessed a great potential in tumor treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin.

    Science.gov (United States)

    Li, Si-Dong; Li, Pu-Wang; Yang, Zi-Ming; Peng, Zheng; Quan, Wei-Yan; Yang, Xi-Hong; Yang, Lei; Dong, Jing-Jing

    2014-11-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS. Grafting of ETA with CS had great effect on the crystal structure of HTCC, which was confirmed by the XRD results. HTCC displayed higher capability to form nanoparticles by crosslinking with negatively charged sodium tripolyphosphate (TPP). Ribavrin- (RIV-) loaded HTCC nanoparticles were positively charged and were spherical in shape with average particle size of 200 nm. More efficient drug encapsulation efficiency and loading capacity were obtained for HTCC in comparison with CS, however, HTCC nanoparticles displayed faster release rate due to its hydro-soluble properties. The results suggest that HTCC is a promising CS derivative for the encapsulation of hydrophilic drugs in obtaining sustained release of drugs.

  18. Optimization and design of ibuprofen-loaded nanostructured lipid carriers using a hybrid-design approach for ocular drug delivery

    Science.gov (United States)

    Rathod, Vishal

    The objective of the present project was to develop the Ibuprofen-loaded Nanostructured Lipid Carrier (IBU-NLCs) for topical ocular delivery based on substantial pre-formulation screening of the components and understanding the interplay between the formulation and process variables. The BCS Class II drug: Ibuprofen was selected as the model drug for the current study. IBU-NLCs were prepared by melt emulsification and ultrasonication technique. Extensive pre-formulation studies were performed to screen the lipid components (solid and liquid) based on drug's solubility and affinity as well as components compatibility. The results from DSC & XRD assisted in selecting the most suitable ratio to be utilized for future studies. DynasanRTM 114 was selected as the solid lipid & MiglyolRTM 840 was selected as the liquid lipid based on preliminary lipid screening. The ratio of 6:4 was predicted to be the best based on its crystallinity index and the thermal events. As there are many variables involved for further optimization of the formulation, a single design approach is not always adequate. A hybrid-design approach was applied by employing the Plackett Burman design (PBD) for preliminary screening of 7 critical variables, followed by Box-Behnken design (BBD), a sub-type of response surface methodology (RSM) design using 2 relatively significant variables from the former design and incorporating Surfactant/Co-surfactant ratio as the third variable. Comparatively, KolliphorRTM HS15 demonstrated lower Mean Particle Size (PS) & Polydispersity Index (PDI) and KolliphorRTM P188 resulted in Zeta Potential (ZP) ibuprofen thereafter over several hours. These values also confirm that the production method, and all other selected variables, effectively promoted the incorporation of ibuprofen in NLC. Quality by Design (QbD) approach was successfully implemented in developing a robust ophthalmic formulation with superior physicochemical and morphometric properties. NLCs as the

  19. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate

    Directory of Open Access Journals (Sweden)

    Silva GB

    2015-01-01

    Full Text Available Gisela Bevilacqua Rolfsen Ferreira da Silva,1 Maria Virginia Scarpa,1 Iracilda Zepone Carlos,2 Marcela Bassi Quilles,2 Raphael Carlos Comeli Lia,3 Eryvaldo Socrates Tabosa do Egito,4 Anselmo Gomes de Oliveira1 1Departamento de Fármacos e Medicamentos, 2Departamento de Análises Clínicas, UNESP–Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil; 3Instituto de Patologia Cirúrgica e Citopatologia (IPC, Araraquara, SP, Brazil; 4UFRN–Universidade Federal do Rio Grande do Norte, Programa de Pós-graduação em Ciências da Saúde, Natal, RN, Brazil Abstract: Methyl dihydrojasmonate (MJ has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to

  20. Nanostructures for protein drug delivery.

    Science.gov (United States)

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  1. A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing.

    Science.gov (United States)

    Li, Mi; Li, Haichang; Li, Xiangguang; Zhu, Hua; Xu, Zihui; Liu, Lianqing; Ma, Jianjie; Zhang, Mingjun

    2017-07-12

    Biopolymeric hydrogels have drawn increasing research interest in biomaterials due to their tunable physical and chemical properties for both creating bioactive cellular microenvironment and serving as sustainable therapeutic reagents. Inspired by a naturally occurring hydrogel secreted from the carnivorous Sundew plant for trapping insects, here we have developed a bioinspired hydrogel to deliver mitsugumin 53 (MG53), an important protein in cell membrane repair, for chronic wound healing. Both chemical compositions and micro-/nanomorphological properties inherent from the natural Sundew hydrogel were mimicked using sodium alginate and gum arabic with calcium ion-mediated cross-linking. On the basis of atomic force microscopy (AFM) force measurements, an optimal sticky hydrogel scaffold was obtained through orthogonal experimental design. Imaging and mechanical analysis showed the distinct correlation between structural morphology, adhesion characteristics, and mechanical properties of the Sundew-inspired hydrogel. Combined characterization and biochemistry techniques were utilized to uncover the underlying molecular composition involved in the interactions between hydrogel and protein. In vitro drug release experiments confirmed that the Sundew-inspired hydrogel had a biphasic-kinetics release, which can facilitate both fast delivery of MG53 for improving the reepithelization process of the wounds and sustained release of the protein for treating chronic wounds. In vivo experiments showed that the Sundew-inspired hydrogel encapsulating with rhMG53 could facilitate dermal wound healing in mouse model. Together, these studies confirmed that the Sundew-inspired hydrogel has both tunable micro-/nanostructures and physicochemical properties, which enable it as a delivery vehicle for chronic wounding healing. The research may provide a new way to develop biocompatible and tunable biomaterials for sustainable drug release to meet the needs of biological activities.

  2. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules

    Science.gov (United States)

    Srivithya, Vellampatti; Roun, Heo; Sekhar Babu, Mitta; Hyung, Park Jae; Ha, Park Sung

    2018-03-01

    Due to its predictable self-assembly and structural stability, structural DNA nanotechnology is considered one of the main interdisciplinary subjects encompassing conventional nanotechnology and biotechnology. Here we have fabricated the mucin aptamer (MUC1)˗conjugated DNA nano˗ring intercalated with doxorubicin (DNRA˗DOX) as potential therapeutics for breast cancer. DNRA˗DOX exhibited significantly higher cytotoxicity to the MCF˗7 breast cancer cells than the controls, including DOX alone and the aptamer deficient DNA nano˗ring (DNR) with doxorubicin. Interactions between DOX and DNRA were studied using spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR and DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4, with approximately 61% released, but when exposed to lysosomal of pH 5.5, the corresponding 95% was released within 48 h. Owing to the presence of the aptamer, DNRA˗DOX was effectively taken up by the cancer cells, as confirmed by confocal microscopy, implying that it has potential for use in targeted drug delivery.

  3. Transfer kinetics from colloidal drug carriers and liposomes to biomembrane models: DSC studies

    Directory of Open Access Journals (Sweden)

    Maria Grazia Sarpietro

    2011-01-01

    Full Text Available The release of bioactive molecules by different delivery systems has been studied. We have proposed a protocol that takes into account a system that is able to carry out the uptake of a bioactive molecule released during the time, resembling an in vivo-like system, and for this reason we have used biomembrane models represented by multi-lamellar and unilamellar vesicles. The bioactive molecule loaded delivery system has been put in contact with the biomembrane model and the release has been evaluated, to consider the effect of the bioactive molecule on the biomembrane model thermotropic behavior, and to compare the results with those obtained when a pure drug interacts with the biomembrane model. The differential scanning calorimetry technique has been employed. Depending on the delivery system used, our research permits to evaluate the effect of different parameters on the bioactive molecule release, such as pH, drug loading degree, delivery system swelling, crosslinking agent, degree of cross-linking, and delivery system side chains.

  4. Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers

    KAUST Repository

    Yan, Jingjing

    2012-01-01

    Nanodiamond (ND) and its derivatives have been widely used for drug, protein and gene delivery. Herein, experimental and theoretical methods have been combined to investigate the effect of pH on the delivery of doxorubicin (DOX) from fluorescein labeled NDs (Fc-NDs). In the endosomal recycling process, the nanoparticle will pass from mildly acidic vesicle to pH ≈ 4.8; thus, it is important to investigate DOX release from NDs at different pH values. Fc-NDs released DOX dramatically under acidic conditions, while an increase in the DOX loading efficiency (up to 6.4 wt%) was observed under basic conditions. Further theoretical calculations suggest that H + weakens the electrostatistic interaction between ND surface carboxyl groups and DOX amino groups, and the interaction energies at pH < 7, pH 7 and pH > 7 are 10.4 kcal mol -1, 25.0 kcal mol -1 and 27.0 kcal mol -1 respectively. Cellular imaging experiments show that Fc-NDs are readily ingested by breast adenocarcinoma (BA) cells and cell viability tests prove that they can be utilized as a safe drug delivery vehicle. Furthermore, pH triggered DOX release has been tested in vitro (pH 7.4 and pH 4.83) in breast adenocarcinoma (BA) cells. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012.

  5. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery.

    Science.gov (United States)

    Yu, Yuan; Pang, Zhiqing; Lu, Wei; Yin, Qi; Gao, Huile; Jiang, Xinguo

    2012-01-01

    To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized. Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β(25-35) was investigated by immunohistochemical analysis. The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood-brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls. These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration.

  6. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  7. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Shobrak

    2014-12-01

    Full Text Available Emergence and distribution of multi-drug resistant (MDR bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor. Also, hemolysin production (a virulence factor was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  8. Investigation of Fatty Acid Ketohydrazone Modified Liposome’s Properties as a Drug Carrier

    Directory of Open Access Journals (Sweden)

    Keita Hayashi

    2015-01-01

    Full Text Available pH-responsive liposomes were prepared by modifying the liposome with acid-cleaving amphiphiles. Palmitic ketohydrazone (P-KH or stearic ketohydrazone (S-KH, composed of hydrophilic sugar headgroup and hydrophobic acyl chain, was used as a modifier of the DMPC liposome. Because the ketohydrazone group of P-KH or S-KH was cleaved at low pH conditions (drugs from the enzymes in the lysosome. This study shows the novel approach about design of pH-responsive liposomes based on the membrane properties.

  9. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Science.gov (United States)

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  10. trans-Double Bond-Containing Liposomes as Potential Carriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Giorgia Giacometti

    2017-11-01

    Full Text Available The use of liposomes has been crucial for investigations in biomimetic chemical biology as a membrane model and in medicinal chemistry for drug delivery. Liposomes are made of phospholipids whose biophysical characteristics strongly depend on the type of fatty acid moiety, where natural unsaturated lipids always have the double bond geometry in the cis configuration. The influence of lipid double bond configuration had not been considered so far with respect to the competence of liposomes in delivery. We were interested in evaluating possible changes in the molecular properties induced by the conversion of the double bond from cis to trans geometry. Here we report on the effects of the addition of trans-phospholipids supplied in different amounts to other liposome constituents (cholesterol, neutral phospholipids and cationic surfactants, on the size, ζ-potential and stability of liposomal formulations and on their ability to encapsulate two dyes such as rhodamine B and fluorescein. From a biotechnological point of view, trans-containing liposomes proved to have different characteristics from those containing the cis analogues, and to influence the incorporation and release of the dyes. These results open new perspectives in the use of the unnatural lipid geometry, for the purpose of changing liposome behavior and/or of obtaining molecular interferences, also in view of synergic effects of cell toxicity, especially in antitumoral strategies.

  11. A novel oral delivery system consisting in "drug-in cyclodextrin-in nanostructured lipid carriers" for poorly water-soluble drug: vinpocetine.

    Science.gov (United States)

    Lin, Congcong; Chen, Fen; Ye, Tiantian; Zhang, Lina; Zhang, Wenji; Liu, Dandan; Xiong, Wei; Yang, Xinggang; Pan, Weisan

    2014-04-25

    The purpose of this study was to develop a new delivery system based on drug cyclodextrin (CD) complexation and loading into nanostructured lipid carriers (NLC) to improve the oral bioavailability of vinpocetine (VP). Three different CDs and three different methods to obtain solid vinpocetine-cyclodextrin-tartaric acid complexes (VP-CD-TA) were contrasted. The co-evaporation vinpocetine-β-cyclodextrin-tartaric acid loaded NLC (VP-β-CD-TA COE-loaded NLC) was obtained by emulsification ultrasonic dispersion method. VP-β-CD-TA COE-loaded NLC was suitably characterized for particle size, polydispersity index, zeta potential, entrapment efficiency and the morphology. The crystallization of drug in VP-CD-TA and NLC was investigated by differential scanning calorimetry (DSC). The in vitro release study was carried out at pH 1.2, pH 6.8 and pH 7.4 medium. New Zealand rabbits were applied to investigate the pharmacokinetic behavior in vivo. The VP-β-CD-TA COE-loaded NLC presented a superior physicochemical property and selected to further study. In the in vitro release study, VP-β-CD-TA COE-loaded NLC exhibited a higher dissolution rate in the pH 6.8 and pH 7.4 medium than VP suspension and VP-NLC. The relative bioavailability of VP-β-CD-TA COE-loaded NLC was 592% compared with VP suspension and 92% higher than VP-NLC. In conclusion, the new formulation significantly improved bioavailability of VP for oral delivery, demonstrated a perspective way for oral delivery of poorly water-soluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Radiation preparation of drug carriers based on poly(N-isopropylacrylamide) hydrogels, their loading capacities and controlled release rates for dexamethasone and tegafur

    International Nuclear Information System (INIS)

    Hoang Dang Sang; Nguyen Van Binh; Tran Bang Diep; Nguyen Thi Thom; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh

    2015-01-01

    Thermo-sensitive hydrogels have great potential in some applications. In order to use as the drug delivery systems, the hydrogels should be biocompatibility. New polymers with more biocompatibility and better biodegradability, and environmental friendly crosslinking agents would be necessary for the successful drug carriers. Poly (N-isopropylacrylamide-co-dimethylacrylamide) based hydrogels have been prepared from the admixture solutions of N-isopropylacrylamide (NIPA) and N,N’-dimethyl acrylamide (DMA) by radiation copolymerization and crosslinking at radiation dose of 20 kGy as reported in our previous study. Water swelling behaviour of the resulting hydrogels were much depended on their nature such as initial ratio of NIPA and DMA. The drug-loaded hydrogels were prepared by merging hydrogel in the solutions containing corresponding drugs. Loading capacity of the hydrogels were about 48.6 and 95.7 mg per g dried hydrogel for dexamethasone and tegafur. The release studies showed that the presence of ions in simulated body fluid and temperature of the solution much affecting to in vitro release behaviors of hydrogels for dexamethasone and tegafur. The release rates were fast for both drug models. The result also revealed that these drug carriers were biocompatibility without skin irritation, suggested the drug-loaded hydrogels may be used as controlled release drug delivery systems. (author)

  13. Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rahmani, Leila [Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Falavarjan (Iran, Islamic Republic of)

    2017-04-01

    Biological application of carbon nanotube in drug delivery is our main concern in this investigation. For this purpose interaction of carnosine and carbon nanotube was studied in both gas phase and separately in aqueous media. Three possible interactions of carnosine dipeptide with (5,5) carbon nanotube in physiological media were considered. At first step each species were modeled using quantum mechanical calculations, in the next step, their properties in aqueous solution were studied by applying Monte Carlo simulations. The results of density functional calculations in gas phase showed that interaction of zwitterion of carnosine with carbon nanotube via NH{sub 3}{sup +} had relatively higher interaction energy than the other complexes. Computation of solvation free energies in water showed functionalization with carnosine enhanced the solubility of carbon nanotube significantly that improve the medicinal applications of these materials. Calculation of complexation free energies indicated that zwitterion of carnosine with carbon nanotube via NH{sub 3}{sup +} produced the most stable complex in aqueous solution. This tendency could be observed in gas and liquid phase similarly. - Highlights: • Carnosine dipeptide (an anti-ageing compound and neuron protection in relation to Alzheimer's dementia) can be stabilized against degradation by binding to Carbon nanotube as a transporter. • Functionalization with carnosine increases the solubility of carbon nanotube considerably and so such systems hold great potential in the field of nanomedicine. • Complexation free energies confirm the interaction of carnosine dipeptide with carbon nanotube in aqueous solution. • Carnosine zwitter ion via NH{sub 3}{sup +} have the most interaction energy with carbon nanotube.

  14. Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly water-soluble selective β₁-adrenoreceptor blocker Talinolol.

    Science.gov (United States)

    Ghai, Damanjeet; Sinha, Vivek Ranjan

    2012-07-01

    To enhance the bioavailability of the poorly water-soluble drug talinolol, a self-nanoemulsifying drug delivery system (SNEDDS) comprising 5% (w/v) Brij-721 ethanolic solution (Smix), triacetin, and water, in the ratio of 40:20:40 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for droplet size, polydispersity index, and surface morphology of nanoemulsions. The effect of nanodrug carriers on drug release and permeability was assessed using stripped porcine jejunum and everted rat gut sac method and compared with hydroalcoholic drug solution, oily solution, and conventional emulsion and suspension. The SNEDDS showed a significant (P water-soluble beta-blocker talinolol. Significant increase in drug release, permeability, and in vivo bioavailability were demonstrated as compared to standard drug suspension. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Carrier-Mediated Prodrug Uptake to Improve the Oral Bioavailability of Polar Drugs: An Application to an Oseltamivir Analogue.

    Science.gov (United States)

    Incecayir, Tuba; Sun, Jing; Tsume, Yasuhiro; Xu, Hao; Gose, Tomoka; Nakanishi, Takeo; Tamai, Ikumi; Hilfinger, John; Lipka, Elke; Amidon, Gordon L

    2016-02-01

    The goal of this study was to improve the intestinal mucosal cell membrane permeability of the poorly absorbed guanidino analogue of a neuraminidase inhibitor, oseltamivir carboxylate (GOC) using a carrier-mediated strategy. Valyl amino acid prodrug of GOC with isopropyl-methylene-dioxy linker (GOC-ISP-Val) was evaluated as the potential substrate for intestinal oligopeptide transporter, hPEPT1 in Xenopus laevis oocytes heterologously expressing hPEPT1, and an intestinal mouse perfusion system. The diastereomers of GOC-ISP-Val were assessed for chemical and metabolic stability. Permeability of GOC-ISP-Val was determined in Caco-2 cells and mice. Diastereomer 2 was about 2 times more stable than diastereomer 1 in simulated intestinal fluid and rapidly hydrolyzed to the parent drug in cell homogenates. The prodrug had a 9 times-enhanced apparent permeability (P(app)) in Caco-2 cells compared with the parent drug. Both diastereomer exhibited high effective permeability (P(eff)) in mice, 6.32 ± 3.12 and 5.20 ± 2.81 × 10(-5) cm/s for diastereomer 1 and 2, respectively. GOC-ISP-Val was found to be a substrate of hPEPT1. Overall, this study indicates that the prodrug, GOC-ISP-Val, seems to be a promising oral anti-influenza agent that has sufficient stability at physiologically relevant pHs before absorption, significantly improved permeability via hPEPT1 and potentially rapid activation in the intestinal cells. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer.

    Science.gov (United States)

    Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen

    2017-03-15

    To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future. Considering the non-biodegradable nature and potential long-term toxicity concerns of photothermal nanoagents, it is of great interest and importance to develop biodegradable and photothermal nanoparticles with an excellent biocompatibility for their future clinical applications. In our experiments, we fabricated porous silicon-based hybrid nanocomposites via surface initiated polymerization of aniline, which showed an excellent photothermal effect, aqueous dispersibility, biodegradability and biocompatibility. Furthermore, after an efficient loading of DOX molecules, polyaniline/porous silicon nanocomposites exhibited the remarkable synergistic anticancer

  17. DOE Optimization of Nano-based Carrier of Pregabalin as Hydrogel: New Therapeutic & Chemometric Approaches for Controlled Drug Delivery Systems

    Science.gov (United States)

    Arafa, Mona G.; Ayoub, Bassam M.

    2017-01-01

    Niosomes entrapping pregabalin (PG) were prepared using span 60 and cholesterol in different molar ratios by hydration method, the remaining PG from the hydrating solution was separated from vesicles by freeze centrifugation. Optimization of nano-based carrier of pregabalin (PG) was achieved. Quality by Design strategy was successfully employed to obtain PG-loaded niosomes with the desired properties. The optimal particle size, drug release and entrapment efficiency were attained by Minitab® program using design of experiment (DOE) that predicted the best parameters by investigating the combined effect of different factors simultaneously. Pareto chart was used in the screening step to exclude the insignificant variables while response surface methodology (RSM) was used in the optimization step to study the significant factors. Best formula was selected to prepare topical hydrogels loaded with niosomal PG using HPMC and Carbopol 934. It was verified, by means of mechanical and rheological tests, that addition of the vesicles to the gel matrix affected significantly gel network. In vitro release and ex vivo permeation experiments were carried out. Delivery of PG molecules followed a Higuchi, non Fickian diffusion. The present work will be of interest for pharmaceutical industry as a controlled transdermal alternative to the conventional oral route.

  18. Design, synthesis, fabrication and in vitro evalution of mucoadhesive 5-amino-2-mercaptobenzimidazole chitosan as low water soluble drug carriers.

    Science.gov (United States)

    Kongsong, Mullika; Songsurang, Kultida; Sangvanich, Polkit; Siralertmukul, Krisana; Muangsin, Nongnuj

    2014-11-01

    Mucoadhesive thiolated chitosan suitable as a carrier for low water soluble drugs was designed and synthesized by conjugating 5-amino-2-mercaptobenzimidazole (MBI) using methylacrylate (MA) as the linking agent. A 14.4% degree of substitution of MA, as determined by (1)H NMR analysis, and 11.86±0.01μmol thiol groups/g of polymer, as determined by Ellman's method, was obtained. The MBI-MA-chitosan had an 11-fold stronger mucoadhesive property compared to unmodified chitosan at pH 1.2, as determined by the periodic acid: Schiff colorimetric method. Chitosan, MA-chitosan and MBI-MA-chitosan were fabricated as well-formed microspheres using electrospray ionization, including an entrapment efficiency of simvastatin (SV) of over 80% for the MBI-MA-chitosan. The mucoadhesiveness of the SV-loaded MBI-MA-CS microspheres was still higher than that for SV-loaded chitosan at pH 1.2 and 6.4. The SV-loaded MBI-MA-CS microspheres revealed a reduced burst effect and an increased release rate (more than fivefold higher than pure SV) of SV over 12h. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design.

    Science.gov (United States)

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S Rayasa; Goyal, Amit K

    2016-07-01

    In the present study, nanostructured lipid carriers (NLCs) along with various surfactants loaded with paclitaxel (PTX) were prepared by an emulsification technique using a Box-Behnken design. The Box-Behnken design indicated that the most effective factors on the size and PDI were at high surfactant concentration (1.5%), low lipids ratio (6:4) and medium homogenization speed (6000 rpm). Among all the formulations, Tween 20-loaded NLCs show least particle size compared to Tween 80 and Tween 60. Entrapment efficiency of Tween 20, Tween 80 and Tween 60-loaded formulations were 82.40, 85.60 and 79.78%, respectively. Drug release of Tween 80, Tween 20 and Tween 60-loaded NLCs is 64.9, 62.3 and 59.7%, respectively (within 72 h). Maximum cellular uptake was observed with Tween 20 formulation on Caco-2 cell lines. Furthermore, spray drying of resultant NLCs was showed good flow properties and was selected for drug delivery to deeper airways. In-vivo studies demonstrated the better localization of drug within the lungs using different surfactant-based pulmonary delivery systems. From this study, we have concluded that delivering drugs through pulmonary route is advantageous for local action in lungs as maximum amount of drug concentration was observed in lungs. The surfactants could prove to be beneficial in treating drug resistance lung cancer by inhibiting P-gp efflux in the form of nano lipidic carriers.

  20. Influence of Carrier (Polymer Type and Drug-Carrier Ratio in the Development of Amorphous Dispersions for Solubility and Permeability Enhancement of Ritonavir

    Directory of Open Access Journals (Sweden)

    Vivek S. Dave

    2017-09-01

    Full Text Available The influence of the ratio of Eudragit® L100-55 or Kolliphor® P188 on the solubility, dissolution, and permeability of ritonavir was studied with a goal of preparing solid dispersions (SDs of ritonavir. SDs were formulated using solvent evaporation or lyophilization techniques, and evaluated for their physical-chemical properties. The dissolution and permeability assessments of the functionality of the SDs were carried out. The preliminary functional stability of these formulations was assessed at accelerated storage conditions for a period of six months. Ritonavir: Eudragit® L100-55 (RE, 1:3 SD showed a 36-fold higher ritonavir solubility compared to pure ritonavir. Similarly, ritonavir: Kolliphor® P188 (RP, 1:2 SD exhibited a 49-fold higher ritonavir solubility compared to pure ritonavir. Ritonavir dissolution from RE formulations increased with increasing ratios of Eudragit® L100-55, up to a ritonavir: carrier ratio of 1:3. The ritonavir dissolution from RP formulations was highest at ritonavir: Kolliphor® P188 ratio of 1:2. Dissolution efficiencies of these formulations were found to be in line with, and supported the dissolution results. The permeability of ritonavir across the biological membrane from the optimized formulations RE (1:3 and RP (1:2 were ~76 % and ~97 %, respectively; and were significantly higher compared to that of pure ritonavir (~20 %. A preliminary (six-month stability study demonstrated the functional stability of prepared solid dispersions. The present study demonstrates that ritonavir solubility, dissolution, and permeability improvement can be achieved with a careful choice of the carrier polymer, and optimizing the amount of polymer in a SD formulation.

  1. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay.

    Science.gov (United States)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Bauer-Brandl, Annette; Brandl, Martin

    2016-06-28

    Liposomes represent a versatile drug formulation approach e.g. for improving the water-solubility of poorly soluble drugs but also to achieve drug targeting and controlled release. For the latter applications it is essential that the drug remains associated with the liposomal carrier during transit in the vascular bed. A range of in vitro test methods has been suggested over the years for prediction of the release of drug from liposomal carriers. The majority of these fail to give a realistic prediction for poorly water-soluble drugs due to the intrinsic tendency of such compounds to remain associated with liposome bilayers even upon extensive dilution. Upon i.v. injection, in contrast, rapid drug loss often occurs due to drug transfer from the liposomal carriers to endogenous lipophilic sinks such as lipoproteins, plasma proteins or membranes of red blood cells and endothelial cells. Here we report on the application of a recently introduced in vitro predictive drug transfer assay based on incubation of the liposomal drug carrier with large multilamellar liposomes, the latter serving as a biomimetic model sink, using flow field-flow fractionation as a tool to separate the two types of liposomes. By quantifying the amount of drug remaining associated with the liposomal drug carrier as well as that transferred to the acceptor liposomes at distinct times of incubation, both the kinetics of drug transfer and release to the water phase could be established for the model drug p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine). p-THPP is structurally similar to temoporfin, a photosensitizer which is under clinical evaluation in a liposomal formulation. Mechanistic insights were gained by varying the donor-to-acceptor lipid mass ratio, size and lamellarity of the liposomes. Drug transfer kinetics from one liposome to another was found rate determining as compared to redistribution from the outermost to the inner concentric bilayers, such that the overall

  2. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans

    2009-01-01

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...

  3. Characterization of gelation process and drug release profile of thermosensitive liquid lecithin/poloxamer 407 based gels as carriers for percutaneous delivery of ibuprofen.

    Science.gov (United States)

    Djekic, Ljiljana; Krajisnik, Danina; Martinovic, Martina; Djordjevic, Dragana; Primorac, Marija

    2015-07-25

    Suitability of liquid lecithin (i.e., solution of lecithin in soy bean oil with ∼ 60% w/w of phospholipids) for formation of gels, upon addition of water solution of poloxamer 407, was investigated, and formulated systems were evaluated as carriers for percutaneous delivery of ibuprofen. Formulation study of pseudo-ternary system liquid lecithin/poloxamer 407/water at constant liquid lecithin/poloxamer 407 mass ratio (2.0) revealed that minimum concentrations of liquid lecithin and poloxamer 407 required for formation of gel like systems were 15.75% w/w and 13.13% w/w, respectively, while the maximum content of water was 60.62% w/w. The systems comprising water concentrations in a range from 55 to 60.62% w/w were soft semisolids suitable for topical application, and they were selected for physicochemical and biopharmaceutical evaluation. Analysis of conductivity results and light microscopy examination revealed that investigated systems were water dilutable dispersions of spherical oligolamellar associates of phospholipids and triglyceride molecules in the copolymer water solution. Rheological behavior evaluation results indicated that the investigated gels were thermosensitive shear thinning systems. Ibuprofen (5% w/w) was incorporated by dispersing into the previously prepared carriers. Drug-loaded systems were physically stable at storage temperature from 5 ± 3°C to 40 ± 2°C, for 30 days. In vitro ibuprofen release was in accordance with the Higuchi model (rH>0.95) and sustained for 12h. The obtained results implicated that formulated LLPBGs, optimized regarding drug release and organoleptic properties, represent promising carriers for sustained percutaneous drug delivery of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Gavartin, J.L.

    2007-01-01

    However fascinating structures may be at the nanoscale, time-dependent behaviour at the nanoscale has far greater importance. Some of the dynamics is random, with fluctuations controlling rate processes and making thermal ratchets possible. Some of the dynamics causes the transfer of energy, of signals, or of charge. Such transfers are especially efficiently controlled in biological systems. Other dynamical processes occur when we wish to control the nanoscale, e.g., to avoid local failures of gate dielectrics, or to manipulate structures by electronic excitation, to use spin manipulation in quantum information processing. Our prime purpose is to make clear the enormous range and variety of time-dependent nanoscale phenomena

  5. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Liang Y

    2017-03-01

    Full Text Available Yan Liang,1 Baocheng Tian,1 Jing Zhang,1 Keke Li,1 Lele Wang,1 Jingtian Han,1,* Zimei Wu2,* 1School of Pharmacy, Binzhou Medical University, 2School of Pharmacy, Yantai University, Yantai, China *These authors contributed equally to this work Abstract: Gemcitabine (GEM and paclitaxel (PTX are effective combination anticancer agents against non-small-cell lung cancer (NSCLC. At the present time, a main challenge of combination treatment is the precision of control that will maximize the combined effects. Here, we report a novel method to load GEM (hydrophilic and PTX (hydrophobic into simplex tumor-targeted nanostructured lipid carriers (NLCs for accurate control of the ratio of the two drugs. We covalently preconjugated the dual drugs through a hydrolyzable ester linker to form drug conjugates. N-acetyl-D-glucosamine (NAG is a glucose receptor-targeting ligand. We added NAG to the formation of NAG-NLCs. In general, synthesis of poly(6-O-methacryloyl-d-galactopyranose–GEM/PTX (PMAGP-GEM/PTX conjugates was demonstrated, and NAG-NLCs were prepared using emulsification and solvent evaporation. NAG-NLCs displayed sphericity with an average diameter of 120.3±1.3 nm, a low polydispersity index of 0.233±0.04, and accurate ratiometric control over the two drugs. A cytotoxicity assay showed that the NAG-NLCs had better antitumor activity on NSCLC cells than normal cells. There was an optimal ratio of the two drugs, exhibiting the best cytotoxicity and combinatorial effects among all the formulations we tested. In comparison with both the free-drug combinations and separately nanopackaged drug conjugates, PMAGP-GEM/PTX NAG-NLCs (3:1 exhibited superior synergism. Flow cytometry and confocal laser scanning microscopy showed that NAG-NLCs exhibited higher uptake efficiency in A549 cells via glucose receptor-mediated endocytosis. This combinatorial delivery system settles problems with ratiometric coloading of hydrophilic and hydrophobic drugs for tumor

  6. Design of in situ dispersible and calcium cross-linked alginate pellets as intestinal-specific drug carrier by melt pelletization technique.

    Science.gov (United States)

    Nurulaini, Harjoh; Wong, Tin Wui

    2011-06-01

    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation. Copyright © 2011 Wiley-Liss, Inc.

  7. Feasibility study of silica sol as the carrier of a hydrophobic drug in aqueous solution using enrofloxacin as the model

    International Nuclear Information System (INIS)

    Song Meirong; Song Junling; Ning Aimin; Cui Baoan; Cui Shumin; Zhou Yaobing; An Wankai; Dong Xuesong; Zhang Gege

    2010-01-01

    The aim of this study was to determine the feasibility of using silica sol to carry a hydrophobic drug in aqueous solution. Enrofloxacin, which was selected as the model drug because it is a broad-spectrum antibiotic drug with poor solubility in water, was adsorbed onto silica sol in aqueous solution during cooling from 60 deg. C to room temperature. The drug-loaded silica sol was characterized by transmission electron microscopy, Fourier transform infrared spectrum, thermal gravimetric analysis and ultraviolet-visible light spectroscopy. The results showed that enrofloxacin was adsorbed by silica sol without degradation at a loading of 15.23 wt.%. In contrast to the rapid release from pure enrofloxacin, the drug-loaded silica sol showed a slower release over a longer time. Kinetics analysis suggested the drug release from silica sol was mainly a diffusion-controlled process. Therefore, silica sol can be used to carry a hydrophobic drug in aqueous solution for controlled drug delivery.

  8. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    Science.gov (United States)

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  9. Nanoparticle carriers based on copolymers of poly(l-aspartic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Han Siyuan; Wang Huan; Liang Xingjie [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China); Hu Liming, E-mail: huliming@bjut.edu.cn [Beijing University of Technology, College of Life Science and Bioengineering (China); Li Min; Wu Yan, E-mail: wuy@nanoctr.cn [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China)

    2011-09-15

    A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR ({sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  10. Nanoparticle carriers based on copolymers of poly(l-aspartic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    International Nuclear Information System (INIS)

    Han Siyuan; Wang Huan; Liang Xingjie; Hu Liming; Li Min; Wu Yan

    2011-01-01

    A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR ( 1 H NMR, 13 C NMR, 31 P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  11. Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: Allying dissimilar cell cytoskeleton disrupting mechanisms.

    Science.gov (United States)

    Taranejoo, Shahrouz; Janmaleki, Mohsen; Pachenari, Mohammad; Seyedpour, Seyed Morteza; Chandrasekaran, Ramya; Cheng, Wenlong; Hourigan, Kerry

    2016-11-20

    A recent approach to colon cancer therapy is to employ selective drugs with specific extra/intracellular sites of action. Alteration of cytoskeletal protein reorganization and, subsequently, to cellular biomechanical behaviour during cancer progression highly affects the cancer cell progress. Hence, cytoskeleton targeted drugs are an important class of cancer therapy agents. We have studied viscoelastic alteration of the human colon adenocarcinoma cell line, SW48, after treatment with a drug delivery system comprising chitosan as the carrier and albendazole as the microtubule-targeting agent (MTA). For the first time, we have evaluated the biomechanical characteristics of the cell line, using the micropipette aspiration (MA) method after treatment with drug delivery systems. Surprisingly, employing a chitosan-albendazole pair, in comparison with both neat materials, resulted in more significant change in the viscoelastic parameters of cells, including the elastic constants (K 1 and K 2 ) and the coefficient of viscosity (μ). This difference was more pronounced for cancer cells after 48h of the treatment. Microtubule and actin microfilament (F-actin) contents in the cell line were studied by immunofluorescent staining. Good agreement was observed between the mechanical characteristics results and microtubule/F-actin contents of the treated SW48 cell line, which declined after treatment. The results showed that chitosan affected F-actin more, while MTA was more effective for microtubules. Toxicity studies were performed against two cancer cell lines (SW48 and MCF10CA1h) and compared to normal cells, MCF10A. The results showed cancer selectiveness, safety of formulation, and enhanced anticancer efficacy of the CS/ABZ conjugate. This study suggests that employing such a suitable pair of drug-carriers with dissimilar sites of action, thus allying the different cell cytoskeleton disrupting mechanisms, may provide a more efficient cancer therapy approach. Copyright

  12. Creating nanoscale emulsions using condensation.

    Science.gov (United States)

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  13. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer.

    Science.gov (United States)

    Liang, Yan; Tian, Baocheng; Zhang, Jing; Li, Keke; Wang, Lele; Han, Jingtian; Wu, Zimei

    2017-01-01

    Gemcitabine (GEM) and paclitaxel (PTX) are effective combination anticancer agents against non-small-cell lung cancer (NSCLC). At the present time, a main challenge of combination treatment is the precision of control that will maximize the combined effects. Here, we report a novel method to load GEM (hydrophilic) and PTX (hydrophobic) into simplex tumor-targeted nanostructured lipid carriers (NLCs) for accurate control of the ratio of the two drugs. We covalently preconjugated the dual drugs through a hydrolyzable ester linker to form drug conjugates. N -acetyl-d-glucosamine (NAG) is a glucose receptor-targeting ligand. We added NAG to the formation of NAG-NLCs. In general, synthesis of poly(6- O -methacryloyl-d-galactopyranose)-GEM/PTX (PMAGP-GEM/PTX) conjugates was demonstrated, and NAG-NLCs were prepared using emulsification and solvent evaporation. NAG-NLCs displayed sphericity with an average diameter of 120.3±1.3 nm, a low polydispersity index of 0.233±0.04, and accurate ratiometric control over the two drugs. A cytotoxicity assay showed that the NAG-NLCs had better antitumor activity on NSCLC cells than normal cells. There was an optimal ratio of the two drugs, exhibiting the best cytotoxicity and combinatorial effects among all the formulations we tested. In comparison with both the free-drug combinations and separately nanopackaged drug conjugates, PMAGP-GEM/PTX NAG-NLCs (3:1) exhibited superior synergism. Flow cytometry and confocal laser scanning microscopy showed that NAG-NLCs exhibited higher uptake efficiency in A549 cells via glucose receptor-mediated endocytosis. This combinatorial delivery system settles problems with ratiometric coloading of hydrophilic and hydrophobic drugs for tumor-targeted combination therapy to achieve maximal anticancer efficacy in NSCLC.

  14. Drug- not carrier-dependent haematological and biochemical changes in a repeated dose study of cyclosporine encapsulated polyester nano- and micro-particles: Size does not matter

    International Nuclear Information System (INIS)

    Venkatpurwar, V.P.; Rhodes, S.; Oien, K.A.; Elliott, M.A.; Tekwe, C.D.; Jørgensen, H.G.; Kumar, M.N.V. Ravi

    2015-01-01

    Highlights: • The particulate delivery allows an increase in dose range without accrual of toxicities. • The altered haematological and biochemical changes are drug, but not particle dependent. • PLGA nano/microparticles are safe on subacute peroral dosing over 28 days. • Nano-toxicology, drug needs to be considered. - Abstract: Biodegradable nanoparticles are being considered more often as drug carriers to address pharmacokinetic/pharmacodynamic issues, yet nano-product safety has not been systematically proven. In this study, haematological, biochemical and histological parameters were examined on 28 day daily dosing of rats with nano- or micro-particle encapsulated cyclosporine (CsA) to confirm if any changes observed were drug or carrier dependent. CsA encapsulated poly(lactide-co-glycolide) [PLGA] nano- (nCsA) and micro-particles (mCsA) were prepared by emulsion techniques. CsA (15, 30, 45 mg/kg) were administered by oral gavage to Sprague Dawley (SD) rats over 28 days. Haematological and biochemical metrics were followed with tissue histology performed on sacrifice. Whether presented as nCsA or mCsA, 45 mg/kg dose caused significant loss of body weight and lowered food consumption compared to untreated control. Across the doses, both nCsA and mCsA produce significant decreases in lymphocyte numbers compared to controls, commensurate with the proprietary product, Neoral ® 15. Dosing with nCsA showed higher serum drug levels than mCsA presumably owing to the smaller particle size facilitating absorption. The treatment had no noticeable effects on inflammatory/oxidative stress markers or antioxidant enzyme levels, except an increase in ceruloplasmin (CP) levels for high dose nCsA/mCsA group. Further, only subtle, sub-lethal changes were observed in histology of nCsA/mCsA treated rat organs. Blank (drug-free) particles did not induce changes in the parameters studied. Therefore, it is extremely important that the encapsulated drug in the nano-products is

  15. Nanoparticles as Antituberculosis Drugs Carriers: Effect on Activity Against Mycobacterium tuberculosis in Human Monocyte-Derived Macrophages

    International Nuclear Information System (INIS)

    Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B.

    2000-01-01

    This is the first report evaluating the nanoparticle delivery system for three antituberculosis drugs: isoniazid, rifampin, and streptomycin. The typical particle size is 250 nm. We studied accumulation of these drugs in human monocytes as well as their antimicrobial activity against Mycobacterium tuberculosis residing in human monocyte-derived macrophages. Nanoparticle encapsulation increased the intracellular accumulation (cell-association) of all three tested drugs, but it enhanced the antimicrobial activity of isoniazid and streptomycin only. On the other hand, the activity of encapsulated rifampin against intracellular bacteria was not higher than that of the free drug

  16. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  17. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo.

    Science.gov (United States)

    Deng, Wentao; Qiu, Juhui; Wang, Shaoting; Yuan, Zhi; Jia, Yuefeng; Tan, Hailin; Lu, Jiru; Zheng, Ruqiang

    2018-01-01

    In this study, we performed the characterization and synthesis of biocompatible and targeted albumin and graphene oxide (GO) dual-carrier paclitaxel (PTX) nanoparticles for photothermal-triggered tumor therapy. PTX absorbed on GO nanosheets as cores were coated with human serum albumin (HSA), following surface conjugation with monoclonal antibodies (mAb) against vascular endothelial growth factor (VEGF; denoted as mAbVEGF) via polyethylene glycol linker to form targeted nanoparticles (PTX-GHP-VEGF). The spherical nanoparticles were 191±5 nm in size with good stability and biocompatibility. GO functioned as the first carrier and a near infrared absorber that can generate photothermal effects under 5-minute 808-nm laser irradiation to thermal trigger the release of PTX from the second carrier HSA nanoparticles. The mechanism of thermal-triggered drug release was also investigated preliminarily, in which the heat generated by GO induced swelling of PTX-GHP-VEGF nanoparticles which released the drugs. In vitro studies found that PTX-GHP-VEGF can efficiently target human SW-13 adrenocortical carcinoma cells as evaluated by confocal fluorescence microscopy as well as transmission electron microscopy, and showed an obvious thermal-triggered antitumor effect, mediated by apoptosis. Moreover, PTX-GHP-VEGF combined with near infrared irradiation showed specific tumor suppression effects with high survival rate after 100 days of treatment. PTX-GHP-VEGF also demonstrated high biosafety with no adverse effects on normal tissues and organs. These results highlight the remarkable potential of PTX-GHP-VEGF in photothermal controllable tumor treatment.

  18. Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules

    Science.gov (United States)

    Jang, Yong-Man; Yu, Chol-Jun; Kim, Jin-Song; Kim, Song-Un

    2018-04-01

    Monomolecular drug carriers based on calix[n]-arenes and -resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work we investigate the suitability of nine different calix[4]-arenes and -resorcinarenes based macrocycles as hosts for the ZOD guest molecule by conducting {\\it ab initio} density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]-arenes and -resorcinarenes, the geometric sizes of their interior cavities are measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicate that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the \\ce{P-C-P} branch into the cavity of host is easier than that with the nitrogen containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.

  19. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs

    International Nuclear Information System (INIS)

    Maeda, Noriyuki; Miyazawa, Souichiro; Shimizu, Kosuke; Asai, Tomohiro; Yonezawa, Sei; Oku, Naoto; Kitazawa, Sadaya; Namba, Yukihiro; Tsukada, Hideo

    2006-01-01

    We previously observed the enhanced anticancer efficacy of anticancer drugs encapsulated in Ala-Pro-Arg-Pro-Gly-polyethyleneglycol-modified liposome (APRPG-PEG-Lip) in tumor-bearing mice, since APRPG peptide was used as an active targeting tool to angiogenic endothelium. This modality, antineovascular therapy (ANET), aims to eradicate tumor cells indirectly through damaging angiogenic vessels. In the present study, we examined the in vivo trafficking of APRPG-PEG-Lip labeled with [2- 18 F]2-fluoro-2-deoxy- D -glucose ([2- 18 F]FDG) by use of positron emission tomography (PET), and observed that the trafficking of this liposome was quite similar to that of non-targeted long-circulating liposome (PEG-Lip). Then, histochemical analysis of intratumoral distribution of both liposomes was performed by use of fluorescence-labeled liposomes. In contrast to in vivo trafficking, intratumoral distribution of both types of liposomes was quite different: APRPG-PEG-Lip was colocalized with angiogenic endothelial cells that were immunohistochemically stained for CD31, although PEG-Lip was localized around the angiogenic vessels. These results strongly suggest that intratumoral distribution of drug carrier is much more important for therapeutic efficacy than the total accumulation of the anticancer drug in the tumor, and that active delivery of anticancer drugs to angiogenic vessels is useful for cancer treatment. (author)

  20. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  1. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    International Nuclear Information System (INIS)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-01-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH_2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH_2 on CS result in a pH-dependent drug delivery.

  2. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: Influence of pore size on release rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity

  3. Preparation and characterization of Fe3O4-Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer.

    Science.gov (United States)

    Fakhri, Ali; Tahami, Shiva; Nejad, Pedram Afshar

    2017-10-01

    The Best performance drug delivery systems designed with Fe 3 O 4 -Ag 2 O quantum dots decorated cellulose nanofibers which that grafted with Etoposide and Methotrexate. Morphology properties were characterized by Scanning and Transmittance electron microscopy. The crystalline structure of prepared sample was evaluated using by X-ray diffraction. The vibrating sample magnetometer analysis was used for magnetic behavior of samples. The size distributions of Fe 3 O 4 -Ag 2 O QDs/Cellulose fibers nanocomposites indicate that the average diameter was 62.5nm. The Saturation magnetization (Ms) indicates the Fe 3 O 4 -Ag 2 O QDs/Cellulose fibers nanocomposites have ferromagnetic properties in nature. For make carrier, the Iron and Silver should be binds to cellulose nanofibers and to drug molecules and observe in UV-vis spectroscopy. The drug release kinetics was studied in vitro as spectrophotometrically. The release of Etoposide and Methotrexate were carried out with a constant speed, and the equilibrium reached at 24 and 30h with a total amount 78.94% and 63.84%, respectively. The results demonstrated that the obtained Fe 3 O 4 -Ag 2 O quantum dots/cellulose fibers nanocomposites could be applied for drug delivery systems. Cytotoxicity and antioxidant study confirmed the activity of the drug incorporated in nanocomposites. In addition, the cytotoxicity of drug was increased when loaded on nanocomposites, compared to pure Fe 3 O 4 -Ag 2 O quantum dots/cellulose fibers nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers.

    Science.gov (United States)

    Lin, Chih-Hung; Chen, Chun-Han; Lin, Zih-Chan; Fang, Jia-You

    2017-04-01

    Chemical and enzymatic barriers in the gastrointestinal (GI) tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs) are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs. Copyright © 2017. Published by Elsevier B.V.

  5. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lin

    2017-04-01

    Full Text Available Chemical and enzymatic barriers in the gastrointestinal (GI tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.

  6. Evaluation of drug-carrier interactions in quaternary powder mixtures containing perindopril tert-butylamine and indapamide.

    Science.gov (United States)

    Voelkel, Adam; Milczewska, Kasylda; Teżyk, Michał; Milanowski, Bartłomiej; Lulek, Janina

    2016-04-30

    Interactions occurring between components in the quaternary powder mixtures consisting of perindopril tert-butylamine, indapamide (active pharmaceutical ingredients), carrier substance and hydrophobic colloidal silica were examined. Two grades of lactose monohydrate: Spherolac(®) 100 and Granulac(®) 200 and two types of microcrystalline cellulose: M101D+ and Vivapur(®) 102 were used as carriers. We determined the size distribution (laser diffraction method), morphology (scanning electron microscopy) and a specific surface area of the powder particles (by nitrogen adsorption-desorption). For the determination of the surface energy of powder mixtures the method of inverse gas chromatography was applied. Investigated mixtures were characterized by surface parameters (dispersive component of surface energy, specific interactions parameters, specific surface area), work of adhesion and cohesion as well as Flory-Huggins parameter χ23('). Results obtained for all quaternary powder mixtures indicate existence of interactions between components. The strongest interactions occur for both blends with different types of microcrystalline cellulose (PM-1 and PM-4) while much weaker ones for powder mixtures with various types of lactose (PM-2 and PM-3). Published by Elsevier B.V.

  7. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  8. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  9. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  10. Nanoscale biophysics of the cell

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  11. Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery.

    Science.gov (United States)

    Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari Azar, Zahra

    2013-01-01

    In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween(®)80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams.

  12. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen

    Directory of Open Access Journals (Sweden)

    Yang L

    2013-10-01

    Full Text Available Liang Yang,1 Soo-Kyung Choi,2 Hyun-Jae Shin,2 Hyo-Kyung Han1 1College of Pharmacy, Dongguk University-Seoul, Siksa-dong, Ilsan-Donggu, Goyang, Gyunggi-do, Korea; 2Department of Chemical and Biochemical Engineering, Chosun University, Gwangju, Korea Abstract: This study aimed to develop an oral delivery system using clay-based organic–inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB was incorporated into AMP clay (FB-AMP at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3, dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3 after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2, FB-AMP(3 also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3 to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic–inorganic hybrid material might be useful to improve the bioavailability of FB. Keywords: poorly water-soluble drugs, aminopropyl functionalized magnesium phyllosilicate, organic clay, oral bioavailability

  13. Novel Biodegradable Polyesters. Synthesis and Application as Drug Carriers for the Preparation of Raloxifene HCl Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Evangelos Karavas

    2009-07-01

    Full Text Available Raloxifene HCl is a drug with poor bioavailability and poor water solubility. Furthermore nο pharmaceutically acceptable organic solvent has been reported before to dilute the drug. It was observed that Raloxifene HCl can be diluted in a solvent mixture of acetone/water or ethanol/water. The aim of this study was to use biodegradable polymers in order to prepare Raloxifene HCl nanoparticles. For this purpose a series of novel biodegradable poly(ethylene succinate-co-propylene adipate P(ESu-co-PAd polyesters were synthesized following the polycondensation method and further, poly(ethylene succinate (PESu and poly(propylene adipate (PPAd were used. The prepared polyesters were characterized by intrinsic viscosity measurements, end group analysis, enzymatic hydrolysis, Nuclear Magnetic Resonance Spectroscopy (1Η-NMR and 13C-NMR and Wide-angle X-ray Diffractometry (WAXD. The drug nanoparticles have been prepared by a variation of the co-precipitation method and were studied by Wide-angle X-ray Diffractometry (WAXD, FTIR spectrometry, light scattering size distribution, Scanning Electron Microscopy (SEM and release behavior measurements. The interactions between the polymers and the drug seem to be limited, so the drug occurs in crystalline form in all nanoparticles. The size of the nanoparticles seems to be in the range of 150-350 nm, depending on the polymer that was used. The drug release depends on the melting point and degree of crystallinity of the polyesters used. An initial high release rate was recorded followed by very slow rates of controlled release.

  14. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Swami, Rajan; Singh, Indu [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India); Kulhari, Hitesh [CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry & Pharmacology Division (India); Jeengar, Manish Kumar [National Institute of Pharmaceutical Education & Research (NIPER), Departmentof Pharmacology (India); Khan, Wahid, E-mail: wahid@niperhyd.ac.in; Sistla, Ramakrishna, E-mail: sistla@iict.res.in, E-mail: rksistla@yahoo.com [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India)

    2015-06-15

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by {sup 1}HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere{sup ®}). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  15. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    International Nuclear Information System (INIS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1 HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere ® ). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors

  16. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    Science.gov (United States)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  17. Optimal Control of Objects on the Micro- and Nano-Scale by Electrokinetic and Electromagnetic Manipulation: for Bio-Sample Preparation, Quantum Information Devices and Magnetic Drug Delivery

    Science.gov (United States)

    2010-01-01

    frequencies) thus the magneto - static equations are appropriate. These are H j∇ × =   (31) 0B∇ ⋅ =  (32) ( ) ( ) ,o oB H M H Hµ µ χ...degree rotations of 1H  . Let 1u , 2u , 3u and 4u be the applied voltage of each of the four magnets. Then, by the linearity of the magneto -static...Hepatocellular Carcinoma: Regional Therapy with a Magnetic Targeted Carrier Bound to Doxorubicin in a Dual MR Imaging/ Conventional Angiography Suite

  18. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    Science.gov (United States)

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    formulation. The results of this study suggest that the PNP system is an advantageous carrier for drug delivery.

  19. The Use of Multi-Walled Carbon Nanotubes as Possible Carrier in Drug Delivery System for Aspirin

    Science.gov (United States)

    Yusof, Alias Mohd.; Buang, Nor Aziah; Yean, Lee Sze; Ibrahim, Mohd. Lokman

    2009-06-01

    Carbon nanotubes (CNTs) have raised great interest in a number of applications, including field emission, energy storage, molecular electronics, sensors, biochips and drug delivery systems. This is due to their remarkable mechanical properties, chemical stability and biofunctionalizability. This nanomaterial is low in weight, has high strength and a high aspect ratio (long length compared to a small diameter). This paper will present a brief overview of drugs adsorbed onto the surface of carbon nanotubes via sonication method. The surface area of carbon nanotubes was measured by methylene blue method, Carbon nanotubes synthesized by catalytic chemical vapor deposition (CCVD) method were purified and functionalized in a mixture of concentrated acids (H2SO4:HNO3 = 3:1) at room temperature (25° C) via sonication in water bath, yielding carboxylic acid group on the CNTs' surface. CNT was successfully loaded with 48 %(w/w) aspirin molecules by suspending CNTs in a solution of aspirin in alcohol. Analysis of loaded CNTs by Field Emission-Scanning Electron Microscope (FESEM), Fourier Transform Infrared Spectrum (FITR) and UV-visible Spectroscopy confirmed the loading of the drug onto the CNTs. The work presented is a prelude to the direction of using carbon nanotubes as a drug delivery system to desired sites in human body.

  20. Sodium Alginate with PEG/PEO Blends as a Floating Drug Delivery Carrier – In vitro Evaluation

    Directory of Open Access Journals (Sweden)

    Christe Sonia Mary

    2016-09-01

    Full Text Available Purpose: Floating drug delivery system reduces the quantity of drug intake and the risk of overloading the organs with excess drug. Methods: In the present study, we prepared the blends of sodium alginate with polyethylene glycol (PEG and polyethylene oxide (PEO as a matrix, sodium hydrogen carbonate as a pore forming agent, methyl cellulose as a binder and barium chloride containing 10% acetic acid as a hardening agent. Different ratios of pore forming agent to the polymer blend was used to prepare the floating beads with different porosity and morphology. Ciprofloxacin hydrochloride was used as a model drug for the release kinetics studies. Results: The beads were characterized by optical and FESEM microscopy to study the morphology and pore dimensions. The results obtained shows decrease in beads size with increase in the concentration of the pore forming agent. The swelling properties of the beads were found to be in the range of 80% to 125%. The release kinetics of the ciprofloxacin from the beads was measured by UV-Visible spectroscopy at λmax of 278nm and the results shows for highly porous beads. Conclusion: By varying the amount of alginate and pore forming agent the release kinetics is found to get altered. As a result, ciprofloxacin hydrochloride release is found to be sustained from the blended beads.

  1. Modified human serum albumins as carriers for the specific delivery of antiviral drugs to liver- and blood cells

    NARCIS (Netherlands)

    Jansen, Robert Walter

    1992-01-01

    The general goal of this study, was to determine the possibility of a targeted delivery of antiviral drugs to their site of action. We decided to focus on two viral diseases; HIV and Hepatitis B, that replicate in T,-lymphocytes, monocytes/macrophages and hepatocytes respectively. The specific aims

  2. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  3. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen.

    Science.gov (United States)

    Yang, Liang; Choi, Soo-Kyung; Shin, Hyun-Jae; Han, Hyo-Kyung

    2013-01-01

    This study aimed to develop an oral delivery system using clay-based organic-inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay) was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB) was incorporated into AMP clay (FB-AMP) at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3), dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3) after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2), FB-AMP(3) also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3) to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic-inorganic hybrid material might be useful to improve the bioavailability of FB.

  4. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers.

    Science.gov (United States)

    Xin, Jing; Wang, Sijia; Wang, Bing; Wang, Jiazhuang; Wang, Jing; Zhang, Luwei; Xin, Bo; Shen, Lijian; Zhang, Zhenxi; Yao, Cuiping

    2018-01-01

    As a promising photodynamic therapy (PDT) agent, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS 4 ) provides deep penetration into tissue, high quantum yields, good photostability, and low photobleaching. However, its low delivery efficiency and high binding affinity to serum albumin cause its low penetration into cancer cells, further limiting its PDT effect on gastric cancer. In order to improve AlPcS 4 /PDT effect, the AlPcS 4 delivery sys tems with different drug carriers were synthesized and investigated. Gold nanorods, cationic liposomes, and Pluronic ® F127 nanomicellars were used to formulate the AlPcS 4 delivery systems. The anticancer effect was evaluated by CCK-8 assay and colony formation assay. The delivery efficiency of AlPcS 4 and the binding affinity to serum proteins were determined by fluorescence intensity assay. The apoptosis and necrosis ability, reactive oxygen species and singlet oxygen generation, mitochondrial transmembrane potential and ([Ca 2+ ] i ) concentration were further measured to evaluate the mechanism of cell death. The series of synthesized AlPcS 4 delivery systems with different drug carriers improve the limited PDT effect in varying degrees. In contrast, AlPcS 4 complex with gold nanorods has significant anticancer effects because gold nanorods are not only suitable for AlPcS 4 delivery, but also exhibit enhanced singlet oxygen generation effect and photothermal effect to induce cell death directly. Moreover, AlPcS 4 complex with cationic liposomes shows the potent inhibition effect because of its optimal AlPcS 4 delivery efficiency and ability to block serum albumin. In addition, AlPcS 4 complex with Pluronic F127 exhibits inferior PDT effect but presents lower cytotoxicity, slower dissociation rate, and longer retention time of incorporated drugs; thus, F127-AlPcS 4 is used for prolonged gastric cancer therapy. The described AlPcS 4 drug delivery systems provide promising agents for gastric cancer therapy.

  5. Application of transglycosylated stevia and hesperidin as drug carriers to enhance biopharmaceutical properties of poorly-soluble artemisinin.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Tan, Reginald B H

    2018-01-01

    Biopharmaceutical properties of poorly water-soluble antimalarial drug, Artemisinin (ART), were improved by formulating amorphous solid dispersions with transglycosylated food additives (Hsp-G and Stevia-G) via co-spray drying. Both the formulated ART/Hsp-G and ART/Stevia-G showed superior dissolution properties with a burst release of more than 95% of drug within 5 min, whereas untreated ART dissolved only 4% in 5min. The supersaturation solubility of the formulated ART was enhanced by 2-fold as compared with untreated counterpart. The storage stability tests indicated that these formulations chemically stable at room temperature and under low humidity (water-soluble ART. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  7. Principal Physicochemical Methods Used to Characterize Dendrimer Molecule Complexes Used as Genetic Therapy Agents, Nanovaccines or Drug Carriers.

    Science.gov (United States)

    Alberto, Rodríguez Fonseca Rolando; Joao, Rodrigues; de Los Angeles, Muñoz-Fernández María; Alberto, Martínez Muñoz; Manuel Jonathan, Fragoso Vázquez; José, Correa Basurto

    2017-08-30

    Nanomedicine is the application of nanotechnology to medicine. This field is related to the study of nanodevices and nanomaterials applied to various medical uses, such as in improving the pharmacological properties of different molecules. Dendrimers are synthetic nanoparticles whose physicochemical properties vary according to their chemical structure. These molecules have been extensively investigated as drug nanocarriers to improve drug solubility and as sustained-release systems. New therapies such as gene therapy and the development of nanovaccines can be improved by the use of dendrimers. The biophysical and physicochemical characterization of nucleic acid/peptide-dendrimer complexes is crucial to identify their functional properties prior to biological evaluation. In that sense, it is necessary to first identify whether the peptide-dendrimer or nucleic aciddendrimer complexes can be formed and whether the complex can dissociate under the appropriate conditions at the target cells. In addition, biophysical and physicochemical characterization is required to determine how long the complexes remain stable, what proportion of peptide or nucleic acid is required to form the complex or saturate the dendrimer, and the size of the complex formed. In this review, we present the latest information on characterization systems for dendrimer-nucleic acid, dendrimer-peptide and dendrimer-drug complexes with several biotechnological and pharmacological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Arming drug carriers to disable the Hepatic Stellate Cell : the targeted delivery of apoptosis-inducing drugs to the fibrotic liver

    NARCIS (Netherlands)

    Hagens, Werner Ivo

    2006-01-01

    Chronic liver damage of various origins (e.g. viral hepatitis; chronic intoxication by alcohol, chemicals or drugs; Wilson’s disease) can eventually lead to liver cirrhosis, the end stage of liver fibrosis. This process is characterized by the accumulation of excessive amounts of scar tissue within

  9. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S., E-mail: rsanandhakumar@gmail.com [SRM Research Institute, SRM University, Kattankulathur, Chennai 603203 (India); Krishnamoorthy, G.; Ramkumar, K.M. [SRM Research Institute, SRM University, Kattankulathur, Chennai 603203 (India); Raichur, A.M. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2017-01-01

    In recent years, nanoparticles (NPs) based on biopolymers or peptides are gaining popularity for the encapsulation and release of drug molecules, especially for cancer therapy, due to their ability for targeted and controlled release. The use of collagen peptide (CP) for the preparation of chitosan (CN) NPs is especially interesting as it results in NPs that are stable under physiological conditions. In this work, mono-dispersed pH responsive CPCN NPs of about 100 nm were prepared via ionic gelation method by simple and mild co-precipitation of CN and CP. Investigation of NPs with Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS) measurements reveals that hydrogen bonding and electrostatic interactions are believed to be major driving forces for NP formation and drug encapsulation, respectively. Scanning electron microscopic (SEM) investigations show that hard and fine CPCN NPs transform to soft and bigger gel like particles as a function of collagen concentration. The unique “polymeric gel” structure of NPs showed high encapsulation efficiency towards doxorubicin hydrochloride (DOX) as well as pH controlled release. Anti-proliferative and cell viability analysis revealed that DOX loaded NPs showed excellent anti-proliferative characteristics against HeLa cells with favorable biocompatibility against normal cells. Such NPs have high potential for use as smart drug delivery carriers in advanced cancer therapy. - Highlights: • Preparation of collagen peptide functionalized chitosan nanoparticles • Hydrogen bonding plays a key role in particle formation. • Electrostatic interaction plays a key role in drug encapsulation. • Functionalized chitosan particles are more stable than chitosan NPs.

  10. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.

    Science.gov (United States)

    Li, Ang; Zhang, Donghui

    2016-03-14

    Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.

  11. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier

    Directory of Open Access Journals (Sweden)

    Tian SY

    2018-01-01

    Full Text Available Shuangyan Tian,1 Juan Li,1 Qi Tao,2,3 Yawen Zhao,1 Zhufen Lv,4 Fan Yang,1 Haoyun Duan,5 Yanzhong Chen,4 Qingjun Zhou,5 Dongzhi Hou1 1Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University, 2CAS Key Laboratory of Mineralogy and Metallogeny, 3Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 4Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, 5State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China Background: Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. Materials and methods: To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH. Montmorillonite/BH complex (Mt-BH was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs] by oil-in-oil emulsion–solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Results: Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours

  12. Biodegradable multiblock polymers based on N-(2-hydroxypropyl)methacrylamide designed as drug carriers for tumor-targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    2016-01-01

    Roč. 217, č. 15 (2016), s. 1690-1703 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA14-12742S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : biodegradable polymers * click chemistry * drug delivery systems Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  13. Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Sun, Jian-Bo; Duan, Jin-Hong; Dai, Shun-Ling; Ren, Jun; Guo, Lin; Jiang, Wei; Li, Ying

    2008-12-15

    Bacterial magnetosomes (BMs) are commonly used as vehicles for certain enzymes, nucleic acids and antibodies, although they have never been considered drug carriers. To evaluate the clinical potential of BMs extracted from Magnetospirillum gryphiswaldense in cancer therapy, doxorubicin (DOX) was loaded onto the purified BMs at a ratio of 0.87 +/- 0.08 mg/mg using glutaraldehyde. The DOX-coupled BMs (DBMs) and BMs exhibited uniform sizes and morphology evaluated by TEM. The diameters of DBMs and BMs obtained by AFM were 71.02 +/- 6.73 and 34.93 +/- 8.24 nm, respectively. The DBMs released DOX slowly into serum and maintained at least 80% stability following 48 h of incubation. In vitro cytotoxic tests showed that the DBMs were cytotoxic to HL60 and EMT-6 cells, manifested as inhibition of cell proliferation and suppression in c-myc expression, consistent with DOX. These observations depicted in vitro antitumor property of DBMs similar to DOX. The approach of coupling DOX to magnetosomes may have clinical potential in anti-tumor drug delivery.

  14. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Aguirresarobe, R H; Eceiza, A; Gabilondo, N

    2018-03-01

    Stimuli-responsive chitosan-based hydrogels for biomedical applications using the Diels-Alder reaction were prepared. Furan modified chitosan (Cs-Fu) was cross-linked with polyetheramine derived bismaleimide at different equivalent ratios in order to determine the effect in the swelling and release properties on the final CsFu:BMI hydrogels. The Diels Alder cross-linking reaction was monitored by UV-vis spectroscopy and rheological measurements. Both the sol-gel transition value and the final storage modulus for the different formulations were similar and close to 40 min and 400 Pa, respectively. On the contrary, the swelling degree was found to be strongly dependent on the amount of bismaleimide, mainly in acidic medium, where the increased cross-linking reduced the swelling value in 25%, but maintaining the sustained drug release in the simulated gastrointestinal environment. Our study suggested that these DA-cross-linked chitosan hydrogels could be potential carriers for targeted drug administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Acute and Subchronic Toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from Chloroform Bay Leaf Extract (Eugenia Polyantha W.) with Palm Kernel Oil as A Carrier

    Science.gov (United States)

    Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.

    2018-03-01

    The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.

  16. Aminoclay–lipid hybrid composite as a novel drug carrier of fenofibrate for the enhancement of drug release and oral absorption

    Directory of Open Access Journals (Sweden)

    Yang L

    2016-03-01

    Full Text Available Liang Yang, Yating Shao, Hyo-Kyung Han BK Plus Project Team, College of Pharmacy, Dongguk University, Goyang, South Korea Abstract: This study aimed to prepare the aminoclay–lipid hybrid composite to enhance the drug release and improve the oral bioavailability of poorly water-soluble fenofibrate. Antisolvent precipitation coupled with an immediate freeze-drying method was adopted to incorporate fenofibrate into aminoclay–lipid hybrid composite (ALC. The optimal composition of the ALC formulation was determined as the ratios of aminoclay to krill oil of 3:1 (w/w, krill oil to fenofibrate of 2:1 (w/w, and antisolvent to solvent of 6:4 (v/v. The morphological characteristics of ALC formulation were determined using scanning electron microscopy, differential scanning calorimetry, and X-ray powder diffraction, which indicated microcrystalline state of fenofibrate in ALC formulation. The ALC formulation achieved almost complete dissolution within 30 minutes, whereas the untreated powder and physical mixture exhibited less than 15% drug release. Furthermore, ALC formulation effectively increased the peak plasma concentration (Cmax and area under the curve (AUC of fenofibric acid (an active metabolite in rats by approximately 13- and seven-fold, respectively. Furthermore, ALC formulation exhibited much lower moisture sorption behavior than the lyophilized formulation using sucrose as a cryoprotectant. Taken together, the present findings suggest that ALC formulation is promising for improving the oral absorption of poorly soluble fenofibrate. Keywords: aminoclay, omega-3 phospholipids, fenofibrate, drug release, oral absorption 

  17. Biomass-based magnetic fluorescent nanoparticles: One-step scalable synthesis, application as drug carriers and mechanism study.

    Science.gov (United States)

    Li, Lei; Wang, Feijun; Shao, Ziqiang

    2018-03-15

    A biomass-based magnetic fluorescent nanoparticle (MFNPs) was successively in situ synthesized via a one-step high-gravity approach, which constructed by a magnetic core of Fe 3 O 4 nanoparticles, the fluorescent marker of carbon dots (CDs), and shells of chitosan (CS). The obtained MFNPs had a 10 nm average diameter and narrow particle size distribution, low cytotoxicity, superior fluorescent emission and superparamagnetic properties. The encapsulating and release 5-fluorouracil experiments confirmed that the introduction of CS/CDs effectively improved the drug loading capacity. Mechanism and kinetic studies proved that: (i) the monolayer adsorption was the main sorption mode under the studied conditions; (ii) the whole adsorption process was controlled by intra-liquid diffusion mass transfer and governed by chemisorption; and (iii) the release process was controlled by Fickian diffusion. These results demonstrated this method to one-step continuously produce MFNPs and the construction of non-toxic nanostructure possessed great superiority in currently Nano-delivery systems, which would show high application value in targeted drug delivery, magnetic fluid hyperthermia treatment, magnetic resonance imaging (MRI), in vitro testing and relative research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case.

    Science.gov (United States)

    Battistini, F D; Tártara, L I; Boiero, C; Guzmán, M L; Luciani-Giaccobbe, L C; Palma, S D; Allemandi, D A; Manzo, R H; Olivera, M E

    2017-07-15

    The aim of this work was to obtain information concerning the properties of ophthalmic formulations based on hyaluronic-drug ionic complexes, to identify the factors that determine the onset, intensity and duration of the pharmacotherapeutic effect. Dispersions of a complex of 0.5% w/v of sodium hyaluronate (HyNa) loaded with 0.5% w/v of timolol maleate (TM) were obtained and presented a counterionic condensation higher than 75%. For comparison a similar complex obtained with hyaluronic acid (HyH) was also prepared. Although the viscosity of HyNa-TM was significantly higher than that of HyH-TM, in vitro release of TM from both complexes showed a similar extended drug release profile (20-31% over 5h) controlled by diffusion and ionic exchange. Ocular pharmacokinetic study performed in normotensive rabbits showed that HyNa-TM complex exhibited attractive bioavailability properties in the aqueous humor (AUC and Cmax significantly higher and later Tmax) compared to commercial TM eye-drops. Moreover, a more prolonged period of lowered intra-ocular pressure (10h) and a more intense hypotensive activity was observed after instillation of a drop of HyNa-TM as compared to the eye-drops. Such behavior was related to the longer pre-corneal residence times (400%) observed with HyNa-TM complex. No significant changes in rabbit transcorneal permeation were detected upon complexation. These results demonstrate that the ability of HyNa to modulate TM release, together with its mucoadhesiveness related to the viscosity, affected both the pharmacokinetic and pharmacodynamic parameters. The HyNa-TM complex is a potentially useful carrier for ocular drug delivery, which could improve the TM efficacy and reduce the frequency of administration to improve patient compliance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Design and evaluation of mPEG-PLA micelles functionalized with drug-interactive domains as improved drug carriers for docetaxel delivery.

    Science.gov (United States)

    Qi, Dingqing; Gong, Feirong; Teng, Xin; Ma, Mingming; Wen, Huijing; Yuan, Weihao; Cheng, Yi; Lu, Chong

    2017-10-01

    Polymeric micelles are very attractive drug delivery systems for hydrophobic agents, owing to their readily tailorable chemical structure and ease for scale-up preparation. However, the intrinsic poor stability of drug-loaded micelles presents one of the major challenges for most micellar systems in the translation to clinical applications. In this study, a simple, well-defined, and easy-to-scale up 9-Fluorenylmethoxycarbonyl (Fmoc) and tert-butoxycarbonyl (Boc) containing lysine dendronized mPEG-PLA (mPEG-PLA-Lys(FB) 2 ) micellar formulation was designed and prepared for docetaxel (DTX) delivery, in an effort to improve the stability of the micelles, and its physicochemical properties, pharmacokinetics, and anti-tumor efficacy against SKOV-3 ovarian cancer were evaluated. MPEG-PLA-Lys(FB) 2 was synthesized via a three-step synthetic route, and it actively interacted with DTX in aqueous media to form stable micelles with small particle sizes (~17-19 nm) and narrow size distribution (PI PLA-Lys(FB) 2 micelles achieved delayed and sustained release manner of DTX in comparison with mPEG-PLA micelles. Further in vivo xenograft tumor model in nude mice DTX/mPEG-PLA-Lys(FB) 2 micelles demonstrated significantly higher inhibitory effect on tumor growth than the marketed formulation Taxotere. Thus, our system may hold promise as a simple and effective delivery system for DTX with a potential for translation into clinical study.

  20. Topology optimization for nano-scale heat transfer

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...... in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano-scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic...

  1. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.

  2. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin

    Science.gov (United States)

    Mihoub, Amina Ben; Saidat, Boubakeur; Bal, Youssef; Frochot, Céline; Vanderesse, Régis; Acherar, Samir

    2018-03-01

    In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD- g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD- g-CS NPs vs. the classical ionic gelation method. New HA/β-CD- g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD- g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA): w(β-CD- g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD- g-CS NPs. Furthermore, the stability of β- CD- g-CS NPs and HA/β-CD- g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD- g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD- g-CS NPs. Finally, preliminary study of HA/β-CD- g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD- g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

  3. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers.

    Science.gov (United States)

    Sun, Jian-Bo; Duan, Jin-Hong; Dai, Shun-Ling; Ren, Jun; Zhang, Yan-Dong; Tian, Jie-Sheng; Li, Ying

    2007-12-08

    Hepatocellular carcinoma (HCC) is the most common form of cancer although effective therapeutic strategy especially targeted therapy is lacking. We recently employed bacterial magnetosomes (BMs) as the magnetic-targeted drug carrier and found an antitumor effect of doxorubicin (DOX)-loaded BMs (DBMs) in EMT-6 and HL60 cell lines. The aim of this study was to evaluate the in vitro and in vivo anti-neoplastic effects of DBMs on hepatic cancer. DBMs, DOX and BMs displayed tumor suppression rates of 86.8%, 78.6% and 4.3%, respectively, in H22 cell-bearing mice. The mortality rates following administration of DBMs, DOX and BMs were 20%, 80% and 0%, respectively. Pathological examination of hearts and tumors revealed that both DBMs and DOX effectively inhibited tumor growth although DBMs displayed a much lower cardiac toxicity compared with DOX. The DBMs were cytotoxic to H22 cells manifested as inhibition of cell proliferation and c-myc expression, consistent with DOX. The IC(50) of DOX, DBMs and BMs in target cells were 5.309 +/- 0.010, 4.652 +/- 0.256 and 22.106 +/- 3.330 microg/ml, respectively. Our data revealed both in vitro and in vivo antitumor property of DBMs similar to that of DOX. More importantly, the adverse cardiac toxicity was significantly reduced in DBMs compared with DOX. Collectively, our study suggests the therapeutic potential of DBMs in target-therapy against liver cancer.

  4. Preparation and evaluation of a novel anticancer drug delivery carrier for 5-Fluorouracil using synthetic bola-amphiphile based on lysine as polar heads

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Beibei [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Yuan, Yue, E-mail: hiyueyuan@163.com [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Yan, Yun [College of Chemistry and Molecular Engineering, Peking University, 202 Chenfu Road, Beijing 100871 (China); Zhou, Xiaoping [School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun 130021 (China); Li, Yue; Kan, Qiming [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Li, Sanming, E-mail: li_sanming@sina.com [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China)

    2017-06-01

    A novel bolaamphiphile surfactant N,N′-(dodecane-1, 12-diyl) bis (2,6-diaminohexanamide) (DADL) was designed and synthesized using L-lysine and 1,12-diaminododecane as the hydrophilic and hydrophobic part, respectively. After separation and purification, the structure of the synthetic bolaamphiphile surfactant was verified by FTIR, MS and {sup 1}H NMR. The synthetic bolaamphiphile was able to self-assemble to form vesicles. After formulation screening, vesicles loaded with 5-Fluorouracil (5-Fu) were prepared with Tween 60 and DADL by sonication and were examined by dynamic light scattering and transmission electron microscopy. Micro-FTIR was applied to investigate the conformation of the bola molecules within the vesicle membrane. The release profile of the vesicles showed a pH-sensitive and sustained release. No significant toxicity was observed in an in vitro cell viability assay. The antitumor efficacy of the 5-Fu-loaded vesicles on H{sub 22} tumor-bearing mice was remarkably high due to the EPR effects. These results show that our novel bolaamphiphile derived from lysine has excellent potential as a pH-sensitive drug carrier. - Highlights: • A novel bolaamphiphile molecule with lysine as hydrophilic part was synthesized. • The synthesized bolaamphiphile could self-assemble to form nano-sized vesicles. • The vesicles were pH-sensitive and have tumor-targeting potential.

  5. 4-Aminobenzoic Acid-Coated Maghemite Nanoparticles as Potential Anticancer Drug Magnetic Carriers: A Case Study on Highly Cytotoxic Cisplatin-Like Complexes Involving 7-Azaindoles

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-01-01

    Full Text Available This study describes a one-pot synthesis of superparamagnetic maghemite-based 4-aminobenzoic acid-coated spherical core-shell nanoparticles (PABA@FeNPs as suitable nanocomposites potentially usable as magnetic carriers for drug delivery. The PABA@FeNPs system was subsequently functionalized by the activated species (1* and 2* of highly in vitro cytotoxic cis-[PtCl2(3Claza2] (1; 3Claza stands for 3-chloro-7-azaindole or cis-[PtCl2(5Braza2] (2; 5Braza stands for 5-bromo-7-azaindole, which were prepared by a silver(I ion assisted dechlorination of the parent dichlorido complexes. The products 1*@PABA@FeNPs and 2*@PABA@FeNPs, as well as an intermediate PABA@FeNPs, were characterized by a combination of various techniques, such as Mössbauer, FTIR and EDS spectroscopy, thermal analysis, SEM and TEM. The results showed that the products consist of well-dispersed maghemite-based nanoparticles of 13 nm average size that represent an easily obtainable system for delivery of highly cytotoxic cisplatin-like complexes in oncological practice.

  6. Ellipsometry at the nanoscale

    CERN Document Server

    Hingerl, Kurt

    2013-01-01

    This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics...

  7. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  10. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  11. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  12. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  13. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  14. Effects of Spray-Drying and Choice of Solid Carriers on Concentrations of Labrasol® and Transcutol® in Solid Self-Microemulsifying Drug Delivery Systems (SMEDDS

    Directory of Open Access Journals (Sweden)

    Christopher Wai-Kei Lam

    2013-01-01

    Full Text Available Solid self-microemulsifying drug delivery systems (SMEDDS have been used increasingly for improving the bioavailability of hydrophobic drugs. Labrasol® and Transcutol® are used widely as surfactant and solubilizer in the formulation of solid SMEDDS. We investigated the effects of spray-drying and the use of different solid carriers on concentrations of Labrasol® and Transcutol® in solid SMEDDS with scutellarin as the formulated drug. Liquid and gas chromatography tandem mass spectrometry (LC-MS and GC-MS methods were developed for measuring low concentrations of Labrasol® and Transcutol®. In the preparation of solid SMEDDS, lactose, hydroxypropylmethyl cellulose (HPMC and microcrystalline cellulose (MCC were used as solid carriers. Judging from the retention ratios of Labrasol® and Transcutol®, the droplet size of solid SMEDDS increased after spray-drying of liquid SMEDDS, and concentrations of these excipients decreased after the solidifying procedure. In such reduction, Lactose and HPMC were found to preserve Labrasol® and Transcutol® better than MCC during spray-drying, and the resultant droplet sizes were smaller than that of MCC. Labrasol® and Transcutol® showed good thermal stability at 60 °C degree for 10 days. It can be concluded that spray-drying could increase the droplet size of solid SMEDDS and decreased the concentration of Labrasol® and Transcutol® therein, while water-soluble solid carriers could preserve Labrasol® and Transcutol® better than insoluble carriers in the solid SMEDDS.

  15. Self-assembling bubble carriers for oral protein delivery.

    Science.gov (United States)

    Chuang, Er-Yuan; Lin, Kun-Ju; Lin, Po-Yen; Chen, Hsin-Lung; Wey, Shiaw-Pyng; Mi, Fwu-Long; Hsiao, Hsu-Chan; Chen, Chiung-Tong; Sung, Hsing-Wen

    2015-09-01

    Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  17. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  18. Nanoscale effects in interdiffusion

    International Nuclear Information System (INIS)

    Erdelyi, Z.; Langer, G.A.; Beke, D.L.; Csik, A.

    2007-01-01

    Complete text of publication follows. Diffusion on the nano/atomic scales in multilayers, thin films has many challenging features even if the role of structural defects can be neglected and 'only' the effects related to the nano/atomic scale raise. The most basic equations to describe the diffusion are Fick's equations. It is important to emphasize that the diffusion coefficient in Fick's equations is in general composition independent and Fick's classical equations do not include the stress effects, which can have important influence onto the diffusion especially on the nano/atomic scale. We illustrate that the continuum descriptions of the diffusion cannot be applied automatically on such short distances, the classical continuum approximations (Fick's laws) cannot describe correctly the atomic movements. They predict faster kinetics than the atomistic models and the interface shift is always proportional to the square root of the time. However, the kinetics can be even linear on the nano/atomic scale. We have shown from computer simulations that Fick's laws violate on the nanoscale either in completely or restricted miscible systems. This is strongly related to the discrete character of the system on the nanoscale and to the highly neglected fact in the literature that the diffusion coefficients depend on the composition. As will be seen the composition dependence of D is very important and has very significant influence on the diffusion kinetics on the nano/atomic scales. It originates from the fact that usually the diffusion coefficients are different in an A and in a B matrix. Consequently in case of a real interface, which is not atomically sharp, i.e. there is a more or less intermixed region between the pure A and B matrixes, the diffusion coefficient changes continuously while e.g. an A atom diffuses from the pure A matrix into the pure B. This feature can be also called diffusion asymmetry. We have also illustrated that in this case not only the

  19. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  20. Friction laws at the nanoscale.

    Science.gov (United States)

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  1. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview.

    Science.gov (United States)

    Mignani, Serge; El Kazzouli, Saïd; Bousmina, Mosto; Majoral, Jean-Pierre

    2013-10-01

    Drugs are introduced into the body by numerous routes such as enteral (oral, sublingual and rectum administration), parenteral (intravascular, intramuscular, subcutaneous and inhalation administration), or topical (skin and mucosal membranes). Each route has specific purposes, advantages and disadvantages. Today, the oral route remains the preferred one for different reasons such as ease and compliance by patients. Several nanoformulated drugs have been already approved by the FDA, such as Abelcet®, Doxil®, Abraxane® or Vivagel®(Starpharma) which is an anionic G4-poly(L-lysine)-type dendrimer showing potent topical vaginal microbicide activity. Numerous biochemical studies, as well as biological and pharmacological applications of both dendrimer based products (dendrimers as therapeutic compounds per se, like Vivagel®) and dendrimers as drug carriers (covalent conjugation or noncovalent encapsulation of drugs) were described. It is widely known that due to their outstanding physical and chemical properties, dendrimers afforded improvement of corresponding carried-drugs as dendrimer-drug complexes or conjugates (versus plain drug) such as biodistribution and pharmacokinetic behaviors. The purpose of this manuscript is to review the recent progresses of dendrimers as nanoscale drug delivery systems for the delivery of drugs using enteral, parenteral and topical routes. In particular, we focus our attention on the emerging and promising routes such as oral, transdermal, ocular and transmucosal routes using dendrimers as delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite.

    Science.gov (United States)

    Mondal, Sudip; Dorozhkin, Sergy V; Pal, Umapada

    2018-07-01

    Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale. © 2017 Wiley Periodicals, Inc.

  3. Nanoscale waveguiding methods

    Directory of Open Access Journals (Sweden)

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  4. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  5. PREFACE: Nanoscale science and technology

    Science.gov (United States)

    Bellucci, Stefano

    2008-11-01

    research group studied the serum immunological modifications after CNTs intraperitoneal administration. No antigenic reaction was observed, because the screening of ANA, anti-ENA, anti-cardiolipin, C-ANCA and P-ANCA was negative. No quantitative modifications of immunoglobulins were observed and so no modifications of umoral immunity were documented. The research group also studied the effects of CNTs on the proliferation of three different cell types. MCF-7 showed a significant inhibition of proliferation at all the conditions studied, whereas hSMCs demonstrated a reduction of cell growth only at the highest CNTs concentrations at 72 h and no growth modification was observed in the Caco-2 cell line. It was observed that a low quantity of CNTs does not provoke any inflammatory reaction, although it is important to build a CNT plait and net to study the implantation effects. Moreover, it has to be emphasized that this study does not, at the moment, address the carcinogenicity of CBNs, which requires a detailed follow-up investigation on that specific topic. In view of their subsequent and more extensive use, as to say in applications where carbon nanotubes are injected into the human body for drug delivery as a contrast agent carrying entities for MRI, or as the material of a new prosthesis generation, other extended tests and experimentation are going to be necessary. L Ghibelli showed how to set up a wide field systematic cyto-toxicological study with multiple variables to envisage the critical points that may affect CNT biocompatibility. To this purpose, she made use of MWCNT and SWCNT, of different sizes, prepared with different modalities (i.e., arc discharge or catalysis) containing different contaminants (i.e., Fe2+; graphite; amorphous C), at different concentrations and times of incubation. The biological targets selected are the following: cytotoxicity (viability, apoptosis, necrosis); sensitization/desensitization to chemotherapic-induced apoptosis; cell

  6. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  7. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  8. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  9. Nanoscale Electrochemical Sensing and Processing in Microreactors

    NARCIS (Netherlands)

    Odijk, Mathieu; van den Berg, Albert

    2018-01-01

    In this review, we summarize recent advances in nanoscale electrochemistry, including the use of nanoparticles, carbon nanomaterials, and nanowires. Exciting developments are reported for nanoscale redox cycling devices, which can chemically amplify signal readout. We also discuss promising

  10. Drug Delivery Nanoparticles in Skin Cancers

    Science.gov (United States)

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported. PMID:25101298

  11. Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs: Formulation, characterization and in vitro lipolysis studies.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2017-06-30

    Lipid-based formulations (LBFs) are a popular strategy for enhancing the gastrointestinal solubilization and absorption of poorly water-soluble drugs. In light of this, montmorillonite-lipid hybrid (MLH) particles, composed of medium-chain triglycerides, lecithin and montmorillonite clay platelets, have been developed as a novel solid-state LBF. Owing to the unique charge properties of montmorillonite, whereby the clay platelet surfaces carry a permanent negative charge and the platelet edges carry a pH-dependent charge, three model poorly water-soluble drugs with different charge properties; blonanserin (weak base, pKa 7.7), ibuprofen (weak acid, pKa 4.5) and fenofibrate (neutral), were formulated as MLH particles and their performance during biorelevant in vitro lipolysis at pH 7.5 was investigated. For blonanserin, drug solubilization during in vitro lipolysis was significantly reduced 3.4-fold and 3.2-fold for MLH particles in comparison to a control lipid solution and silica-lipid hybrid (SLH) particles, respectively. It was hypothesized that strong electrostatic interactions between the anionic montmorillonite platelet surfaces and cationic blonanserin molecules were responsible for the inferior performance of MLH particles. In contrast, no significant influence on drug solubilization was observed for ibuprofen- and fenofibrate-loaded MLH particles. The results of the current study indicate that whilst MLH particles are a promising novel formulation strategy for poorly water-soluble drugs, drug ionization tendency and the potential for drug-clay interactions must be taken into consideration to ensure an appropriate performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate.

    Science.gov (United States)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased. © 2013.

  13. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  14. Nanoscale Characterization for the Classroom

    International Nuclear Information System (INIS)

    Carroll, D.L.

    1999-01-01

    This report describes the development of a semester course in 'nano-scale characterization'. The interdisciplinary course is opened to both advanced undergraduate and graduate students with a standard undergraduate preparation in Materials Science, Chemistry, or Physics. The approach is formal rather than the typical 'research seminar' and has a laboratory component

  15. Nanoscale Radiation Engineering of Advanced Materials for Potential Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Allan S., E-mail: hoffman@u.washington.edu [Bioengineering Department, Box 355061—Foege, room N530R 1705 NE Pacific St., University of Washington Seattle WA 98195-5061 (United States)

    2010-07-01

    We are using RAFT polymerization to synthesize smart polymer nanocarriers for intracellular delivery of protein, peptide and nucleic acid drugs. In the coming program period we plan to synthesize these carriers using radiation to initiate the RAFT polymerizations. In this way we will avoid the need to add free radical initiators to initiate this polymerization, yielding a purer polymer-drug nanocarrier. (author)

  16. Nanoscale Radiation Engineering of Advanced Materials for Potential Biomedical Applications

    International Nuclear Information System (INIS)

    Hoffman, Allan S.

    2010-01-01

    We are using RAFT polymerization to synthesize smart polymer nanocarriers for intracellular delivery of protein, peptide and nucleic acid drugs. In the coming program period we plan to synthesize these carriers using radiation to initiate the RAFT polymerizations. In this way we will avoid the need to add free radical initiators to initiate this polymerization, yielding a purer polymer-drug nanocarrier. (author)

  17. Highly versatile nanohydrogel platform based on riboflavin-polysaccharide derivatives useful in the development of intrinsically fluorescent and cytocompatible drug carriers.

    Science.gov (United States)

    Di Meo, Chiara; Montanari, Elita; Manzi, Lucio; Villani, Claudio; Coviello, Tommasina; Matricardi, Pietro

    2015-01-22

    In this work we describe a new nanohydrogel platform, based on polysaccharides modified with the hydrophobic and fluorescent molecule riboflavin tetrabutyrate, which leads to innovative structures useful for drug delivery applications. Hyaluronic acid and pullulan were chosen as representative of anionic and neutral polysaccharides, respectively, and the bromohexyl derivative of riboflavin tetrabutyrate was chemically linked to these polymer chains. Because of such derivatization, polymer chains were able to self-assemble in aqueous environment thus forming nanohydrogels, with mean diameters of about 312 and 210 nm, for hyaluronan and pullulan, respectively. These new nanohydrogels showed low polydispersity index, and negative ζ-potential. Moreover, the nanohydrogels, which can be easily loaded with model drugs, showed long-term stability in water and physiological conditions and excellent cytocompatibility. All these properties allow to consider these intrinsically fluorescent nanohydrogels suitable for the formulation of innovative drug dosage forms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Carbon nanotubes as cancer therapeutic carriers and mediators

    Science.gov (United States)

    Son, Kuk Hui; Hong, Jeong Hee; Lee, Jin Woo

    2016-01-01

    Carbon nanotubes (CNTs) have received increasing attention in biomedical fields because of their unique structures and properties, including high aspect ratios, large surface areas, rich surface chemical functionalities, and size stability on the nanoscale. Particularly, they are attractive as carriers and mediators for cancer therapy. Through appropriate functionalization, CNTs have been used as nanocarriers for anticancer drugs including doxorubicin, camptothecin, carboplatin, cisplatin, paclitaxel, Pt(II), and Pt(IV), and genes including plasmid DNA, small-interfering RNA, oligonucleotides, and RNA/DNA aptamers. CNTs can also deliver proteins and immunotherapy components. Using combinations of light energy, they have also been applied as mediators for photothermal therapy and photodynamic therapy to directly destroy cancer cells without severely damaging normal tissue. If limitations such as a long-term cytotoxicity in the body, lack of size uniformity during the synthetic process, loading deviations for drug–CNT complexes, and release controllability at the target point are overcome, CNTs will become one of the strongest tools that are available for various other biomedical fields as well as for cancer therapy. PMID:27785021

  19. Albumin modified with mannose 6-phosphate : A potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells

    NARCIS (Netherlands)

    Beljaars, Leonie; Molema, Ingrid; Weert, B; Olinga, Peter; Groothuis, Geny; Meijer, D.K F; Poelstra, Klaas

    The hallmark of liver fibrosis is an increased extracellular matrix deposition, caused by an activation of hepatic stellate cells (HSC). Therefore, this cell type is an important target for pharmacotherapeutic intervention. Antifibrotic drugs are not efficiently taken up by HSC or may produce

  20. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    Directory of Open Access Journals (Sweden)

    Wang Y

    2013-10-01

    Full Text Available Ying Wang, Qinfu Zhao, Yanchen Hu, Lizhang Sun, Ling Bai, Tongying Jiang, Siling WangDepartment of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People’s Republic of ChinaAbstract: The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15 with well-ordered two dimensional (2D cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC via the solvent deposition method. Scanning electron microscopy (SEM, N2 adsorption, differential scanning calorimetry (DSC, and X-ray diffraction (XRD were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41 has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and Cell Counting Kit (CCK-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous

  1. Production of Micro- and Nanoscale Lignin from Wheat Straw Using Different Precipitation Setups.

    Science.gov (United States)

    Beisl, Stefan; Loidolt, Petra; Miltner, Angela; Harasek, Michael; Friedl, Anton

    2018-03-11

    Micro- and nanosize lignin has recently gained interest due to its improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. Applications for lignin in micro- to nanoscale however, ranging from improvement of mechanical properties of polymer nanocomposites, have bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. This research represents a whole biorefinery process chain and compares different precipitation setups to produce submicron lignin particles from lignin containing an organosolv pretreatment extract from wheat straw. A batch precipitation in a stirred vessel was compared with continuous mixing of extract and antisolvent in a T-fitting and mixing in a T-fitting followed by a static mixer. The precipitation in the combination of T-fitting and static mixer with improved precipitation parameters yields the smallest particle size of around 100 nm. Furthermore, drying of particles did not influence the particle sizes negatively by showing decreased particle diameters after the separation process.

  2. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  3. Simultaneous tracking of drug molecules and carriers using aptamer-functionalized fluorescent superstable gold nanorod-carbon nanocapsules during thermo-chemotherapy

    Science.gov (United States)

    Wang, Xue-Wei; Gao, Wei; Fan, Huanhuan; Ding, Ding; Lai, Xiao-Fang; Zou, Yu-Xiu; Chen, Long; Chen, Zhuo; Tan, Weihong

    2016-04-01

    Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and

  4. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier.

    Science.gov (United States)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the -NH2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A new cell line-based coculture model of the human air-blood barrier to evaluate the interaction with aerosolized drug carriers

    OpenAIRE

    Kletting, Stephanie

    2016-01-01

    Besides reducing animal testing, in vitro models allow for the pre-screening of new drug candidates in terms of safety and efficacy before they enter clinical trials. To date, models mimicking the deep lung show limitations such as cellular origin or lack of appropriate barrier properties. Therefore, the focus of this work was on the establishment of a robust and reproducible cell line-based coculture model that reflects the two major barrier structures present in the alveolar region, namely ...

  6. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  7. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  8. Carrier redistribution between different potential sites in semipolar (202¯1) InGaN quantum wells studied by near-field photoluminescence

    KAUST Repository

    Marcinkevičius, S.; Gelžinytė, K.; Zhao, Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2014-01-01

    © 2014 AIP Publishing LLC. Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202¯1) InGaN quantum wells (QWs

  9. Systems engineering at the nanoscale

    Science.gov (United States)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  10. Cyclosporine A loaded electrospun poly(D,L-lactic acid)/poly(ethylene glycol) nanofibers: drug carriers utilizable in local immunosuppression

    Czech Academy of Sciences Publication Activity Database

    Širc, Jakub; Hampejsová, Z.; Trnovská, J.; Kozlík, P.; Hrib, Jakub; Hobzová, Radka; Zajícová, Alena; Holáň, Vladimír; Bosáková, Z.

    2017-01-01

    Roč. 34, č. 7 (2017), s. 1391-1401 ISSN 0724-8741 R&D Projects: GA ČR(CZ) GA16-04863S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:68378041 Keywords : cyclosporine A * drug release kinetics * LC-MS/MS Subject RIV: CD - Macromolecular Chemistry; JJ - Other Materials (UEM-P) OBOR OECD: Biochemical research methods; Nano-materials (production and properties) (UEM-P) Impact factor: 3.002, year: 2016

  11. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation.

    Science.gov (United States)

    Goindi, Shishu; Kaur, Ramanpreet; Kaur, Randeep

    2015-11-30

    In this paper, we report an ionic liquid-in-water (IL/w) microemulsion (ME) formulation which is able to solubilize etodolac (ETO), a poorly water soluble drug for topical delivery using BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) as IL, Tween 80 as surfactant and ethanol as co-surfactant. The prepared ME was characterized for physicochemical parameters, subjected to ex-vivo permeation studies as well as in-vivo pharmacodynamic evaluation. The ex-vivo drug permeation studies through rat skin was performed using Franz-diffusion cell and the IL/w based ME showed maximum mean cumulative percent permeation of 99.030±0.921% in comparison to oil-in-water (o/w) ME (61.548±1.875%) and oily solution (48.830±2.488%) of ETO. In-vivo anti-arthritic and anti-inflammatory activities of the prepared formulations were evaluated using different rodent models and the results revealed that ETO loaded IL/w based ME was found to be more effective in controlling inflammation than oily solution, o/w ME and marketed formulation of ETO. Histopathological studies also demonstrated that IL/w based ME caused no anatomical and pathological changes in the skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nanoscale semiconducting silicon as a nutritional food additive

    International Nuclear Information System (INIS)

    Canham, L T

    2007-01-01

    Very high surface area silicon powders can be realized by high energy milling or electrochemical etching techniques. Such nanoscale silicon structures, whilst biodegradable in the human gastrointestinal tract, are shown to be remarkably stable in most foodstuffs and beverages. The potential for using silicon to improve the shelf life and bioavailability of specific nutrients in functional foods is highlighted. Published drug delivery data implies that the nanoentrapment of hydrophobic nutrients will significantly improve their dissolution kinetics, through a combined effect of nanostructuring and solid state modification. Nutrients loaded to date include vitamins, fish oils, lycopene and coenzyme Q10. In addition, there is growing published evidence that optimized release of orthosilicic acid, the biodegradation product of semiconducting silicon in the gut, offers beneficial effects with regard bone health. The utility of nanoscale silicon in the nutritional field shows early promise and is worthy of much further study

  13. Nanoscale semiconducting silicon as a nutritional food additive

    Energy Technology Data Exchange (ETDEWEB)

    Canham, L T [pSiNutria Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ (United Kingdom)

    2007-05-09

    Very high surface area silicon powders can be realized by high energy milling or electrochemical etching techniques. Such nanoscale silicon structures, whilst biodegradable in the human gastrointestinal tract, are shown to be remarkably stable in most foodstuffs and beverages. The potential for using silicon to improve the shelf life and bioavailability of specific nutrients in functional foods is highlighted. Published drug delivery data implies that the nanoentrapment of hydrophobic nutrients will significantly improve their dissolution kinetics, through a combined effect of nanostructuring and solid state modification. Nutrients loaded to date include vitamins, fish oils, lycopene and coenzyme Q10. In addition, there is growing published evidence that optimized release of orthosilicic acid, the biodegradation product of semiconducting silicon in the gut, offers beneficial effects with regard bone health. The utility of nanoscale silicon in the nutritional field shows early promise and is worthy of much further study.

  14. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery.

    Science.gov (United States)

    Salatin, Sara; Barar, Jaleh; Barzegar-Jalali, Mohammad; Adibkia, Khosro; Milani, Mitra Alami; Jelvehgari, Mitra

    2016-09-01

    Over the past few years, nasal drug delivery has attracted more and more attentions, and been recognized as the most promising alternative route for the systemic medication of drugs limited to intravenous administration. Many experiments in animal models have shown that nanoscale carriers have the ability to enhance the nasal delivery of peptide/protein drugs and vaccines compared to the conventional drug solution formulations. However, the rapid mucociliary clearance of the drug-loaded nanoparticles can cause a reduction in bioavailability percentage after intranasal administration. Thus, research efforts have considerably been directed towards the development of hydrogel nanosystems which have mucoadhesive properties in order to maximize the residence time, and hence increase the period of contact with the nasal mucosa and enhance the drug absorption. It is most certain that the high viscosity of hydrogel-based nanosystems can efficiently offer this mucoadhesive property. This update review discusses the possible benefits of using hydrogel polymer-based nanoparticles and hydrogel nanocomposites for drug/vaccine delivery through the intranasal administration.

  15. A Smart pH-responsive Nano-Carrier as a Drug Delivery System: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release studies of an anti-cancer drug.

    Science.gov (United States)

    Abbaszad Rafi, Abdolrahim; Mahkam, Mehrdad; Davaran, Soodabeh; Hamishehkar, Hamed

    2016-10-10

    A smart pH-responsive drug nano-carrier for controlled release of anti-cancer therapeutics was developed through a facile route. The nano-carrier consisted of two main parts: first, the nano-container part (that mesoporous silica nanoparticles (MCM-41) were selected for this aim); and second, pH-sensitive gatekeepers (that a pH-sensitive polymer, Poly4-vinylpyridine, played this role). In the first step, MCM-41 was synthesized via template assisted sol-gel process. In the second step, polymerizable functional groups were attached onto pore entrances rather than inside walls. In the third step, polymeric gatekeepers were introduced onto pore entrances via precipitation polymerization of functionalized MCM-41 with monomers. Different methods and analysis, such as Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Powder Diffraction (XRD), Thermo-Gravimetric Analysis (TGA), Energy-Dispersive X-ray Spectroscopy (EDX), Zeta Potentials, Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscopy (TEM) were employed to approve the successful attachment of gatekeepers. Furthermore, the release studies of methotroxate (MTX), an anti-cancer drug, were performed in different media (pH4, 5.8 and 7.4) at 37±1°C. The release profiles and curves show that the release rates are completely pH-dependent and it proceeds with a decrease in pH. It is concluded that in the higher pH the gatekeepers are in their close state, but they switch to the open state as a consequence of repulsive forces between positively charged polymer chains appear in acidic media. The results suggest that this smart nano-carrier can be considered as an appropriate candidate to deliver therapeutics to cancerous tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Lihua Zhang,1 Wufu Zhu,2 Qisi Lin,1 Jin Han,1 Liqun Jiang,1 Yanzhuo Zhang1,3 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China; 2School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People’s Republic of China; 3Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China Abstract: The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC based amorphous solid dispersion (ASD can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as specific surface area analysis, scanning electron microscopy (SEM, dynamic light scattering (DLS, powder X-ray diffraction (PXRD, and differential scanning calorimetry (DSC. Analyses with PXRD and DSC confirmed that IRB was fully converted into the amorphous form in the nanopores of HP-β-CD/CC. From the solubility and dissolution tests, it was observed that the aqueous solubility and dissolution rate of IRB-loaded HP-β-CD/CC were increased significantly compared with those of pure IRB and IRB-loaded mesoporous silica. Likewise, the IRB-loaded HP-β-CD/CC formulation exhibited better absorption compared with that of the commercially available IRB capsules in beagle dogs. The mean peak plasma concentration (Cmax and the area under the mean plasma concentration–time curve (AUC[0→48] of IRB-loaded HP-β-CD/CC were 1.56- and 1.52-fold higher than that of the commercial product, respectively. Furthermore, the IRB-loaded HP-β-CD/CC formulation exhibited excellent stability against re-crystallization. These results clearly

  17. PPy@MIL-100 Nanoparticles as a pH- and Near-IR-Irradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells.

    Science.gov (United States)

    Zhu, Yu-Da; Chen, Su-Ping; Zhao, Huan; Yang, You; Chen, Xiao-Qin; Sun, Jing; Fan, Hong-Song; Zhang, Xing-Dong

    2016-12-21

    A medical nanoplatform with small size, low cost, biocompatibility, good biodegradability, and, in particular, multifunctionality has attracted much attention in the exploration of novel therapeutic methodologies. As an emerging material of self-assembled porous structure, metal-organic frameworks (MOFs) have high expectations because of their special properties compared to traditional porous materials. Therefore, integration of MOFs and functional materials is leading to the creation of new multifunctional composites/hybrids. Photothermal therapy (PTT), using near-IR (NIR) laser-absorbing nanomaterials as PTT agents, has shown encouraging therapeutic effects to photothermally ablate tumors. However, the most of widely used PTT agents are inorganic materials and nonbiodegradable. Herein, uniform polypyrrole (PPy) nanoparticles (NPs) with good biodegradability were synthesized by a microemulsion method. The PPy NPs were further coated with the mesoporous iron-based MOF structure MIL-100 by interaction between PPy NPs and MIL-100 precursors at room temperature. As a multifunctional nanoplatform, an anticancer drug could easily be loaded into the mesopores of the MIL-100 shell. The PPy core, as an organic photothermal agent, is able to photothermally ablate cancer cells and improve the efficacy of chemotherapy under NIR irradiation. The composites showed an outstanding in vivo synergistic anticancer capacity. Our work could encourage further study in the construction of a synergetic system using MOFs and organic PTT agents.

  18. Direct implantation of rapamycin-eluting stents with bioresorbable drug carrier technology utilising the Svelte coronary stent-on-a-wire: the DIRECT II study.

    Science.gov (United States)

    Verheye, Stefan; Khattab, Ahmed A; Carrie, Didier; Stella, Pieter; Slagboom, Ton; Bartunek, Jozef; Onuma, Yoshinobu; Serruys, Patrick W

    2016-08-05

    Our aim was to demonstrate the safety and efficacy of the Svelte sirolimus-eluting coronary stent-on-a-wire Integrated Delivery System (IDS) with bioresorbable drug coating compared to the Resolute Integrity zotarolimus-eluting stent with durable polymer in patients with de novo coronary artery lesions. Direct stenting, particularly in conjunction with transradial intervention (TRI), has been associated with reduced bleeding complications, procedure time, radiation exposure and contrast administration compared to conventional stenting with wiring and predilatation. The low-profile Svelte IDS is designed to facilitate TRI and direct stenting, reducing the number of procedural steps, time and cost associated with coronary stenting. DIRECT II was a prospective, multicentre trial which enrolled 159 patients to establish non-inferiority of the Svelte IDS versus Resolute Integrity using a 2:1 randomisation. The primary endpoint was angiographic in-stent late lumen loss (LLL) at six months. Target vessel failure (TVF), as well as secondary clinical endpoints, will be assessed annually up to five years. At six months, in-stent LLL was 0.09±0.31 mm in the Svelte IDS group compared to 0.13±0.27 mm in the Resolute Integrity group (p<0.001 for non-inferiority). TVF at one year was similar across the Svelte IDS and Resolute Integrity groups (6.5% vs. 9.8%, respectively). DIRECT II demonstrated the non-inferiority of the Svelte IDS to Resolute Integrity with respect to in-stent LLL at six months. Clinical outcomes at one year were comparable between the two groups.

  19. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs.

    Science.gov (United States)

    Zhang, Lihua; Zhu, Wufu; Lin, Qisi; Han, Jin; Jiang, Liqun; Zhang, Yanzhuo

    2015-01-01

    The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC) based amorphous solid dispersion (ASD) can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB) was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as specific surface area analysis, scanning electron microscopy (SEM), dynamic light scattering (DLS), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). Analyses with PXRD and DSC confirmed that IRB was fully converted into the amorphous form in the nanopores of HP-β-CD/CC. From the solubility and dissolution tests, it was observed that the aqueous solubility and dissolution rate of IRB-loaded HP-β-CD/CC were increased significantly compared with those of pure IRB and IRB-loaded mesoporous silica. Likewise, the IRB-loaded HP-β-CD/CC formulation exhibited better absorption compared with that of the commercially available IRB capsules in beagle dogs. The mean peak plasma concentration (C max) and the area under the mean plasma concentration-time curve (AUC[0→48]) of IRB-loaded HP-β-CD/CC were 1.56- and 1.52-fold higher than that of the commercial product, respectively. Furthermore, the IRB-loaded HP-β-CD/CC formulation exhibited excellent stability against re-crystallization. These results clearly demonstrate that HP-β-CD/CC based porous ASD is a promising formulation approach to improve the aqueous solubility and the in vivo absorption performance of a water-insoluble compound like IRB.

  20. Thermal energy at the nanoscale

    CERN Document Server

    Fisher, Timothy S

    2014-01-01

    These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons -- are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established. Readership: Students and professionals in physics and engineering.

  1. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  2. Personalized Nanomedicine: A Revolution at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Cristina Fornaguera

    2017-10-01

    Full Text Available Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines.

  3. Personalized Nanomedicine: A Revolution at the Nanoscale

    Science.gov (United States)

    García-Celma, Maria José

    2017-01-01

    Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines. PMID:29023366

  4. Personalized Nanomedicine: A Revolution at the Nanoscale.

    Science.gov (United States)

    Fornaguera, Cristina; García-Celma, Maria José

    2017-10-12

    Nanomedicine is an interdisciplinary research field that results from the application of nanotechnology to medicine and has the potential to significantly improve some current treatments. Specifically, in the field of personalized medicine, it is expected to have a great impact in the near future due to its multiple advantages, namely its versatility to adapt a drug to a cohort of patients. In the present review, the properties and requirements of pharmaceutical dosage forms at the nanoscale, so-called nanomedicines, are been highlighted. An overview of the main current nanomedicines in pre-clinical and clinical development is presented, detailing the challenges to the personalization of these therapies. Next, the process of development of novel nanomedicines is described, from their design in research labs to their arrival on the market, including considerations for the design of nanomedicines adapted to the requirements of the market to achieve safe, effective, and quality products. Finally, attention is given to the point of view of the pharmaceutical industry, including regulation issues applied to the specific case of personalized medicine. The authors expect this review to be a useful overview of the current state of the art of nanomedicine research and industrial production, and the future opportunities of personalized medicine in the upcoming years. The authors encourage the development and marketing of novel personalized nanomedicines.

  5. MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Bahng, J; Kotov, N [University of Michigan, Ann Arbor, MI (United States)

    2014-06-15

    Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF

  6. MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model

    International Nuclear Information System (INIS)

    Wang, Y; Bahng, J; Kotov, N

    2014-01-01

    Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF

  7. Method for manufacturing carrier containing e.g. proteins for human during oral drug delivery operation for food and drug administration application in pharmaceutical industry, involves providing active ingredient to core layer

    DEFF Research Database (Denmark)

    2015-01-01

    NOVELTY - The method involves preparing a multi-layered film comprising a core layer and a barrier layer, where the core layer comprises active ingredient. The multi-layered film is subjected to a hot embossing step using an embossing stamp including protrusions that allows for generation...... delivery operation for a food and drug administration (FDA) application in a pharmaceutical industry. ADVANTAGE - The method enables allowing an individual micro-structure stuck in an embossing stamp to be demolded under the conditions such that demolding operation is done by treating elastically...

  8. Nanoscale electron manipulation in metals with intense THz electric fields

    Science.gov (United States)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  9. Nanoscale cryptography: opportunities and challenges.

    Science.gov (United States)

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  10. Nanoscale Mixing of Soft Solids

    International Nuclear Information System (INIS)

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2011-01-01

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C 30 H 62 ) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ( 1 H and 2 H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  11. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  12. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2013-11-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  13. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2012-07-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  14. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  15. Patterning high explosives at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Nafday, Omkar A.; Pitchimani, Rajasekar; Weeks, Brandon L. [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Haaheim, Jason [NanoInk Inc., 8025 Lamon Ave., Skokie, IL 60077 (United States)

    2006-10-15

    For the first time, we have shown that spin coating and Dip pen nanolithography (DPN trademark) are simple methods of preparing energetic materials such as PETN and HMX on the nanoscale, requiring no heating of the energetic material. Nanoscale patterning has been demonstrated by the DPN method while continuous thin films were produced using the spin coating method. Results are presented for preparing continuous PETN thin films of nanometer thickness by the spin coating method and for controlling the architecture of arbitrary nanoscale patterns of PETN and HMX by the DPN method. These methods are simple for patterning energetic materials and can be extended beyond PETN and HMX, opening the door for fundamental studies at the nanoscale. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-01

    -performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high

  17. Nanoscale thermal transport. II. 2003–2012

    OpenAIRE

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2013-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of th...

  18. Fast heat flux modulation at the nanoscale

    OpenAIRE

    van Zwol, P. J.; Joulain, K.; Abdallah, P. Ben; Greffet, J. J.; Chevrier, J.

    2011-01-01

    We introduce a new concept for electrically controlled heat flux modulation. A flux contrast larger than 10 dB is expected with switching time on the order of tens of nanoseconds. Heat flux modulation is based on the interplay between radiative heat transfer at the nanoscale and phase change materials. Such large contrasts are not obtainable in solids, or in far field. As such this opens up new horizons for temperature modulation and actuation at the nanoscale.

  19. Passive films at the nanoscale

    International Nuclear Information System (INIS)

    Maurice, Vincent; Marcus, Philippe

    2012-01-01

    Highlights: ► Nanoscale data on growth, structure and local properties of passive films reviewed. ► Preferential role of defects of passive films on the corrosion resistance emphasized. ► Effect of grain boundaries on local electronic properties shown by new data. ► Use of atomistic modeling to test mechanistic hypotheses illustrated. - Abstract: The nanometer scale chemical and structural aspects of ultrathin oxide passive films providing self-protection against corrosion to metals and alloys in aqueous environments are reviewed. Data on the nucleation and growth of 2D anodic oxide films, details on the atomic structure and nanostructure of 3D passive films, the preferential role of surface step edges in dissolution in the passive state and the preferential role of grain boundaries of the passive films in passivity breakdown are presented. Future perspectives are discussed, and exemplified by new data obtained on the relationship between the nanostructure of oxide passive films and their local electronic properties. Atomistic corrosion modeling by ab initio density functional theory (DFT) is illustrated by the example of interactions of chloride ions with hydroxylated oxide surfaces, including the role of surface step edges. Data obtained on well-defined substrate surfaces with surface analytical techniques are emphasized.

  20. Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis.

    Science.gov (United States)

    Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2007-01-01

    Cell adhesion plays a pivotal role in diverse biological processes that occur in the dynamic setting of the vasculature, including inflammation and cancer metastasis. Although complex, the naturally occurring processes that have evolved to allow for cell adhesion in the vasculature can be exploited to direct drug carriers to targeted cells and tissues. Fluid (blood) flow influences cell adhesion at the mesoscale by affecting the mechanical response of cell membrane, the intercellular contact area and collisional frequency, and at the nanoscale level by modulating the kinetics and mechanics of receptor-ligand interactions. Consequently, elucidating the molecular and biophysical nature of cell adhesion requires a multidisciplinary approach involving the synthesis of fundamentals from hydrodynamic flow, molecular kinetics and cell mechanics with biochemistry/molecular cell biology. To date, significant advances have been made in the identification and characterization of the critical cell adhesion molecules involved in inflammatory disorders, and, to a lesser degree, in cancer metastasis. Experimental work at the nanoscale level to determine the lifetime, interaction distance and strain responses of adhesion receptor-ligand bonds has been spurred by the advent of atomic force microscopy and biomolecular force probes, although our current knowledge in this area is far from complete. Micropipette aspiration assays along with theoretical frameworks have provided vital information on cell mechanics. Progress in each of the aforementioned research areas is key to the development of mathematical models of cell adhesion that incorporate the appropriate biological, kinetic and mechanical parameters that would lead to reliable qualitative and quantitative predictions. These multiscale mathematical models can be employed to predict optimal drug carrier-cell binding through isolated parameter studies and engineering optimization schemes, which will be essential for developing

  1. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    CERN Document Server

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  2. Direct optical imaging of nanoscale internal organization of polymer films

    Science.gov (United States)

    Suran, Swathi; Varma, Manoj

    2018-02-01

    Owing to its sensitivity and precise control at the nanoscale, polyelectrolytes have been immensely used to modify surfaces. Polyelectrolyte multilayers are generally water made and are easy to fabricate on any surface by the layer-by-layer (LbL) self-assembly process due to electrostatic interactions. Polyelectrolyte multilayers or PEMs can be assembled to form ultrathin membranes which can have potential applications in water filtration and desalination [1-3]. Hydration in PEMs is a consequence of both the bulk and surface phenomenon [4-7]. Bulk behavior of polymer membranes are well understood. Several techniques including reflectivity and contact angle measurements were used to measure the hydration in the bulk of polymer membranes [4, 8]. On the other hand their internal organization at the molecular level which can have a profound contribution in the transport mechanism, are not understood well. Previously, we engineered a technique, which we refer to as Bright-field Nanoscopy, which allows nanoscale optical imaging using local heterogeneities in a water-soluble germanium (Ge) thin film ( 25 nm thick) deposited on gold [8]. We use this technique to study the water transport in PEMs. It is understood that the surface charge and outer layers of the PEMs play a significant role in water transport through polymers [9-11]. This well-known `odd-even' effect arising on having different surface termination of the PEMs was optically observed with a spatial resolution unlike any other reported previously [12]. In this communication, we report that on increasing the etchant's concentration, one can control the lateral etching of the Ge film. This allowed the visualization of the nanoscale internal organization in the PEMs. Knowledge of the internal structure would allow one to engineer polymer membranes specific to applications such as drug delivering capsules, ion transport membranes and barriers etc. We also demonstrate a mathematical model involving a surface

  3. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    Science.gov (United States)

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  4. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  6. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  7. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  8. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  9. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    Matsumura, K.; Nakano, I.

    1989-01-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  10. Herbal carrier-based floating microparticles of diltiazem ...

    African Journals Online (AJOL)

    Purpose: To formulate and characterize a gastroretentive floating drug delivery system for diltiazem hydrochloride using psyllium husk and sodium alginate as natural herbal carriers to improve the therapeutic effect of the drug in cardiac patients. Methods: Floating microparticles containing diltiazem hydrochloride were ...

  11. Bioactive albumin-based carriers for tumour chemotherapy.

    Science.gov (United States)

    Shahzad, Yasser; Khan, Ikram Ullah; Hussain, Talib; Alamgeer; Serra, Christophe A; Rizvi, Syed A A; Gerber, Minja; du Plessis, Jeanetta

    2014-01-01

    Proteins are posed as the natural counterpart of the synthetic polymers for the development of drug delivery systems and few of them, have been regarded safe for drug delivery purposes by the United States Food and Drug Administration (FDA). Serum albumin is the most abundant protein in human blood. Interest in the exploration of pharmaceutical applications of albumin-based drug delivery carriers, especially for the delivery of chemotherapeutic agents, has increased in recent years. Albumin has several advantages over synthetic polymers, as it is biocompatible, biodegradable, has low cytotoxicity and has an excellent binding capacity with various drugs. Micro- and nano-carriers not only protect active pharmaceutical ingredients against degradation, but also offer a prolonged release of drugs in a controlled fashion. Since existing tumour chemotherapeutic agents neither target tumour cells, nor are they specific to tumour cells, a slow release of drugs from carriers would be beneficial in targeting carcinogenic cells intracellularly. This article aims at providing an overview of pharmaceutical applications of albumin as a drug delivery carrier in tumour chemotherapy.

  12. Dynamic structural disorder in supported nanoscale catalysts

    International Nuclear Information System (INIS)

    Rehr, J. J.; Vila, F. D.

    2014-01-01

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale

  13. Benchtop Nanoscale Patterning Using Soft Lithography

    Science.gov (United States)

    Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W.

    2007-01-01

    This paper outlines several benchtop nanoscale patterning experiments that can be incorporated into undergraduate laboratories or advanced high school chemistry curricula. The experiments, supplemented by an online video lab manual, are based on soft lithographic techniques such as replica molding, micro-molding in capillaries, and micro-contact…

  14. Dynamic structural disorder in supported nanoscale catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  15. Traceable nanoscale measurement at NML-SIRIM

    International Nuclear Information System (INIS)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-01-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  16. Traceable nanoscale measurement at NML-SIRIM

    Science.gov (United States)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  17. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  18. Neuromorphic computing with nanoscale spintronic oscillators.

    Science.gov (United States)

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  19. Inelastic transport theory for nanoscale systems

    DEFF Research Database (Denmark)

    Frederiksen, Thomas

    2007-01-01

    This thesis describes theoretical and numerical investigations of inelastic scat- tering and energy dissipation in electron transport through nanoscale sys- tems. A computational scheme, based on a combination of density functional theory (DFT) and nonequilibrium Green’s functions (NEGF), has been...

  20. Effects of nanoscale contacts to graphene

    NARCIS (Netherlands)

    Franklin, A.D.; Han, S.-J.; Bol, A.A.; Haensch, W.

    2011-01-01

    Understanding and optimizing transport between metal contacts and graphene is one of the foremost challenges for graphene devices. In this letter, we present the first results on the effects of reducing contact dimensions to the nanoscale in single-layer graphene transistors. Using noninvasive

  1. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  2. Selective nanoscale growth of lattice mismatched materials

    Science.gov (United States)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  3. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  4. Traceable nanoscale measurement at NML-SIRIM

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan, Ahmad M.; Abdul Hapip, A. I. [National Metrology Laboratory SIRIM Berhad (NML-SIRIM), Lot PT 4803, Bandar Baru Salak Tinggi, 43900 Sepang (Malaysia)

    2012-06-29

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  5. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand

    2010-01-01

    index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...

  6. Willis H Carrier

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 2. Willis H. Carrier - Father of Air Conditioning. R V Simha. General Article Volume 17 Issue 2 February 2012 pp 117-138. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/02/0117-0138 ...

  7. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  8. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery.

    Science.gov (United States)

    Papa, Anne-Laure; Korin, Netanel; Kanapathipillai, Mathumai; Mammoto, Akiko; Mammoto, Tadanori; Jiang, Amanda; Mannix, Robert; Uzun, Oktay; Johnson, Christopher; Bhatta, Deen; Cuneo, Garry; Ingber, Donald E

    2017-09-01

    Here we describe injectable, ultrasound (US)-responsive, nanoparticle aggregates (NPAs) that disintegrate into slow-release, nanoscale, drug delivery systems, which can be targeted to selective sites by applying low-energy US locally. We show that, unlike microbubble based drug carriers which may suffer from stability problems, the properties of mechanical activated NPAs, composed of polymer nanoparticles, can be tuned by properly adjusting the polymer molecular weight, the size of the nanoparticle precursors as well as the percentage of excipient utilized to hold the NPA together. We then apply this concept to practice by fabricating NPAs composed of nanoparticles loaded with Doxorubicin (Dox) and tested their ability to treat tumors via ultrasound activation. Mouse studies demonstrated significantly increased efficiency of tumor targeting of the US-activated NPAs compared to PLGA nanoparticle controls (with or without US applied) or intact NPAs. Importantly, when the Dox-loaded NPAs were injected and exposed to US energy locally, this increased ability to concentrate nanoparticles at the tumor site resulted in a significantly greater reduction in tumor volume compared to tumors treated with a 20-fold higher dose of the free drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DNA nanomaterials for preclinical imaging and drug delivery.

    Science.gov (United States)

    Jiang, Dawei; England, Christopher G; Cai, Weibo

    2016-10-10

    Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Sealed substrate carrier for electroplating

    Science.gov (United States)

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  11. Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rutian Li

    Full Text Available AIMS: The extracellular pH of cancer cells is lower than the intracellular pH. Weakly basic anticancer drugs will be protonated extracellularly and display a decreased intracellular concentration. In this study, we show that copolymeric nanoparticles (NPs are able to overcome this "pH-induced physiological drug resistance" (PIPDR by delivering drugs to the cancer cells via endocytosis rather than passive diffussion. MATERIALS AND METHODS: As a model nanoparticle, Tetradrine (Tet, Pka 7.80 was incorporated into mPEG-PCL. The effectiveness of free Tet and Tet-NPs were compared at different extracellular pHs (pH values 6.8 and 7.4, respectively by MTT assay, morphological observation and apoptotic analysis in vitro and on a murine model by tumor volume measurement, PET-CT scanning and side effect evaluation in vivo. RESULTS: The cytotoxicity of free Tet decreased prominently (P<0.05 when the extracellular pH decreased from 7.4 to 6.8. Meanwhile, the cytotoxicity of Tet-NPs was not significantly influenced by reduced pH. In vivo experiment also revealed that Tet-NPs reversed PIPDR more effectively than other existing methods and with much less side effects. CONCLUSION: The reversion of PIPDR is a new discovered mechanism of copolymeric NPs. This study emphasized the importance of cancer microenvironmental factors in anticancer drug resistance and revealed the superiority of nanoscale drug carrier from a different aspect.

  12. Subcutaneous administration of carrier erythrocytes: slow release of entrapped agent

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Corrier, D.E.

    1988-01-01

    Carrier erythrocytes administered subcutaneously in mice release encapsulated molecules at the injection site and through cells that escape the injection site. One day postinjection, the efflux of encapsulated [ 14 C]sucrose, [ 3 H]inulin, and 51 Cr-hemoglobin from the injection site was 45, 55, and 65%, respectively. Intact carrier erythrocytes escaped the injection site and entered the blood circulation carrying with them the encapsulated molecules. Most of the encapsulated [ 3 H]inulin that reached whole blood circulated within erythrocytes. Small but measurable numbers of encapsulated molecules were trapped within lymph nodes. Subcutaneous injection of carrier erythrocytes may allow for limited extravascular tissue targeting of drugs

  13. Motor carrier evaluation program

    International Nuclear Information System (INIS)

    Portsmouth, James

    1992-01-01

    The U.S. Department of Energy-Headquarters (DOE-HQ), Transportation Management Program (TMP) has the overall responsibility to provide a well-managed transportation program for the safe, efficient, and economical transportation of DOE-owned materials. The DOE-TMP has established an excellent safety record in the transportation of hazardous materials including radioactive materials and radioactive wastes. This safety record can be maintained only through continued diligence and sustained effort on the part of the DOE-TMP, its field offices, and the contractors' organizations. Key elements in the DOE'S effective hazardous and radioactive materials shipping program are (1) integrity of packages, (2) strict adherence to regulations and procedures, (3) trained personnel, (4) complete management support, and (5) use of the best commercial carriers. The DOE Motor Carrier Evaluation Program was developed to better define the criteria and methodology needed to identify motor carriers for use in the transportation of Highway Route Controlled Quantities (HRCQ), Truck Load (TL) quantities of radioactive materials, hazardous materials and waste. (author)

  14. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism...

  15. Nanoscale microstructural characterization of a nanobainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Timokhina, I.B., E-mail: ilana.timokhina@eng.monash.edu.au [Centre for Material and Fibre Innovation, Deakin University, Victoria 3216 (Australia); Beladi, H. [Centre for Material and Fibre Innovation, Deakin University, Victoria 3216 (Australia); Xiong, X.Y. [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Adachi, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Hodgson, P.D. [Centre for Material and Fibre Innovation, Deakin University, Victoria 3216 (Australia)

    2011-08-15

    A 0.79 C-1.5 Si-1.98 Mn-0.98 Cr-0.24 Mo-1.06 Al-1.58 Co (wt.%) steel was isothermally heat treated at 200 deg. C for 10 days and 350 deg. C for 1 day to form a nanoscale bainitic microstructure consisting of nanobainitic ferrite laths with high dislocation density and retained austenite films. The microstructures of the samples were characterized by transmission electron microscopy and atom probe tomography. Despite the formation of nanoscale bainite with a high volume fraction of retained austenite in both steels, the ductility of both steels was surprisingly low. It is believed that this was associated with the formation of carbon-depleted retained austenite after isothermal transformation at 200 deg. C due to the formation of high number of Fe-C clusters and particles in the bainitic ferrite laths and carbon-enriched austenite after isothermal transformation at 350 deg. C.

  16. Bulk nanoscale materials in steel products

    International Nuclear Information System (INIS)

    Chehab, B; Wang, X; Masse, J-P; Zurob, H; Embury, D; Bouaziz, O

    2010-01-01

    Although a number of nanoscale metallic materials exhibit interesting mechanical properties the fabrication paths are often complex and difficult to apply to bulk structural materials. However a number of steels which exhibit combinations of plasticity and phase transitions can be deformed to produce ultra high strength levels in the range 1 to 3 GPa. The resultant high stored energy and complex microstructures allow new nanoscale structures to be produced by combinations of recovery and recrystallisation. The resultant structures exhibit totally new combinations of strength and ductility to be achieved. In specific cases this also enables both the nature of the grain boundary structure and the spatial variation in structure to be controlled. In this presentation both the detailed microstructural features and their relation to the strength, work-hardening capacity and ductility will be discussed for a number of martensitic and austenitic steels.

  17. Scanning nanoscale multiprobes for conductivity measurements

    DEFF Research Database (Denmark)

    Bøggild, Peter; Hansen, Torben Mikael; Kuhn, Oliver

    2000-01-01

    We report fabrication and measurements with two- and four-point probes with nanoscale dimensions, for high spatial resolution conductivity measurements on surfaces and thin films. By combination of conventional microfabrication and additive three-dimensional nanolithography, we have obtained...... electrode spacings down to 200 nm. At the tips of four silicon oxide microcantilevers, narrow carbon tips are grown in converging directions and subsequently coated with a conducting layer. The probe is placed in contact with a conducting surface, whereby the electrode resistance can be determined....... The nanoelectrodes withstand considerable contact force before breaking. The probe offers a unique possibility to position the voltage sensors, as well as the source and drain electrodes in areas of nanoscale dimensions. ©2000 American Institute of Physics....

  18. Programmed assembly of nanoscale structures using peptoids.

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jianhua (University of the Pacific, Stockton, CA); Russell, Scott (California State University, Stanislaus, Turlock, CA); Morishetti, Kiran (University of the Pacific, Stockton, CA); Robinson, David B.; Zuckermann, Ronald N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Buffleben, George M.; Hjelm, Rex P. (Los Alamos National Laboratory, Los Alamos, NM); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM)

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  19. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  20. Nanoscale thermal transport. II. 2003-2012

    Science.gov (United States)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  1. Nanoscale thermal transport. II. 2003–2012

    International Nuclear Information System (INIS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  2. Infochemistry Information Processing at the Nanoscale

    CERN Document Server

    Szacilowski, Konrad

    2012-01-01

    Infochemistry: Information Processing at the Nanoscale, defines a new field of science, and describes the processes, systems and devices at the interface between chemistry and information sciences. The book is devoted to the application of molecular species and nanostructures to advanced information processing. It includes the design and synthesis of suitable materials and nanostructures, their characterization, and finally applications of molecular species and nanostructures for information storage and processing purposes. Divided into twelve chapters; the first three chapters serve as an int

  3. Fourth International Conference on Nanoscale Magnetism

    CERN Document Server

    Aktas, Bekir; Advances in Nanoscale Magnetism

    2009-01-01

    The book aims to provide an overview of recent progress in the understanding of magnetic properties in nanoscale through recent results of various theoretical and experimental investigations. The papers describe a wide range of physical aspects, together with theoretical and experimental methods. It is of central interest to researchers and specialists in magnetism and magnetic materials science, both in academic and industrial research, as well as advanced students.

  4. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  5. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  6. Nanoscale polysaccharide derivative as an AEG-1 siRNA carrier for effective osteosarcoma therapy

    Directory of Open Access Journals (Sweden)

    Wang F

    2018-02-01

    Full Text Available Fen Wang,1,* Jia-Dong Pang,2,* Lei-lei Huang,1 Ran Wang,1 Dan Li,3 Kang Sun,4 Lian-tang Wang,1,* Li-Ming Zhang2,* 1Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 2PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 3Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 4School of Engineering, Sun Yat-sen University, Guangzhou, China *These authors contributed equally to this work Background: Nanomedicine, which is the application of nanotechnology in medicine to make medical diagnosis and treatment more accurate, has great potential for precision medicine. Despite some improvements in nanomedicine, the lack of efficient and low-toxic vectors remains a major obstacle. Objective: The aim of this study was to prepare an efficient and low-toxic vector which could deliver astrocyte elevated gene-1 (AEG-1 small interfering RNA (siRNA; siAEG-1 into osteosarcoma cells effectively and silence the targeted gene both in vitro and in vivo. Materials and methods: We prepared a novel polysaccharide derivative by click conjugation of azidized chitosan with propargyl focal point poly (L-lysine dendrons (PLLD and subsequent coupling with folic acid (FA; Cs-g-PLLD-FA. We confirmed the complexation of siAEG-1and Cs-g-PLLD or Cs-g-PLLD-FA by gel retardation assay. We examined the cell cytotoxicity, cell uptake, cell proliferation and invasion abilities of Cs-g-PLLD-FA/siAEG-1 in osteosarcoma cells. In osteosarcoma 143B cells tumor-bearing mice models, we established the therapeutic efficacy and safety of Cs-g-PLLD-FA/siAEG-1. Results: Cs-g-PLLD-FA could completely encapsulate siAEG-1 and showed low cytotoxicity in osteosarcoma cells and tumour-bearing mice. The Cs-g-PLLD-FA/siAEG-1 nanocomplexes were capable of transferring siAEG-1 into osteosarcoma cells efficiently, and the knockdown of AEG-1 resulted in the inhibition of tumour cell proliferation and invasion. In addition, caudal vein injecting of Cs-g-PLLD-FA/siAEG-1 complexes inhibited tumor growth and lung metastasis in tumor-bearing mice by silencing AEG-1 and regulating MMP-2/9. Conclusion: In summary, Cs-g-PLLD-FA nanoparticles are a promising system for the effective delivery of AEG-1 siRNA for treating osteosarcoma. Keywords: chitosan, gene delivery, astrocyte elevated gene-1, small interfering RNA, osteosarcoma

  7. On the accuracy of current TCAD hot carrier injection models in nanoscale devices

    Science.gov (United States)

    Zaka, Alban; Rafhay, Quentin; Iellina, Matteo; Palestri, Pierpaolo; Clerc, Raphaël; Rideau, Denis; Garetto, Davide; Dornel, Erwan; Singer, Julien; Pananakakis, Georges; Tavernier, Clément; Jaouen, Hervé

    2010-12-01

    In this work, the hot electron injection models presently available for technology support have been investigated within the context of the development of advanced embedded non-volatile memories. The distribution functions obtained by these models (namely the Fiegna Model - FM [1], the Lucky Electron Model - LEM [2] and the recently implemented Spherical Harmonics Expansion of the Boltzman's Transport Equation - SHE [3]), have been systematically compared to rigorous Monte Carlo (MC) results [4], both in homogeneous and device conditions. Gate-to-drain current ratio and gate current density simulation has also been benchmarked in device simulations. Results indicate that local models such as FM, can partially capture the channel hot electron injection, at the price of model parameter adjustments. Moreover, at least in the device and field condition considered in this work, an overall better agreement with MC simulations has been obtained using the 1st order SHE, even without any particular fitting procedure. Extending the results presented in [3] by exploring shorter gate lengths and addressing the floating gate voltage dependence of the gate current, this work shows that the SHE method could contribute to bridge the gap between the rigorous but time consuming MC method and less rigorous but suitable TCAD local models.

  8. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  9. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  10. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  11. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  12. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  13. Understanding interparticle interactions in dry powder inhalation : glass beads as an innovative model carrier system

    OpenAIRE

    Renner, Niklas Ludwig

    2017-01-01

    Delivery of drugs via the pulmonary route is the most common approach to treat diseases of the respiratory system, e.g. asthma bronchiale. Here, the active pharmaceutical ingredient is generally formulated in a so-called interactive mixture with a coarse and inert carrier. This enhances flowability and therefore dose metering and dispersibility. Interparticle interactions between carrier and drug govern aerosolisation behaviour of the blend and consequently the efficacy of the drug deposition...

  14. Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells.

    Science.gov (United States)

    Deng, Jingjing; Wang, Kai; Wang, Ming; Yu, Ping; Mao, Lanqun

    2017-04-26

    Zeolitic imidazole frameworks (ZIFs) are an emerging class of functional porous materials with promising biomedical applications such as molecular sensing and intracellular drug delivery. We report herein the first example of using nanoscale ZIFs (i.e., ZIF-90), self-assembled from Zn 2+ and imidazole-2-carboxyaldehyde, to target subcellular mitochondria and image dynamics of mitochondrial ATP in live cells. Encapsulation of fluorescent Rhodamine B (RhB) into ZIF-90 suppresses the emission of RhB, while the competitive coordination between ATP and the metal node of ZIF-90 dissembles ZIFs, resulting in the release of RhB for ATP sensing. With this method, we are able to image mitochondrial ATP in live cells and study the ATP level fluctuation in cellular glycolysis and apoptosis processes. The strategy reported here could be further extended to tune nanoscale ZIFs inside live cells for targeted delivery of therapeutics to subcellular organelles for advanced biomedical applications.

  15. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...... in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...... the experience of all users and not just the few best ones; while overall cell capacity is not compromised....

  16. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  17. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-11-01

    In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.

  18. Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

    National Research Council Canada - National Science Library

    Alderson, Norris; Alexander, Catherine; Merzbacher, Celia; Chernicoff, William; Middendorf, Paul; Beck, Nancy; Chow, Flora; Poster, Dianne; Danello, Mary Ann; Barrera, Enriqueta

    2006-01-01

    ...) research and information needs related to understanding and management of potential risks of engineered nanoscale materials that may be used, for example, in commercial or consumer products, medical...

  19. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    Science.gov (United States)

    Kravtsov, Vasily

    four-wave mixing response from the tip apex and investigate its microscopic mechanism. Our results reveal a significant contribution to the third order nonlinearity of plasmonic structures due to large near-field gradients associated with nanofocused plasmons. In combination with scanning probe imaging and femtosecond pulse shaping, the nanofocused four-wave mixing response provides a basis for a novel type of ultrafast optical microscopy on the nanoscale. We demonstrate its capabilities by nano-imaging the coherent dynamics of localized plasmonic modes in a rough gold film edge with simultaneous sub-50 nm spatial and sub-5 fs temporal resolution. We capture the coherent decay and extract the dephasing times of individual plasmonic modes. Lastly, we apply our technique to study nanoscale spatial heterogeneity of the nonlinear optical response in novel two-dimensional materials: monolayer and few-layer graphene. An enhanced four-wave mixing signal is revealed on the edges of graphene flakes. We investigate the mechanism of this enhancement by performing nano-imaging on a graphene field-effect transistor with the variable carrier density controlled by electrostatic gating.

  20. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  1. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun

    2011-01-01

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  2. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy.

    Science.gov (United States)

    Tenne, D A; Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Katiyar, R S; Cantarero, A; Soukiassian, A; Vaithyanathan, V; Haeni, J H; Tian, W; Schlom, D G; Choi, K J; Kim, D M; Eom, C B; Sun, H P; Pan, X Q; Li, Y L; Chen, L Q; Jia, Q X; Nakhmanson, S M; Rabe, K M; Xi, X X

    2006-09-15

    We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

  3. Synthesis, dynamics and photophysics of nanoscale systems

    Science.gov (United States)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  4. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  5. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  6. Carrier Modulation Layer-Enhanced Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-07-01

    Full Text Available Organic light-emitting diode (OLED-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML, also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.

  7. Protein-Based Drug-Delivery Materials

    OpenAIRE

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based pol...

  8. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  9. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  10. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  11. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  12. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  13. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  14. Visualizing copper assisted graphene growth in nanoscale

    Science.gov (United States)

    Rosmi, Mohamad Saufi; Yusop, Mohd Zamri; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-01-01

    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp2 hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction. PMID:25523645

  15. Catalysis at the nanoscale may change selectivity.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2016-10-18

    Among the many virtues ascribed to catalytic nanoparticles, the prospect that the passage from the macro- to the nanoscale may change product selectivity attracts increasing attention. To date, why such effects may exist lacks explanation. Guided by recent experimental reports, we propose that the effects may result from the coupling between the chemical steps in which the reactant, intermediates, and products are involved and transport of these species toward the catalytic surface. Considering as a thought experiment the competitive formation of hydrogen and formate upon reduction of hydrogenocarbonate ions on metals like palladium or platinum, a model is developed that allows one to identify the governing parameters and predict the effect of nanoscaling on selectivity. The model leads to a master equation relating product selectivity and thickness of the diffusion layer. The latter parameter varies considerably upon passing from the macro- to the nanoscale, thus predicting considerable variations of product selectivity. These are subtle effects in the sense that the same mechanism might exhibit a reverse variation of the selectivity if the set of parameter values were different. An expression is given that allows one to predict the direction of the effect. There has been a tendency to assign the catalytic effects of nanoscaling to chemical reactivity changes of the active surface. Such factors might be important in some circumstances. We, however, insist on the likely role of short-distance transport on product selectivity, which could have been thought, at first sight, as the exclusive domain of chemical factors.

  16. Computer simulations for the nano-scale

    International Nuclear Information System (INIS)

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  17. Nanoscale Science and Engineering in Romania

    International Nuclear Information System (INIS)

    Dascalu, Dan; Topa, Vladimir; Kleps, Irina

    2001-01-01

    In spite of difficult working conditions and with very low financial support, many groups from Romania are involved in emerging fields, such as the nanoscale science and technology. Until the last years, this activity was developed without a central coordination and without many interactions between these research groups. In the year 2000, some of the institutes and universities active in the nanotechnology field in Romania founded the MICRONANOTECH network. The aim of this paper is to emphasize the main activities and results of the Romanian groups working in this novel domain. Most of the groups are deal with the nanomaterial technology and only few of them have activities in nanostructure science and engineering, in new concepts and device modeling and technology. This paper describes the nanotechnology research development in two of the most significant institutes from Romania: Centre for Nanotechnologies from National Institute for Research and Development in Microtehnologies (IMT-Bucharest) and from National Institute for Research and Development in Materials Physics (INCD-FM), Magurele. The Romanian research results in nanotechnology field were presented in numerous papers presented in international conferences or published in national and international journals. They are also presented in patents, international awards and fellowships. The research effort and financial support are outlined. Some future trends of the Romanian nanoscale science and technology research are also described

  18. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  19. Improving Neural Recording Technology at the Nanoscale

    Science.gov (United States)

    Ferguson, John Eric

    Neural recording electrodes are widely used to study normal brain function (e.g., learning, memory, and sensation) and abnormal brain function (e.g., epilepsy, addiction, and depression) and to interface with the nervous system for neuroprosthetics. With a deep understanding of the electrode interface at the nanoscale and the use of novel nanofabrication processes, neural recording electrodes can be designed that surpass previous limits and enable new applications. In this thesis, I will discuss three projects. In the first project, we created an ultralow-impedance electrode coating by controlling the nanoscale texture of electrode surfaces. In the second project, we developed a novel nanowire electrode for long-term intracellular recordings. In the third project, we created a means of wirelessly communicating with ultra-miniature, implantable neural recording devices. The techniques developed for these projects offer significant improvements in the quality of neural recordings. They can also open the door to new types of experiments and medical devices, which can lead to a better understanding of the brain and can enable novel and improved tools for clinical applications.

  20. Protein-based nanostructures as carriers for photo-physically active molecules in biosystems

    OpenAIRE

    Delcanale, Pietro

    2017-01-01

    In nature, many proteins function as carriers, being able to bind, transport and possibly release a ligand within a biological system. Protein-based carriers are interesting systems for drug delivery, with the remarkable advantage of being water-soluble and, as inherent components of biosystems, highly bio-compatible. This work focuses on the use of protein-based carriers for the delivery of hydrophobic photo-physically active molecules, whose structure and chemical properties lead to spontan...

  1. Acoustic manipulation: Bessel beams and active carriers

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  2. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  3. Frontier in nanoscale flows fractional calculus and analytical methods

    CERN Document Server

    Lewis, Roland; Liu, Hong-yan

    2014-01-01

    This ebook covers the basic properties of nanoscale flows, and various analytical and numerical methods for nanoscale flows and environmental flows. This ebook is a good reference not only for audience of the journal, but also for various communities in mathematics, nanotechnology and environmental science.

  4. Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Vishnevetskaya, N. S.; Niebuur, B.-J.; Koziolová, Eva; Lomkova, Ekaterina A.; Chytil, Petr; Etrych, Tomáš; Papadakis, C. M.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1313-1325 ISSN 0303-402X R&D Projects: GA MZd(CZ) NV16-28600A; GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : drug delivery * HPMA copolymers * fluorescence correlation spectroscopy Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.723, year: 2016

  5. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    Science.gov (United States)

    Shen, Xiaohan

    With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness

  6. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  7. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    International Nuclear Information System (INIS)

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth

    2015-01-01

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials

  8. 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors

    CERN Document Server

    Saraniti, M; Nonequilibrium Carrier Dynamics in Semiconductors

    2006-01-01

    International experts gather every two years at this established conference to discuss recent developments in theory and experiment in non-equilibrium transport phenomena. These developments have been the driving force behind the spectacular advances in semiconductor physics and devices over the last few decades. Originally known as "Hot Carriers in Semiconductors," the 14th conference in the series covered a wide spectrum of traditional topics dealing with non-equilibrium phenomena, ranging from quantum transport to optical phenomena in mesoscopic and nano-scale structures. Particular attention was given this time to emerging areas of this rapidly evolving field, with many sessions covering terahertz devices, high field transport in nitride semiconductors, spintronics, molecular electronics, and bioelectronics applications.

  9. Nanoscale effects in dendrimer-mediated targeting of neuroinflammation.

    Science.gov (United States)

    Nance, Elizabeth; Zhang, Fan; Mishra, Manoj K; Zhang, Zhi; Kambhampati, Siva P; Kannan, Rangaramanujam M; Kannan, Sujatha

    2016-09-01

    Neuroinflammation, mediated by activated microglia and astrocytes, plays a key role in the pathogenesis of many neurological disorders. Systemically-administered dendrimers target neuroinflammation and deliver drugs with significant efficacy, without the need for ligands. Elucidating the nanoscale aspects of targeting neuroinflammation will enable superior nanodevices for eventual translation. Using a rabbit model of cerebral palsy, we studied the in vivo contributions of dendrimer physicochemical properties and disease pathophysiology on dendrimer brain uptake, diffusion, and cell specific localization. Neutral dendrimers move efficiently within the brain parenchyma and rapidly localize in glial cells in regions of injury. Dendrimer uptake is also dependent on the extent of blood-brain-barrier breakdown, glial activation, and disease severity (mild, moderate, or severe), which can lend the dendrimer to be used as an imaging biomarker for disease phenotype. This new understanding of the in vivo mechanism of dendrimer-mediated delivery in a clinically-relevant rabbit model provides greater opportunity for clinical translation of targeted brain injury therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Partial wave spectroscopy based nanoscale structural disorder analysis for cancer diagnosis and treatment

    Science.gov (United States)

    Almabadi, Huda; Sahay, Peeyush; Nagesh, Prashanth K. B.; Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.; Pradhan, Prabhakar

    Mesoscopic physics based partial wave spectroscopy (PWS) was recently introduced to quantify nanoscale structural disorder in weakly disordered optical media such as biological cells. The degree of structural disorder (Ld) , defined as Ld = 〈 dn2 〉 ×lc is quantified in terms of strength of refractive index fluctuation (〈 dn2 〉) in the system and its correlation length (lc) .With nanoscale sensitivity,Ldhas been shown to have potential to be used in cancer diagnostics. In this work, we analyze the hierarchy of different stages of prostate cancer cells by quantifying their intracellular refractive index fluctuations in terms of Ld parameter. We observe that the increase in tumorigenicity levels inside these prostate cancer cells results in proportionally higherLdvalues. For a weakly disordered optical media like biological cells, this result suggests that the progression of carcinogenesis or the increase in the tumorigenicity level is associated with increased 〈 dn2 〉 and/or lcvalues for the samples. Furthermore, we also examined the applicability of Ld parameter in analyzing the effect of drug on these prostate cancer cells. In accordance with the hypothesis that the cancer cells which survives the drug, becomes more aggressive, we found increased Ldvalues for all the drug resistant prostate cells studied.

  11. Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Nowak, Roland; Moraru, Daniel; Mizuno, Takeshi; Jablonski, Ryszard; Tabe, Michiharu

    2014-01-01

    Nanoscale pn junctions have been investigated by Kelvin probe force microscopy and several particular features were found. Within the depletion region, a localized noise area is observed, induced by temporal fluctuations of dopant states. Electronic potential landscape is significantly affected by dopants with ground-state energies deeper than in bulk. Finally, the effects of light illumination were studied and it was found that the depletion region shifts its position as a function of light intensity. This is ascribed to charge redistribution within the pn junction as a result of photovoltaic effect and due to the impact of deepened-level dopants. - Highlights: • In pn nano-junctions, temporal potential fluctuations are found in depletion layer. • Fluctuations are due to frequent capture and emission of free carriers by dopants. • Depletion layer position shifts as a function of the intensity of irradiated light. • The depletion layer shifts are due to changes of deep-level dopants' charge states

  12. The non-equilibrium Green's function method for nanoscale device simulation

    CERN Document Server

    Pourfath, Mahdi

    2014-01-01

    For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies, and scattering self-energie...

  13. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jiezhu; Wang Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Haque, M A [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-05-26

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  14. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  15. Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation

    International Nuclear Information System (INIS)

    Liu, C-M; Chen, L-W; Wang, C-C

    2006-01-01

    A digital nano-moire method with wavelet transformation is explored to measure nanoscale in-plane displacement fields. By applying e-beam lithography, a periodic PMMA nanostructure array is fabricated directly on the specimen and used as the specimen grating. Moire patterns are generated by overlapping the images of the PMMA specimen grating obtained from AFM scanning and the virtual reference grating produced by a digital image generating process. Then, the overlapped images are filtered by the 2D wavelet transformation (WT) to capture the target moire patterns. Existing methods, by overlapping the monitor-generated scanning lines with the image of the specimen grating, cause a mismatch problem. Previously, the carrier moire method was explored with the aim of curing the mismatch problem. Unfortunately, the carrier moire method, in addition to suffering from increased complexity of mathematical calculations, is incapable of directly obtaining the displacement field. Thus, the mismatch problem will result in inconveniences and restrictions in the practical application. Instead of using monitor-generated scanning lines, the proposed method applies the virtual reference grating, and thus puts the mismatch problem to rest. Nevertheless, the resultant moire image suffers from low contrast which, if left untreated, might distort the measurement result. Therefore, the WT, known for its sharpened abilities of characteristic and edge detection, is used to capture the target moire patterns and improve the measurement accuracy. The proposed method has been carried out in the laboratory. Experimental results have shown that the proposed method is convenient and efficient for nanoscale displacement measurement

  16. Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Liu, Yongjia [Instrumental Analysis Center, Shanghai Jiao Tong University, 200240 Shanghai (China); State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China); Zhu, Bangshang, E-mail: bshzhu@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, 200240 Shanghai (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620 Shanghai (China); Su, Yue; Zhu, Xinyuan [State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2017-01-30

    Highlights: • The core-shell nanofibers (NFs) were made by the co-assembly of paclitaxel (PTX) and chitosan(CS). • The PTX/CS NFs have high PTX loading content, slow drug release and low adherence of platelets. • The PTX/CS NFs have low cytotoxicity and good haemocompatibility. • The PTX/CS NFs which could be easily coated on stents could have potential application for drug eluting stents. - Abstract: The paclitaxel/chitosan (PTX/CS) core-shell nanofibers (NFs) are easily prepared by co-assembly of PTX and CS and used in drug-eluting stent. The mixture solution of PTX (dissolved in ethanol) and CS (dissolved in 1% acetic acid water solution) under sonication will make the formation of NFs, in which small molecule PTX co-assembles with biomacromolecular CS through non-covalent interactions. The obtained NFs are tens to hundreds nanometers in diameter and millimeter level in length. Furthermore, the structure of PTX/CS NFs was characterized by confocal laser scanning microscopy (CLSM), zeta potential, X-ray photoelectron spectroscopy (XPS) and nanoscale infra-red (nanoIR), which provided evidences demonstrated that PTX/CS NFs are core-shell structures. The ‘shell’ of CS wrapped outside of the NFs, while PTX is located in the core. Thus it resulted in high drug loading content (>40 wt.%). The well-controlled drug release, low cytotoxicity and good haemocompatibility were also found in drug carrier system of PTX/CS NFs. In addition, the hydrophilic and flexible properties of NFs make them easily coating and filming on stent to prepare drug-eluting stent (DES). Therefore, this study provides a convenient method to prepare high PTX loaded NFs, which is a promising nano-drug carrier used for DES and other biomedical applications. The possible molecular mechanism of PTX and CS co-assembly and core-shell nanofiber formation is also explored. Statement of significance: We develop a convenient and efficient approach to fabricate core-shell nanofibers (NFs) through

  17. Control of friction at the nanoscale

    Science.gov (United States)

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  18. Designing pseudocubic perovskites with enhanced nanoscale polarization

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Laws, W. J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Wang, D. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom; Reaney, I. M. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

    2017-11-20

    A crystal-chemical framework has been proposed for the design of pseudocubic perovskites with nanoscale ferroelectric order, and its applicability has been demonstrated using a series of representative solid solutions that combined ferroelectric (K0.5Bi0.5TiO3, BaTiO3, and PbTiO3) and antiferroelectric (Nd-substituted BiFeO3) end members. The pseudocubic structures obtained in these systems exhibited distortions that were coherent on a scale ranging from sub-nanometer to tens of nanometers, but, in all cases, the macroscopic distortion remained unresolvable even if using high-resolution X-ray powder diffraction. Different coherence lengths for the local atomic displacements account for the distinctly different dielectric, ferroelectric, and electromechanical properties exhibited by the samples. The guidelines identified provide a rationale for chemically tuning the coherence length to obtain the desired functional response.

  19. Energy Conversion at Micro and Nanoscale

    International Nuclear Information System (INIS)

    Gammaitoni, Luca

    2014-01-01

    Energy management is considered a task of strategic importance in contemporary society. It is a common fact that the most successful economies of the planet are the economies that can transform and use large quantities of energy. In this talk we will discuss the role of energy with specific attention to the processes that happens at micro and nanoscale. The description of energy conversion processes at these scales requires approaches that go way beyond the standard equilibrium termodynamics of macroscopic systems. In this talk we will address from a fundamental point of view the physics of the dissipation of energy and will focus our attention to the energy transformation processes that take place in the modern micro and nano information and communication devices

  20. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  1. Nanoscale device physics science and engineering fundamentals

    CERN Document Server

    Tiwari, Sandip

    2017-01-01

    Nanoscale devices are distinguishable from the larger microscale devices in their specific dependence on physical phenomena and effects that are central to their operation. The size change manifests itself through changes in importance of the phenomena and effects that become dominant and the changes in scale of underlying energetics and response. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the inter-actions, and others. These interactions, with the limits placed on size, make not just electronic, but also magnetic, optical and mechanical behavior interesting, important and useful. Connecting these properties to the behavior of devices is the focus of this textbook. Description of the book series: This collection of four textbooks in the Electroscience series span the undergrad...

  2. Nanoscale spin sensing in artificial cell membranes

    International Nuclear Information System (INIS)

    Simpson David

    2014-01-01

    The use of the nitrogen-vacancy (NV) centre in diamond as a single spin sensor or magnetometer has attracted considerable interest in recent years because of its unique combination of sensitivity, nanoscale resolution, and optical initialisation and readout at room temperature. Nanodiamonds in particular hold great promise as an optical magnetometer probe for bio applications. In this work we employ nanodiamonds containing single NV spins to detect freely diffusing Mn2+ ions by detecting changes in the transverse relaxation time (T2) of the single spin probe. We also report the detection of gadolinium spin labels present in an artificial cell membrane by measuring changes in the longitudinal relaxation time (T1) of the probe. (author)

  3. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  4. Nanoscale decomposition of Nb-Ru-O

    Science.gov (United States)

    Music, Denis; Geyer, Richard W.; Chen, Yen-Ting

    2016-11-01

    A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.

  5. Managing Temperature Effects in Nanoscale Adaptive Systems

    CERN Document Server

    Wolpert, David

    2012-01-01

    This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems.  It provides a holistic discussion of temperature management, including physical phenomena (reversal of the MOSFET temperature dependence) that have recently become problematic, along with circuit techniques for detecting, controlling, and adapting to these phenomena. A detailed discussion is also included of the general aspects of thermal-aware system design and management of temperature-induced faults. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability.  A new method is presented to control a circuit’s temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage fo...

  6. System reduction for nanoscale IC design

    CERN Document Server

    2017-01-01

    This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle. The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

  7. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs.

    Science.gov (United States)

    Pashirova, Tatiana N; Lukashenko, Svetlana S; Zakharov, Sergey V; Voloshina, Alexandra D; Zhiltsova, Elena P; Zobov, Vladimir V; Souto, Eliana B; Zakharova, Lucia Ya

    2015-03-01

    Aggregation properties of mono (mono-CS) and dicationic (di-CS) surfactants, namely quaternised derivatives of 1,4-diazabicyclo[2.2.2]octane (DABCO), have been evaluated in water and in nutrient broths of different pH, i.e. in Hottinger broth (рН=7.2) and Sabouraud dextrose broth (рН=5.6). Aggregation capacity of surfactants was shown to be responsible for the solubilization properties of a complex composed of a hydrophobic probe (Sudan I) and a selected drug (quercetin), contributing to the antimicrobial activity of this surfactant system. The effect of N-methyl-d-glucamine (NmDg) additive on the antimicrobial activity of mono-CS, and its aggregation and solubilization parameters, has also been evaluated. A substantial decrease in critical micelle concentration (CMC) of cationic surfactants in nutrient broths (up to 60 times) has been reported. Twofold dilution of monocationic surfactant by NmDg slightly changed the CMC of surfactant; however, it provided a remarkable increase in solubilization capacity (∼by 4 times) and decrease in its toxicity. The data anticipate the potential use of DABCO quaternized derivatives as innovative non-toxic delivery systems for hydrophobic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nanoscale Dewetting Transition in Protein Complex Folding

    Science.gov (United States)

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  9. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects.

    Science.gov (United States)

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of -31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. B-NLCs described in this study are well-suited for the delivery of baicalin. Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ

  10. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  11. 7 CFR 35.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... AND PLUMS Definitions § 35.4 Carrier. Carrier means any common or private carrier, including, but not being limited to, trucks, rail, airplanes, vessels, tramp or chartered steamers, whether carrying for...