WorldWideScience

Sample records for nanorods elektrische manipulation

  1. Electrical manipulation of the light emission of single CdSe/CdS nanorods; Elektrische Manipulation der Lichtemission von einzelnen CdSe/CdS Nanostaebchen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.

    2005-09-14

    In the center of the present thesis lies the study and manipulation of the light emission of novel rod-shaped cadmium-selenide/cadmium-sulfide (CdSe/CdS) nanocrystals. These nanocrystals consist of a spherical CdSe nucleus, on which a CdS nanorod is grown monocrystallinely. By this grow spatially asymmetric semiconductor nanorods with an aspect ratio between 1.6 and 4.0. By the measurement of the radiation rate in this thesis it could be shown that the electron is delocalized over the whole nanorod, while the hole is localized in the CdSe nucleus. Therefore by the length of the cadmium-sulfide rod the wave-function overlap can be directly manipulated. The wave functions and by this the emission energies can be beside the geometry especially also controlled by external fields. Because the magnitude of the so-called ''Stark effect in quantum-bounded structures'' increases with the spatial extension of the nanostructure, in the nanorods an in comparison with spherical nanocrystals distinctly increased field effect could be observed. Experiments on single CdSe/CdS nanorods exhibit however not only a shift of the emission energy by the 50-fold of the line width, but simultaneously a field-induced decreasement of the emission intensity by one order of magnitude. The experimental results can be excellently compared with a theoretical model. For this the effective-mass model was supplemented by the Coulomb interaction and extended by a finite-element method for asymmetric geometries. By this it is possible to predict both the radiation rate, the Stark shift of the emission energy, and the intensity modulation by electric fields qualitatively and quantitatively and to describe the Stark effect in colloidal nanocrystal by a quantum-mechanical model. The emission characteristics is not only influenced by external fields, but also by fluctuations of local fields, which arise by diffunding surface charges. These local field changes induce also a Stark shift

  2. Manipulation and Biological Applications of Gold Nanorods

    Science.gov (United States)

    Rostro-Kohanloo, Betty Catalina

    This thesis compared anionic polyelectrolyte wrapping stabilization with poly(sodium 4-stryene-sulfonate), (PSS), polyelectrolyte and methoxy (polyethylene glycol)-thiol (mPEG(5000)-SH) strategies. From this data the critical gold nanorod (GNR) and cetyl-trimethylammonium bromide (CTAB) concentration ratio needed for GNR stabilization was determined using optical and chemical extraction methods. This was followed by functionalization with a heterobifunctional Polyethylene glycol (PEG) linker, such as a-thio-w-carboxy poly(ethylene glycol) termed t-PEG-c and carbodiimide chemistries for antibody linkage with Immunoglobulin G (IgG), and epidermal growth factor receptor (EGFR) based Human Epidermal growth factor Receptor 2 (Her2), and Cetuximab (C225) antibodies, for in vitro cancer cell targeting. Confocal, two-photon luminescence (TPL), and dark scattering microscopy, and fluorescence, zeta potential, and Nanoparticle Enzyme-linked immunosorbent assay (ELISA) were used to monitor changes to the GNR surface. An untreatable form of bladder cancer was then studied using the t-GNR-PEG-c-Ab bioconjugates with C225 antibody, which housed a glyceraldehyde-3-phosphate (GAPDH), Fluorescein isothiocyanate (FITC) labeled siRNA, termed GAPDH-siRNA-FITC, which was included within a Luciferase based plasmid. A salt based electrostatic heating method was used to trap the GAPDH-siRNA-FITC from the PEG layer by activating the PEG polymer pour point, while a laser based heating system was used for in vitro release inside cancer cells. The down regulation of the GAPDH gene was targeted by the siRNA. as GAPDH has been shown to be up-regulated in many cancers and down-regulated by chemotherapeutic drugs. Cell culture, and subsequent imaging by transmission electron microscopy (TEM), TPL and confocal microscopy were used to view the internalized conjugates, and reverse transcriptase polymerase chain reaction (RT-PCR) were used to determine if the release of the GAPDH-siRNA caused a

  3. Highly controllable near-surface swimming of magnetic Janus nanorods: application to payload capture and manipulation

    International Nuclear Information System (INIS)

    Mair, Lamar O; Carpenter, Jerome; Evans, Benjamin; Hall, Adam R; Shields, Adam; Superfine, Richard; Ford, Kris; Millard, Michael

    2011-01-01

    Directed manipulation of nanomaterials has significant implications in the field of nanorobotics, nanobiotechnology, microfluidics and directed assembly. With the goal of highly controllable nanomaterial manipulation in mind, we present a technique for the near-surface manoeuvering of magnetic nanorod swimmers and its application to controlled micromanipulation. We fabricate magnetic Janus nanorods and show that the magnetic rotation of these nanorods near a floor results in predictable translational motion. The nanorod plane of rotation is nearly parallel to the floor, the angle between rod tilt and floor being expressed by θ, where 0 0 0 . Orthogonal magnetic fields control in-plane motion arbitrarily. Our model for translation incorporates symmetry breaking through increased drag at the no-slip surface boundary. Using this method we demonstrate considerable rod steerability. Additionally, we approach, capture, and manipulate a polystyrene microbead as proof of principle. We attach Janus nanorods to the surfaces of cells and utilize these rods to manipulate individual cells, proving the ability to manoeuver payloads with a wide range of sizes.

  4. Electrical manipulation of the light emission of single CdSe/CdS nanorods

    International Nuclear Information System (INIS)

    Mueller, J.

    2005-01-01

    In the center of the present thesis lies the study and manipulation of the light emission of novel rod-shaped cadmium-selenide/cadmium-sulfide (CdSe/CdS) nanocrystals. These nanocrystals consist of a spherical CdSe nucleus, on which a CdS nanorod is grown monocrystallinely. By this grow spatially asymmetric semiconductor nanorods with an aspect ratio between 1.6 and 4.0. By the measurement of the radiation rate in this thesis it could be shown that the electron is delocalized over the whole nanorod, while the hole is localized in the CdSe nucleus. Therefore by the length of the cadmium-sulfide rod the wave-function overlap can be directly manipulated. The wave functions and by this the emission energies can be beside the geometry especially also controlled by external fields. Because the magnitude of the so-called ''Stark effect in quantum-bounded structures'' increases with the spatial extension of the nanostructure, in the nanorods an in comparison with spherical nanocrystals distinctly increased field effect could be observed. Experiments on single CdSe/CdS nanorods exhibit however not only a shift of the emission energy by the 50-fold of the line width, but simultaneously a field-induced decreasement of the emission intensity by one order of magnitude. The experimental results can be excellently compared with a theoretical model. For this the effective-mass model was supplemented by the Coulomb interaction and extended by a finite-element method for asymmetric geometries. By this it is possible to predict both the radiation rate, the Stark shift of the emission energy, and the intensity modulation by electric fields qualitatively and quantitatively and to describe the Stark effect in colloidal nanocrystal by a quantum-mechanical model. The emission characteristics is not only influenced by external fields, but also by fluctuations of local fields, which arise by diffunding surface charges. These local field changes induce also a Stark shift and lead to a time

  5. Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds

    International Nuclear Information System (INIS)

    Liu Juncheng; Duggan, Jennifer N.; Morgan, Joshua; Roberts, Christopher B.

    2012-01-01

    Seed-mediated growth of gold (Au) nanorods with highly controllable length, width, and aspect ratio was accomplished via carefully size-controlled synthesis of the original Au seeds. A slow dynamic growth of Au nanoparticle seeds was observed after reduction of the Au salt (i.e., hydrogen tetrachloroaurate (III) hydrate) by sodium borohydride (NaBH 4 ) in the presence of cetyltrimethyl ammonium bromide (CTAB). As such, the size of the Au nanoparticle seeds can therefore be manipulated through control over the duration of the reaction period (i.e., aging times of 2, 8, 48, 72, and 144 h were used in this study). These differently sized Au nanoparticles were subsequently used as seeds for the growth of Au nanorods, where the additions of Au salt, CTAB, AgNO 3 , and ascorbic acid were employed. Smaller Au nanoparticle seeds obtained via short growth/aging time resulted in Au nanorods with higher aspect ratio and thus longer longitudinal surface plasmon wavelength (LSPW). The larger Au nanoparticle seeds obtained via longer growth/aging time resulted in Au nanorods with lower aspect ratio and shorter LSPW.

  6. Thermo-elektrische materialen : Peltier energy harvesting

    NARCIS (Netherlands)

    Beurden, K.M.M. (Karin); Goselink, E.A. (Erik)

    2013-01-01

    Thermo-elektrische materialen zijn al sinds de 19e eeuw bekend. In 1834 ontdekte de Franse natuurkundige Jean Peltier dat er warmte wordt getransporteerd van de overgang tussen twee metalen wanneer er een elektrische stroom vloeit door het grensvlak. Het grote voordeel van Peltier elementen is dat

  7. Manipulation of surface morphology of flower-like Ag/ZnO nanorods to enhance photocatalytic performance

    Science.gov (United States)

    U-thaipan, Kasira; Tedsree, Karaked

    2018-06-01

    The surface morphology of flower-like Ag/ZnO nanorod can be manipulated by adopting different synthetic routes and also loading different levels of Ag in order to alter their surface structures to achieve the maximum photocatalytic efficiency. In a single-step preparation method Ag/ZnO was prepared by heating directly a mixture of Zn2+ and Ag+ precursors in an aqueous NaOH-ethylene glycol solution, while in the two-step preparation method an intermediate of flower-shaped ZnO nanorod was obtained by a hydrothermal process before depositing Ag particles on the ZnO surfaces by chemical reduction. The structure, morphology and optical properties of the synthesized samples were characterized using TEM, SEM, XRD, DRS and PL techniques. The sample prepared by single-step method are characterized with agglomeration of Ag atoms as clusters on the surface of ZnO, whereas in the sample prepared by two-step method Ag atoms are found uniformly dispersed and deposited as discrete Ag nanoparticles on the surface of ZnO. A significant enhancement in the adsorption of visible light was evident for Ag/ZnO samples prepared by two-step method especially with low Ag content (0.5 mol%). The flower-like Ag/ZnO nanorod prepared with 0.5 mol% Ag by two-step process was found to be the most efficient photocatalyst for the degradation of phenol, which can decompose 90% of phenol within 120 min.

  8. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M., E-mail: saber.hussain@us.af.mil [Air Force Research Laboratory, Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate (United States)

    2015-12-15

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract.

  9. Manipulators

    International Nuclear Information System (INIS)

    Wilcock, P.D.

    1984-01-01

    The patent concerns a manipulator, which enables operations to be carried out remotely from the operator. The device is suitable for use in handling of radioactive materials and other hazardous liquids or gases. The specifications are given, and the movements of the manipulator arm described. (U.K.)

  10. Manipulators

    International Nuclear Information System (INIS)

    Andre, Y.; Routelous, F.; Spina, G.; Perpina, J.; Suquet, J.; Rossi, M.; Zanca, M.; Billiet, A.; Madec, L.; Lemoine, T.; Gaboriaud, G.; Aubert, B.; Rosenwald, J.C.; Neuenschwander, S.; Brisse, H.; Rehel, J.L.; Rebibo, G.; Bensimon, J.L.; Kulski, A.; Serhal, M.; Nguyen, K.V.; Lescure, R.; Cymbalista, M.

    2005-01-01

    Three articles have for purpose the radiation doses optimization in medical imaging. The first one concerns the radiation protection of manipulators working at a PET scan post, the second one concerns more particularly the optimization of doses delivered in pediatric computerized tomography, the third one is devoted to a comparison between radiation dose and image quality through scanners of adult temporal bone. (N.C.)

  11. Hoe goed weten oudere fietsers wat ze kunnen? : een veldexperiment met gewone en elektrische fietsen.

    NARCIS (Netherlands)

    Groot-Mesken, J. de & Commandeur, J.J.F.

    2015-01-01

    Met de populariteit van de elektrische fiets groeit ook het aantal ouderen dat hiervan gebruikmaakt. Belangrijke vragen zijn of deze ouderen de speciale eigenschappen van de elektrische fiets goed inschatten, of deze het fietsen moeilijker maken en zo ja, of ouderen hun gedrag daarop in voldoende

  12. Magnetic-plasmonic multilayered nanorods

    Science.gov (United States)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  13. Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods

    Science.gov (United States)

    Huang, Shen-Che; Lu, Chien-Cheng; Su, Wei-Ming; Weng, Chen-Yuan; Chen, Yi-Cian; Wang, Shing-Chung; Lu, Tien-Chang; Chen, Ching-Pang; Chen, Hsiang

    2018-01-01

    Three types of ZnO-based nanocomposites were fabricated consisting of 80-nm Au nanoparticles (NPs), a graphene layer, and ZnO nanorods (NRs). To investigate interactions between the ZnO NRs and Au nanoparticle, multiple material analysis techniques including field-emission scanning electron microscopy (FESEM), surface contact angle measurements, secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic characterizations were performed. Results indicate that incorporating a graphene layer could block the interaction between the ZnO NRs and the Au NPs. Furthermore, the Raman signal of the Au NPs could be enhanced by inserting a graphene layer on top of the ZnO NRs. Investigation of these graphene-incorporated nanocomposites would be helpful to future studies of the physical properties and Raman analysis of the ZnO-based nanostructure design.

  14. Highlight report local initiatives. Experiences with electric transport; Highlight report lokale initiatieven. Ervaringen met elektrisch vervoer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    In March 2013 Linkingreen and XTNT started a survey on local electric transportation initiatives. The aim is to learn from the experiences, problems and obstacles of business users of electric vehicles: cars, vans or trucks, scooters, boats and special vehicles (e.g. garbage trucks) that are all-electric or plug-in (with plug). In this brief report, the main results are presented [Dutch] In maart 2013 is door Linkingreen en XTNT in opdracht van Agentschap NL een enquete uitgezet naar lokale initiatieven elektrisch vervoer. Doel is te leren wat de ervaringen, knelpunten en belemmeringen zijn van zakelijke gebruikers van elektrisch vervoer: personenauto's, bestel- of vrachtauto's, scooters, vaartuigen en bijzondere voertuigen (vuilniswagens etc.) die volledig elektrische of plug in (met stekker) zijn. In dit korte verslag zijn de belangrijkste resultaten opgenomen.

  15. Electric driving in 2050. Consequences for the environment; Elektrisch rijden in 2050. Gevolgen voor de leefomgeving

    Energy Technology Data Exchange (ETDEWEB)

    Nijland, H.; Hoen, A.; Snellen, D.; Zondag, B.

    2012-11-15

    The potential impacts of a transition towards electric passenger mobility are discussed. What changes can be expected in the mobility sector and the (spatial integration in the) environment as electric driving is introduced on a large scale? And what are the consequences of the changing cost ratios of passenger mobility on the government and motorists? It is assumed that in 2050 road transport and urban distribution will be all-electric, according to the ambitions of the European Commission [Dutch] In dit rapport beschrijven we de mogelijke gevolgen van een overstap op elektrische personenautomobiliteit. Welke veranderingen zullen zich naar verwachting voordoen in de mobiliteitssector en de (ruimtelijke inpassing in de) leefomgeving als elektrisch rijden grootschalig wordt geintroduceerd? En wat hebben de veranderende kostenverhoudingen van de personenautomobiliteit voor gevolgen voor de overheid en de autogebruikers? We gaan er daarbij van uit dat in 2050 het personenwegverkeer en de stadsdistributie volledig elektrisch plaatsvinden, conform de ambities van de Europese Commissie.

  16. Electrical and magnetic fields of the power supply; Elektrische und magnetische Felder der Stromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-01-15

    The availability of electrical energy in all areas of life is guaranteed by a widely ramified power grid. When electricity is transported, magnetic fields are created in addition to the electrical fields. In this brochure one will learn more about the causes and effects of electrical and magnetic fields as well as protection concepts and preventive measures. [German] Die Verfuegbarkeit von elektrischer Energie in allen Lebensbereichen wird von einem weit verzweigten Stromnetz gewaehrleistet. Wird Elektrizitaet transportiert, entstehen zusaetzlich zu den elektrischen auch magnetische Felder. In dieser Broschuere erfaehrt man mehr zu Ursachen und Wirkungen elektrischer und magnetischer Felder sowie Schutzkonzepten und Vorsorgemassnahmen.

  17. Gedrag op elektrische en gewone fietsen vergeleken : een experiment op de openbare weg.

    NARCIS (Netherlands)

    Twisk, D.A.M. Vlakveld, W.P. & Boele, M.J.

    2014-01-01

    Om fietsen veiliger te maken is meer inzicht nodig in de factoren die de kans op een ongeval beïnvloeden. Dit onderzoek geeft inzicht in de verschillen in fietsgedrag op elektrische en gewone fietsen voor verschillende leeftijdsgroepen en in verschillende verkeersomstandigheden. Er is gekeken naar

  18. Living Lab rapport CityServiceBike : onderzoek naar de inzet van lichte elektrische vrachtvoertuigen (LEVV’s) voor stadslogistiek.

    NARCIS (Netherlands)

    Balm, S.H.; Boerema, M.J.; Morse, I.; van Genderen, Elza

    Het LEVV-LOGIC project is een tweejarig onderzoek naar de inzet van lichte elektrische vrachtvoertuigen (LEVVs) voor stadslogistiek. In het project ontwikkelen drie hogescholen samen met ondernemers, publieke instellingen en netwerkorganisaties nieuwe kennis over logistieke concepten en business

  19. Electric transport in the Netherlands. Highlights 2012; Elektrisch vervoer in Nederland. Highlights 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Businesses, social and educational institutions and governmental institutes work together to accelerate electric transport and to discover and exploit economic opportunities. In 2012, many activities were carried out and results achieved, of which the highlights are presented in this brochure [Dutch] Bedrijfsleven, maatschappelijke- en kennisinstellingen en overheden werken samen aan versnelling van elektrisch vervoer en het ontdekken en benutten van economische kansen. In 2012 werden veel activiteiten uitgevoerd en resultaten geboekt, waarvan in deze brochure verslag wordt gedaan.

  20. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  1. Electric transport in the Netherlands in an international perspective. Benchmark electric driving 2012; Elektrisch vervoer in Nederland in internationaal perspectief. Benchmark elektrisch rijden 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P.; Weeda, M. [ECN Beleidsstudies, Petten (Netherlands); Appels, D. [Agentschap NL, Utrecht (Netherlands)

    2012-07-15

    effects on employment and economy are being monitored by Statistics Netherlands as part of the 'Economic Radar of the Sustainable Energy Sector'. [Dutch] De benchmark elektrisch rijden is een vervolg op de internationale vergelijking die in 2010 is gepubliceerd als onderdeel van het plan van aanpak elektrisch vervoer 2011-2015, 'Elektrisch Rijden in de Versnelling'. In dit plan is op basis van literatuur een eerste internationale vergelijking gemaakt tussen Nederland en een tiental andere landen, die op het gebied van elektrisch rijden vooruitstrevend zijn. Hierbij is gekeken naar de ambities op het gebied van het aantal voertuigen en de laadinfrastructuur; internationale samenwerking/interessante projecten en het overheidsinstrumentarium. In deze tweede benchmark zijn dezelfde punten nogmaals, maar nu twee jaar later, opgenomen. Ook zijn nu de realisaties in de diverse landen zowel wat betreft voertuigen als laadinfrastructuur bekeken.

  2. Part-turn gearboxes for electric actuators; Schwenkgetriebe fuer elektrische Stellantriebe

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, M. [Riester (W.) GmbH und Co. KG, Muellheim (Germany)

    2002-09-01

    Different types of gearboxes provide a useful complement to the electric actuator type ranges. The gearboxes can be combined with the actuators in many ways. Multi-turn actuators, for example, can be turned into part-turn actuators. When using a modular system, a suitable solution for almost any automation task in the field of industrial valves can be found. (orig.) [German] Sinnvoll ergaenzt werden elektrische Stellantriebe fuer Armaturen durch verschiedene Arten von Getrieben. Die Getriebe sind in vielfaeltiger Weise mit den Stellantrieben kombinierbar. So werden beispielsweise aus Drehantrieben Schwenkantriebe. Mit einem Baukasten-System laesst sich so fuer nahezu jede Automatisierungsaufgabe im Bereich der Industriearmaturen eine passende Loesung finden. (orig.)

  3. The transition to the electric vehicle era; De transitie naar het tijdperk van de elektrische auto

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, J.

    2010-06-15

    The final transition from a fossil fuel driven transport system to an electricity driven transport system seems to be a fact. Every large car manufacturer has electric vehicles in its product range in the coming 6 to 24 months and more are expected to follow. Scientists and experts in the fields of electric driving see how this transition takes place in various stages: from hybrid cars to plug-in hybrids, to full-electric cars. The pace of this transition is mainly determined by the technical and institutional factors such as developments in battery technology and federal government policy. This transition will have a positive effect on climate, economy, national security and a wide range of other factors. The electric vehicle also offers opportunities in the field of smart and efficient use of energy by means of smart grid and vehicle to grid (V2G) technology. For now, the high cost price and low energy density of batteries (a decisive factor for the range) seem to constitute the largest obstacle to success. [Dutch] De definitieve overgang van een op fossiele brandstoffen naar een op elektriciteit gebaseerd transportsysteem lijkt een feit. Elke grote autofabrikant heeft in de komende 6 tot 24 maanden een elektrische auto in haar productaanbod en daar komen er naar verwachting steeds meer bij. Wetenschappers en experts op het gebied van elektrisch rijden zien deze overgang zich voltrekken in verschillende fases; van hybride auto's naar de plug-in hybrides, naar de volledig elektrische auto's. De snelheid waarmee deze overgang zal gaan plaatsvinden zal vooral bepaald worden door technische en institutionele factoren zoals ontwikkelingen in batterijtechnologie en het beleid van federale overheden. Deze overgang zal een positief effect hebben op het klimaat, de economie, de nationale veiligheid en een breed scala aan andere factoren. Ook biedt de elektrische auto mogelijkheden op het gebied van slim en efficient gebruik van energie door middel van smart

  4. Straight motion gear for vehicle brakes with electrical actuation; Translationsgetriebe fuer elektrisch betaetigte Fahrzeugbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Bill, K.H.; Semsch, M. [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    1998-01-01

    Electric brake systems and components are increasing in importance due to the easy wheel-selective operation in future vehicle concepts. Building electric brake systems economically is decisively dependent on the availability of wheel brakes suitable in terms of dynamic behaviour, energy requirements, space, size, reliability and costs. In particular, the coupling of the transducer and friction brake by means of a suitable gear system adapted to the requirements of a vehicle brake represents a problem which has not yet been satisfactorily solved. In Subproject B6 of the Sonderforschungsbereich 241-IMES, sponsored by the Deutsche Forschungsgemeinschaft, research on new mechatronic brake systems is being conducted at the Automotive Engineering Department of Darmstadt University. (orig.) [Deutsch] Elektrische Bremssysteme und Komponenten gewinnen durch den leicht durchfuehrbaren radselektiven Eingriff bei kuenftigen Fahrzeugkonzepten eine zunehmende Bedeutung. Die wirtschaftliche Realisierung elektrischer Bremssysteme wird massgeblich von der Verfuegbarkeit geeigneter Radbremsen im Hinblick auf Dynamikverhalten, Energiebedarf, Bauraum, Masse, Zuverlaessigkeit und Kosten abhaengen. Besonders die Kopplung von Autor und Reibungsbremse durch ein geeignetes, an die Erfordernisse einer Fahrzeugbremse angepasstes Getriebesystem stellt ein bisher noch nicht befriedigend geloestes Problem dar. Im Teilprojekt B6 des Sonderforschungsbereiches 241-IMES, gefoerdert durch die Deutsche Forschungsgemeinschaft, werden hierzu an der Technischen Universitaet Darmstadt (TUD), Fachgebiet Fahrzeugtechnik, mechatronische Bremssysteme entwickelt. (orig.)

  5. Electric driving. An attractive challenge; Elektrisch autorijden. Evaluatie van transities op basis van systeemopties

    Energy Technology Data Exchange (ETDEWEB)

    Nagelhout, D.; Ros, J.P.M.

    2009-01-15

    Over the past years, electric driving has become more and more attractive because of the development of better batteries. Driving electric vehicles could drastically reduce CO2 emissions, especially if more electricity would be generated by using sustainable energy. As most passenger cars are not used at night, this is the ideal time for charging their batteries. This would be cost-effective because, at that time, there is a surplus of generating capacity, and wind energy could also be used more effectively. Moreover, consumers will be able to drive clean and quiet vehicles at costs that seem surmountable in the future. At least two obstacles still need to be overcome. The first of which is the current maximum range of electric vehicles of around a few hundred kilometres. Battery producers and universities are working hard on the development of batteries that could be charged within 5 to 10 minutes at EV fast-charge stations. This limited range would not be a drawback for the so-called plug-in hybrid electric vehicles (PHEVs), which can run on both fossil fuel and electric power, and are expected to come onto the market in the near future. However, these plug-in hybrids reduce less CO2 and carry slightly higher costs. The second obstacle is the need for a standardised European network of charging stations, and electrical outlets near residences and at commercial and public parking facilities. This report shows the challenges facing the government and the business community of utilising the benefits of electric driving and of overcoming the obstacles. [Dutch] Elektrische auto's - in combinatie met een elektriciteitsproductie op basis van vernieuwbare bronnen en schoon fossiel - hebben de potentie om op lange termijn de CO2-emissie van personenauto's en andere lichte voertuigen met 80-90% terug te brengen. Elektrisch vervoer kan ook de geluidhinder in de stad aanmerkelijk terugdringen. De kosten lijken hiervoor geen beletsel te zijn, want de verwachting is

  6. Physical properties of nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Krahne, Roman; George, Chandramohan [Istituto Italiano di Tecnologia, Genoa (Italy). Nanostructures; Manna, Liberato [Istituto Italiano di Tecnologia, Genoa (Italy). Nanochemistry; Morello, Giovanni [CNR, Lecce (Italy). Nanoscience Institute; Figuerola, Albert [Barcelona Univ. (Spain). Inst. de Nanociencia i Nanotecnologia; Deka, Sasanka [Delhi Univ. (India). Dept. of Chemistry

    2013-06-01

    Inorganic nanoparticles are among the most investigated objects nowadays, both in fundamental science and in various technical applications. In this book the physical properties of nanowires formed by nanoparticles with elongated shape, i.e. rod-like or wire-like, are described. The transition in the physical properties is analyzed for nanorods and nanowires consisting of spherical and rod-like nanoparticles. The physical properties of nanowires and elongated inorganic nanoparticles are reviewed too. The optical, electrical, magnetic, mechanical and catalytic properties of nanowires consisting of semiconductors, noble and various other metals, metal oxides properties and metal alloys are presented. The applications of nanorods and nanowires are discussed in the book.

  7. Army symposium: Electrical energy engineering today; Wehrtechnisches Symposium: Moderne elektrische Energietechnik

    Energy Technology Data Exchange (ETDEWEB)

    Busse, H. (ed.) [Bundesakademie fuer Wehrverwaltung und Wehrtechnik, Mannheim (Germany). Fachgebiet Elektrotechnik und Elektroenergiewesen

    2000-05-01

    This symposium was held in Mannheim on May 20/21, 2000. All aspects of energy engineering were discussed, including electrochemical energy sources like accumulator batteries and fuel cells. The proceedings volume contains 26 papers which reflect the state of the art and current trends in electrical energy engineering in the German army. [German] Das Wehrtechnische Symposium 'Moderne elektrische Energietechnik' wurde von der Lehrabteilung Wehrtechnik der Bundesakademie fuer Wehrverwaltung und Wehrtechnik in Mannheim in der Zeit vom 20.05.-21.05.2000 durchgefuehrt. Das Programm enthaelt die aktuellen Themen der elektrischen Energietechnik. Die elektroschemischen Energiequellen (Batterien und Brennstoffzellen) wurden in das Programm integriert. Dadurch konnte das gesamte Spektrum der Energietechnik vielschichtig dargestellt und in der Diskussion unter z.T. sehr verschiedenen Gesichtspunkten beleuchtet werden. Die im vorliegenden Tagungsband abgedruckten 26 Skripte wurden weder gekuerzt noch ergaenzt. Sie zeigen insgesamt den aktuellen Stand und die erfolgversprechenden Entwicklungstendenzen der elektrischen Energietechnik in der Bundeswehr auf. (orig.)

  8. Urban distribution by electric transport. A guide for municipalities. 2013; Stedelijke distributie met elektrisch vervoer. Een gids voor gemeenten. 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    This guide provides practical tools for municipalities in the Netherlands to develop and implement policies for urban distribution by electric transport (a.k.a. e-distribution). The guide highlights the different roles that municipalities can play to promote electric mobility. The guide also describes the policies and measures that fit these roles. Further, practical experiences and examples give a clear picture of present activities of municipalities and entrepreneurs in this field [Dutch] Deze gids biedt gemeenten praktische handvatten om beleid te ontwikkelen en uit te voeren voor stedelijke distributie met elektrisch vervoer (e-distributie). De gids belicht de verschillende rollen die gemeenten kunnen vervullen om elektrisch vervoer te bevorderen. Ook beschrijft de gids de beleidskeuzen en maatregelen die bij deze rollen passen. Verder geven praktijkervaringen en voorbeelden een duidelijk beeld van wat gemeenten en ondernemers doen die al op dit terrein actief zijn.

  9. Electric transport in 20 questions. The starting guide for businesses; Elektrisch vervoer in 20 vragen. De startgids voor bedrijven

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    This guide answers the 20 most important questions that entrepreneurs and businesses have about electric vehicles (EV), divided into seven main questions: What is it; Why should I go for it; Which electric vehicles are on the market; What are the costs; How and where can I recharge; How do I put EV into operation; What does the future looks like? The purpose of this guide is to provide a clear and reliable overview of the options for EV in order for entrepreneurs to ease the switch to electric vehicles [Dutch] Deze gids geeft antwoord op de 20 belangrijkste vragen die ondernemers en bedrijven hebben over elektrisch vervoer (EV), onderverdeeld in zeven hoofdvragen: Wat is het; Waarom zou ik er voor kiezen; Welke elektrische voertuigen zijn er op de markt; Wat zijn de kosten; Hoe en waar kan ik opladen; Hoe breng ik EV in de praktijk; Hoe ziet de toekomst eruit? Het doel van deze gids is om een helder en betrouwbaar overzicht te geven van de mogelijkheden van EV om daarmee de eventuele overstap naar een elektrisch voertuig voor ondernemers te vereenvoudigen.

  10. Electric driving in 2050. Consequences for the living environment; Elektrisch rijden in 2050. Gevolgen voor de leefomgeving

    Energy Technology Data Exchange (ETDEWEB)

    Nijland, H.; Hoen, A.; Snellen, D.; Zondag, B.

    2012-11-15

    The ambition of the Dutch government was to realize a million cars driving on electricity in the Netherlands by 2050. This way the cabinet aimed to reduce the dependency on fossil fuels and to contribute to the European targets regarding the CO2 emissions of transport in 2050. These emissions need to be reduced by 60 per cent compared to 1990. To reach the climate targets, the EU also plans to ban cars with combustion engines from the European cities. A full switch to electric passenger cars can make a significant contribution to the realization of these targets. Therefore, PBL (the Environmental Assessment Agency) explored the consequences of such a full switch to electric passenger car mobility. The transition to electric cars enables the realization of approximately half of the long-term climate ambitions for the traffic and transport sector. The environment, particularly in the cities, profits from a transition to electric driving, because it reduces both the emission of air-polluting substances and noise pollution. On the main roads and the regional roads, however, electric driving does not lead to a reduction in noise pollution. The electricity grid will need to be modified to be able to meet the growing demand [Dutch] De ambitie van het kabinet-Rutte was dat er in 2025 een miljoen auto's op elektriciteit rijden in Nederland. Hiermee wilde het kabinet de afhankelijkheid van fossiele brandstoffen verminderen en een bijdrage leveren aan de in Europees verband afgesproken doelen rondom de uitstoot van de CO2-emissies door transport in 2050. Deze uitstoot moet met 60 procent verminderen ten opzichte van 1990. Om de klimaatdoelen te halen, wil de EU bovendien auto's met verbrandingsmotoren weren uit de Europese steden. Een volledige omschakeling naar elektrisch rijden van personenauto's kan een belangrijke bijdrage leveren aan deze doelen. Het PBL heeft daarom de gevolgen verkend van zo'n volledige omschakeling naar elektrische

  11. Elektrische Energieversorgung

    Science.gov (United States)

    Schulz, Detlef

    Nur mit einer zuverlässigen und wirtschaftlichen elektrischen Energieversorgung ist eine nachhaltige gesellschaftliche Entwicklung von Industrienationen möglich. Gleichzeitig muss diese selbst so nachhaltig, d. h. umweltverträglich gestaltet werden, dass auch zukünftige Generationen nicht in ihrer Entfaltung behindert werden. Eine versorgungssichere, wirtschaftliche und umweltverträgliche Energiebereitstellung ergibt sich nicht zwingend allein aus einer technisch evolutionären Entwicklung und ist auch bis heute nicht ausschließlich nur mit einer der bekannten Wandlungstechnologien nachweislich realisierbar.

  12. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    Science.gov (United States)

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Magnetic field control of fluorescent polymer nanorods

    International Nuclear Information System (INIS)

    Kim, Taehyung; He, Le; Bardeen, Christopher J; Morales, Jason R; Beyermann, W P

    2011-01-01

    Nanoscale objects that combine high luminescence output with a magnetic response may be useful for probing local environments or manipulating objects on small scales. Ideally, these two properties would not interfere with each other. In this paper, we show that a fluorescent polymer host material can be doped with high concentrations of 20–30 nm diameter magnetic γ-Fe 2 O 3 particles and then formed into 200 nm diameter nanorods using porous anodic alumina oxide templates. Two different polymer hosts are used: the conjugated polymer polydioctylfluorene and also polystyrene doped with the fluorescent dye Lumogen Red. Fluorescence decay measurements show that 14% by weight loading of the γ-Fe 2 O 3 nanoparticles quenches the fluorescence of the polydioctylfluorene by approximately 33%, but the polystyrene/Lumogen Red fluorescence is almost unaffected. The three-dimensional orientation of both types of nanorods can be precisely controlled by the application of a moderate strength (∼0.1 T) external field with sub-second response times. Transmission electron microscope images reveal that the nanoparticles cluster in the polymer matrix, and these clusters may serve both to prevent fluorescence quenching and to generate the magnetic moment that rotates in response to the applied magnetic field.

  14. Digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing

    Science.gov (United States)

    Jiang, Wei; He, Xiaoning; Liu, Hongzhong; Yin, Lei; Shi, Yongsheng; Ding, Yucheng

    2014-11-01

    In this article, we report on the digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing. The pattern of TiO2 nanorod arrays can be easily designed and fabricated by laser scanning technology integrated with a computer-aided design system, which allows a high degree of freedom corresponding to the various pattern design demands. The approach basically involves the hydrothermal growth of TiO2 nanorod arrays on a transparent conductive substrate, the micropattern of TiO2 nanorod arrays and surface fluorination treatment. With these micro/nano-composite TiO2 nanorod array based films, we have demonstrated superhydrophilic patterned TiO2 nanorod arrays with rapid water spreading ability and superhydrophobic patterned TiO2 nanorod arrays with an excellent droplet bouncing effect and a good self-cleaning performance. The dynamic behaviours of the water droplets observed on the patterned TiO2 nanorod arrays were demonstrated by experiments and simulated by a finite element method. The approaches we will show are expected to provide potential applications in fields such as self-cleaning, surface protection, anticrawling and microfluidic manipulation.

  15. Electrical grid requirements to be met by superconducting components of energy supply systems; Elektrische Netzanforderungen an supraleitende Komponenten der Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, D W; Radtke, U

    1995-05-01

    Suoerconducting components will reduce the effective losses of electrical equipment to practically zero. The new technology will bring about novel components with completely new or modified properties and capacities, and thus a number of economic advantages for grid operation. The novel components opened up by superconductivity technology are of particular interest to maximum and high-voltage applications. Components such as generators and transformers will be enhanced in their electrical performance, and effects of synergism are expected to be achieved in multi-functional applications of SMES and through specific combination of the components current limiter and cable, and transformer. (orig./MM) [Deutsch] Supraleitende Betriebsmittel reduzieren die Wirkverluste elektrischer Betriebsmittel praktisch auf null. Daraus resultieren Betriebsmittel mit neuen bzw. veraenderten elektrischen Eigenschaften, die fuer das Netz eine Reihe von Verbesserungen mit sich bringen koennen. Mit Supraleitung werden neuartige Betriebsmittel moeglich und fuer die Hoechst- und Hochspannungsebene wirtschaftlich attraktiv. Andere supraleitende Betriebsmittel wie Generator und Transformator erhalten verbesserte elektrische Eigenschaften. Synergieeffekte sind beim multi-funktionalen Einsatz des SMES und bei Kombination der Betriebsmittel Strombegrenzer und Kabel sowie Transformator zu erwarten. (orig./MM)

  16. A manipulator

    International Nuclear Information System (INIS)

    Cole, G.V.; Hofmann, D.A.; Ashby, R.

    1984-01-01

    A manipulator is described, for remote handling of objects within an enclosure, by an operator outside the enclosure. The manipulator consists of a telescopically extensible arm member, the action of which is controlled by a motor-driven lead screw. (U.K.)

  17. Optical imaging and magnetophoresis of nanorods

    International Nuclear Information System (INIS)

    Lim, Jit Kang; Tan, David X.; Lanni, Frederick; Tilton, Robert D.; Majetich, Sara A.

    2009-01-01

    Peclet number analysis is performed to probe the convective motion of nanospheres and nanorods under the influence of magnetophoresis and diffusion. Under most circumstances, magnetophoretic behaviour dominates diffusion for nanorods, as the magnetic field lines tend to align the magnetic moment along the rod axis. The synthesis and dispersion of fluorophore-tagged nanorods are described. Fluorescence microscopy is employed to image the nanorod motion in a magnetic field gradient. The preliminary experimental data are consistent with the Peclet number analysis.

  18. A tunable plasmonic nano-antenna based on metal–graphene double-nanorods

    Science.gov (United States)

    Dong, Zhewei; Sun, Chen; Si, Jiangnan; Deng, Xiaoxu

    2018-05-01

    A tunable plasmonic antenna based on metal–graphene nanostructures is proposed in the mid-infrared region, composed of two identical gold nanorods placed on separated graphene sheets. The unidirectional side scattering of the plasmonic antenna achieved by the constructive and destructive interference of the localized surface plasmon resonances (LSPR) of the nanorods is investigated using finite-difference time-domain solutions and is theoretically analyzed based on a two point dipole model. The scattering directivity peak of the plasmonic antenna is red-shifted linearly with increasing refractive index of the environment. The scattering direction from the plasmonic antenna is switched actively by tuning the LSPRs of the nanorods with the Fermi energies of the separated graphene sheets. The refractive index sensitivity and active tunable scattering direction of the plasmonic antenna provides a promising application to manipulate light at the nanoscale in the fields of bio-sensing and optoelectronic devices.

  19. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  20. Manipulatives Work!

    Science.gov (United States)

    Moch, Peggy L.

    2001-01-01

    Fifth graders (n=16) engaged in manipulative activities to improve their grasp of math concepts; one-third were identified as exceptional children. Posttest results after 12 lessons showed the overall class average increased from 49% to 59% and all areas improved compared to pretest scores. Attitude changes were also apparent. (Contains 24…

  1. New electric transport concepts in the Netherlands. An outline of market initiatives; Nieuwe elektrische vervoersconcepten in Nederland. Een verkenning van enkele marktinitiatieven

    Energy Technology Data Exchange (ETDEWEB)

    Pol, M. [ECN Beleidsstudies, Petten (Netherlands); Hoen, A. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands)

    2013-05-15

    This report describes the results of an exploratory qualitative study of electric vehicles (EV) market concepts that have been brought onto the market. An electric vehicle is defined as any means of transport with a battery pack that can be recharged. The purpose of the study is to increase the knowledge about new EV concepts and identifying strong arguments by means of which the governmental policy in the Netherlands can improve the position for EV in the market. For this purpose, among other things, interviews were held in the second half of 2012 with six commercial initiators in the field of electric vehicles. Due to the limited number of interviews, it is important to take care in not generalizing too much the findings in this report [Dutch] In dit rapport worden de resultaten beschreven van een verkennende kwalitatieve studie naar elektrisch vervoer (EV) concepten die marktpartijen op de markt hebben gebracht. Onder een elektrisch voertuig verstaan we alle vervoermiddelen met een accupakket die met een stekker kunnen worden opgeladen. Het doel van de studie is het vergroten van de kennis over nieuwe EV-concepten en het identificeren van aangrijpingspunten waarmee het beleid EV een steviger plaats in de markt kan laten innemen. Hiertoe zijn onder andere interviews gevoerd in de tweede helft van 2012 met zes commerciele initiatiefnemers op het gebied van elektrisch rijden. Vanwege het beperkte aantal interviews is het van belang voorzichtig te zijn met het generaliseren van de bevindingen in dit rapport.

  2. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  3. Size and shape control in the overgrowth of gold nanorods

    International Nuclear Information System (INIS)

    Ratto, Fulvio; Matteini, Paolo; Rossi, Francesca; Pini, Roberto

    2010-01-01

    We report on a new sustainable approach to manipulate the optical behaviour and geometrical properties of gold nanorods in aqueous solutions by fine control of their overgrowth. In our approach, the overgrowth is realized by modulation of the reduction of the gold ions which are left as Au 1+ after the primary step of the synthesis (typically as much as ∼80% of the gold ions available in the growth solution). The progress of the reduction requires the gradual addition of ascorbic acid, which transforms the Au 1+ into Au 0 and may be performed in the original growth solution with no need for any further manipulation. By control of the total amount and rate of administration of the ascorbic acid, we prove the possibility to realize a systematic modulation of the average lengths, diameters, shapes (rod or dog-bone like), and light extinction of the nanoparticles. A slow overgrowth leads to a gradual enlargement of the lengths and diameters at almost constant shape. In contrast, a faster overgrowth results into a more complex modification of the overall shape of the gold nanorods.

  4. Currency Manipulation

    OpenAIRE

    Weithing Zhang; Thomas Mertens; Tarek Hassan

    2014-01-01

    Many central banks manage the stochastic behavior of their currencies' exchange rates by imposing pegs relative to a target currency. We study the effects of such currency manipulation in a multi-country model of exchange rate determination with endogenous capital accumulation. We find that the imposition of an exchange rate peg relative to a given target currency increases the volatility of consumption in the target country and decreases the volatility of the target currency's exchange rate ...

  5. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  6. The development of electric-powered vehicles. Does China cause an acceleration?; De ontwikkeling van elektrische auto's. Zorgt China voor een stroomversnelling?

    Energy Technology Data Exchange (ETDEWEB)

    De Kleine, M.

    2010-06-15

    The Chinese government and trade and industry have the ambition to produce battery-electric vehicles on a large scale and to obtain a large market share worldwide. The policy of the Chinese government is characterized by three steps: stimulating R and D, showing the results and incentivising the market. Stimulating R and D has been done by the so-called 863 program over the last 15 years, focusing on battery-electric vehicles and on hybrid and fuel cell vehicles. Many car manufacturers pay attention to the development of electric vehicles, but they all focus mainly on conventional propulsion techniques. Interesting manufacturers are DongFeng, BAIC/Foton and BYD. Battery manufacturers also see opportunities in electric vehicles. Many are involved in the development of large batteries. BAK, BYD and Tianjin Lishen are the most interesting manufacturers. Various initiatives can be seen in the field of standardization, both nationally and internationally. Loading facilities are installed in an increasing number of locations. Despite all ambitions and initiatives it remains to be seen if China will cause a revolution. The available technical knowledge has its limitations. Investments and collaborations are limited. Moreover, the existing electrical infrastructure is preventing large-scale implementation of electric vehicles. China will play a role in the development of electric vehicles, but it will not cause a large acceleration. [Dutch] De Chinese overheid en het bedrijfsleven hebben de ambitie op grote schaal batterij-elektrische auto's te produceren en hiermee wereldwijd een groot marktaandeel te verkrijgen. Het beleid dat de Chinese overheid voert kenmerkt zich door drie stappen: het stimuleren van R en D, het tonen van de resultaten en het stimuleren van de markt. Het stimuleren van R enD is de afgelopen 15 jaar gedaan vanuit het zogenaamde 863-programma, waarbij men zich naast batterij-elektrische voertuigen ook op hybride en brandstofcelvoertuigen heeft

  7. Double Fano resonances in plasmon coupling nanorods

    International Nuclear Information System (INIS)

    Liu, Fei; Jin, Jie

    2015-01-01

    Fano resonances are investigated in nanorods with symmetric lengths and side-by-side assembly. Single Fano resonance can be obtained by a nanorod dimer, and double Fano resonances are shown in nanorod trimers with side-by-side assembly. With transverse plasmon excitation, Fano resonances are caused by the destructive interference between a bright superradiant mode and dark subradiant modes. The bright mode originates from the electric plasmon resonance, and the dark modes originate from the magnetic resonances induced by near-field inter-rod coupling. Double Fano resonances result from double dark modes at different wavelengths, which are induced and tuned by the asymmetric gaps between the adjacent nanorods. Fano resonances show a high figure of merit and large light extinction in the periodic array of assembled nanorods, which can potentially be used in multiwavelength sensing in the visible and near-infrared regions. (paper)

  8. Stimulated emission from ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, R.; Lange, H.; Priller, H.; Klingshirn, C.; Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe (T.H.), 76128 Karlsruhe (Germany); Kling, R. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Waag, A. [Institut fuer Halbleitertechnik, TU-Braunschweig, H.-Sommer-Str. 66, 38106 Braunschweig (Germany); Fan, H.J.; Zacharias, M. [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2006-03-15

    By means of time resolved spectroscopy we compare two samples of ZnO nanorods with respect to their suitability as stimulated emitters. In the case of narrow nanorods their wave guiding quality causes a suppression of exciton-exciton scattering whereas no laser emission is detectable. Unlike their narrow counterparts, wide nanorods not only benefit from a larger overlap of the guided mode with the gain medium but a variation in VLS growth results in gold nanoparticles being present at the bottom of nanorods. Consequently, laser emission from single wide rods is evidenced up to 150 K. In addition to experimental studies we carry out 3D numerical simulations of the electric field distribution to evaluate the influence of gold nanoparticles at the nanorod/substrate interface. This finite element analysis confirms that gold leads to an enhancement of confinement within the resonator. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Growth and characterization of iridium dioxide nanorods

    International Nuclear Information System (INIS)

    Chen, R.S.; Huang, Y.S.; Liang, Y.M.; Tsai, D.S.; Tiong, K.K.

    2004-01-01

    Conductive iridium dioxide (IrO 2 ) nanorods have been successfully grown on the Si(1 0 0) substrates via metalorganic chemical vapor deposition (MOCVD). A wedge-shaped morphology and naturally formed sharp tips are observed for IrO 2 nanorods using field-emission scanning electron microscopy (FESEM). High-resolution transmission electron microscopy (TEM) image and electron diffraction pattern show the growth of IrO 2 nanorods preferentially along c-axis. Structure and composition of IrO 2 nanorods have also been characterized using the techniques of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. It is noted that the IrO 2 nanorods are self-mediated instead of the conventional vapor-liquid-solid (VLS) approach or catalyst-mediated method

  10. Electrically driven heat pumps. Latest results from research and field tests; Elektrisch angetriebene Waermepumpen. Aktuelle Ergebnisse aus Forschung und Feldtests

    Energy Technology Data Exchange (ETDEWEB)

    Braungardt, Simon; Guenther, Danny; Miara, Marek; Wapler, Jeannette [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Wessing, Werner [E.ON Ruhrgas AG, Essen (Germany)

    2013-11-01

    Electric heat pumps have become firmly established in the German heating market. In recent years they have gained an eight to ten per cent share of the market. Approximately every fourth new building is heated with a heat pump. Whereas until a few years ago ground source heat pumps were still sold the most, the sales figures have shifted in recent years in favour of air source heat pumps. Carefully planned, heat pump systems compare very economically with other heating systems, whereby their higher procurement costs are offset by their lower energy and operating costs. Heat pumps are also competitive in terms of their ecological balance. This situation is continually improving with the growing proportion of renewable energies used for supplying electricity. [German] Auf dem deutschen Heizungsmarkt haben sich elektrische Waermepumpen als feste Groesse etabliert. Ihr Marktanteil lag in den letzten Jahren zwischen acht und zehn Prozent. Etwa jeder vierte Neubau wird mit einer Waermepumpe beheizt. Waehrend vor einigen Jahren noch ueberwiegend Erdreich-Waermepumpen verkauft wurden, haben sich die Verkaufszahlen in den letzten Jahren zugunsten der Aussenluft-Waermepumpen verschoben. Sorgfaeltig geplant, koennen Waermepumpenanlagen oekonomisch sehr gut gegenueber anderen Heizsystemen bestehen. Den hoeheren Anschaffungskosten stehen niedrigere Energie- und Betriebskosten gegenueber. Auch in der oekologischen Bilanz sind Waermepumpen konkurrenzfaehig. Die Position verbessert sich stetig mit dem wachsenden Anteil erneuerbarer Energien bei der Stromversorgung.

  11. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  12. Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.

    Science.gov (United States)

    Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin

    2014-04-22

    The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.

  13. Photocatalytic paper using zinc oxide nanorods

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Jaisai, Mayuree; Imani, Reza; Nazhad, Mousa M; Dutta, Joydeep

    2010-01-01

    Zinc oxide (ZnO) nanorods were grown on a paper support prepared from soft wood pulp. The photocatalytic activity of a sheet of paper with ZnO nanorods embedded in its porous matrix has been studied. ZnO nanorods were firmly attached to cellulose fibers and the photocatalytic paper samples were reused several times with nominal decrease in efficiency. Photodegradation of up to 93% was observed for methylene blue in the presence of paper filled with ZnO nanorods upon irradiation with visible light at 963 Wm -2 for 120 min. Under similar conditions, photodegradation of approximately 35% was observed for methyl orange. Antibacterial tests revealed that the photocatalytic paper inhibits the growth of Escherichia coli under room lighting conditions.

  14. L E E guide on electric power supply in high rise buildings. tot. rev. ed.; L E E. Leitfaden Elektrische Energie im Hochbau

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, D.; Hinz, E.; Steinmueller, B.; Grossklos, M.

    2000-07-01

    Energy policy aiming at sustainability must take account of the noxious effects of fossil fuels. This guide will help to solve this problem. It is an easy to handle tool for integral planning and optimisation of electric power supply in administrative and office buildings, with a standard projecting procedure, a method for improving electric systems in buildings on the basis of characteristic values, and hints for planning and optimisation. It addresses builder owners and investors as well as architects, planners, engineers and energy consultants all of whom may be concerned in the planning of a building and its technical facilities. [German] Eine am Ziel der Nachhaltigkeit orientierte Energiepolitik muss Konsequenzen draus ziehen, dass der Einsatz der fossilen Energietraeger, auf denen unsere Energieversorgung bisher basiert, mit schaedlichen Umweltauswirkungen verbunden ist. Kohlendioxid und andere klimarelevante Spurengase heizen die Erdatmosphaere auf und drohen zur Klimakatastrophe zu fuehren; Stickoxid und Schwefeldioxid belasten mit dem sauren Regen Boden, Gewaesser und ganze Oekosysteme. Der vorliegende Leitfaden 'Elektrische Energie im Hochbau' will hier Abhilfe schaffen. Er stellt ein gut zu handhabendes Werkzeug dar, mit dessen Hilfe eine integrale Planung und Optimierung des rationellen Einsatzes elektrischer Energie in Dienstleistungsgebaeuden moeglich ist. Inhalte des Leitfadens sind die Darstellung des Planungsablaufs, ein Kennwertverfahren zur Verwertung und Verbesserung von elektrischen Anwendungen im Gebaeudebereich als Massnahme zur Investitions- und Betriebskostenreduzierung sowie Hinweise fuer Planung und Optimierung. Der Leitfaden richtet sich sowohl an die Bauherren bzw. Investoren als auch die an der Gebaeude- und Technikplanung Beteiligten, also die Architekten, Planer, Ingenieure und Energieberater. (orig.)

  15. Melatonin - a key to the evaluation of the effects of electric; Melatonin - Schluessel fuer die Bewertung der Wirkung elektrischer und magnetischer Felder?

    Energy Technology Data Exchange (ETDEWEB)

    Wunstorf, B.; Lichtenberg, W. [Fachhochschule Hamburg (Germany). Fachbereich Oekotrophologie; Boikat, U. [BAGS, Amt fuer Gesundheit, Hamburg (Germany)

    2000-09-01

    The human pineal gland produces melatonin in a circadian rhythm. The substance has different functions - as a hormone, as an antioxidant and as a neurotransmitter. The secretion of melatonin and its tumor inhibition function can be influenced by electric and magnetic fields. Investigations have been carried out with rodents which have a melatonin rhythm similar to humans; nevertheless, they show a high variability between the species. The present state of knowledge only allows limited use of melatonin as an indicator for the impact of electric and magnetic fields. (orig.) [German] In der Epiphyse des Menschen wird in circadianem Rhythmus Melatonin produziert und ausgeschuettet. Die Substanz hat unterschiedliche Funktionen - als Hormon, Antioxidans und Neurotransmitter. Seine Ausschuettung und seine tumorhemmende Funktion koennen durch elektrische und magnetische Felder beeinflusst werden. Anhand von Nagern, die einen dem Menschen aehnlichen Melatoninrhythmus haben, allerdings eine hohe Speziesvarianz aufweisen, wurden diese Funktionen untersucht. Nach dem jetzigen Kenntnisstand eignet sich Melatonin nur bedingt als Indikator fuer die Wirkungen elektrischer und magnetischer Felder. (orig.)

  16. Ion-assisted functional monolayer coating of nanorod arrays in hydrogen plasmas

    International Nuclear Information System (INIS)

    Tam, E.; Levchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S.

    2007-01-01

    Uniformity of postprocessing of large-area, dense nanostructure arrays is currently one of the greatest challenges in nanoscience and nanofabrication. One of the major issues is to achieve a high level of control in specie fluxes to specific surface areas of the nanostructures. As suggested by the numerical experiments in this work, this goal can be achieved by manipulating microscopic ion fluxes by varying the plasma sheath and nanorod array parameters. The dynamics of ion-assisted deposition of functional monolayer coatings onto two-dimensional carbon nanorod arrays in a hydrogen plasma is simulated by using a multiscale hybrid numerical simulation. The numerical results show evidence of a strong correlation between the aspect ratios and nanopattern positioning of the nanorods, plasma sheath width, and densities and distributions of microscopic ion fluxes. When the spacing between the nanorods and/or their aspect ratios are larger, and/or the plasma sheath is wider, the density of microscopic ion current flowing to each of the individual nanorods increases, thus reducing the time required to apply a functional monolayer coating down to 11 s for a 7-μm-wide sheath, and to 5 s for a 50-μm-wide sheath. The computed monolayer coating development time is consistent with previous experimental reports on plasma-assisted functionalization of related carbon nanostructures [B. N. Khare et al., Appl. Phys. Lett. 81, 5237 (2002)]. The results are generic in that they can be applied to a broader range of plasma-based processes and nanostructures, and contribute to the development of deterministic strategies of postprocessing and functionalization of various nanoarrays for nanoelectronic, biomedical, and other emerging applications

  17. Oxidation dynamics of aluminum nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Chemical Engineering and Materials Science, Department of Computer Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2015-02-23

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation.

  18. New trend for synthesizing of magnetic nanorods with titanomaghemite structure

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Osama, E-mail: osmohamed@kfu.edu.sa [Faculty of Science, King Faisal University, P.O. Box 400, Al-Hassa 31982 (Saudi Arabia); Egyptian Petroleum Research Institute, Nasr City, P.O. Box 11727, Cairo (Egypt)

    2016-07-15

    This research aims at developing magnetic and optical materials through fabrication of uniform nanorods by facile and novel technique. In this trend, titanium and iron were successfully combined together forming nanorods without template or high temperature by urea hydrolysis. TEM images showed uniform and homogeneous nanorods with dimensions; 10 nm in width and 50 nm in length. In the same time, fine nanoparticles were observed around the nanorods. With further treatment for the nanorods at high temperature and pressure, FESEM images revealed that the dimensions of the rods slightly increased to be 70 nm in length and 12 nm in width with a complete disappearance of the nanoparticles. Using X-ray diffraction, thermal analyses and infrared spectra in addition to the results of the electron microscopy, the oriented attachment mechanism was suggested for the formation of titanium iron oxides nanorods. The magnetic measurements revealed that the prepared nanorods possess ferromagnetic behavior and exhibit high saturation magnetization. Also, the optical properties showed that the nanorods have high absorption in the visible region and possess low band gap energy. Finally, we concluded that it is probably the first time to prepare nanorods by urea hydrolysis. The advanced optical and magnetic properties give the prepared nanorods relevance to use as building blocks in functional nanoscale devices. - Graphical abstract: The present study has a dual aim for developing new and facile method for fabrication of nanorods containing titanomaghemite structure and improving their optical and magnetic properties - Highlights: • Synthesis of titanium iron oxides nanorods with titanomaghemite structure. • Using urea hydrolysis for preparation of nanorods. • Studying of the effect of pressure and temperature on the nanorods. • Enhancement of the magnetic properties of the nanorods in comparison with the nanoparticles. • Improvement of the optical properties of the nanorods

  19. Formation and electrical transport properties of pentacene nanorod crystal

    International Nuclear Information System (INIS)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Kuwahara, Y; Aono, M

    2010-01-01

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  20. Formation and electrical transport properties of pentacene nanorod crystal.

    Science.gov (United States)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y

    2010-09-10

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  1. Alq3 nanorods: promising building blocks for optical devices.

    Science.gov (United States)

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, M. [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moradlou, O. [Department of Chemistry, Faculty of Sciences, Alzahra University, P.O. Box 1993893973, Tehran (Iran, Islamic Republic of); Bayati, M.R. [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695-7907 (United States); Nien, Y.T. [Department of Materials Science and Engineering, National Formosa University, Huwei District, Taiwan (China); Moshfegh, A.Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-8969, Tehran (Iran, Islamic Republic of)

    2013-05-15

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core–shell nanorods where the features were grown through a multistep procedure including sol–gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV–vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min{sup −1} under UV illumination and 0.007 min{sup −1} under visible light. The difference in catalytic activities of the ZnO@CdS core–shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core–shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  3. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    Science.gov (United States)

    Zirak, M.; Moradlou, O.; Bayati, M. R.; Nien, Y. T.; Moshfegh, A. Z.

    2013-05-01

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core-shell nanorods where the features were grown through a multistep procedure including sol-gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV-vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min-1 under UV illumination and 0.007 min-1 under visible light. The difference in catalytic activities of the ZnO@CdS core-shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core-shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  4. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    International Nuclear Information System (INIS)

    Zirak, M.; Moradlou, O.; Bayati, M.R.; Nien, Y.T.; Moshfegh, A.Z.

    2013-01-01

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core–shell nanorods where the features were grown through a multistep procedure including sol–gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV–vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min −1 under UV illumination and 0.007 min −1 under visible light. The difference in catalytic activities of the ZnO@CdS core–shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core–shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  5. Growth process for gallium nitride porous nanorods

    Science.gov (United States)

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  6. Sensing based on the motion of enzyme-modified nanorods

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Pavel, Ileana-Alexandra; David, Sorin

    2015-01-01

    of nanorods modified with the appropriate enzyme. Nanorods, with a Pt and a polypyrrole (PPy) segment, were fabricated. The PPy segment of such nanorods was then modified with glucose oxidase (GOx), glutamate oxidase (GluOx), or xanthine oxidase (XOD). Calibration curves, linking the diffusion coefficient...... of the oxidase-modified nanorods to the concentration of the oxidase substrate, were subsequently built. The oxidase-modified nanorods and their calibration curves were finally used to determine substrate concentrations both in simple aqueous solutions and in complex samples such as horse serum and cell culture...

  7. Electrical characterization of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, E.; Bakin, A.; Postels, B.; Mofor, A.C.; Wehmann, H.H.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Weimann, T.; Hinze, P. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2007-05-15

    Zinc oxide (ZnO) nanorods were grown by a wet chemical approach and by vapor phase transport. To explore the electrical properties of individual nanostructures current-voltage (I-V) characteristics were obtained by using an atomic force microscope (AFM) with a conductive tip or by detaching the nanorods from the growth substrate, transferring them to an isolating substrate and contacting them with evaporated Ti/Au electrodes patterned by electron-beam lithography. The AFM-approach only yields a Schottky diode behavior, while the Ti/Au forms ohmic contacts to the ZnO. For the latter method the obtained I-V curves reveal a resistivity of the nanorods in the order of 10{sup -5} {omega} cm which is unusually low for undoped ZnO. We therefore assume the existence of a highly conductive surface channel. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. “Beating speckles” via electrically-induced vibrations of Au nanorods embedded in sol-gel

    Science.gov (United States)

    Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz

    2014-01-01

    Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative “speckle beats” induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of “beats”, for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged. PMID:24413086

  9. Bismuth titanate nanorods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-01

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi 2 Ti 2 O 7 phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi 2 Ti 2 O 7 phase are a promising candidate as a visible light photocatalyst

  10. GaN based nanorods for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Li Shunfeng; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, 38106 Braunschweig (Germany)

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  11. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  12. Electrophoretic growth of lead zirconate titanate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S.J.; Seraji, S.; Forbess, M.J.; Wu Yun; Chou, T.P.; Nguyen, C.; Cao Guozhong [Washington Univ., Seattle, WA (United States). Dept. of Materials Science and Engineering

    2001-08-16

    Nanorods of lead zirconate titanate (PZT)-a ferro- and piezoelectric material-up to 10 {mu}m in length and 70 to 150 nm in diameter are produced by sol-gel electrophoresis of PZT in a track-etched polycarbonate membrane, which is used as a template. (orig.)

  13. Currency Manipulation versus Current Account Manipulation

    OpenAIRE

    Junning Cai

    2005-01-01

    It is said that a country’s currency peg can become currency manipulation representing protracted government intervention in the foreign exchange market that gives it unfair competitive advantage in international trade yet prevents effective balance of payments in its trade partners. Regarding this widespread fallacy, this paper explains why currency peg is not currency manipulation even when it keeps a country’s currency undervalued. We clarify that 1) government is inherently a major player...

  14. Cadmium Sulphide Nanorods: Synthesis, Characterization and their Photocatalytic Activity

    International Nuclear Information System (INIS)

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Vijayaraj, Arunachalam; Prabu, Raju; Narayanan, Vengidusamy

    2012-01-01

    Cadmium sulphide (CdS) nanorods were prepared by a single precursor thermal decomposition (SPTD) method. The formation of CdS nanorods and their structure, morphology and elemental composition were studied by means of FT-IR, XRD, FE-SEM, HR-TEM and EDAX analysis. Photoluminescence (PL) and lifetime measurements were recorded to study the luminescence properties of the material. The PL spectrum of the CdS nanorods showed one broad peak and four shoulders and the cause for this emission was discussed. The PL emissions from the band edge and deep trap state of the CdS nanorods were studied by lifetime measurements. Further, the synthesized CdS nanorods showed an increase in efficiency of photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The increase in the photocatalytic activity was attributed to the mixed phase of the CdS nanorods

  15. Cadmium Sulphide Nanorods: Synthesis, Characterization and their Photocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Vijayaraj, Arunachalam; Prabu, Raju; Narayanan, Vengidusamy [Univ. of Madras, Madras (India)

    2012-09-15

    Cadmium sulphide (CdS) nanorods were prepared by a single precursor thermal decomposition (SPTD) method. The formation of CdS nanorods and their structure, morphology and elemental composition were studied by means of FT-IR, XRD, FE-SEM, HR-TEM and EDAX analysis. Photoluminescence (PL) and lifetime measurements were recorded to study the luminescence properties of the material. The PL spectrum of the CdS nanorods showed one broad peak and four shoulders and the cause for this emission was discussed. The PL emissions from the band edge and deep trap state of the CdS nanorods were studied by lifetime measurements. Further, the synthesized CdS nanorods showed an increase in efficiency of photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The increase in the photocatalytic activity was attributed to the mixed phase of the CdS nanorods.

  16. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  17. Zinc vanadate nanorods and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y.

    2015-01-01

    Highlights: • Zinc vanadate nanorods have been synthesized by a facile hydrothermal process. • The size of zinc vanadate nanorods can be controlled by growth conditions. • Zinc vanadate nanorods show good photocatalytic activities of methylene blue under solar light. - Abstract: Zinc vanadate nanorods have been synthesized by a simple hydrothermal process using zinc acetate and sodium vanadate as the raw materials. The zinc vanadate nanorods have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and solid UV–vis diffuse reflectance spectrum. XRD pattern and HRTEM image show that the zinc vanadate nanorods are composed of single crystalline monoclinic Zn 2 V 2 O 7 phase. SEM and TEM observations show that the diameter and length of the zinc vanadate nanorods are 50–100 nm and about 5 μm, respectively. Sodium dodecyl sulfonate (SDS) has an essential role in the formation of zinc vanadate nanorods. The SDS-assisted nucleation and growth process have been proposed to explain the formation and growth of the zinc vanadate nanorods. Solid UV–vis diffuse reflectance spectrum shows that the zinc vanadate nanorods have a band gap of 2.76 eV. The photocatalytic activities of the zinc vanadate nanorods have been evaluated by the photocatalytic degradation of methylene blue (MB) under solar light irradiation. The MB with the concentration of 10 mg L −1 can be degraded totally under the solar light irradiation for 4 h. It is suggested that the zinc vanadate nanorods exhibit promising application potential for the degradation of organic pollutants under solar light irradiation

  18. Facile electrochemical synthesis of tellurium nanorods and their photoconductive properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.H. [Center for Photon Manufacturing Science and Technology, School of Materials Science and Engineering, Jiangsu University, Zhenjiang - 212013 (China); Zhang, P. [Dongguan University of Technology, Dongguan-523808 (China); School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou - 510275 (China); Liang, C.L. [Instrumental Analysis and Research Center, SunYat-sen University, Guangzhou - 510275 (China); Yang, J. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang - 212013 (China); Zhou, M. [Center for Photon Manufacturing Science and Technology, School of Materials Science and Engineering, Jiangsu University, Zhenjiang - 212013 (China); The State Key Laboratory of Tribology, Tsinghua University, Beijing - 10084 (China); Lu, X.H. [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou - 510275 (China); Hope, G.A. [School of Biomolecular and Physical Sciences, Griffith University, Nathan - Qld 4111 (Australia)

    2012-10-15

    Tellurium nanorods have been successfully fabricated by template and surfactant-free electrochemical technique from an aqueous solution at room temperature. The as-prepared tellurium nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectrometry, UV-vis spectroscopy and photoluminescence spectroscopy. Films based on tellurium nanorods were constructed to study the photoresponse and I-V curves. These photoresponse measurements demonstrate that tellurium nanorods exhibited enhanced conductivity under illumination compared to in the dark measurement. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A simple route to synthesize manganese germanate nanorods

    International Nuclear Information System (INIS)

    Pei, L.Z.; Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-01-01

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: → Manganese germanate nanorods have been synthesized by simple hydrothermal process. → The formation of manganese germanate nanorods can be controlled by growth conditions. → Manganese germanate nanorods exhibit good PL emission ability for optical device.

  20. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    Science.gov (United States)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  1. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  2. Manipulators in teleoperation

    International Nuclear Information System (INIS)

    Hamel, W.R.

    1985-01-01

    Teleoperated manipulators represent a mature technology which has evolved over nearly 40 years of applications experience. The wide range of manipulator concepts developed thus far reflect differing applications, priorities, and philosophies. The technology of teleoperated manipulators is in a rapid state of change (just as are industrial robotics) fueled by microelectronics and materials advances. Large strides in performance and dexterity are now practical and advantageous. Even though improved controls and sensory feedback will increase functionality, overall costs should be reduced as manipulator fabrication and assembly labor costs are reduced through improved manufacturing technology. As these advances begin to materialize, broader applications in nonnuclear areas should occur

  3. Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains

    KAUST Repository

    Lavieville, Romain; Zhang, Yang; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    The nature of metal-semiconductor interfaces at the nanoscale is an important issue in micro- and nanoelectronic engineering. The study of charge transport through chains of CdSe semiconductor nanorods linked by Au particles represents an ideal model system for this matter, because the metal semiconductor interface is an intrinsic feature of the nanosystem. Here we show the controlled fabrication of all-inorganic hybrid metal-semiconductor networks with different size, in which the semiconductor nanorods are linked by Au domains at their tips. We demonstrate different approaches to selectively contact the networks and single nanorod chains with planar electrodes, and we investigate their charge transport at room temperature. © 2013 Elsevier B.V. All rights reserved.

  4. Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains

    KAUST Repository

    Lavieville, Romain

    2013-11-01

    The nature of metal-semiconductor interfaces at the nanoscale is an important issue in micro- and nanoelectronic engineering. The study of charge transport through chains of CdSe semiconductor nanorods linked by Au particles represents an ideal model system for this matter, because the metal semiconductor interface is an intrinsic feature of the nanosystem. Here we show the controlled fabrication of all-inorganic hybrid metal-semiconductor networks with different size, in which the semiconductor nanorods are linked by Au domains at their tips. We demonstrate different approaches to selectively contact the networks and single nanorod chains with planar electrodes, and we investigate their charge transport at room temperature. © 2013 Elsevier B.V. All rights reserved.

  5. Gold nanorod vaccine for respiratory syncytial virus

    International Nuclear Information System (INIS)

    Stone, John W; Thornburg, Natalie J; Blum, David L; Kuhn, Sam J; Crowe Jr, James E; Wright, David W

    2013-01-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response. (paper)

  6. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy

    Science.gov (United States)

    Choi, Jin-Ha; Hwang, Hai-Jin; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho; Oh, Byung-Keun

    2015-05-01

    Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au nanorods per BSA complex and were successively functionalized with polyethylene glycol (PEG) and anti-ErbB-2 antibodies to facilitate active targeting. The synergetic therapeutic activity originating from the two components effectively induced cell death (~80% reduction in viability compared with control cells) in target breast cancer cells after a single dose of laser irradiation. Intracellular SREB nanocomplex decomposition by proteolytic enzymes resulted in simultaneous RNA interference and thermal ablation, thus leading to apoptosis in the targeted cancer cells. Moreover, these therapeutic effects were sustained for approximately 72 hours. The intrinsic biocompatibility, multifunctionality, and potent in vitro anticancer properties of these SREB nanocomplexes indicate that they have great therapeutic potential for in vivo targeted cancer therapy, in addition to other areas of nanomedicine.Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au

  7. Master-slave manipulator

    International Nuclear Information System (INIS)

    Haaker, L.W.; Jelatis, D.G.

    1981-01-01

    A remote control master-slave manipulator for performing work on the opposite side of a barrier wall, is described. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. (U.K.)

  8. In Praise of Manipulation

    NARCIS (Netherlands)

    Dowding, Keith; Van Hees, Martin

    Many theorists believe that the manipulation of voting procedures is a serious problem. Accordingly, much of social choice theory examines the conditions under which strategy-proofness can be ensured, and what kind of procedures do a better job of preventing manipulation. This article argues that

  9. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  10. Manipulator comparative testing program

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maeda, M.

    1986-01-01

    The Manipulator Comparative Testing Program examined differences among manipulator systems from the United States and Japan. The manipulator systems included the Meidensha BILARM 83A, the Model M-2 of Central Research Laboratories Division of Sargent Industries (CRL), and the GCA Corporation PaR Systems Model 6000. The site of testing was the Remote Operations Maintenance Demonstration (ROMD) facility, operated by the Fuel Recycle Division in the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL). In all stages of testing, operators using the CRL Model M-2 manipulator had consistently lower times to completion and error rates than they did using other machines. Performance was second best with the Meidensha BILARM 83A in master-slave mode. Performance with the BILARM in switchbox mode and the PaR 6000 manipulator was approximately equivalent in terms of criteria recorded in testing. These data show no impact of force reflection on task performance

  11. Far-Infrared Absorption of PbSe Nanorods

    KAUST Repository

    Hyun, Byung-Ryool; Bartnik, A. C.; Koh, Weon-kyu; Agladze, N. I.; Wrubel, J. P.; Sievers, A. J.; Murray, Christopher B.; Wise, Frank W.

    2011-01-01

    Measurements of the far-infrared absorption spectra of PbSe nanocrystals and nanorods are presented. As the aspect ratio of the nanorods increases, the Fröhlich sphere resonance splits into two peaks. We analyze this splitting with a classical

  12. Synthesis of carbon nanorods by reduction of carbon bisulfide

    International Nuclear Information System (INIS)

    Lou Zhengsong; He Minglong; Zhao Dejian; Li Zhongchun; Shang Tongming

    2010-01-01

    Research highlights: Our manuscript is a concise preliminary account of original and of significant research, which illuminates carbon nanorods and variously shaped Y-junction carbon nanorods are successfully fabricated on a large scale through a carbon bisulfide thermal reduction process. Various shaped Y-junction carbon nanorods can be used as studying the electronic and transport properties of the nano-meter carbon material. - Abstract: Carbon nanorods are synthesized at large scale by the reduction of carbon bisulfide at 600 o C. Moreover, novel Y-junction carbon nanorods are detected in the samples. The X-ray power diffraction pattern indicates that the products are hexagonal graphite. Scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and N 2 physisorption studies show that carbon nanorods predominate in the product. Based on the supercritical carbon bisulfide system, the possible growth mechanism of the carbon nanorods was discussed. This method provides a simple and cheap route to large-scale synthesis of carbon nanorods.

  13. Templated synthesis of metal nanorods in silica nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Gao, Chuanbo

    2018-04-10

    A method of preparing a metal nanorod. The method includes seeding a metal nanoparticle within the lumen of a nanotube, and growing a metal nanorod from the seeded metal nanoparticle to form a metal nanorod-nanotube composite. In some cases, the nanotube includes metal binding ligands attached to the inner surface. Growing of the metal nanorod includes incubating the seeded nanotube in a solution that includes: a metal source for the metal in the metal nanorod, the metal source including an ion of the metal; a coordinating ligand that forms a stable complex with the metal ion; a reducing agent for reducing the metal ion, and a capping agent that stabilizes atomic monomers of the metal. Compositions derived from the method are also provided.

  14. Synthesis and thermoelectric properties of RuO2 nanorods

    International Nuclear Information System (INIS)

    Music, Denis; Basse, Felix H.-U.; Schneider, Jochen M.; Hassdorf, Ralf

    2010-01-01

    We have explored the effect of the O/Ru ratio on the morphology and the Seebeck coefficient of RuO 2 nanorods (space group P4 2 /mnm) synthesized by reactive sputtering. At an O/Ru ratio of 1.69, a faceted surface is observed, while nanorod formation occurs at O/Ru ratios of 2.03 and 2.24. Using classical molecular dynamics with the potential parameters derived in this work, we show that volatile species enable nanorod formation. Based on ab initio calculations, two effects of the nanorod formation on the Seebeck coefficient are observed: (i) increase due to additional states in the vicinity of the Fermi level and (ii) decrease due to oxygen point defects (volatile species). These two competing effects give rise to a moderate increase in the Seebeck coefficient upon nanorod formation.

  15. A simple wet chemical synthesis and characterization of hydroxyapatite nanorods

    International Nuclear Information System (INIS)

    Liu Yingkai; Hou Dedong; Wang Guanghou

    2004-01-01

    Calcium hydroxyapatite (Ca 5 (PO 4 ) 3 (OH):HAP) nanorods have been synthesized successfully via wet chemical technique at low temperature in the presence of suitable surfactant. The as-made nanorods have a diameter of 50-80 nm and a length of 0.5-1.2 μm. The microstructures and composition are characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectrometer (FT-IR). The formation mechanism of HAP nanorod is discussed in detail. It has been found that nanorods are pure, there is no HAP carbonated HAP. The growth mechanism of HAP nanorods could be explained by a soft template

  16. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  17. Manipulation, salience, and nudges.

    Science.gov (United States)

    Noggle, Robert

    2018-03-01

    Cass Sunstein and Richard Thaler recommend helping people make better decisions by employing 'nudges', which they define as noncoercive methods of influencing choice for the better. Not surprisingly, healthcare practitioners and public policy professionals have become interested in whether nudges might be a promising method of improving health-related behaviors without resorting to heavy-handed methods such as coercion, deception, or government regulation. Many nudges seem unobjectionable as they merely improve the quality and quantity available for the decision-maker. However, other nudges influence decision-making in ways that do not involve providing more and better information. Nudges of this sort raise concerns about manipulation. This paper will focus on noninformational nudges that operate by changing the salience of various options. It will survey two approaches to understanding manipulation, one which sees manipulation as a kind of pressure, and one that sees it as a kind of trickery. On the pressure view, salience nudges do not appear to be manipulative. However, on the trickery view (which the author favors), salience nudges will be manipulative if they increase the salience so that it is disproportionate to that fact's true relevance and importance for the decision at hand. By contrast, salience nudges will not be manipulative if they merely highlight some fact that is true and important for the decision at hand. The paper concludes by providing examples of both manipulative and nonmanipulative salience nudges. © 2017 John Wiley & Sons Ltd.

  18. Manganese oxalate nanorods as ballistic modifier for composite solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Supriya [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India); Chawla, Mohit [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Siril, Prem Felix, E-mail: prem@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India)

    2014-12-10

    Highlights: • Manganese oxalate nanorods were prepared using mild thermal precipitation and aging. • The nanorods were found to be efficient ballistic modifier for solid propellants. • The nanorods sensitized the thermolysis of ammonium perchlorate. • Controlled thermal decomposition of nanorods yielded manganese oxide nanoparticles. • MnO nanoparticles formed insitu in the condensed phase enhance the burning rates. - Abstract: Rod-shaped nanostructures of manganese oxalate (MnC{sub 2}O{sub 4}) were synthesized via mild thermal precipitation and aging process. Chemical composition of the MnC{sub 2}O{sub 4} nanorods was confirmed using Fourier transform infra-red (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) and selected area electron diffraction (SAED) studies revealed the crystal structure. Field emission scanning electron microscopy (FE-SEM) imaging and high resolution transmission electron microscopy (HR-TEM) were employed to study the structural features of the nanorods. The MnC{sub 2}O{sub 4} nanorods were found to be efficient ballistic modifier for the burning rate enhancement of composite solid propellants (CSPs). Thermal analysis using TGA-DSC showed that MnC{sub 2}O{sub 4} nanorods sensitized the thermal decomposition of ammonium perchlorate (AP) and the CSPs. Controlled thermal decomposition of the MnC{sub 2}O{sub 4} nanorods resulted in the formation of managanese oxide nanoparticles with mesoporosity. A plausible mechanism for the burning rate enhancement using MnC{sub 2}O{sub 4} nanorods was proposed.

  19. Engineering Gold Nanorod-Based Plasmonic Nanocrystals for Optical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-09-01

    Plasmonic nanocrystals have a unique ability to support localized surface plasmon resonances and exhibit rich and intriguing optical properties. Engineering plasmonic nanocrystals can maximize their potentials for specific applications. In this dissertation, we developed three unprecedented Au nanorod-based plasmonic nanocrystals through rational design of the crystal shape and/or composition, and successfully demonstrated their applications in light condensation, photothermal conversion, and surface-enhanced Raman spectroscopy (SERS). The “Au nanorod-Au nanosphere dimer” nanocrystal was synthesized via the ligand-induced asymmetric growth of a Au nanosphere on a Au nanorod. This dimeric nanostructure features an extraordinary broadband optical absorption in the range of 400‒1400nm, and it proved to be an ideal black-body material for light condensation and an efficient solar-light harvester for photothermal conversion. The “Au nanorod (core) @ AuAg alloy (shell)” nanocrystal was built through the epitaxial growth of homogeneously alloyed AuAg shells on Au nanorods by precisely controlled synthesis. The resulting core-shell structured, bimetallic nanorods integrate the merits of the AuAg alloy with the advantages of anisotropic nanorods, exhibiting strong, stable and tunable surface plasmon resonances that are essential for SERS applications in a corrosive environment. The “high-index faceted Au nanorod (core) @ AuPd alloy (shell)” nanocrystal was produced via site-specific epitaxial growth of AuPd alloyed horns at the ends of Au nanorods. The AuPd alloyed horns are bound with high-index side facets, while the Au nanorod concentrates an intensive electric field at each end. This unique configuration unites highly active catalytic sites with strong SERS sites into a single entity and was demonstrated to be ideal for in situ monitoring of Pd-catalyzed reactions by SERS. The synthetic strategies developed here are promising towards the fabrication of

  20. Enormous enhancement of ZnO nanorod photoluminescence

    International Nuclear Information System (INIS)

    Wang, Y.H.; Duan, W.J.; Wu, Z.L.; Zheng, D.; Zhou, X.W.; Zhou, B.Y.; Dai, L.J.; Wang, Y.S.

    2012-01-01

    ZnO nanorod arrays were grown on quartz slices in the aqueous solution of zinc acetate and hexamethylenetetramine at 90 °C. Then ZnO:Mg shells were epitaxially grown on the nanorods to form core/shell structures in the aqueous solution of zinc acetate, magnesium acetate and hexamethylenetetramine at the same temperature. Effects of the shells and UV laser beam irradiation on the crystal structure and photoluminescence properties of ZnO nanorods were studied. ZnO:Mg shells suppress the green emission and enhance the UV emission intensity of the nanorods by 38 times. Enhancement of the UV emission depends on the Mg content in the shells. Short time UV laser beam irradiation could improve ZnO nanorod emission efficiently. The UV emission intensity of ZnO nanorods is enhanced by 71 times by capping and subsequent UV laser beam irradiation. - Highlights: ► ZnO nanorod arrays were grown on quartz slices in solution at 90 °C. ► The nanorods were capped by ZnO:Mg layers to form core/shell structures. ► ZnO:MgO shells suppress the green emission and enhance the UV emission intensity by 38 times. ► The enhancement depends on the Mg content in the shells. ► Exposing the nanorods to 325 laser beam improves the UV emission efficiently. ► Capping and 325 nm laser beam irradiation could enhance the nanorod UV emission intensity by 71 times.

  1. Manipulators for production and research

    International Nuclear Information System (INIS)

    Munro, Ian

    1987-01-01

    The development of caves or cells and master-slave manipulators to handle radioactive materials is discussed. Some of the most recent advances are described. A manipulator arm, a master-slave manipulator and a servomanipulator mounted on a manipulator are illustrated. Future developments are discussed - these include resolved tip control for the manipulator. (UK)

  2. Powered manipulator control arm

    International Nuclear Information System (INIS)

    Le Mouee, Theodore; Vertut, Jean; Marchal, Paul; Germon, J.C.; Petit, Michel

    1975-01-01

    A remote operated control arm for powered manipulators is described. It includes an assembly allowing several movements with position sensors for each movement. The number of possible arm movements equals the number of possible manipulator movements. The control systems may be interrupted as required. One part of the arm is fitted with a system to lock it with respect to another part of the arm without affecting the other movements, so long as the positions of the manipulator and the arm have not been brought into complete coincidence. With this system the locking can be ended when complete concordance is achieved [fr

  3. Simulation of robot manipulators

    International Nuclear Information System (INIS)

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-01-01

    This paper describes Oak Ridge National Laboratory's development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories' Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment

  4. The direct manipulation shell

    International Nuclear Information System (INIS)

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  5. Geometric control of manipulators

    International Nuclear Information System (INIS)

    Thiruarooran, C.

    1996-01-01

    Resolved motion control enables the end effector to be moved as a rigid body in space without having to work out manually the joint combinations needed. Since a rigid body in space has three independent translational and three independent rotational movements, a manipulator with at least six joints can be controlled in this way. Normally the manipulator has more than six joints providing an infinite number of ways of moving the tip in the desired direction and this redundancy can be exploited in a variety of ways. Resolved motion tests performed on a hydraulically operated heavy duty manipulator at the Dungeness nuclear power plant are described. The results have shown that manipulators with as many as ten joints can be controlled under resolved tip motion and the areas which are critical to the performance of this type of control have been identified. (UK)

  6. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  7. Compliant Aerial Manipulators

    DEFF Research Database (Denmark)

    Bartelds, T.; Capra, A.; Hamaza, S.

    2016-01-01

    joints. The approach aims at limiting the influence of impacts on the controlled attitude dynamics in order to allow the aerial manipulator to remain stable during and after impact. The developed concept is intended to convert kinetic energy into potential energy, which is permanently stored into elastic...... elements by means of directional locking mechanisms. The proposed approach has been tested on a 2 d.o.f. manipulator mounted on a quadrotor UAV. The manipulation system has one active rotational d.o.f. compensating for pitch movements of the UAV and one passive linear joint which is in charge of absorbing...... the impact energy. The device has been used to validate the method through experiments, in comparison with a rigid manipulator. The results show that the proposed approach and the developed mechanical system achieve stable impact absorption without bouncing away from the interacting environment. Our work has...

  8. Manipulating Strings in Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.

  9. Silane decorated metallic nanorods for hydrophobic applications

    International Nuclear Information System (INIS)

    Kannarpady, Ganesh K.; Sharma, Rajesh; Liu Bo; Trigwell, Steve; Ryerson, Charles; Biris, Alexandru S.

    2010-01-01

    A novel technique to modify a metallic surface for anti-icing applications is presented. An oblique angle deposition (OAD) technique has been used to fabricate metallic nanorods of Aluminum and Tungsten on a glass substrate. A conformal coating of a silane has been applied using a molecular vapor deposition technique. The resulting surface has shown a static contact angle of 134 deg. with the water droplet. SEM, AFM and XPS have been used to study the surface modification. This is a highly promising approach for anti-icing applications due to its scalability at a very low cost.

  10. Fabricating hydroxyapatite nanorods using a biomacromolecule template

    International Nuclear Information System (INIS)

    Zhu Aiping; Lu Yan; Si Yunfeng; Dai Sheng

    2011-01-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO 4 3- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  11. Frabicating hydroxyapatite nanorods using a biomacromolecule template

    Science.gov (United States)

    Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  12. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  13. In vitro toxicity studies of polymer-coated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rayavarapu, Raja G; Petersen, Wilma; Manohar, Srirang; Van Leeuwen, Ton G [Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Hartsuiker, Liesbeth; Otto, Cees [Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Chin, Patrick; Van Leeuwen, Fijs W B [Division of Diagnostic Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Janssen, Hans, E-mail: S.Manohar@utwente.nl [Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2010-04-09

    We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.

  14. Influence of PEG coating on optical and thermal response of gold nanoshperes and nanorods

    Science.gov (United States)

    Chen, Qin; Ren, Yatao; Qi, Hong; Ruan, Liming

    2018-06-01

    PEGylation is widely applied as a surface modification method for nanoparticles in biomedical applications to improve their biological properties, including biocompatibility and immunogenicity. In most of its biomedical applications, nanoparticles are served as optical or thermal contrast agents. Therefore, the impact of poly (ethylene glycol) (PEG) coating thickness on the optical and thermal properties of nanoparticles needs to be further investigated. In the present work, we studied two kinds of commonly used nanoparticles, including nanosphere and nanorod. The temperature and electric fields are obtained for nanoparticles with different PEG coating thicknesses. It is found that the change of PEG coating thickness on gold nanospheres only has impact on the absolute value of maximum absorption and scattering efficiencies, which barely influences the LSPR wavelength λmax and other optical and thermal characteristics. In contrast, for nanorod, the maximum efficiencies are barely influenced by the variation of PEG coating thickness. On the other hand, the localized surface plasmon resonance wavelength has an evident red shift with the increasing of PEG coating thickness. The maximum absorption efficiency is a way to evaluate the energy dissipation rate, which decides the scale of the heat source induced by nanoparticles. These findings are crucial for the accurate prediction of optical and thermal properties of nanoparticles in biomedical application. The present work also presents a possible way to manipulate the optical and thermal behaviors of nanoparticles in the application of biomedicine without changing the morphology of nanoparticles.

  15. Shape dependent resonance light scattering properties of gold nanorods

    International Nuclear Information System (INIS)

    Zhu Jian; Huang Liqing; Zhao Junwu; Wang Yongchang; Zhao Yanrui; Hao Limei; Lu Yimin

    2005-01-01

    Suspended gold nanorods with mean aspect ratio 2.5 have been synthesized via electrochemical method. Resonance scattering properties have been studied. Two scattering peaks fixed at 400 and 640 nm are due to the scattering of the gold nanorods via coupling to the transverse and longitudinal surface plasmon resonance. The quasi-static calculation results indicate that with the increasing aspect ratio of the nanorods, the longer wavelength scattering peak red shifts linearly and the shorter wavelength peak blue shifts non-linearly. When aspect ratio a/b = 1.0, ellipse degenerate to sphere and the two peaks unite into one peak at 450 nm

  16. Facile Hydrogen Evolution Reaction on WO3Nanorods

    Directory of Open Access Journals (Sweden)

    Rajeswari Janarthanan

    2007-01-01

    Full Text Available AbstractTungsten trioxide nanorods have been generated by the thermal decomposition (450 °C of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3 nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart.

  17. Preparation of ZnS nanorods by ultrasonic waves

    International Nuclear Information System (INIS)

    Behboudnia, M.; Majlesara, M.H.; Khanbabaee, B.

    2005-01-01

    ZnS nanorods of approximately 1 μm in length and 20 nm in diameter have been prepared by sonicating ethylenediamine solution of elemental S and zinc acetate in presence of 1-decanthiol under air. The nanorods were characterized using techniques such as X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDAX) and UV-vis absorption spectroscopy. The as-prepared nanorods have regular shape, narrow size distribution and high purity, having band gap of 4.56 eV compared to 3.54 eV corresponding to its bulk single-crystal

  18. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells

    International Nuclear Information System (INIS)

    Zhu Jing; Roy, Indrajit; Hu Rui; Ding Hong; Zhao Lingling; He, Guang S; Prasad, Paras N; Yong, Ken-Tye; Swihart, Mark T; Cui Yiping

    2010-01-01

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  19. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jing; Roy, Indrajit; Hu Rui; Ding Hong; Zhao Lingling; He, Guang S; Prasad, Paras N [Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-4200 (United States); Yong, Ken-Tye [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Swihart, Mark T [Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260-4200 (United States); Cui Yiping, E-mail: ktyong@ntu.edu.sg, E-mail: cyp@seu.edu.cn, E-mail: pnprasad@buffalo.edu [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China)

    2010-07-16

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  20. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells

    Science.gov (United States)

    Zhu, Jing; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Ding, Hong; Zhao, Lingling; Swihart, Mark T.; He, Guang S.; Cui, Yiping; Prasad, Paras N.

    2010-07-01

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  1. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  2. Balanced articulated manipulator

    International Nuclear Information System (INIS)

    Francois, Daniel; Germond, J.-C.; Marchal, Paul; Vertut, Jean.

    1976-01-01

    The description is given of a manipulator of the type comprising a master arm and a slave arm, capable of working in a containment restricted by a wall fitted with an aperture to introduce the slave arm into the containment. According to the invention this manipulator is permanently balanced irrespective of its distortions when it is secured to the wall of the containment in which it is desired to work. The entire manipulator is also balanced when being set up and when moved outside the containment, in relation to a supporting axle. This result is achieved in a simplified manner by giving homothetic shapes to the various component parts of the slave and master arms, the master arm having at least one balancing weight [fr

  3. Stainless steel decontamination manipulators

    International Nuclear Information System (INIS)

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions)

  4. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2014-01-01

    This book is a step-by step, example-oriented tutorial that will show both intermediate and advanced users how data manipulation is facilitated smoothly using R.This book is aimed at intermediate to advanced level users of R who want to perform data manipulation with R, and those who want to clean and aggregate data effectively. Readers are expected to have at least an introductory knowledge of R and some basic administration work in R, such as installing packages and calling them when required.

  5. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    Directory of Open Access Journals (Sweden)

    Tamar Andelman

    2007-01-01

    Full Text Available A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm nanorods were synthesized from trihexylamine, and large diameter (50–80 nm nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green emission of the photoluminescence (PL spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  6. Electrical transport properties of single ZnO nanorods

    International Nuclear Information System (INIS)

    Heo, Y.W.; Tien, L.C.; Norton, D.P.; Kang, B.S.; Ren, F.; Gila, B.P.; Pearton, S.J.

    2004-01-01

    Single ZnO nanorods with diameters of ∼130 nm were grown on Au-coated Al 2 O 3 substrates by catalyst-driven molecular beam epitaxy. Individual nanorods were removed from the substrate and placed between Ohmic contact pads and the current-voltage characteristics measured as a function of temperature and gas ambient. In the temperature range from 25 to 150 deg. C, the resistivity of nanorods treated in H 2 at 400 deg. C prior to measurement showed an activation energy of 0.089±0.02 eV and was insensitive to the ambient used (C 2 H 4 ,N 2 O,O 2 or 10% H 2 in N 2 ). By sharp contrast, the conductivity of nanorods not treated in H 2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors

  7. Nanorotors using asymmetric inorganic nanorods in an optical trap

    International Nuclear Information System (INIS)

    Khan, Manas; Sood, A K; Deepak, F L; Rao, C N R

    2006-01-01

    We demonstrate how light force, irrespective of the polarization of the light, can be used to run a simple nanorotor. While the gradient force of a single beam optical trap is used to hold an asymmetric nanorod, we utilize the scattering force to generate a torque on the nanorod, making it rotate about the optic axis. The inherent textural irregularities or morphological asymmetries of the nanorods give rise to the torque under the radiation pressure. Even a small surface irregularity with non-zero chirality is sufficient to produce enough torque for moderate rotational speed. Different sized rotors can be used to set the speed of rotation over a wide range with fine tuning possible through the variation of the laser power. We present a simple dimensional analysis to qualitatively explain the observed trend of the rotational motion of the nanorods

  8. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    Science.gov (United States)

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.

  9. Stimulated emission from ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, R.; Lange, H.; Priller, H.; Klingshirn, C.; Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe (TH), 76128 Karlsruhe (Germany); Kling, R. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Waag, A. [Institut fuer Halbleitertechnik, TU-Braunschweig, H.-Sommer-Str. 66, 38106 Braunschweig (Germany); Fan, H.J.; Zacharias, M. [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2006-08-15

    We discuss the time-resolved photoluminescence (PL) spectra of single ZnO nanorods taken at excitation fluences above and below the laser threshold. In the latter case, P-band emission related to polariton-polariton scattering is observed for certain rod geometries while stimulated emission occurs within the electron-hole plasma band. We calculate the intensity distribution of low-order waveguide modes as well as their energy dependence for given nanorod geometries to discuss their relevance with respect to nanorod lasing and polariton propagation. Additional finite-element analysis confirms that a gold layer formed at the nanorod-substrate interface under certain growth conditions leads to an enhancement of confinement within the resonator. (2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Cathodoluminescence of single ZnO nanorod heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Piechal, Bernard; Donatini, Fabrice; Dang, Le Si [CNRS-CEA-UJF joint group ' ' Nanophysique et Semiconducteurs' ' , Universite Joseph Fourier (CNRS UMR 5588), Saint Martin d' Heres (France); Yoo, Jinkyoung; Yi, Gyu-Chul [National CRI Center for Semiconductor Nanorods and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea); Elshaer, Abdelhamid; Mofor, A.C.; Bakin, Andrey; Waag, Andreas [Institute of Semiconductor Technology (IHT), TU Braunschweig (Germany)

    2007-05-15

    Optical properties of ZnO-based single nanorods are probed by cathodoluminescence (CL) measurements at T = 5 K. We observe a variation of the ZnO near band edge CL by three orders of magnitude along the nanorod axis, accompanied by a spectral blueshift of 10-30 meV. This indicates a rather poor structural quality of the nanorod bottom part, close to the substrate. ZnO/ZnMgO quantum wells grown on top of ZnO nanorods are found to exhibit much stronger confinement effects as compared to their two-dimensional counterparts, suggesting a reduced spontaneous and piezoelectric polarization effects. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  12. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  13. Adsorption of Organophosphate Pesticide Dimethoate on Gold Nanospheres and Nanorods

    Directory of Open Access Journals (Sweden)

    Tatjana Momić

    2016-01-01

    Full Text Available Organophosphorus pesticide dimethoate was adsorbed onto gold nanospheres and nanorods in aqueous solution using batch technique. Adsorption of dimethoate onto gold nanoparticles was confirmed by UV-Vis spectrophotometry, TEM, AFM, and FTIR analysis. The adsorption of nanospheres resulted in aggregation which was not the case with nanorods. Nanoparticles adsorption features were characterized using Langmuir and Freundlich isotherm models. The Langmuir adsorption isotherm was found to have the best fit to the experimental data for both types of nanoparticles. Adsorption capacity detected for nanospheres is 456 mg/g and for nanorods is 57.1 mg/g. Also, nanoparticles were successfully used for dimethoate removal from spiked drinking water while nanospheres were shown to be more efficient than nanorods.

  14. Novel nanorods based on PANI / PEO polymers using electrospinning method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hazeem, Nabeel Z., E-mail: nabeelnano333@gmail.com [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Ministry of Education, the General Directorate for Educational Anbar (Iraq); Ahmed, Naser M.; Matjafri, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Sabah, Fayroz A. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad (Iraq); Rasheed, Hiba S. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Department of Physics, College of Education, Al-Mustansiriya University, Baghdad (Iraq)

    2016-07-06

    In this work, we fabricated nanorods by applying an electric potential on poly (ethylene oxide) (PEO) and polyaniline (PANI) as a polymeric solution by electrospinning method. Testing was conducted on the samples by field emission scanning Electron microscope (FE-SEM), X-ray diffraction (XRD) and Photoluminescence. And the results showed the emergence of nanorods in the sample within glass substrate. Diameters of nanorods have ranged between (52.78-122.40)nm And a length of between (1.15 – 1.32)μm. The emergence of so the results are for the first time, never before was the fabrication of nanorods for polymers using the same method used in this research.

  15. Synthesis and characterization of iron cobalt (FECO) nanorods ...

    African Journals Online (AJOL)

    Synthesis and characterization of iron cobalt (FECO) nanorods prepared by simple ... shaped by increasing annealing temperature from room temperature to 800 ... Keywords: FeCo nanoparticles, sodium borohydrid, CTAB, chemical synthesis ...

  16. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  17. Gold nanorods and nanospheroids for enhancing spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, A [Department of Physics, Persian Gulf University, 75196 Bushehr (Iran, Islamic Republic of); Sandoghdar, V; Agio, M [Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich (Switzerland)], E-mail: mario.agio@phys.chem.ethz.ch

    2008-10-15

    We compute the radiative decay rate and the quantum efficiency for an emitter coupled to gold nanorods and nanospheroids using the body-of-revolution finite-difference time-domain method. We study these quantities as a function of the nanoparticle aspect ratio and volume, showing that large enhancements can be achieved with realistic parameters. Moreover, we find that nanospheroids exhibit better performances than nanorods for applications in the visible and near-infrared spectral range.

  18. Hydrothermal synthesis of CdWO 4 nanorods and their ...

    African Journals Online (AJOL)

    CdWO4 nanorods with wolframite structure were synthesized in the presence of the surfactant SDBS by a hydrothermal method, and characterized by a variety of techniques. The obtained products are CdWO4 nanorods with length of 0.8–2.5 μm and width of 50–250 nm. The surfactant SDBS plays a key role in the ...

  19. Gold nanorods and nanospheroids for enhancing spontaneous emission

    International Nuclear Information System (INIS)

    Mohammadi, A; Sandoghdar, V; Agio, M

    2008-01-01

    We compute the radiative decay rate and the quantum efficiency for an emitter coupled to gold nanorods and nanospheroids using the body-of-revolution finite-difference time-domain method. We study these quantities as a function of the nanoparticle aspect ratio and volume, showing that large enhancements can be achieved with realistic parameters. Moreover, we find that nanospheroids exhibit better performances than nanorods for applications in the visible and near-infrared spectral range.

  20. MANIPULATING CONSUMERS THROUGH ADVERTISING

    Directory of Open Access Journals (Sweden)

    Nicoleta -Andreea Neacşu

    2012-12-01

    Full Text Available Marketing communication has evolved steadily in the direction of increasing complexity and increasing volume of funds needed to run their own actions. More than ever, consumers are exposed to an overwhelming variety of sources and communication tehniques, the information received being numerous, diverse and polyvalent. The desire to make more efficient the marketing communication activity urges the broadcasters to encode messages, to use effective means of propagation in order to obtain a high degree of control on receptors and to influence the consumption attitudes. Between the means used for this purpose, manipulation tehniques are well known. This paper highlights the main conclusions drawn as a result of a quantitative marketing research on the adult population from Braşov in order to identify the attitudes and opinions of consumers from Braşov regarding the manipulation techniques used by commercial practices and advertising.The results of the research have shown that 82% of the respondents buy products in promotional offers, and 18% choose not to buy these products and 61% of the respondents consider that they have not been manipulated not even once, while only 39% believe that they have been manipulated at least once through advertising or commercial practices. Advertisements on TV have a strong influence on consumers, 81% of the respondents considering that at least once they have bought a product because of a TV commercial.

  1. Manipulating the Gradient

    Science.gov (United States)

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  2. Microrobots to Manipulate Cells

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    At DTU Fotonik we developed and harnessed the new and emerging research area of so-called Light Robotics including the 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time laser-manipulated in a 3D-volume with six-degrees-of-freedom. To be exploring the full potentia...

  3. Automated visual attention manipulation

    NARCIS (Netherlands)

    Bosse, T.; Lambalgen, R. van; Maanen, P.P. van; Treur, J.

    2009-01-01

    In this paper a system for visual attention manipulation is introduced and formally described. This system is part of the design of a software agent that supports naval crew in her task to compile a tactical picture of the situation in the field. A case study is described in hich the system is used

  4. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2015-01-01

    This book is for all those who wish to learn about data manipulation from scratch and excel at aggregating data effectively. It is expected that you have basic knowledge of R and have previously done some basic administration work with R.

  5. The TFTR maintenance manipulator

    International Nuclear Information System (INIS)

    Kungl, D.; Loesser, D.; Heitzenroeder, P.; Cerdan, G.

    1989-01-01

    TFTR plans to begin D-T experiments in mid 1990. The D-T experimental program will produce approximately one hundred shots, with a neutron generation rate of 10 19 neutrons per shot. This will result in high levels of activation in TFTR, especially in the vacuum vessel. The primary purpose of the Maintenance Manipulator is to provide a means of remotely performing certain defined maintenance and inspection tasks inside the vacuum torus so as to minimize personnel exposure to radiation. The manipulator consists of a six-link folding boom connected to a fixed boom on a movable carriage. The entire manipulator is housed in a vacuum antechamber connected to the vacuum torus, through a port formerly used for a vacuum pumping duct. The configuration extends 180 0 in either direction to provide complete coverage of the torus. The four 3500 l/s turbopumps which were formerly used in the pumping duct will be mounted on the antechamber. The manipulator will utilize two end effectors. The first, called a General Inspection Arm (GIA) provides a movable platform to an inspection camera and an in-vacuum leak detector. The second is a bilateral, force-reflecting pair of slave arms which utilize specially developed tools to perform several maintenance functions. All components except the slave arms are capable of operating in TFTR's vacuum environment and during 150 0 C bakeout of the torus. (orig.)

  6. Manipulating Combinatorial Structures.

    Science.gov (United States)

    Labelle, Gilbert

    This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…

  7. Preparation and characterization of dye-sensitized TiO{sub 2} nanorod solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lijian, E-mail: ljm@isep.ipp.pt [Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Centro de Física, Universidade do Minho, 4800-058 Guimarães (Portugal); Chen, Hong [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, fine Mechanics and Physics of Chinese Academy of Science, Changchun 130033 (China); Li, Can [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023,China (China); Santos, M.P. dos [CEFITEC, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Departamento de Física, Escola de Ciências e Tecnologia, Universidade de Évora (Portugal)

    2015-02-27

    TiO{sub 2} nanorods were prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO{sub 2} nanorods was varied from 1 μm to 6 μm. The scanning electron microscopy images show that the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO{sub 2} nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimum photoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods. - Highlights: • [110] oriented TiO{sub 2} nanorods were deposited on ITO substrate by dc reactive magnetron sputtering. • The structural properties of these nanorods have been studied. • The (110) texture is dominated by strain energy minimization. • DSSCs were assembled using these nanorods as electrode.

  8. Synthesis and Tribological Properties of WSe2Nanorods

    Directory of Open Access Journals (Sweden)

    Yang Jinghai

    2008-01-01

    Full Text Available Abstract The WSe2nanorods were synthesized via solid-state reaction method and characterized by X-ray diffractometer, TEM, and HRTEM. The results indicated the WSe2compounds had rod-like structures with diameters of 10–50 nm and lengths of 100–400 nm, and the growth process of WSe2nanorods was discussed on the basis of the experimental facts. The tribological properties of WSe2nanorods as additives in HVI500 base oil were investigated by UMT-2 multispecimen tribotester. Under the determinate conditions, the friction coefficient of the base oil containing WSe2nanorods was lower than that of the base oil, and decreased with increasing mass fraction of WSe2nanorods when it was <7 wt.%. Moreover, the base oil with the additives was rather suited to high load and high rotating speed. A combination of rolling friction, sliding friction, and stable tribofilm on the rubbing surface could explain the good friction and wear properties of WSe2nanorods as additives.

  9. In vivo toxicity studies of europium hydroxide nanorods in mice

    International Nuclear Information System (INIS)

    Patra, Chitta Ranjan; Abdel Moneim, Soha S.; Wang, Enfeng; Dutta, Shamit; Patra, Sujata; Eshed, Michal; Mukherjee, Priyabrata; Gedanken, Aharon; Shah, Vijay H.; Mukhopadhyay, Debabrata

    2009-01-01

    Lanthanide nanoparticles and nanorods have been widely used for diagnostic and therapeutic applications in biomedical nanotechnology due to their fluorescence and pro-angiogenic properties to endothelial cells, respectively. Recently, we have demonstrated that europium (III) hydroxide [Eu III (OH) 3 ] nanorods, synthesized by the microwave technique and characterized by several physico-chemical techniques, can be used as pro-angiogenic agents which introduce future therapeutic treatment strategies for severe ischemic heart/limb disease, and peripheral ischemic disease. The toxicity of these inorganic nanorods to endothelial cells was supported by several in vitro assays. To determine the in vivo toxicity, these nanorods were administered to mice through intraperitoneal injection (IP) everyday over a period of seven days in a dose dependent (1.25 to 125 mg kg -1 day -1 ) and time dependent manner (8-60 days). Bio-distribution of europium elements in different organs was analyzed by inductively coupled plasma mass spectrometry (ICPMS). Short-term (S-T) and long-term (L-T) toxicity studies (mice euthanized on days 8 and 60 for S-T and L-T, respectively) show normal blood hematology and serum clinical chemistry with the exception of a slight elevation of liver enzymes. Histological examination of nanorod-treated vital organs (liver, kidney, spleen and lungs) showed no or only mild histological changes that indicate mild toxicity at the higher dose of nanorods.

  10. Aqueous chemical growth and application of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Postels, Bianca; Kasprzak, Anna; Mofor, Augustine C.; Wehmann, Hergo-Heinrich; Bakin, Andrey; Waag, Andreas [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)

    2007-07-01

    A very promising fabrication process for ZnO nanostructures is the aqueous chemical growth (ACG), since it is a cost efficient and low temperature approach. Using this growth technique we generated wafer-scale ZnO nanorod arrays on Si, sapphire, ITO coated glass and even on flexible polymer substrates. ACG is found to be only weakly influenced by the substrate material and we are also able to control the dimensions of the ZnO nanorods. Another benefit of ACG is the ability to fabricate patterned arrays of ZnO nanorods by a selective growth process on structured metallised surfaces. Results of structural analysis with SEM and XRD are reported. Additionally, optical properties were investigated by PL measurements. First attempts on the preparation of dye sensitised solar cells (DSSCs) are also reported. Here, the traditional sintered TiO{sub 2} nanoparticles are replaced by a densely packed and vertically aligned array of ACG ZnO nanorods. The size and morphology of the ZnO nanorods can be controlled. The influence of the length of the nanorods on the cell properties is investigated. A vapour phase transport technique was also used as alternative growth method.

  11. Electrodeposition of ZnO nanorods for device application

    Energy Technology Data Exchange (ETDEWEB)

    Postels, B.; Bakin, A.; Wehmann, H.H.; Suleiman, M.; Waag, A. [Technical University of Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Weimann, T.; Hinze, P. [Physikalische Technische Bundesanstalt, Braunschweig (Germany)

    2008-06-15

    We report the electrochemical growth of zinc oxide nanorods in a zinc nitrate/hexamethylenetetramine solution at 70 C. High-density vertical nanorods were grown on Au films on silicon substrates with a texture coefficient better than 99.9%. By varying the reactant concentration the diameter can be varied between 100 and 250 nm, with corresponding lengths of 1 to 4 {mu}m. Furthermore, this approach was used for the selective growth on Ti/Au strip conductors ordered in an interdigitated structure on an insulating substrate. We achieved the growth of ZnO nanorods between neighbouring strip conductors bridging the gap between them. In this configuration the nanorods are already contacted and electrical measurements can be directly performed. First I-V measurements show a good conductivity of the as-grown nanorods and the resistance could be estimated to be 0.1 {omega}cm. Under UV illumination the ZnO nanorods demonstrate a photoconductivity, but only after annealing the sample at 300 C in N{sub 2}. (orig.)

  12. Polarized Raman scattering of single ZnO nanorod

    International Nuclear Information System (INIS)

    Yu, J. L.; Lai, Y. F.; Wang, Y. Z.; Cheng, S. Y.; Chen, Y. H.

    2014-01-01

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A 1 (TO), E 1 (TO), and E 2 high in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A 1 (TO) and E 1 (TO) phonon modes normalized to that of the E 2 high phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer

  13. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  14. Control of ZnO Nanorod Defects to Enhance Carrier Transportation in p-Cu₂O/i-ZnO Nanorods/n-IGZO Heterojunction.

    Science.gov (United States)

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Mung, Nguyen Thi; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2017-01-01

    The p-Cu₂O/i-ZnO nanorods/n-IGZO heterojunctions were fabricated by electrochemical and sputtering method. ZnO nanorods were grown on conductive indium gallium zinc oxide (IGZO) thin film and then p-Cu₂O layer was deposited on ZnO nanorods to form the heterojunction. ZnO nanorods play an important role in carrier transport mechanisms and performance of the junction. The changing of defects in ZnO nanorods by annealing samples in air and vacuum have studied. The XRD, photoluminescence (PL) spectroscopy, and FTIR were used to study about structure, and defects in ZnO nanorods. The SEM, i–V characteristics methods were also used to define structure, electrical properties of the heterojunctions layers. The results show that the defects in ZnO nanorods affected remarkably on performance of heterojunctions of solar cells.

  15. Fabricating hydroxyapatite nanorods using a biomacromolecule template

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Aiping, E-mail: apzhu@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Lu Yan; Si Yunfeng [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Dai Sheng [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia)

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO{sub 4}{sup 3-} to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  16. A universal microscope manipulator

    Directory of Open Access Journals (Sweden)

    Peter S. Boyadzhiev

    2012-03-01

    Full Text Available A modified and improved model of a mechanical manipulator for observation of pinned and mounted insects is described. This device allows movement of the observed object around three perpendicular axes in the field of vision at all magnifications of stereomicroscopes. The main improvement of this new model is positioning of the guiding knobs for rotating around two of the axes next to each other, allowing faster and easier manipulation of the studied object. Thus, one of the main advantages of this device is the possibility to rotate the specimen without the need to refocus. The device enables easily reaching a precession deviation in the intersection point of axes up to 0.5 mm in the process of assembling.

  17. Microradiographic microsphere manipulator

    International Nuclear Information System (INIS)

    Singleton, R.M.

    1980-01-01

    A method and apparatus are provided for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres

  18. Manipulation of quantum evolution

    Science.gov (United States)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  19. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  20. Protozoa manipulation by ultrasound

    Directory of Open Access Journals (Sweden)

    Yancy Milena Porras Rodríguez

    2004-01-01

    Full Text Available Microorganism manipulation, considered as controlled motion and positioning, is one of the most important activities in microbiology and medicine. To achieve this goal there are some techniques such as those which and optical forces, among others. These techniques are usually sophisticated, and some of them can induce irreversible alterations on the microorganisms which prevents their use in another tests. Thus, there is justified the study of technological alternatives to manipulate microorganisms in an easy and cost-effective way. This work shows the interaction between protozoa and air microbubbles when they are under the influence of an ultrasonic field of 5.8 mW. At the microbubbles resonant frequencies, microorganisms were attracted toward the bubbles' frontier remaining there while the ultrasonic field was applied. Once the ultrasound disappears, protozoa recover their freedom of movement. The observed effects could be used as the actuation principle of devices capable to trap, hold and release microorganisms of high mobility without any apparent damage. Microbubbles are generated by electrolysis which take place on the surface of an electrode array, while the ultrasound is originated by means of a piezoelectric transducer. As microorganisms there were employed those present in stagnated water, and were observed through an stereomicroscope. Key words: manipulator; protozoa; ultrasonic; transducer; piezoelectric.

  1. Pose Space Surface Manipulation

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshiyasu

    2012-01-01

    Full Text Available Example-based mesh deformation techniques produce natural and realistic shapes by learning the space of deformations from examples. However, skeleton-based methods cannot manipulate a global mesh structure naturally, whereas the mesh-based approaches based on a translational control do not allow the user to edit a local mesh structure intuitively. This paper presents an example-driven mesh editing framework that achieves both global and local pose manipulations. The proposed system is built with a surface deformation method based on a two-step linear optimization technique and achieves direct manipulations of a model surface using translational and rotational controls. With the translational control, the user can create a model in natural poses easily. The rotational control can adjust the local pose intuitively by bending and twisting. We encode example deformations with a rotation-invariant mesh representation which handles large rotations in examples. To incorporate example deformations, we infer a pose from the handle translations/rotations and perform pose space interpolation, thereby avoiding involved nonlinear optimization. With the two-step linear approach combined with the proposed multiresolution deformation method, we can edit models at interactive rates without losing important deformation effects such as muscle bulging.

  2. Microstructures, surface properties, and topotactic transitions of manganite nanorods.

    Science.gov (United States)

    Gao, Tao; Krumeich, Frank; Nesper, Reinhard; Fjellvåg, Helmer; Norby, Poul

    2009-07-06

    Manganite (gamma-MnOOH) nanorods with typical diameters of 20-500 nm and lengths of several micrometers were prepared by reacting KMnO(4) and ethanol under hydrothermal conditions. Synchrotron X-ray diffraction (XRD) reveal that the gamma-MnOOH nanorods crystallize in the monoclinic space group P2(1)/c with unit cell dimensions a = 5.2983(3) A, b = 5.2782(2) A, c = 5.3067(3) A, and beta = 114.401(2) degrees . Transmission electron microscopy shows that the gamma-MnOOH nanorods are single crystalline and that lateral attachment occurs for primary rods elongated along 101. X-ray photoelectron spectroscopy studies indicate that the surfaces of the gamma-MnOOH nanorods are hydrogen deficient and compensated by surface complexation. The Raman scattering spectrum features five main contributions at 360, 389, 530, 558, and 623 cm(-1) along with four weak ones at 266, 453, 492, and 734 cm(-1), attributed to Mn-O vibrations within MnO(6) octahedral frameworks. The structural stability of the gamma-MnOOH nanorods was discussed by means of in situ time-resolved synchrotron XRD. The monoclinic gamma-MnOOH nanorods transform into tetragonal beta-MnO(2) upon heating in air at about 200 degrees C. The reaction is topotactic and shows distinctive differences from those seen for bulk counterparts. A metastable, intermediate phase is observed, possibly connected with hydrogen release via the interstitial (1 x 1) tunnels of the gamma-MnOOH nanorods.

  3. Physical and chemical contributions of a plasma treatment in the growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.T. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, W.J. [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Yun, J. [Department of Nano Science and Engineering, Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of)

    2013-11-15

    Highlights: •ZnO nanorods were grown by hydrothermal synthesis. •Oxygen plasma was done on the surface of seed ZnO nanorods. •The ZnO nanorods with and without plasma treatment were characterized. •The results showed that the optical and structural properties of ZnO nanorods with plasma treatment were enhanced. -- Abstract: We analyzed the enhancement of optical and structural properties of ZnO nanorods by using a plasma treatment. In this study, seed ZnO nanorods were grown by hydrothermal synthesis for 1 h on a ZnO buffered Si substrate. The seed ZnO nanorods were then treated with an oxygen plasma. Next, ZnO was grown for an additional 4 h by hydrothermal synthesis. The resultant ZnO nanorods were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and photoluminescence (PL). The measurements showed that the plasma treatment of the seed ZnO nanorods increased the roughness of the buffer layer and the concentration of oxygen ions on the surfaces of the seed ZnO nanorods and the buffer layer, leading to improved optical and structural properties. In this study, we found that the plasma treatment on the seed ZnO nanorods enhanced the optical and structural properties of the ZnO nanorods.

  4. Using Manipulatives in Math Instruction.

    Science.gov (United States)

    Marzola, Eileen S.

    1987-01-01

    Guidelines for teachers to better use manipulatives in the teaching of mathematics to learning disabled learners are offered including a rationale for manipulatives, selection crteria, principles underlying productive use of manipulatives, and making the transition from the concrete to the symbolic. Suggested materials and distributors are listed.…

  5. From covalent bonding to coalescence of metallic nanorods

    Directory of Open Access Journals (Sweden)

    Lee Soohwan

    2011-01-01

    Full Text Available Abstract Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.

  6. Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics

    Directory of Open Access Journals (Sweden)

    Nagata T

    2009-01-01

    Full Text Available Abstract Highly uniform and c-axis-aligned ZnO nanorod arrays were fabricated in predefined patterns by a low temperature homoepitaxial aqueous chemical method. The nucleation seed patterns were realized in polymer and in metal thin films, resulting in, all-ZnO and bottom-contacted structures, respectively. Both of them show excellent geometrical uniformity: the cross-sectional uniformity according to the scanning electron micrographs across the array is lower than 2%. The diameter of the hexagonal prism-shaped nanorods can be set in the range of 90–170 nm while their typical length achievable is 0.5–2.3 μm. The effect of the surface polarity was also examined, however, no significant difference was found between the arrays grown on Zn-terminated and on O-terminated face of the ZnO single crystal. The transmission electron microscopy observation revealed the single crystalline nature of the nanorods. The current–voltage characteristics taken on an individual nanorod contacted by a Au-coated atomic force microscope tip reflected Schottky-type behavior. The geometrical uniformity, the designable pattern, and the electrical properties make the presented nanorod arrays ideal candidates to be used in ZnO-based DC nanogenerator and in next-generation integrated piezoelectric nano-electromechanical systems (NEMS.

  7. Nanorods of manganese oxides: Synthesis, characterization and catalytic application

    Science.gov (United States)

    Yang, Zeheng; Zhang, Yuancheng; Zhang, Weixin; Wang, Xue; Qian, Yitai; Wen, Xiaogang; Yang, Shihe

    2006-03-01

    Single-crystalline nanorods of β-MnO 2, α-Mn 2O 3 and Mn 3O 4 were successfully synthesized via the heat-treatment of γ-MnOOH nanorods, which were prepared through a hydrothermal method in advance. The calcination process of γ-MnOOH nanorods was studied with the help of Thermogravimetric analysis and X-ray powder diffraction. When the calcinations were conducted in air from 250 to 1050 °C, the precursor γ-MnOOH was first changed to β-MnO 2, then to α-Mn 2O 3 and finally to Mn 3O 4. When calcined in N 2 atmosphere, γ-MnOOH was directly converted into Mn 3O 4 at as low as 500 °C. Transmission electron microscopy (TEM) and high-resolution TEM were also used to characterize the products. The obtained manganese oxides maintain the one-dimensional morphology similar to the precursor γ-MnOOH nanorods. Further experiments show that the as-prepared manganese oxide nanorods have catalytic effect on the oxidation and decomposition of the methylene blue (MB) dye with H 2O 2.

  8. Vapour transport growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Technical University Braunschweig, Institute of Applied Physics, Braunschweig (Germany); Bertram, F.; Christen, J. [University of Magdeburg, Department of Solid State Physics, Magdeburg (Germany)

    2007-07-15

    The fabrication of low-dimensional ZnO structures has attracted enormous attention as such nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Many reported fabrication methods, especially for ZnO nanorods are mostly based on catalyst-assisted growth techniques that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on catalyst-free vapour-phase epitaxy growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources at relatively low temperatures and growth pressure. ZnO nanorods with widths of 80-900 nm and lengths of up to 12 {mu}m were obtained. Nanorod density on the order of 10{sup 9} cm{sup -2} with homogenous luminescence and high purity was also noted. (orig.)

  9. Light-activated microbubbles around gold nanorods for photoacoustic microsurgery

    Science.gov (United States)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2018-02-01

    The increasing interest around imaging and microsurgery techniques based on the photoacoustic effect has boosted active research into the development of exogenous contrast agents that may enhance the potential of this innovative approach. In this context, plasmonic particles as gold nanorods are achieving resounding interest, owing to their efficiency of photothermal conversion, intense optical absorbance in the near infrared region, inertness in the body and convenience for conjugation with ligands of molecular targets. On the other hand, the photoinstability of plasmonic particles remains a remarkable obstacle. In particular, gold nanorods easily reshape into nanospheres and so lose their optical absorbance in the near infrared region, under exposure to few-ns-long laser pulses. This issue is attracting much attention and stimulating ad-hoc solutions, such as the addition of rigid shells and the optimization of multiple parameters. In this contribution, we focus on the influence of the shape of gold nanorods on their photothermal behavior and photostability. We describe the photothermal process in the gold nanorods by modeling their optical absorption and consequent temperature dynamics as a function of their aspect ratio (length / diameter). Our results suggest that increasing the aspect ratio does probably not limit the photostability of gold nanorods, while shifting the plasmonic peak towards wavelengths around 1100 nm, which hold more technological interest.

  10. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    Science.gov (United States)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  11. Burkholderia thailandensis: Genetic Manipulation.

    Science.gov (United States)

    Garcia, Erin C

    2017-05-16

    Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. Spatial manipulation with microfluidics

    Directory of Open Access Journals (Sweden)

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  13. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiuqing [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)]. E-mail: dxzhao2000@yahoo.com.cn; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Li Binghui [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Wang Xiaohua [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and technology, 7089 Weixing Road Changchun (China); Fan Xiwu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)

    2007-01-15

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays.

  14. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    International Nuclear Information System (INIS)

    Meng Xiuqing; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Li Binghui; Wang Xiaohua; Fan Xiwu

    2007-01-01

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays

  15. ZnO nanorod array solid phase micro-extraction fiber coating: fabrication and extraction capability

    International Nuclear Information System (INIS)

    Wang Dan; Zhang Zhuomin; Li Tiemei; Zhang Lan; Chen Guonan; Luo Lin

    2009-01-01

    In this paper, a ZnO nanorod array has been introduced as a coating to the headspace solid phase micro-extraction (HSSPME) field. The coating shows good extraction capability for volatile organic compounds (VOCs) by use of BTEX as a standard and can be considered suitable for sampling trace and small molecular VOC targets. In comparison with the randomly oriented ZnO nanorod HSSPME coating, ZnO nanorod array HSSPME fiber coating shows better extraction capability, which is attributed to the nanorod array structure of the coating. Also, this novel nanorod array coating shows good extraction selectivity to 1-propanethiol.

  16. Remote control manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, T

    1970-02-28

    A prior-art remote control manipulator comprises a horizontal suspension section, a master arm and a slave arm which are coupled to ends of the suspension section in a manner to pivotally move relative to the suspension section, and a connecting device which includes a tape and which joins both the arms. When the connecting device malfunctions, the slave arm can neither be extended nor contracted. Means to keep the tension of the tape is required which restricts the extension length of the slave arm. Further, the slave arm can be moved only in the axial direction. The invention described provides an improved remote control manipulator of the specified type. A moving device which moves the slave arm relative to the master arm without the intervention of the connecting device is mounted on a movable part of the slave arm, while pulleys which maintain the joining relationship of the connecting device are mounted on the movable part and fixed part of the slave arm. Owing to this construction, movement of the slave arm is assured despite troubles which may arise in the connecting device. In addition, no slack arises in the tape. By applying a similar construction to the horizontal suspension section, the suspension section can be stretched, and hence, the slave arm can be moved in a direction orthogonal to its axis.

  17. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  18. Metallic nickel nanorod arrays embedded into ordered block copolymer templates

    International Nuclear Information System (INIS)

    Seifarth, O.; Krenek, R.; Tokarev, I.; Burkov, Y.; Sidorenko, A.; Minko, S.; Stamm, M.; Schmeisser, D.

    2007-01-01

    We report on metallic Nickel nanorods prepared by utilizing a mask of ordered nanostructured hollow channels in a block copolymer matrix. These polymeric templates were formed by a self organized process in block copolymer supramolecular assemblies. Nickel was filled into with two different techniques, electrodeposition and washing in. We monitor the formation process of these nanorods by means of atomic force microscopy and synchrotron radiation soft X-ray based photoelectron emission microscopy. The oxidation state of the nickelrods is evaluated with X-ray absorption spectroscopy and X-ray photoelectron spectroscopy at the Ni L edges and lateral distributions of the Ni nanorods were detected with micrometer resolved X-ray absorption spectroscopy. The finding is that the Ni rods were metallic despite their preparation under ambient conditions, inside the particles no hints for NiO complexes were found. This indicates that the polymer protects Ni nanoparticles against oxidation

  19. Fabrication and Photocatalytic Properties of ZnSe Nanorod Films

    Directory of Open Access Journals (Sweden)

    Jiajia Yin

    2016-01-01

    Full Text Available ZnSe nanorod films grown on fused quartz glass substrates via a simple two-step synthesis protocol were demonstrated to be environmentally safe and effective recyclable photocatalysts. These films showed greatly enhanced photocatalytic activity compared to pulsed laser deposition ZnSe films in the degradation of methyl orange dye solutions. The well-crystalized ZnSe nanorods had a length of 15 µm and a diameter of 200 nm and were densely grown on the substrate. The morphology, crystal structure, crystal phase, and photophysical properties of the ZnSe nanorod films were investigated using field-emission scanning electron microscopy (FE-SEM, UV-Vis spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, and high resolution transmission electron microscopy (HRTEM.

  20. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors

    Science.gov (United States)

    Choi, Seungbok; Bonyani, Maryam; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2018-02-01

    Pristine WO3 nanorods and Cr2O3-functionalized WO3 nanorods were synthesized by the thermal evaporation of WO3 powder in an oxidizing atmosphere, followed by spin-coating of the nanowires with Cr2O3 nanoparticles and thermal annealing in an oxidizing atmosphere. Scanning electron microscopy was used to examine the morphological features and X-ray diffraction was used to study the crystallinity and phase formation of the synthesized nanorods. Gas sensing tests were performed at different temperatures in the presence of test gases (ethanol, acetone, CO, benzene and toluene). The Cr2O3-functionalized WO3 nanorods sensor showed a stronger response to these gases relative to the pristine WO3 nanorod sensor. In particular, the response of the Cr2O3-functionalized WO3 nanorods sensor to 200 ppm ethanol gas was 5.58, which is approximately 4.4 times higher that of the pristine WO3 nanorods sensor. Furthermore, the Cr2O3-functionalized WO3 nanorods sensor had a shorter response and recovery time. The pristine WO3 nanorods had no selectivity toward ethanol gas, whereas the Cr2O3-functionalized WO3 nanorods sensor showed good selectivity toward ethanol. The gas sensing mechanism of the Cr2O3-functionalized WO3 nanorods sensor toward ethanol is discussed in detail.

  1. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  2. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  3. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    Science.gov (United States)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  4. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo, E-mail: oku@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  5. Photoluminescence and lasing properties of ZnO nanorods

    International Nuclear Information System (INIS)

    Lee, Geon Joon; Lee, Young Pak; Min, Sun Ki; Han, Sung Hwan; Lim, Hwan Hong; Cha, Myoung Sik; Kim, Sung Soo; Cheong, Hyeon Sik

    2010-01-01

    In this study, we investigated the structures, photoluminescence (PL), and lasing characteristics of the ZnO nanorods prepared by using chemical bath deposition. The continuous-wave HeCd laser excited PL spectra of the ZnO nanorods exhibited two emission bands, one in the UV region and the other in the visible region. The UV emission band has its peak at 3.25 eV with a bandwidth of 160 meV. However, the PL spectra under 355-nm, 35-ps pulse excitation exhibited a spectrally-narrowed UV emission band with a peak at 3.20 eV and a spectral width of 35 meV. The lasing phenomena were ascribed to the amplified spontaneous emission (ASE) caused by coupling of the microcavity effect of ZnO nanorods and the high-intensity excitation. Above the lasing threshold, the ASE peak intensity exhibited a superlinear dependence on the excitation intensity. For an excitation pulse energy of 3 mJ, the ASE peak intensity was increased by enlarging the length of the ZnO nanorods from 1 μm to 4 μm. In addition, the PL spectrum under 800-nm femtosecond pulse excitation exhibited second harmonic generation, as well as the multiphoton absorption-induced UV emission band. In this research, ZnO nanorods were grown on seed layers by using chemical bath deposition in an aqueous solution of Zn(NO 3 ) 2 and hexamethyltetramine. The seed layers were prepared on conducting glass substrates by dip coating in an aqueous colloidal dispersion containing 50% 70-nm ZnO nanoparticles. Scanning electron microscopy clearly revealed that ZnO nanorods were successfully grown on the seed layers.

  6. Performance Improvement of GaN-Based Flip-Chip White Light-Emitting Diodes with Diffused Nanorod Reflector and with ZnO Nanorod Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The GaN-based flip-chip white light-emitting diodes (FCWLEDs with diffused ZnO nanorod reflector and with ZnO nanorod antireflection layer were fabricated. The ZnO nanorod array grown using an aqueous solution method was combined with Al metal to form the diffused ZnO nanorod reflector. It could avoid the blue light emitted out from the Mg-doped GaN layer of the FCWLEDs, which caused more blue light emitted out from the sapphire substrate to pump the phosphor. Moreover, the ZnO nanorod array was utilized as the antireflection layer of the FCWLEDs to reduce the total reflection loss. The light output power and the phosphor conversion efficiency of the FCWLEDs with diffused nanorod reflector and 250 nm long ZnO nanorod antireflection layer were improved from 21.15 mW to 23.90 mW and from 77.6% to 80.1% in comparison with the FCWLEDs with diffused nanorod reflector and without ZnO nanorod antireflection layer, respectively.

  7. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  8. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  9. Far-Infrared Absorption of PbSe Nanorods

    KAUST Repository

    Hyun, Byung-Ryool

    2011-07-13

    Measurements of the far-infrared absorption spectra of PbSe nanocrystals and nanorods are presented. As the aspect ratio of the nanorods increases, the Fröhlich sphere resonance splits into two peaks. We analyze this splitting with a classical electrostatic model, which is based on the dielectric function of bulk PbSe but without any free-carrier contribution. Good agreement between the measured and calculated spectra indicates that resonances in the local field factors underlie the measured spectra. © 2011 American Chemical Society.

  10. Towards nanorod LEDs: Numerical predictions and controlled growth

    Energy Technology Data Exchange (ETDEWEB)

    Koelper, Christopher [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Computational Electronics and Photonics, Universitaet Kassel, Wilhelmshoeher Allee 71, 34121 Kassel (Germany); Bergbauer, Werner [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Drechsel, Philipp; Sabathil, Matthias; Strassburg, Martin; Lugauer, Hans-Juergen [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Witzigmann, Bernd [Computational Electronics and Photonics, Universitaet Kassel, Wilhelmshoeher Allee 71, 34121 Kassel (Germany); Fuendling, Soenke; Li, Shunfeng; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany)

    2011-07-15

    We present a numerical optimization of nanorod geometries with respect to the optical properties of an electrically driven LED emitting in the green spectral range. It is shown that an overall Purcell enhancement as well as directional emission can be achieved at an emission wavelength of 550 nm with nanorods of 110 nm radius. Position-controlled growth on patterned substrates demonstrates that the required dimensions are accessible by varying growth parameters and growth time in a large volume MOVPE reactor. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Properties of V-implanted ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, E [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Bakin, A [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Schmid, H [Institut fuer Anorganische Chemie, University of Bonn, Roemerstrasse 164, 53117 Bonn (Germany); Mader, W [Institut fuer Anorganische Chemie, University of Bonn, Roemerstrasse 164, 53117 Bonn (Germany); Sievers, S [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Albrecht, M [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ronning, C [II. Institute of Physics, Georg-August-University Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Mueller, S [II. Institute of Physics, Georg-August-University Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Al-Suleiman, M [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Postels, B [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Wehmann, H-H [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Siegner, U [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Waag, A [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany)

    2007-03-28

    ZnO nanorods were grown on Si substrates by an aqueous chemical approach and subsequently doped by V implantation. Transmission electron microscopy and photoluminescence spectroscopy reveal a severely defective material directly after the implantation process. Subsequent annealing leads to a partial recovery of the crystal structure. The magnetic features of ZnO:V nanorods were investigated by magnetic force microscopy. Images taken of ensembles as well as of single rods clearly display contrast, which is seen as a strong indication of ferromagnetism at room temperature.

  12. Uptake, translocation, and toxicity of gold nanorods in maize

    Science.gov (United States)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in

  13. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  14. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  15. [Language Manipulation, Surrogacy, Altruism].

    Science.gov (United States)

    Serrano Ruiz-Calderón, José Miguel

    2017-01-01

    The Newspeak propitiates a change of the sense of the words and next to the double thinking forms the picture of totalitarianism described by Orwell in 1984. The purpose of the Newspeak is to make all other forms of thought impossible. In bioethics the Newspeak is applied, not because Bioethics is a new science but by the manipulative intention. The twentieth-century political language has, according to Orwell, the intention to remove the ″mental image ″ of what really happens. This is clear in the terms ″surrogacy ″. On the one hand, the mother is deprived of her child. On the other, there is no legal subrogation. As has been said the technique reduces a woman to the condition of a vessel. The excuse of gratuity does not change the exploitative relationship, since gratuitousness in the provision of women is not the altruism of all those involved in surrogacy.

  16. Media and manipulation

    Directory of Open Access Journals (Sweden)

    Kovačević Braco

    2013-01-01

    Full Text Available The role and importance of the media are huge, both in everyday life and in cultural, spiritual and political life of modern man. Their power in the sense of political shaping of people and shaping of public opinion is very distinctive. In the process of propaganda to influence public opinion, they use various manipulative procedures in order to accomplish certain interests and objectives. Through the media, politics realizes its economic, ideological, political and even military activities. The war in the former Yugoslavia and former Bosnia and Herzegovina was also waged through the media. This media war still is spreading the hate speech, thus still causing conflicts and disintegration processes in the Balkans.

  17. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  18. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  19. Characteristics of manipulative in mathematics laboratory

    Science.gov (United States)

    Istiandaru, A.; Istihapsari, V.; Prahmana, R. C. I.; Setyawan, F.; Hendroanto, A.

    2017-12-01

    A manipulative is a teaching aid designed such that students could understand mathematical concepts by manipulating it. This article aims to provide an insight to the characteristics of manipulatives produced in the mathematics laboratory of Universitas Ahmad Dahlan, Indonesia. A case study was conducted to observe the existing manipulatives produced during the latest three years and classified the manipulatives based on the characteristics found. There are four kinds of manipulatives: constructivism manipulative, virtual manipulative, informative manipulative, and game-based manipulative. Each kinds of manipulative has different characteristics and impact towards the mathematics learning.

  20. Adaptive control of robotic manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  1. Enhancing the Lithium Storage Performance of Graphene/SnO2 Nanorods by a Carbon-Riveting Strategy.

    Science.gov (United States)

    Liu, Xianghong; Ma, Tiantian; Sun, Li; Xu, Yongshan; Zhang, Jun; Pinna, Nicola

    2018-04-25

    Graphene/metal oxide (MO) nanocomposites hold great promise for application as anodes in lithium-ion batteries (LIBs). However, the restacking of graphene during subsequent processing remains a challenge to overcome for enhanced lithium storage properties. Herein, the fabrication of sandwich-architecture carbon-riveted graphene/SnO 2 nanorods, in which the SnO 2 nanorods are confined in the nanospaces formed by the carbon layers on graphene, by a two-step hydrothermal process followed by thermal treatment, is reported. Electrochemical tests show that the carbon-riveted nanolayers significantly improve the lithium storage performance of graphene/SnO 2 . The nanocomposite displays a high reversible capacity of 815 mAh g -1 after 150 cycles at 100 mA g -1 and high cycling stability at 1000 mA g -1 . This work provides an efficient way to manipulate graphene/MO-based nanocomposites for LIBs with improved performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Image manipulation as research misconduct.

    Science.gov (United States)

    Parrish, Debra; Noonan, Bridget

    2009-06-01

    A growing number of research misconduct cases handled by the Office of Research Integrity involve image manipulations. Manipulations may include simple image enhancements, misrepresenting an image as something different from what it is, and altering specific features of an image. Through a study of specific cases, the misconduct findings associated with image manipulation, detection methods and those likely to identify such manipulations, are discussed. This article explores sanctions imposed against guilty researchers and the factors that resulted in no misconduct finding although relevant images clearly were flawed. Although new detection tools are available for universities and journals to detect questionable images, this article explores why these tools have not been embraced.

  3. The Manipulative Discourse of Gandalf

    Directory of Open Access Journals (Sweden)

    Farid Mohammadi

    2014-07-01

    Full Text Available The aim of this essay is to investigate discursive, cognitive and social aspects of manipulation in regard to the dialogues of the literary fictional character of Gandalf in the trilogy of The Lord of the Rings. Accordingly, the researcher has taken a multidisciplinary approach to an account of discursive manipulation, and focuses on the cognitive dimensions of manipulation. As a result, the researcher demonstrates meticulously how manipulation involves intensifying the power, moral superiority and the credibility of the speaker(s, while abusing the others (recipients, along with an emotional and attractive way of expression, and supplemented by reasonable facts and documents in regard to a specific issue.

  4. Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications

    Science.gov (United States)

    Kang, Wonjun

    This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

  5. Acetone gas-sensing properties of multiple-networked Pd-decorated Bi_2O_3 nanorod sensors

    International Nuclear Information System (INIS)

    Park, Sung Hoon; Kim, Soo Hyun; Lee, Sang Min; Lee, Chong Mu

    2015-01-01

    This study examined the sensing properties of Bi_2O_3 nanorods decorated with Pd nanoparticles. Pd-decorated β-Bi_2O_3 nanorods were prepared by immersing the Bi_2O_3 nanorods in ethanol/(50 mM)PdCl_2 solution followed by UV irradiation and annealing. The Bi_2O_3 nanorods decorated with Pd nanoparticles showed faster and stronger response to acetone gas than the pristine Bi_2O_3 nanorods. Interestingly, the difference in response time between the Pd-decorated Bi_2O_3 nanorod sensor and pristine Bi_2O_3 nanorod sensor increased with increasing the acetone gas concentration. In contrast, the difference in recovery time between the two nanorod sensors decreased with increasing the acetone gas concentration. This difference can be explained using the chemical mechanism. The underlying mechanism for the enhanced response of the Bi_2O_3 nanorods decorated with Pd nanoparticles to acetone gas is also discussed

  6. Tree manipulation experiment

    Science.gov (United States)

    Nishina, K.; Takenaka, C.; Ishizuka, S.; Hashimoto, S.; Yagai, Y.

    2012-12-01

    Some forest operations such as thinning and harvesting management could cause changes in N cycling and N2O emission from soils, since thinning and harvesting managements are accompanied with changes in aboveground environments such as an increase of slash falling and solar radiation on the forest floor. However, a considerable uncertainty exists in effects of thinning and harvesting on N2O fluxes regarding changes in belowground environments by cutting trees. To focus on the effect of changes in belowground environments on the N2O emissions from soils, we conducted a tree manipulation experiment in Japanese cedar (Cryptomeria japonica) stand without soil compaction and slash falling near the chambers and measured N2O flux at 50 cm and 150 cm distances from the tree trunk (stump) before and after cutting. We targeted 5 trees for the manipulation and established the measurement chambers to the 4 directions around each targeted tree relative to upper slope (upper, left, right, lower positions). We evaluated the effect of logging on the emission by using hierarchical Bayesian model. HB model can evaluate the variability in observed data and their uncertainties in the estimation with various probability distributions. Moreover, the HB model can easily accommodate the non-linear relationship among the N2O emissions and the environmental factors, and explicitly take non-independent data (nested structure of data) for the estimation into account by using random effects in the model. Our results showed tree cutting stimulated N2O emission from soils, and also that the increase of N2O flux depended on the distance from the trunk (stump): the increase of N2O flux at 50 cm from the trunk (stump) was greater than that of 150 cm from the trunk. The posterior simulation of the HB model indicated that the stimulation of N2O emission by tree cut- ting could reach up to 200 cm in our experimental plot. By tree cutting, the estimated N2O emission at 0-40 cm from the trunk doubled

  7. Remote inspection manipulators for AGR II: Babcock Power's interstitial manipulator

    International Nuclear Information System (INIS)

    Whyley, S.R.

    1985-01-01

    The interstitial manipulator has been designed and built by Babcock Power for the remote visual inspection of AGR II reactors at Heysham and Torness. Its five drives are operated from a console local to the manipulator on the pile cap, or from a similar console located remotely. The need to operate from an interstitial ISI standpipe has restricted the size of the components entering the reactor, and this has consequently provided the major design constraint. A detailed structural assessment of the manipulator was carried out to demonstrate the ability to operate with payloads in excess of the largest camera weight of 13.6 kg. The manipulator finite element model was also used to determine static deflections, and, as a consequence, has provided data from which the control system is able to predict accurately the camera's position. Other computer aided design techniques have enabled the step by step sequences of manipulator deployment, in the restricted space available, to be successfully demonstrated. (author)

  8. Electrical anisotropy properties of ZnO nanorods analyzed by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Wu Yunfeng; Yu Naisen; Liu Dongping; He Yangyang; Liu Yuanda; Liang Hongwei; Du Guotong

    2013-01-01

    Highlights: ► The electrical properties of one individual lying ZnO nanorod were performed by C-AFM measurement. ► Inhomogeneous spatial current distribution was detected. ► Current was detected along the side facets while no current was detected in the top plane for ZnO nanorod. ► The side facets were more conductive than the top facets of ZnO nanorods. - Abstract: In this study, we have prepared ZnO nanorods on cracked GaN substrates using aqueous solution method. Unique electrical characterization of one individual lying ZnO nanorod is analyzed by conductive atomic force microscopy (C-AFM). Effect of anisotropy properties on the conductivity of a single nanorod has been investigated. The current maps of ZnO nanorods have been simultaneously recorded with the topography which is gained by AFM-contact mode. The C-AFM measurement present local current–voltage (I–V) characteristics of the side facets of one individual lying nanorod, however, no current is detected on the top facets of ZnO nanorods. Measurement results indicate that the side facets are more electrically active than the top facets of ZnO nanorods due to lower Schottky barrier height of the side facets.

  9. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Attallah, Olivia A., E-mail: olivia.adly@hu.edu.eg [Center of Nanotechnology, Nile University, 12677 Giza (Egypt); Pharmaceutical Chemistry Department, Heliopolis University, 11777 El Salam, Cairo (Egypt); Girgis, E. [Solid State Physics Department, National Research Center, 12622 Dokki, Giza (Egypt); Advanced Materials and Nanotechnology Lab, CEAS, National Research Center, 12622 Dokki, Giza (Egypt); Abdel-Mottaleb, Mohamed M.S.A. [Center of Nanotechnology, Nile University, 12677 Giza (Egypt)

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  10. Pre-fabricated nanorods in RE–Ba–Cu–O superconductors

    International Nuclear Information System (INIS)

    Khatri, N D; Majkic, G; Shi, T; Selvamanickam, V; Chen, Y

    2013-01-01

    Pre-fabrication of metallic nanorods on biaxially textured templates has been explored in this study to introduce flux pinning centers in RE–Ba–Cu–O (REBCO, RE =rare earth) based superconductors. Pt nanorods were deposited by an electron beam assisted deposition method on LaMnO 3 -capped biaxially textured IBAD-(ion beam assisted deposition) substrates. Well-controlled nanorods with varying diameter (50–120 nm), length (up to 1 μm), orientation and unit cell size were grown over an area of 120–150 μm 2 . The nanorod-decorated samples were then deposited with Gd–Y–Ba–Cu–O ((Gd, Y)BCO) by metal organic chemical vapor deposition (MOCVD). The Pt nanorods remain in their positions during MOCVD and become embedded in the (Gd, Y)BCO matrix, although they suffer creep-induced shape deformation due to exposure to elevated temperature. Higher unit cell size, longer nanorods, and nanorods oriented at an angle to the substrate normal adversely affect the epitaxy of the (Gd, Y)BCO film due to formation of a-axis grains. The observed current-carrying capacity of the Pt nanorod sample is lower than its corresponding reference sample without any nanorods and processed under identical conditions, but it decreases at a slower rate with increasing magnetic field. Potential routes to improve the performance while retaining the desirable characteristics of controlled nanorod direction and density are discussed. (paper)

  11. Synthesis and characterizations of Pt nanorods on electrospun polyamide-6 nanofibers templates

    International Nuclear Information System (INIS)

    Nirmala, R.; Navamathavan, R.; Won, Jeong Jin; Jeon, Kyung Soo; Yousef, Ayman; Kim, Hak Yong

    2012-01-01

    Highlights: ► Electrospun polyamide-6 nanofibers were used as the templates for synthesis Pt nanorods. ► Polyamide-6 nanofibers surfaces were plasma treated to coat Pt. ► High quality Pt nanorods were obtained by calcinations process. ► Pt nanorods with a diameter of few hundred nanometers were obtained. ► Polyamide-6 nanofibers template based Pt nanorods synthesis are a feasible method. - Abstract: We report on the synthesis of platinum (Pt) nanorods by using ultrafine polyamide-6 nanofibers templates produced via electrospinning technique. These ultrafine polyamide-6 nanofibers can be utilized as the templates for growing Pt nanorods after modifying them optimally by plasma passivations. The morphological, structural, optical and electrical properties of the template assisted Pt nanorods were studied by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), photoluminescence (PL) and current–voltage (I–V) characteristics. The ability to fabricate the ultrafine size controlled Pt nanorods on polyamide-6 templates with optimized growth parameters in real time can be utilized for the variety of technological applications. Therefore, it is possible to obtain high quality with size control Pt nanorods. Once obtaining the high quality metal nanorods on polymer templates, the same can be adapted for the electronic device fabrication.

  12. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    International Nuclear Information System (INIS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M.S.A.

    2016-01-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  13. WO{sub 3} nanorods prepared by low-temperature seeded growth hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@eng.usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@eng.usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2014-03-05

    Highlights: • WO{sub 3} nanorods with 5–10 nm diameter were grown directly on seeded tungsten foil. • WO{sub 3} nanorods were successfully grown at low temperature of 80 °C. • WO{sub 3} nanorods were grown on the entire surface of the seed layer after 24 h. • Annealed nanorods showed better electrochromic properties than as-made nanorods. -- Abstract: This work describes the first tungsten oxide (WO{sub 3}) nanorods hydrothermally grown on W foil. WO{sub 3} nanorods were successfully grown at low hydrothermal temperature of 80 °C by seeded growth hydrothermal reaction. The seed layer was prepared by thermally oxidized the W foil at 400 °C for 0.5 h. This work discusses the effect of hydrothermal reaction and annealing period on the morphological, structural, and electrochromic properties of WO{sub 3} nanorods. Various hydrothermal reaction periods (8–24 h) were studied. Monoclinic WO{sub 3} nanorods with 5–10 nm diameter were obtained after hydrothermal reaction for 24 h. These 24 h WO{sub 3} nanorods were also annealed at 400 °C with varying dwelling periods (0.5–4 h). Electrochromic properties of WO{sub 3} nanorods in an acidic electrolyte were analyzed using cyclic voltammetry and UV–vis spectrophotometry. WO{sub 3} nanorods annealed at 400 °C for 1 h showed the highest charge capacity and the largest optical contrast among the 24 h WO{sub 3} films. The sample also showed good cycling stability without significant degradation. Based on the results, the reaction mechanism of WO{sub 3} nanorod formation on W foil was proposed.

  14. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  15. Luminescence properties of hydrothermally grown ZnO nanorods

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2016-01-01

    Roč. 99, 1November (2016), s. 214-220 ISSN 0749-6036 R&D Projects: GA MŠk(CZ) LD14111; GA ČR GA15-17044S Institutional support: RVO:67985882 Keywords : Photoluminescence * Annealing * ZnO nanorods Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.123, year: 2016

  16. Sodium titanate nanorods: Preparation, microstructure characterization and photocatalytic activity

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Šubrt, Jan; Večerníková, Eva; Szatmáry, Lórant; Klementová, Mariana; Balek, Vladimír

    2006-01-01

    Roč. 63, 1-2 (2006), s. 20-30 ISSN 0926-3373 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : sodium titanate * nanorods * ethylene glycol Subject RIV: CA - Inorganic Chemistry Impact factor: 3.942, year: 2006

  17. Co-catalyst free Titanate Nanorods for improved Hydrogen ...

    Indian Academy of Sciences (India)

    Herein, we report a simplified method for the preparation of photo-active titanate nanorods catalyst .... The TEM images were taken with Philips Technai G2 FEI F12 trans- mission electron microscope operating at 80-100 kV. Optical properties were measured in DRS ..... Chen X, Shen S, Guo L and Mao S S 2010 Chem. Rev ...

  18. Detecting Casimir torque with an optically levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  19. Ionic liquid intercalated V2O5 nanorods: synthesis and ...

    Indian Academy of Sciences (India)

    Administrator

    materials for lithium ion battery, catalyst for photocata- lytic degradation ... ties.5,6 This compound is widely studied and is a promising material, both in the pure .... Figure 3 shows the Raman spectra of IL-V2O5 nanorods and calcined V2O5 ...

  20. Graphite/ZnO nanorods junction for ultraviolet photodetectors

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan; Verde, Maria

    2015-01-01

    Roč. 105, March 2015 (2015), s. 70-73 ISSN 0038-1101 R&D Projects: GA MŠk(CZ) LD14111 Institutional support: RVO:67985882 Keywords : ZnO nanorods * Graphite based junction * UV photodetector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.345, year: 2015

  1. Synthesis and super-paramagnetic properties of neodymium ferrites nanorods

    Energy Technology Data Exchange (ETDEWEB)

    El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid, BP 63, 46000 Safi (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2013-12-25

    Highlights: •Magnetic properties of Neodymium nanorods depend on calcination temperature. •The as-synthesized Nd ferrite nanorods are superparamagnetic at room temperature. •The blocking temperature is higher than room temperature. -- Abstract: In this work we report the microstructural characterization and the magnetic properties of neodymium ferrites (NdFe{sub 2}O{sub 4}) nanorods prepared by well controlled co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of NdFe{sub 2}O{sub 4} has been investigated. The transmission electron microscopy (TEM) observations revealed that the as-prepared nanoparticles have rods-like shape with the average diameter ranging from 5 to 14 nm and uniform length. The magnetic measurements show that the as-synthesized nanorods have a superparamagnetic behavior at room temperature, with a blocking temperature of 360 K and magnetic anisotropy constant of 2.8 × 10{sup 5} ergs/cm{sup 3}. The magnetization and coercitivity at room temperature are increased from 26 to 34 emu/g and from 151 to 171 Oe with increasing annealing temperature from 400 to 600 °C, respectively.

  2. Attachment of Quantum Dots on Zinc Oxide Nanorods

    Science.gov (United States)

    Seay, Jared; Liang, Huan; Harikumar, Parameswar

    2011-03-01

    ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.

  3. Electrorheological properties of suspensions of polypyrrole coated titanate nanorods

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Pavlínek, V.; Saha, P.; Quadrat, Otakar

    2011-01-01

    Roč. 21, č. 5 (2011), 52365_1-52365_7 ISSN 1430-6395 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polypyrrole * nanorods * electrorheology Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2011

  4. Antimicrobial potentials of silver colloidal (nanorods) on clinical ...

    African Journals Online (AJOL)

    Antimicrobial resistance in developing countries has long been an issue of major concern. Nanotechnology has become an eye opener for the intervention on multiple drug resistance organisms. In this study we investigated the antimicrobial potentials of Silver Nitrate (nanorods) solution used in managing infectious ...

  5. Use of ionic liquids in synthesis of nanocrystals, nanorods and ...

    Indian Academy of Sciences (India)

    TECS

    chalcogen powder (Se and Te) and NaBH4 in imidazolium[BMIM]-based ionic liquids as solvents at 180–200°C. Nanorods and nanowires of Se and Te ... such as elemental chalcogens and metal chalcogenides. Nanoparticles of Rh and Ir have been ... Single crystalline Te nanotubes have been synthesized by the polyol ...

  6. All-silicon nanorod-based Dammann gratings.

    Science.gov (United States)

    Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong

    2015-09-15

    Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.

  7. Stereoscopically Observing Manipulative Actions.

    Science.gov (United States)

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. © The Author 2016. Published by Oxford University Press.

  8. ADVERTISING AND LANGUAGE MANIPULATION

    Directory of Open Access Journals (Sweden)

    Cristina-Maria PRELIPCEANU

    2013-11-01

    Full Text Available Research has revealed that much of what happens in our minds as a result of language use is still hidden from our conscious awareness. Advertisers know this phenomenon better. They use the manipulation of language to suggest something about their products without directly claiming it to be true. Although the advertisers use colours, symbols, and imagery in advertisements, “the most direct way to study ads is through an analysis of the language employed” as all the other aspects are meant to reinforce the language message. Ads are designed to have an effect on consumers while being laughed at, belittle and all but ignored. Some modern advertisements appear to be almost dissuading consumers from the product – but this is just a modern technique. This paper is going to analyze a series of language techniques used by advertisers to arrest our attention, to arouse our interest, to stimulate desire for a product and ultimately to motivate us to buy it. Once we become familiar with the language strategies used in advertising messages we will be more able to make our own buying decisions.

  9. Stud manipulating device

    International Nuclear Information System (INIS)

    Bunyan, T.W.

    1980-01-01

    A device for inserting and removing studs from bores in a workpiece, for example a nuclear reactor vessel, comprises manipulating devices for operating on individual studs, each capable of tensioning a stud slackening a working nut on the stud, and subsequently removing the stud from the bore. A ring has dogs which can engage working nut recesses to interlock with the nut against relative rotation. Motors coupled to the ring rotate the working nut. A top nut is coupled to the motors to rotate the nut and screw it onto the stud. The top nut with other device parts can be raised and lowered on a tube by a hydraulic actuator. A hydraulic load cell between the top nut and a stool on the workpiece is pressurised to tension the stud by means of the top nut and thus facilitate rotation of the working nut when tightening or slackening. A dog clutch mechanism engages a stud end fitting against relative axial and rotational movement. The mechanism is raised and lowered on a guide member by an actuator. The mechanism has a tubular member and the drive coupling for the motors to the top nut includes a tubular member. Tubular members carry teeth which are engaged when the top nut is raised and the clutch mechanism is lowered, to provide a coupling between the motors and the mechanism for rotating the stud. (U.K.)

  10. Manipulation Robustness of Collaborative Filtering

    OpenAIRE

    Benjamin Van Roy; Xiang Yan

    2010-01-01

    A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions and hence have become targets of manipulation by unscrupulous vendors. We demonstrate that nearest neighbors algorithms, which are widely used in commercial systems, are highly susceptible to manipulation and introduce new collaborative filtering algorithms that are relatively robust.

  11. ZnO-nanorods: A possible white LED phosphor

    Science.gov (United States)

    Sarangi, Sachindra Nath; T., Arun; Ray, Dinseh K.; Sahoo, Pratap Kumar; Nozaki, Shinji; Sugiyama, Noriyuki; Uchida, Kazuo

    2017-05-01

    The white light-emitting diodes (LEDs) have drawn much attention to replace conventional lighting sources because of low energy consumption, high light efficiency and long lifetime. Although the most common approach to produce white light is to combine a blue LED chip and a yellow phosphor, such a white LED cannot be used for a general lighting application, which requires a broad luminescence spectrum in the visible wavelength range. We have successfully chemically synthesized the ZnO nanorods showing intense broad luminescence in the visible wavelength range and made a white LED using the ZnO nanorods as phosphor excited with a blue LED. Their lengths and diameters were 2 - 10 μm and 200 - 800 nm, respectively. The wurtzite structure was confirmed by the x-ray diffraction measurement. The PL spectrum obtained by exciting the ZnO nanorods with the He-Cd laser has two peaks, one associated with the near band-edge recombination and the other with recombination via defects. The peak intensity of the near band-edge luminescence at 388 nm is much weaker than that of the defect-related luminescence. The latter luminescence peak ranges from 450 to 850 nm and broad enough to be used as a phosphor for a white LED. A white LED has been fabricated using a blue LED with 450 nm emission and ZnO nanorod powders. The LED performances show a white light emission and the electroluminescence measurement shows a stiff increase in white light intensity with increasing blue LED current. The Commission International de1'Eclairage (CIE) chromaticity colour coordinates of 450 nm LED pumped white emission shows a coordinate of (0.31, 0.32) for white LED at 350 mA. These results indicate that ZnO nanorods provides an alternate and effective approach to achieve high-performance white LEDs and also other optoelectronic devices.

  12. CLIMAN - a mobile manipulator concept

    International Nuclear Information System (INIS)

    Noltingk, B.E.; Owen, C.K.V.

    With increasing age the integrity of more remote parts of reactors, such as the core restraints, is questioned so there is a need for a means of access to these places to carry out inspection, minor repairs and alterations. Conventional standpipe manipulators are about 20 m long so that extending them further presents difficulties of load capacity, rigidity, dexterity and control which must increase steeply with range. The proposal outlined here is for a mobile manipulator which can climb at the end of a cable (CLImbing MANipulator - CLIMAN) into a reactor and reach well beyond the range of a fixed base machine. In addition to virtually unlimited range such a mobile manipulator has twice as many degrees of freedom as a fixed base machine. Its body or base can be manoeuvred with six degrees of freedom so as to obtain the maximum coverage and obstacle avoidance for its manipulator. It is proposed that it should be manually controlled. (author)

  13. Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhou, Jianhong; Zhao, Lingzhou; Li, Bo; Han, Yong

    2018-04-14

    Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca 9 Sr 1 (PO 4 ) 6 (OH) 2 , Sr 1 -HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr 1 -HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/β-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/β-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the β-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/β-catenin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Imidazolium ionic liquid induced one-step synthesis of -Fe2O3 nanorods and nanorod assemblies for lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Shuting Xie

    2016-12-01

    Full Text Available α-Fe2O3 nanorods and nanorod assemblies are prepared via a facile one-step method with the assistance of imidazolium-based ionic liquid. The aspect ratio of synthesized nanorods is determined by the alkyl chain length of [Cnmim]+. The inter-molecular π−π interaction and intra-molecular dipole-dipole interaction among imidazole rings of [C4mim]+[PhCOO]− play critical roles in both nucleation and assembly processes of α-Fe2O3 nanorods. The α-Fe2O3 nanorod assemblies show an excellent performance in lithium-ion batteries with a reversible capacity of 1007.3 mA h g−1 at the rate of 500 mA g−1 after 150 cycles.

  15. Dexterous Manipulation: Making Remote Manipulators Easy to Use

    International Nuclear Information System (INIS)

    HARRIGAN, RAYMOND W.; BENNETT, PHIL C.

    2001-01-01

    Perhaps the most basic barrier to the widespread deployment of remote manipulators is that they are very difficult to use. Remote manual operations are fatiguing and tedious, while fully autonomous systems are seldom able to function in changing and unstructured environments. An alternative approach to these extremes is to exploit computer control while leaving the operator in the loop to take advantage of the operator's perceptual and decision-making capabilities. This report describes research that is enabling gradual introduction of computer control and decision making into operator-supervised robotic manipulation systems, and its integration on a commercially available, manually controlled mobile manipulator

  16. Surface passivation function of indium-tin-oxide-based nanorod structural sensors

    International Nuclear Information System (INIS)

    Lin, Tzu-Shun; Lee, Ching-Ting; Lee, Hisn-Ying; Lin, Chih-Chien

    2012-01-01

    Employing self-shadowing traits of an oblique-angle electron-beam deposition system, various indium tin oxide (ITO) nanorod arrays were deposited on a silicon substrate and used as extended-gate field-effect-transistor (EGFET) pH sensors. The length and morphology of the deposited ITO nanorod arrays could be changed and controlled under different deposition conditions. The ITO nanorod structural EGFET pH sensors exhibited high sensing performances owing to the larger sensing surface area. The sensitivity of the pH sensors with 150-nm-length ITO nanorod arrays was 53.96 mV/pH. By using the photoelectrochemical treatment of the ITO nanorod arrays, the sensitivity of the pH sensors with 150-nm-length passivated ITO nanorod arrays was improved to 57.21 mV/pH.

  17. Simple and polarization-independent Dammann grating based on all-dielectric nanorod array

    Science.gov (United States)

    Yang, Sen; Li, Chuang; Liu, Tongming; Da, Haixia; Feng, Rui; Tang, Donghua; Sun, Fangkui; Ding, Weiqiang

    2017-09-01

    In this work, we comprehensively investigate a Dammann grating (DG) that can generate a 5 × 5 diffraction spot array with an extending angle of 18^\\circ × 18^\\circ around the fiber communication wavelength of 1550 {nm}. The DG is a simple metasurface structure composed of a silicon cuboid nanorod array on a silica substrate, and only two different sizes of nanorods with square cross-sections and uniform spatial orientations are used. These simple units and this configuration are favorable in practice, and the C4 symmetry cross section of the nanorods ensures the polarization-independent operation of the DG. The phase modulation of the nanorods is achieved by the guiding mode propagating in them rather than electric or magnetic Mie-type resonance, which makes the design of the cuboid nanorods easy and robust. More importantly, the two-dimensional nanorod array is generated from a one-dimensional array, which further decreases the design and fabrication complexity.

  18. An approach to fabricating chemical sensors based on ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Park, Jae Young; Song, Dong Eon; Kim, Sang Sub

    2008-01-01

    Vertically and laterally aligned ZnO nanorod arrays were synthesized on Pt-coated Si substrates by catalyst-free metal organic chemical vapor deposition. An approach to fabricating chemical sensors based on the nanorod arrays using a coating-and-etching process with a photo-resist is reported. Tests of the devices as oxygen gas sensors have been performed. Our results demonstrate that the approach holds promise for the realization of sensitive and reliable nanorod array chemical sensors

  19. Synthesis and Properties of Layered-Structured Mn5O8 Nanorods

    DEFF Research Database (Denmark)

    Gao, Tao; Norby, Poul; Krumeich, Frank

    2010-01-01

    Mn5O8 nanorods were prepared by a topotactic conversion of γ-MnOOH nanorod precursors in nitrogen at 400 °C. The as-prepared Mn5O8 nanorods crystallized in a monoclinic structure (space group C2/m) with unit cell dimensions a = 10.3784(2) Å, b = 5.7337(7) Å, c = 4.8668(6) Å, and β = 109.491(6)°, ...

  20. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method

    International Nuclear Information System (INIS)

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-01-01

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 μm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 deg. C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10 -10 to 1.0 x 10 -6 A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10 11 Ω in dry air (7% RH) to about 4.95 x 10 6 Ω in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors.

  1. Direct Manipulation in Virtual Reality

    Science.gov (United States)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  2. Manipulating early pig embryos.

    Science.gov (United States)

    Niemann, H; Reichelt, B

    1993-01-01

    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  3. Electric power distribution. Elektrische Energieverteilung

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, H; Frohne, H; Vaske, P

    1982-01-01

    The first chapter on electric power supply networks discusses transmitting media, their characteristic values, and the dimensioning of electric lines and networks; cables are given particular attention. High-voltage d.c. transmission and reactive power compensation are discussed. The next chapter describes the calculation of short-circuits and earth leakages for various neutral circuits on the basis of symmetric components. The newly introduced mesh current method for complex calculation of electric networks makes use of the potential of pocket computers. Chapter 3 discusses protective devices, i.e. earth systems and electronic protection. The next two chapters describe switch gear and power plants, including recent technical changes. The final chapter, which discusses the electric power industry, has been rewritten and extended. Methods of calculation, e.g. annual cost and cash value, are applied to transmitting media and plants. There is an extensive appendix with characteristic values of cables and overhead lines, graphical symbols, distinguishing signs of wiring diagrams, a bibliography of books, DIN standards, VDE specifications, and formulas.

  4. Kinematic sensitivity of robot manipulators

    Science.gov (United States)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  5. Modeling manipulation in medical education.

    Science.gov (United States)

    Dailey, Jason I

    2010-05-01

    As residents and medical students progress through their medical training, they are presented with multiple instances in which they feel they must manipulate the healthcare system and deceive others in order to efficiently treat their patients. This, however, creates a culture of manipulation resulting in untoward effects on trainees' ethical and professional development. Yet manipulation need not be a skill necessary to practice medicine, and steps should be taken by both individuals and institutions to combat the view that the way medicine must be practiced "in the real world" is somehow different from what one's affective moral sense implores.

  6. Thermal Reshaping of Gold Nanorods in Micellar Solution of Water/Glycerol Mixtures

    Directory of Open Access Journals (Sweden)

    Al Sayed A. Al-Sherbini

    2010-01-01

    Full Text Available Gold nanorods (Nds with aspect ratios of 4, 3.5, and 2.8 were prepared by the electrochemical method. The nanorods were thermally studied in binary solvents of aqueous glycerol at different ratios (25%–75%. The results illustrated that the longitudinal surface plasmon resonance (SPL is strongly dependent on the dielectric constant. The maximum absorption is red shifted with increasing the glycerol/water ratio. This was attributed to the decreasing value of the dielectric constant of the binary solvents. Moreover, by increasing the temperatures, the results showed relative instability of the gold nanorods. This attributed to the relative instability of the micelle capping the nanorods.

  7. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.

    Science.gov (United States)

    Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie

    2006-08-01

    A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.

  8. Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass

    International Nuclear Information System (INIS)

    Eskandari, M.; Haghighi, N.; Ahmadi, V.; Haghighi, F.; Mohammadi, SH.R.

    2011-01-01

    In this study, we have investigated the antifungal activity of ZnO nanorods prepared by the chemical solution method against Candida albicans. In the study, Zinc oxide nanorods have been deposited on glass substrates using the chemical solution method. The as-grown samples are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray diffraction (XRD) showed zinc oxide nanorods grown in (0 0 2) orientation. The antifungal results indicated that ZnO nanorod arrays exhibit stable properties after two months and play an important role in the growth inhibitory of Candida albicans.

  9. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Wang Xiaohua

    2009-01-01

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  10. Catalyst growth of single crystal aligned ZnO nanorods on ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal [Centre de Recherche sur la Matiere Divisee, CNRS-Universite d' Orleans, 1b rue de la Ferollerie, 45071 Orleans cedex 2 (France)

    2005-02-01

    One dimensional ZnO nanorods were successfully fabricated on Si substrates via a simple physical vapor-phase transport method at 950 C. A ZnO shell covered Au/Zn alloy is assumed as the nucleation site, then ZnO nanorods grow following a vapor-solid (VS) process. In order to guide the nanorod growth a c-axis oriented ZnO thin film and Au catalyst were first deposited on Si (100) surface. SEM images show nanorods grown on this substrate are vertical to the substrate surface. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Wang Xiaohua, E-mail: dxzhao2000@yahoo.com.c [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, 7089 WeiXing Road, ChangChun 130022 (China)

    2009-12-09

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  12. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  13. Exciton emission from bare and hybrid plasmonic GaN nanorods

    Science.gov (United States)

    Mohammadi, Fatemesadat; Kunert, Gerd; Hommel, Detlef; Ge, Jingxuan; Duscher, Gerd; Schmitzer, Heidrun; Wagner, Hans Peter

    We study the exciton emission of hybrid gold nanoparticle/Alq3 (aluminiumquinoline)/wurtzite GaN nanorods. GaN nanorods of 1.5 μm length and 250 nm diameter were grown by plasma assisted MBE. Hybrid GaN nanorods were synthesized by organic molecular beam deposition. Temperature and power dependent time integrated (TI) and time resolved (TR) photoluminescence (PL) measurements were performed on bare and hybrid structures. Bare nanorods show donor (D0,X) and acceptor bound (A0,X) exciton emission at 3.473 eV and at 3.463 eV, respectively. TR-PL trace modeling reveal lifetimes of 240 ps and 1.4 ns for the (D0,X) and (A0,X) transition. 10 nm gold coated GaN nanorods show a significant PL quenching and (D0,X) lifetime shortening which is tentatively attributed to impact ionization of (D0,X) due to hot electron injection from the gold nanoparticles. This is supported by electron energy loss spectroscopy that shows a redshift of a midgap state transition indicating a reduction of a preexisting band-bending at the nanorod surface due to positive charging of the gold nanoparticles. Inserting a nominally 5 nm thick Alq3 spacer between the nanorod and the gold reduces the PL quenching and lifetime shortening. Plasmonic nanorods with a 30 nm thick Alq3 spacer reveal lifetimes which are nearly identical to uncoated GaN nanorods.

  14. Diameter Effect of Silver Nanorod Arrays to Surface-enhanced Raman Scattering

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Kim, Min Young; Yoon, Hyeok Jin; Suh, Jung Sang

    2014-01-01

    The effect the diameter of silver nanorod arrays whose distance between the nanorods was uniform at 65 nm have on Surface-enhanced Raman Scattering (SERS) has been studied by varying the diameter from 28 to 51 nm. Nanorod length was fixed at approximately 62 nm, which is the optimum length for SERS by excitation with a 632.8 nm laser line. The transverse and longitudinal modes of the surface plasmon of these silver nanorods were near 400 and 630 nm, respectively. The extinction of the longitudinal mode increased with increasing nanorod diameter, while the transverse mode did not change significantly. High-quality SERS spectra of p-aminothiophenol and benzenethiol adsorbed on the tips of the silver nanorods were observed by excitation with a 632.8 nm laser line. The SERS enhancement increased with increasing nanorod diameter. We concluded that the SERS enhancement increases when the diameter of silver nanorods is increased mainly by increasing the excitation efficiency of the longitudinal mode. The enhancement factor for the silver nanorods with a 51 nm diameter was approximately 2 Χ 10 7

  15. FDTD simulated observation of a gold nanorod by scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Sawada, Keiji; Maruoka, Teruto; Nakamura, Hiroaki; Tamura, Yuichi; Imura, Kohei; Saiki, Toshiharu; Okamoto, Hiromi

    2010-01-01

    The optical properties of a gold nanorod were investigated by Imura et. al. using an apertured-type scanning near-field optical microscope (SNOM). The observed transmission image showed an oscillating pattern along the long axis of the nanorod. We obtain the image using the finite-difference time-domain (FDTD) method. Our model includes a nanorod on a glass substrate, a SNOM, and current as a light source. We develop a simple method for including the Drude-Lorentz dispersion relation of Vial et. al. for gold in the FDTD. The oscillating pattern is explained by the total current in the nanorod, tip of the SNOM, and light source. (author)

  16. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    Science.gov (United States)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  17. Plasmon-resonant nanorods as multimodal agents for two-photon luminescent imaging and photothermal therapy

    Science.gov (United States)

    Huff, Terry B.; Hansen, Matthew N.; Tong, Ling; Zhao, Yan; Wang, Haifeng; Zweifel, Daniel A.; Cheng, Ji-Xin; Wei, Alexander

    2007-02-01

    Plasmon-resonant gold nanorods have outstanding potential as multifunctional agents for image-guided therapies. Nanorods have large absorption cross sections at near-infrared (NIR) frequencies, and produce two-photon luminescence (TPL) when excited by fs-pulsed laser irradiation. The TPL signals can be detected with single-particle sensitivity, enabling nanorods to be imaged in vivo while passing through blood vessels at subpicomolar concentrations. Furthermore, cells labeled with nanorods become highly susceptible to photothermal damage when irradiated at plasmon resonance, often resulting in a dramatic blebbing of the cell membrane. However, the straightforward application of gold nanorods for cell-specific labeling is obstructed by the presence of CTAB, a cationic surfactant carried over from nanorod synthesis which also promotes their nonspecific uptake into cells. Careful exchange and replacement of CTAB can be achieved by introducing oligoethyleneglycol (OEG) units capable of chemisorption onto nanorod surfaces by in situ dithiocarbamate formation, a novel method of surface functionalization. Nanorods with a dense coating of methyl-terminated OEG chains are shielded from nonspecific cell uptake, whereas nanorods functionalized with folate-terminated OEG chains accumulate on the surface of tumor cells overexpressing their cognate receptor, with subsequent delivery of photoinduced cell damage at low laser fluence.

  18. An Au/Si hetero-nanorod-based biosensor for Salmonella detection

    Energy Technology Data Exchange (ETDEWEB)

    Fu Junxue; Zhao Yiping [Physics and Astronomy Department, University of Georgia, Athens, GA 30602 (United States); Park, Bosoon; Siragusa, Greg [USDA, ARS, Russell Research Center, Athens, GA 30605 (United States); Jones, Les; Tripp, Ralph [Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Cho, Yong-Jin [Korea Food Research Institute, Songnam (Korea, Republic of)], E-mail: zhaoy@physast.uga.edu

    2008-04-16

    We present a novel and effective food-borne bacteria detection method. A hetero-structured silicon/gold nanorod array fabricated by the glancing angle deposition method is functionalized with anti-Salmonella antibodies and organic dye molecules. Due to the high aspect ratio nature of the Si nanorods, dye molecules attached to the Si nanorods produce an enhanced fluorescence upon capture and detection of Salmonella. This bio-functional hetero-nanorod detection method has great potential in the food safety industry as well as in biomedical diagnostics.

  19. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    International Nuclear Information System (INIS)

    Kundu, Samapti; Sain, Sumanta; Yoshio, Masaki; Kar, Tanusree; Gunawardhana, Nanda; Pradhan, Swapan Kumar

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials

  20. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Samapti; Sain, Sumanta [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Yoshio, Masaki [Advanced Research and Education Centre, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Kar, Tanusree [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Gunawardhana, Nanda, E-mail: nandagunawardhana@pdn.ac.lk [International Research Centre, Senate Building, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Pradhan, Swapan Kumar, E-mail: skpradhan@phys.buruniv.ac.in [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2015-02-28

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials.

  1. Morphology development and oriented growth of single crystalline ZnO nanorod

    International Nuclear Information System (INIS)

    Wu Lili; Wu Youshi; Lue Wei; Wei Huiying; Shi Yuanchang

    2005-01-01

    Single crystalline ZnO nanorods were achieved by the assembly of nanocrystallines in tens of nanometer under hydrothermal conditions with the assistance of surfactant cetyltrimethylammonium bromide (CTAB). The obtained nanorod has rough surface as a result of oriented attachment growth. Transmission electron microscope (TEM) images showed the morphology evolution of the nanorod at different reaction time. Defects were observed and porous structure was left after the assembly of hundreds of nanocrystalline building blocks. Effect of pH condition on the morphology of the nanorod was also investigated

  2. Characterization of crystalline silica nanorods synthesized via a solvothermal route using polyvinylbutyral as a template

    International Nuclear Information System (INIS)

    Chen, Lin-Jer; Liao, Jiunn-Der; Chuang, Yu-Ju; Fu, Yaw-Shyan

    2011-01-01

    The preparation of crystalline silica nanorods is presented. Crystalline silica nanorods were synthesized via a simple solvothermal route using polyvinylbutyral (PVB) as a template in an autoclave with ethylenediamine as a solvent at 180 °C for 25 h. Silica nanorods with diameters in the range of 50–80 nm were obtained. The solvothermal route with a PVB template played affected the crystallization process and the growth of the silica nanorods. The as-synthesized products were characterized using X-ray diffraction, energy dispersive spectrometry, scanning electron microscopy, and transmission electron microscopy.

  3. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    Science.gov (United States)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  4. Morphological control of seedlessly-synthesized gold nanorods using binary surfactants

    Science.gov (United States)

    Roach, Lucien; Ye, Sunjie; Moorcroft, Samuel C. T.; Critchley, Kevin; Coletta, P. Louise; Evans, Stephen D.

    2018-04-01

    High purity gold nanorods (AuNRs) with tunable morphology have been synthesized through a binary-surfactant seedless method, which enables the formation of monocrystalline AuNRs with diameters between 7 and 35 nm. The protocol has high shape yield and monodispersity, demonstrating good reproducibility and scalability allowing synthesis of batches 0.5 l in volume. Morphological control has been achieved through the adjustment of the molar concentrations of cetyltrimethylammonium bromide and sodium oleate in the growth solution, providing fine tuning of the optical scattering and absorbance properties of the AuNRs across the visible and NIR spectrum. Sodium oleate was found to provide greatest control over the aspect ratio (and hence optical properties) with concentration changes between 10 and 23 mM leading to variation in the aspect ratio between 2.8 and 4.8. Changes in the geometry of the end-caps were also observed as a result of manipulating the two surfactant concentrations.

  5. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays.

    Science.gov (United States)

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Moon, Hi Gyu; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-05-08

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures.

  6. Light-driven self-assembly of hetero-shaped gold nanorods

    Science.gov (United States)

    Liaw, Jiunn-Woei; Chao, Hsueh-Yu; Huang, Cheng-Wei; Kuo, Mao-Kuen

    2018-01-01

    Light-driven self-assembly and coalescence of two nearby hetero-shaped gold nanorods (GNRs) with different lengths are studied theoretically. The optical forces and torques, in terms of Maxwell's stress tensor, upon these GNRs provided by a linearly polarized (LP) plane wave are analyzed using the multiple multipole (MMP) method. Numerical results show that the optical torque dominates their alignments and the optical force their attraction. The most likely outcome of the plasmon-mediated light-matter interaction is wavelength dependent. Three different coalescences of the two GNRs could be induced by a LP light in three different wavelength regimes, respectively. For example, the side-by-side coalescence of two GNRs with radius of 15 nm and different lengths (120 and 240 nm) is induced in water as irradiated by a LP light at 633 nm, the T-shaped one at 1064 nm, and the end-to-end one at 1700 nm. The plasmonic attractive force and heating power densities inside GNRs with different gaps are also studied; the smaller the gap, the larger the attractive force and heating power. The results imply that the plasmonic coalescence and heating of two discrete GNRs may cause the local fusion at the junction of the assembly and the subsequent annealing (even recrystallization). Because the heating makes the two discrete GNRs fused to become a new nanostructure, the plasmonic coalescence of optical manipulation is irreversible.

  7. Computational simulator of robotic manipulators

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Campos, Tarcisio P.R.

    1995-01-01

    Robotic application for industrial plants is discussed and a computational model for a mechanical manipulator of three links is presented. A neural network feed-forward type has been used to model the dynamic control of the manipulator. A graphic interface was developed in C programming language as a virtual world in order to visualize and simulate the arm movements handling radioactive waste environment. (author). 7 refs, 5 figs

  8. Can earnings manipulation create value?

    OpenAIRE

    Anton Miglo

    2008-01-01

    Existing literature usually considers earnings manipulation to be a negative social phenomenon. We argue that earnings manipulation can be a part of the equilibrium relationships between firm's insiders and outsiders. We consider an optimal contract between an entrepreneur and an investor where the entrepreneur is subject to a double moral hazard problem (one being the choice of production effort and the other being intertemporal substitution, which consists of transferring cash flows between...

  9. Laser-induced extreme magnetic field in nanorod targets

    Science.gov (United States)

    Lécz, Zsolt; Andreev, Alexander

    2018-03-01

    The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.

  10. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

    Science.gov (United States)

    Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.

    2018-02-01

    Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

  11. Towards measuring quantum electrodynamic torque with a levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang

    2017-04-01

    According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.

  12. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  13. High temperature structural and magnetic properties of cobalt nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ait Atmane, Kahina [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Zighem, Fatih [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Soumare, Yaghoub [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ibrahim, Mona; Boubekri, Rym [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France); Maurer, Thomas [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Margueritat, Jeremie [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Piquemal, Jean-Yves, E-mail: jean-yves.piquemal@univ-paris-diderot.fr [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ott, Frederic; Chaboussant, Gregory [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Schoenstein, Frederic; Jouini, Noureddine [LSPM, CNRS UPR 9001, Universite Paris XIII, Institut Galilee, 99 av. J.-B. Clement, 93430 Villetaneuse (France); Viau, Guillaume, E-mail: gviau@insa-toulouse.fr [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France)

    2013-01-15

    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles ({approx}10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by {mu}{sub 0}H{sub C}=2(K{sub MC}+K{sub shape})/M{sub S} with K{sub MC} the magnetocrystalline anisotropy constant, K{sub shape} the shape anisotropy constant and M{sub S} the saturation magnetization. H{sub C} decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500 K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300-500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. - Graphical abstract: We present in this paper the structural and magnetic properties of high aspect ratio Co nanorods ({approx}10) at high temperatures (up to 623 K) using in-situ X-ray diffraction and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. Highlights: Black-Right-Pointing-Pointer Ferromagnetic Co nanorods are prepared using the polyol process. Black-Right-Pointing-Pointer The structural and texture properties of the Co nanorods are preserved up to 500 K. Black-Right-Pointing-Pointer The magnetic properties of the Co nanorods are irreversibly altered above 525 K.

  14. Synthesis and magnetic properties of YMnO3 nanorods

    International Nuclear Information System (INIS)

    Dhinesh Kumar, R.; Jayavel, R.

    2012-01-01

    YMnO 3 nanorods have been synthesized by hydrothermal process at 200 deg C. The hexagonal phase of as-synthesized sample was confirmed by powder X-ray diffraction (XRD) analysis. High resolution scanning electron microscope (HRSEM) and Energy Dispersive X-ray (EDX) analysis have been carried out to study the surface morphology and elements presence in the sample. The magnetic behavior of the sample was studied by vibrating sample magnetometry (VSM) technique. (author)

  15. Photothermal reshaping of gold nanorods prevents further cell death

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Takuro; Nariai, Ayuko; Niidome, Yasuro; Yamada, Sunao

    2006-01-01

    The combined use of phosphatidylcholine passivated gold nanorods (PC-NRs) and pulsed near-infrared (near-IR) irradiation resulted in cell death. Pulsed near-IR laser irradiation also induced reshaping of PC-NRs into spherical nanoparticles. Since reshaped particles showed no absorption in the near-IR region, successive laser irradiation did not affect cells. Photo-reshaping of PC-NRs is expected to be advantageous in preventing unwanted cell damage following destruction of target cells

  16. Prominent ethanol sensing with Cr2O3 nanoparticle-decorated ZnS nanorods sensors

    Science.gov (United States)

    Sun, Gun-Joo; Kheel, Hyejoon; Ko, Tae-Gyung; Lee, Chongmu; Kim, Hyoun Woo

    2016-08-01

    ZnS nanorods and Cr2O3 nanoparticle-decorated ZnS nanorods were synthesized by using facile hydrothermal techniques, and their ethanol sensing properties were examined. X-ray diffraction and scanning electron microscopy revealed good crystallinity and size uniformity for the ZnS nanorods. The Cr2O3 nanoparticle-decorated ZnS nanorod sensor showed a stronger response to ethanol than the pristine ZnS nanorod sensor. The responses of the pristine and the decorated nanorod sensors to 200 ppm of ethanol at 300 °C were 2.9 and 13.8, respectively. Furthermore, under these conditions, the decorated nanorod sensor showed a longer response time (23 s) and a shorter recovery time (20 s) than the pristine one did (19 and 35 s, respectively). Consequently, the total sensing time of the decorated nanorod sensor (42 s) was shorter than that of the pristine one (55 s). The decorated nanorod sensor showed excellent selectivity to ethanol over other volatile organic compound gases including acetone, methanol, benzene, and toluene whereas the pristine one failed to show selectivity to ethanol over acetone. The improved sensing performance of the decorated nanorod sensor is attributed to a modulation of the width of the conduction channel and the height of the potential barrier at the ZnS-Cr2O3 interface accompanying the adsorption and the desorption of ethanol gas, and the greater surface-to-volume ratio of the decorated nanorods which was greater than that of the pristine one due to the existence of the ZnS-Cr2O3 interface.

  17. Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate

    International Nuclear Information System (INIS)

    An, Wei; Zhu, Tong; Zhu, QunZhi

    2014-01-01

    When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to investigate the effect of the assembled parameters on the radiative properties and the field-enhancement effect of silver nanorod dimer. The numerical results indicate that the radiative properties of silver nanorod dimer are very sensitive to the assembled angle and the polarization orientation of incident wave. There is great difference on the intensity and location of field-enhancement effect for the cases of different assembled angle and polarization. The most intensive field-enhancement effect occurs in the middle of two nanorods when two nanorods is assembled head to head and the polarization orientation parallels to the length axis of nanorods. Moreover, compared with the single nanorod, the wavelength of extinction peak of dimer has a red-shift, and the intensity of field-enhancement effect on the dimer is more intensive than that of single particle. With the increasing of particle length, extinction cross-section of silver nanorod dimer rises, while extinction efficiency and scattering efficiency firstly increase then drop down gradually. In addition, the extinction peaks of silver nanorod dimer on the substrate are smaller than that without the substrate, and their extinction peaks has a red-shift compared with that without the substrate. -- Highlights: ► Radiative properties of silver nanorod dimer are very sensitive to the assembled angle. ► The projective length of nanorod dimer on the polarization orientation is crucial. ► Compared with single nanorod, wavelength of extinction peak of dimer has a red-shift. ► Extinction peaks of dimer on the substrate are smaller than that without the substrate

  18. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping; Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO{sub 2} nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. - Highlights: • Vertical graphene sheets were prepared with Ti as the catalyst via a CVD method. • TiO{sub 2} nanotubes were key transition layers in the formation of the TiC nanorods. • Vertical growth mechanism of graphene products was discussed. • Biomolecules were detected to be a chemical sensor. • Response mechanism for analytes at the graphene/TiC nanorod array was discussed.

  19. Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods

    Science.gov (United States)

    Didychuk, Candice L.; Ephrat, Pinhas; Belton, Michelle; Carson, Jeffrey J. L.

    2008-02-01

    Plasmon-resonant gold nanorods show great potential as an agent for contrast-enhanced biomedical imaging or for phototherapeutics. This is primarily due to the high molar extinction coefficient at the absorption maximum and the dependence of the wavelength of the absorption maximum on the aspect ratio, which is tunable in the near-infrared (NIR) during synthesis. Although gold nanorods can be produced in high-yield through the seed-mediated growth technique, the presence of residual cetyltrimethylammonium bromide (CTAB), a stabilizing surfactant required for nanorod growth, interferes with cell function and causes cytotoxicity. To overcome this potential obstacle to in vivo use, we synthesized gold nanorods and conjugated them to a methoxy (polyethylene glycol)-thiol (mPEG (5000)-SH). This approach yielded mPEG-SH modified gold nanorods with optical and morphometric properties that were similar to raw (CTAB) nanorods. Both the CTAB and mPEG-SH nanorods were tested for cytotoxicity against the HL-60 human leukemia cell line by trypan blue exclusion, and the mPEG-SH modified gold nanorods were also tested against a rat insulinoma (RIN-38) and squamous cell carcinoma (SCCVII) cell line. Cells incubated for 24 h with the mPEG-SH modified nanorods had little change in cell viability compared to cells incubated with vehicle alone. This was in contrast to cytotoxicity of CTAB nanorods on HL-60 cells. These results suggest that mPEG-SH modified gold nanorods are better suited for cell loading protocols and injection into animals and facilitate their use for imaging and phototherapeutic purposes.

  20. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application

    International Nuclear Information System (INIS)

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-01-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. - Highlights: • Vertical graphene sheets were prepared with Ti as the catalyst via a CVD method. • TiO 2 nanotubes were key transition layers in the formation of the TiC nanorods. • Vertical growth mechanism of graphene products was discussed. • Biomolecules were detected to be a chemical sensor. • Response mechanism for analytes at the graphene/TiC nanorod array was discussed.

  1. Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn 2 O 4

    KAUST Repository

    Yang, Yuan

    2009-12-09

    This paper presents single nanostructure devices as a powerful new diagnostic tool for batteries with LiMn2O4 nanorod materials as an example. LiMn2O4 and Al-doped LiMn2O4 nanorods were synthesized by a two-step method that combines hydrothermal synthesis of β-MnO2 nanorods and a solid state reaction to convert them to LiMn2O4 nanorods. λ-MnO2 nanorods were also prepared by acid treatment of LiMn2O4 nanorods. The effect of electrolyte etching on these LiMn2O 4-related nanorods is investigated by both SEM and single-nanorod transport measurement, and this is the first time that the transport properties of this material have been studied at the level of an individual singlecrystalline particle. Experiments show that Al dopants reduce the dissolution of Mn3+ ions significantly and make the LiAl 0.1Mn1.9O4 nanorods much more stable than LiMn2O4 against electrolyte etching, which is reflected by the magnification of both size shrinkage and conductance decrease. These results correlate well with the better cycling performance of Al-doped LiMn 2O4 in our Li-ion battery tests: LiAl0.1Mn 1.9O4 nanorods achieve 96% capacity retention after 100 cycles at 1C rate at room temperature, and 80% at 60 °C, whereas LiMn 2O4 shows worse retention of 91% at room temperature, and 69% at 60 °C. Moreover, temperature-dependent I - V measurements indicate that the sharp electronic resistance increase due to charge ordering transition at 290 K does not appear in our LiMn2O4 nanorod samples, suggesting good battery performance at low temperature. © 2009 American Chemical Society.

  2. Manipulation of nanoparticles and biological samples through enhanced optical forces

    Science.gov (United States)

    Wilson, Benjamin

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. We propose and demonstrate large scale nanoparticle assembly using opto-thermal force produced by conventional optical tweezers. This method is shown to allow precise concentration and assembly of particles including carbon-nanotubes, VO2 nanorods, and CdTe quantum dots. Assembled devices were shown to have good contact with patterned electrodes. In addition, we propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 microm down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 microW/microm 2. This approach can be extended to using 2-D photonic crystal nanostructures for full rotation control.

  3. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pissuwan, Dakrong [University of Technology Sydney, Institute for Nanoscale Technology (Australia); Valenzuela, Stella M. [University of Technology Sydney, Department of Medical and Molecular Biosciences (Australia)], E-mail: stella.valenzuela@uts.edu.au; Killingsworth, Murray C. [Sydney South West Pathology Service (Australia)], E-mail: murray.killingsworth@swsahs.nsw.gov.au; Xu, Xiaoda; Cortie, Michael B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)], E-mail: michael.cortie@uts.edu.au

    2007-12-15

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation ({approx}1x10{sup 5} to 1x10{sup 10} W/m{sup 2}). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10{sup 2} W/m{sup 2} being sufficient, provided that a total fluence of {approx}30 J/cm{sup 2} is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm{sup 2} resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  4. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Science.gov (United States)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  5. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    International Nuclear Information System (INIS)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-01-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (∼1x10 5 to 1x10 10 W/m 2 ). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10 2 W/m 2 being sufficient, provided that a total fluence of ∼30 J/cm 2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm 2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells

  6. Voltammetry of Organic Pollutants on FeOOH Nanorods

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Wan, Qijin; Yang, Nianjun

    2017-01-01

    FeOOH nanorods synthesized using a solvothermal approach have been employed to investigate the electrochemistry of organic pollutions, including ponceau 4R (PR), sunset yellow (SY), and tetrabromobisphenol A (TBBPA). The as-prepared FeOOH nanorods have been characterized using scanning electron microscopes (SEM), transmission electron microscope (TEM), X-ray photoelectron spectrometry, Brunauer-Emmett-Teller measurements, and electrochemical techniques. The modified electrode based on FeOOH nanorods exhibits a porous and net-like structure, resulting in a high surface area and many reactive/adsorption sites for soluble compounds. On this modified electrode, fast electron transfer processes of redox probes have been achieved. Electrochemistry of PR, SY, and TBBPA has been studied in detail using voltammetry, impedance, and chronocoulometry. The sensitive monitoring of both individual and total concentrations of three organic pollutions has been realized. The detection limits are 0.2, 1.0, and 0.55 nM for PR, SY, and TBBPA, respectively. Such an electrode is then promising for the electrochemical investigation and analysis of organic pollutions in different environments.

  7. Nanorod mediated collagen scaffolds as extra cellular matrix mimics

    International Nuclear Information System (INIS)

    Vedhanayagam, Mohan; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan; Mohan, Ranganathan

    2015-01-01

    Creating collagen scaffolds that mimic extracellular matrices without using toxic exogenous materials remains a big challenge. A new strategy to create scaffolds through end-to-end crosslinking through functionalized nanorods leading to well-designed architecture is presented here. Self-assembled scaffolds with a denaturation temperature of 110 °C, porosity of 70%, pore size of 0.32 μm and Young’s modulus of 231 MPa were developed largely driven by imine bonding between 3-mercapto-1-propanal (MPA) functionalized ZnO nanorods and collagen. The mechanical properties obtained were much higher than that of native collagen, collagen—MPA, collagen—3-mercapto-1-propanol (3MPOH) or collagen- 3-MPOH-ZnO, clearly bringing out the relevance of nanorod mediated assembly of fibrous networks. This new strategy has led to scaffolds with mechanical properties much higher than earlier reports and can provide support for cell growth and facilitation of cell attachment. (paper)

  8. Confinement and Ordering of Au Nanorods in Polymer Films

    Science.gov (United States)

    Hore, Michael J. A.; Mills, Eric; Liu, Yu; Composto, Russell J.

    2009-03-01

    Ordered arrays of gold nanorods (Au NRs) possess interesting optical properties that might be utilized in future devices. Au NRs functionalized with a poly(ethylene glycol)-thiol brush are incorporated into homopolymer or block copolymer (BCP) films. NR distribution and orientational correlations are studied as a function of nanorod concentration and spacial confinement via Rutherford backscattering spectrometry (RBS) and transmission electron microscopy, respectively. In particular, differences in the degree of nanorod ordering are presented for PMMA homopolymer films (d ˜ 45 nm) versus PS-b-PMMA BCP films (L/2 ˜ 40 nm), where higher ordering is seen in the case of BCP films. At moderate volume fractions of NRs, φ = 1% to 10%, the degree of ordering is moderate, and increases with increasing φ . However, coexistence between regions of higher ordering and isotropic orientations is observed. In addition to the planar confinement considered above, orientation of Au NRs confined to cylindrical P2VP domains is studied in PS-b-P2VP BCP films.

  9. High precision redundant robotic manipulator

    International Nuclear Information System (INIS)

    Young, K.K.D.

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs

  10. Photoluminescence study of CdSe nanorods embedded in a PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India)

    2013-03-15

    Nanometer-sized semiconductor CdSe nanorods have been successfully grown within polyvinyl alcohol (PVA) matrix by in situ technique. PVA:n-CdSe nanorods are characterized by X-ray diffraction, transmission electron microscopy, UV-vis spectrophotometer and photoluminescence spectroscopy. The photoluminescence spectra of PVA:n-CdSe nanorods are studied at different excitation wavelengths. PVA:n-CdSe nanorods have demonstrated to exhibit strong and well-defined green photoluminescence emission. The long-term stability of the PL properties of PVA:n-CdSe nanorods is also investigated in view of possible applications of polymer nanocomposites. The linear optical constants such as the extinction coefficient (k), real ({epsilon}{sub 1}) and imaginary ({epsilon}{sub 2}) dielectric constant, optical conductivity ({sigma}{sub opt}) are calculated for PVA:n-CdSe nanorods. The optical properties i.e. good photostability and larger stokes shift suggesting to apply PVA:n-CdSe nanorods in bioimaging applications. - Highlights: Black-Right-Pointing-Pointer In situ synthesis of PVA:n-CdSe via chemical bath method at room temperature. {open_square} From TEM image, the three arm nanorods morphology of PVA:n-CdSe is obtained. Black-Right-Pointing-Pointer The optical constants i.e. n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and {sigma}{sub opt} are calculated. Black-Right-Pointing-Pointer Exhibiting green band photoemission peak at 540 nm.

  11. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod

    NARCIS (Netherlands)

    Yuan, H.; Khatua, S.; Zijlstra, P.; Yorulmaz, M.; Orrit, M.

    2013-01-01

    Single molecules: Large enhancements of single-molecule fluorescence up to 1100 times by using synthesized gold nanorods are reported (see picture). This high enhancement is achieved by selecting a dye with its adsorption and emission close to the surface plasmon resonance of the gold nanorods

  12. Large-scale syntheses of uniform ZnO nanorods and ethanol gas sensors application

    International Nuclear Information System (INIS)

    Chen Jin; Li Jin; Li Jiahui; Xiao Guoqing; Yang Xiaofeng

    2011-01-01

    Research highlights: → The uniform ZnO nanorods could be synthesized by a low temperature, solution-based method. → The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. → Room-temperature photoluminescence spectra of these nanorods show an exciton emission around 382 nm and a weak deep level emission, indicating the nanorods have high quality. → The sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. - Abstract: Uniform ZnO nanorods with a gram scale were prepared by a low temperature and solution-based method. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL). The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. Room-temperature PL spectra of these nanorods show an exciton emission around 382 nm and a negligible deep level emission, indicating the nanorods have high quality. The gas-sensing properties of the materials have been investigated. The results indicate that the as-prepared nanorods show much better sensitivity and stability. The n-type semiconductor gas sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. ZnO nanorods are excellent potential candidates for highly sensitive gas sensors and ultraviolet laser.

  13. Directed self-assembly of nanorod networks: bringing the top down to the bottom up

    International Nuclear Information System (INIS)

    Einsle, Joshua F; Scheunert, Gunther; Murphy, Antony; Pollard, Robert; Bowman, Robert M; McPhillips, John; Zayats, Anatoly V

    2012-01-01

    Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosensing and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers has been limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam pre-patterns the Au cathode layer prior to the creation of the anodized aluminium oxide (AAO) template on top. When the pre-patterning is of the same dimension as the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features, a relationship between the nanorod height and distance from the non-patterned cathode can be seen to follow a quadratic growth rate obeying Faraday’s law of electrodeposition. This facilitates lateral control of nanorod height combined with localized growth of the nanorods. (paper)

  14. Directed self-assembly of nanorod networks: bringing the top down to the bottom up.

    Science.gov (United States)

    Einsle, Joshua F; Scheunert, Gunther; Murphy, Antony; McPhillips, John; Zayats, Anatoly V; Pollard, Robert; Bowman, Robert M

    2012-12-21

    Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosensing and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers has been limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam pre-patterns the Au cathode layer prior to the creation of the anodized aluminium oxide (AAO) template on top. When the pre-patterning is of the same dimension as the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features, a relationship between the nanorod height and distance from the non-patterned cathode can be seen to follow a quadratic growth rate obeying Faraday's law of electrodeposition. This facilitates lateral control of nanorod height combined with localized growth of the nanorods.

  15. X-ray characterisation of single GaAs nanorods grown on Si

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, A.; Pietsch, Ullrich [Universitaet Siegen (Germany). Festkoerperphysik; Breuer, Steffen; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-07-01

    Semiconductor nanorods are of particular interest for new semiconductor devices. The nanorod approach can be used to form radial or axial heterostructures of materials with a large lattice mismatch. For the inspection of average structural parameters of the nanorods, typically X-ray or electron diffraction techniques are used. Alternatively, transmission electron microscopy can be used to inspect few individual nanorods after respective sample preparation. Complementary, recent developments in X-ray optics allow to focus a synchrotron beam down to the nanometer scale and to perform nondestructive diffraction studies at several individual nano-objects grown the same substrate. In this contribution we report on X-ray diffraction studies at individual GaAs nanorods grown Au seed-free on a Si[111] substrate. Due to the nanometer-sized x-ray beam, size and lattice parameters of individual nanorods could be measured and compared to the value obtained from the whole ensemble. Using the coherence properties of the focused beam we could observe speckle-like interference fringes in the surrounding of particular sensitive Bragg reflections which are a measure for the appearance of stacking faults within the nanorods. The separation of the speckles could be used to estimate the number of stacking faults and the size of the coherently scattering nanorod-segments.

  16. Facile formation of ZIF-8 thin films on ZnO nanorods

    NARCIS (Netherlands)

    Al-Kutubi, H.; Dikhtiarenko, A.; Zafarani, H.R.; Sudhölter, E.J.R.; Gascon, J.; Rassaei, L.

    2015-01-01

    In this work, thin films of the well-known metal–organic framework ZIF-8 were formed on zinc oxide nanorods through the reaction with 2-methyl-imidazole solution (Hmim). Deposition of a thin film of the linker solution allows the underlying zinc oxide nanorod morphology to be preserved, resulting in

  17. Growth of vertically aligned ZnO nanorods using textured ZnO films

    Directory of Open Access Journals (Sweden)

    Meléndrez Manuel

    2011-01-01

    Full Text Available Abstract A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100 substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.

  18. Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO ...

    Indian Academy of Sciences (India)

    1-D ZnO nanorods and PPy/1-D ZnO nanocomposites were prepared by the surfactant-assisted precipitation and in situ polymerization method, respectively. The synthesized nanorods and nanocomposites were characterized by UV–Vis spectrophotometer, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction ...

  19. Structural and Optical Properties of Eu Doped ZnO Nanorods prepared by Pulsed Laser Deposition

    KAUST Repository

    Alarawi, Abeer

    2014-06-23

    Nano structured wide band gap semiconductors have attracted attention of many researchers due to their potential electronic and optoelectronic applications. In this thesis, we report successful synthesis of well aligned Eu doped ZnO nano-rods prepared, for the first time to our knowledge, by pulsed laser deposition (PLD) without any catalyst. X-ray diffraction (XRD) patterns shows that these Eu doped ZnO nanorods are grown along the c-axis of ZnO wurtzite structure. We have studied the effect of the PLD growth conditions on forming vertically aligned Eu doped ZnO nanorods. The structural properties of the material are investigated using a -scanning electron microscope (SEM). The PLD parameters must be carefully controlled in order to obtain c-axis oriented ZnO nanorods on sapphire substrates, without the use of any catalyst. The experiments conducted in order to identify the optimal growth conditions confirmed that, by adjusting the target-substrate distance, substrate temperature, laser energy and deposition duration, the nanorod size could be successfully controlled. Most importantly, the results indicated that the photoluminescence (PL) properties reflect the quality of the ZnO nanorods. These parameters can change the material’s structure from one-dimensional to two-dimensional however the laser energy and frequency affect the size and the height of the nanorods; the xygen pressure changes the density of the nanorods.

  20. Effect of ALD surface treatment on structural and optical properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-Tak [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2013-07-01

    In this study, we report on the improvement of the optical and structural properties of ZnO nanorods using atomic layer deposition (ALD) on seed ZnO nanorods. After the initial growth of ZnO seed nanorods by hydrothermal synthesis for 1 h, a ZnO layer with a thickness of 10 nm was deposited on the initial ZnO seed nanorods using ALD. Then ZnO was further grown by hydrothermal synthesis for 4 h. The samples were characterized using room temperature photoluminescence (PL), field emission-scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). From this experiment, it was found that the ZnO nanorods with the ALD surface treatment show improved optical and structural properties when compared with the ZnO nanorods grown only by hydrothermal synthesis. The ZnO nanorods with the ALD surface treatment show about 2.7 times higher XRD (0 0 2) peak intensity, about 2.64 times higher PL NBE peak intensity, and about 3.1 times better NBE/DLE ratio than the ZnO nanorods without an ALD surface treatment.

  1. Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

    NARCIS (Netherlands)

    Bomm, J.; Büchtemann, A.; Fiore, Angela; Manna, L.; Nelson, J.H.; Hill, D.; van Sark, W.G.J.H.M.

    2010-01-01

    Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The resulting nanocomposites show high transparency of up to 93%. A photoluminescence quantum efficiency of 70% was obtained, with an optimum combination of nanorod (0.05 wt

  2. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    Science.gov (United States)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  3. Fast vertical growth of ZnO nanorods using a modified chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-hyun [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-06-01

    Highlights: • We grew vertical ZnO nanorods by a modified CBD process with a fast growth rate. • We studied the effects of the CBD process by varying growth temperature, time, and concentration. • The ZnO nanorods grown by the modified CBD showed good morphological and structural properties. - Abstract: In this study, we grew vertical ZnO nanorods on seeded Si (1 0 0) substrates using a modified chemical bath deposition (CBD). We investigated the effects of the growth temperature, growth time and concentration on the morphological and structural properties of the ZnO nanorods using field emission gun scanning electron microscopy (FEG-SEM) and X-ray diffraction. This modified CBD method shows improved results over conventional CBD. ZnO nanorods with good structural XRD properties were grown with a very fast growth rate in a wide range of growth conditions and did not require post-growth annealing.

  4. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  5. Synthesis and microstructural characterization of growth direction controlled ZnO nanorods using a buffer layer

    International Nuclear Information System (INIS)

    Park, Dong Jun; Kim, Dong Chan; Lee, Jeong Yong; Cho, Hyung Koun

    2006-01-01

    The growth direction and morphology of one-dimensional ZnO nanostructures grown by metal-organic chemical vapour deposition (MOCVD) were modulated by changing the growth temperature of previously deposited ZnO buffer layers that were used as a template. The ZnO nanorods grown on the low-temperature deposited buffer layer were regularly inclined with respect to the substrate surface and show in-plane alignment with azimuthally six-fold symmetry. In contrast, deposition of the buffer layer at higher growth temperature led to the formation of vertically well-aligned ZnO nanorods. In addition, the ZnO nanorods grown on the buffer layer deposited at low growth temperature show a growth direction of [1 0 1-bar 0], unlike the conventional ZnO nanorods showing a growth direction of [0001]. The microstructural analysis and atomic modelling of the formation of regularly inclined nanorods using transmission electron microscopy are presented

  6. Synchrotron X-ray Scattering of ZnO Nanorods: Periodic Ordering and Lattice Size

    International Nuclear Information System (INIS)

    Zhu, Z.; Andelman, T.; Yin, M.; Chen, T.; Ehrlich, S.; O'Brien, S.; Osgood, Jr. R.

    2005-01-01

    We demonstrate that synchrotron x-ray powder diffraction (XRD) is a powerful technique for studying the structure and self-organization of zinc-oxide nanostructures. Zinc-oxide nanorods were prepared by a solution-growth method that resulted in uniform nanorods with 2-nm diameter and lengths in the range 10-50 nm. These nanorods were structurally characterized by a combination of small-angle and wide-angle synchrotron XRD and transmission electron microscopy (TEM). Small-angle XRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly. Wide-angle XRD was used to study the evolution of nanorod growth as a function of synthesis time and surfactant/precursor ratio

  7. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures

    International Nuclear Information System (INIS)

    Zagar, Kristina; Recnik, Aleksander; Ceh, Miran; Hernandez-Ramirez, Francisco; Morante, Joan Ramon; Prades, Joan Daniel

    2011-01-01

    In this work, we report on the integration of individual BaTiO 3 nanorods into simple circuit architectures. Polycrystalline BaTiO 3 nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO 3 nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO 3 nanorods may be integrated in complex circuit architectures with functional capacities.

  8. Synthesis of uniform-sized bimetallic iron-nickel phosphide nanorods

    International Nuclear Information System (INIS)

    Yoon, Ki Youl; Jang, Youngjin; Park, Jongnam; Hwang, Yosun; Koo, Bonil; Park, Je-Geun; Hyeon, Taeghwan

    2008-01-01

    We synthesized uniform-sized nanorods of iron-nickel phosphides from the thermal decomposition of metal-phosphine complexes. Uniform-sized (Fe x Ni 1-x ) 2 P nanorods (0≤x≤1) of various compositions were synthesized by thermal decomposition of Ni-trioctylphosphine (TOP) complex and Fe-TOP complex. By measuring magnetic properties, we found that blocking temperature and coercive field depend on Ni content in the nanorods. Both parameters were more sensitive to doping compared with bulk samples. - Graphical abstract: We synthesized uniform-sized nanorods of iron-nickel phosphides from thermal decomposition of metal-phosphine complexes. The magnetic studies showed that blocking temperature and coercive field depend on Ni content in the nanorods

  9. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission

    International Nuclear Information System (INIS)

    Liu, J P; Xu, C X; Zhu, G P; Li, X; Cui, Y P; Yang, Y; Sun, X W

    2007-01-01

    Vertically aligned zinc oxide nanorod arrays were grown directly using a zinc foil as both source and substrate in pure water at low temperature by a simple hydrothermal reaction. The morphology and crystal structure of the ZnO nanorod arrays were examined by scanning electron microscopy, transmission electron microscopy and x-ray diffraction, respectively. The nanorods grew along the [0 0 0 1] direction and were 80 nm in diameter and almost 2 μm in length. Directly employing the zinc foil substrate as cathode, the field emission (FE) of the ZnO nanorods presented a two-stage slope behaviour in a ln(J/E 2 )-1/E plot according to the Fowler-Nordheim equation. The FE behaviour was investigated by considering the action of the defects in ZnO nanorods based on the measurement of the photoluminescence

  10. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.

    Science.gov (United States)

    Song, Yipu; Schmitt, Andrew L; Jin, Song

    2008-08-01

    Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

  11. Electroluminescence and rectifying properties of heterojunction LEDs based on ZnO nanorods

    International Nuclear Information System (INIS)

    Rout, Chandra Sekhar; Rao, C N R

    2008-01-01

    n-ZnO NR/p-Si and n-ZnO NR/p-PEDOT/PSS heterojunction light-emitting diodes (LEDs) have been fabricated with ZnO nanorods (NRs) grown by a low-temperature method as well as by employing pulsed laser deposition (PLD). The low-temperature method involves growing the ZnO nanorods by the reaction of water with zinc metal. The current-voltage (I-V) characteristics of the heterojunctions show good rectifying diode characteristics. The electroluminescence (EL) spectra of the nanorods show an emission band at around 390 nm and defect related bands in the 400-550 nm region. Room-temperature electroluminescence is detected under forward bias for both the heterostructures. With the low-temperature grown nanorods, the defect related bands in the 400-550 nm range are more intense in the EL spectra, whereas with the PLD grown nanorods, only the 390 nm band is prominent

  12. Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications

    DEFF Research Database (Denmark)

    Rey, Antje; Billardon, Guillaume; Loertscher, Emanuel

    2013-01-01

    target substrate, thus establishing a platform for a variety of nanoscale electronic and optical applications ranging from molecular electronics to optical and plasmonic devices. As a first example, electrical measurements are performed on contacted gold nanorod chains before and after their immersion......We demonstrate a method to assemble gold nanorods highly deterministically into a chain formation by means of directed capillary assembly. This way we achieved straight chains consisting of end-to-end aligned gold nanorods assembled in one specific direction with well-controlled gaps of similar...... to 6 nm between the individual constituents. We determined the conditions for optimum quality and yield of nanorod chain assembly by investigating the influence of template dimensions and assembly temperature. In addition, we transferred the gold nanorod chains from the assembly template onto a Si/SiO2...

  13. ZnO nanorod biosensor for highly sensitive detection of specific protein binding

    International Nuclear Information System (INIS)

    Kim, Jin Suk; Park, Won Il; Lee, Chul Ho; Yi, Gyu Chul

    2006-01-01

    We report on the fabrication of electrical biosensors based on functionalized ZnO nanorod surfaces with biotin for highly sensitive detection of biological molecules. Due to the clean interface and easy surface modification, the ZnO nanorod sensors can easily detect streptavidin binding down to a concentration of 25 nM, which is more sensitive than previously reported one-dimensional (1D) nanostructure electrical biosensors. In addition, the unique device structure with a micrometer-scale hole at the center of the ZnO nanorod's conducting channel reduces the leakage current from the aqueous solution, hence enhancing device sensitivity. Moreover, ZnO nanorod field-effect-transistor (FET) sensors may open up opportunities to create many other oxide nanorod electrical sensors for highly sensitive and selective real-time detection of a wide variety of biomolecules.

  14. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

    Science.gov (United States)

    Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong

    2010-10-01

    We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.

  15. Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Tuteja, Mohit; Kesaria, Manoj; Waghmare, U. V.; Shivaprasad, S. M. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India)

    2012-09-24

    We present here the spontaneous formation of catalyst-free, self-aligned crystalline (wurtzite) nanorods on Si(111) surfaces modified by surface nitridation. Nanorods grown by molecular beam epitaxy on bare Si(111) and non-stoichiometric silicon nitride interface are found to be single crystalline but disoriented. Those grown on single crystalline Si{sub 3}N{sub 4} intermediate layer are highly dense c-oriented hexagonal shaped nanorods. The morphology and the self-assembly of the nanorods shows an ordered epitaxial hexagonal superstructure, suggesting that they are nucleated at screw dislocations at the interface and grow spirally in the c-direction. The aligned nanorod assembly shows high-quality structural and optical emission properties.

  16. Autonomous Industrial Mobile Manipulation (AIMM)

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Nielsen, Oluf Skov

    2012-01-01

    Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper investiga......Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper......; sustainability, configuration, adaptation, autonomy, positioning, manipulation and grasping, robot-robot interaction, human-robot interaction, process quality, dependability, and physical properties. Findings - The concise yet comprehensive review provides both researchers (academia) and practitioners (industry......) with a quick and gentle overview of AIMM. Furthermore, the paper identifies key open issues and promising research directions to realize real-world integration and maturation of the AIMM technology. Originality/value - This paper reviews the interdisciplinary research field Autonomous Industrial Mobile...

  17. Understanding pharmaceutical research manipulation in the context of accounting manipulation.

    Science.gov (United States)

    Brown, Abigail

    2013-01-01

    The problem of the manipulation of data that arises when there is both opportunity and incentive to mislead is better accepted and studied - though by no means solved - in financial accounting than in medicine. This article analyzes pharmaceutical company manipulation of medical research as part of a broader problem of corporate manipulation of data in the creation of accounting profits. The article explores how our understanding of accounting fraud and misinformation helps us understand the risk of similar information manipulation in the medical sciences. This understanding provides a framework for considering how best to improve the quality of medical research and analysis in light of the current system of medical information production. I offer three possible responses: (1) use of the Dodd-Frank whistleblower provisions to encourage reporting of medical research fraud; (2) a two-step academic journal review process for clinical trials; and (3) publicly subsidized trial-failure insurance. These would improve the release of negative information about drugs, thereby increasing the reliability of positive information. © 2013 American Society of Law, Medicine & Ethics, Inc.

  18. Synthesis and characteristics of sword-like GaN nanorods clusters through ammoniating Ga2O3 thin films

    International Nuclear Information System (INIS)

    Xue Chengshane; Tian Deheng; Zhuang Huizhao; Zhang Xiaokai; Wu Yuxin; Liu Yi'an; He Jianting; Ai Yujie

    2006-01-01

    Sword-like GaN nanorods have been successfully synthesized by ammoniating Ga 2 O 3 thin films deposited on Si substrate by magnetron sputtering. The GaN nanorods have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). SEM images show that sword-like GaN nanorods take on radial structure. The XRD and SAED analyses have identified that the nanorods are pure hexagonal GaN with single crystalline wurtzite structure. The HRTEM images indicate that the nanorods are well crystallized and nearly free from defects

  19. Learning Area and Perimeter with Virtual Manipulatives

    Science.gov (United States)

    Bouck, Emily; Flanagan, Sara; Bouck, Mary

    2015-01-01

    Manipulatives are considered a best practice for educating students with disabilities, but little research exists which examines virtual manipulatives as tool for supporting students in mathematics. This project investigated the use of a virtual manipulative through the National Library of Virtual Manipulatives--polynominoes (i.e., tiles)--as a…

  20. A six degrees of freedom mems manipulator

    NARCIS (Netherlands)

    de Jong, B.R.

    2006-01-01

    This thesis reports about a six degrees of freedom (DOF) precision manipulator in MEMS, concerning concept generation for the manipulator followed by design and fabrication (of parts) of the proposed manipulation concept in MEMS. Researching the abilities of 6 DOF precision manipulation in MEMS is

  1. Manipulator vehicles and loading shovels

    International Nuclear Information System (INIS)

    Brudermueller, G.; Krueger, W.

    1992-01-01

    Kerntechnische Hilfsdienst GmbH (KHG) is an institution jointly founded by electricity utilities, fuel cycle industries, and national research centers to provide specialist equipment for removing the consequences of accidents inside plants and recognizing damage in the immediate vicinity of such plants, maintain such equipment in an operational condition, and provide personnel instructed in work of this kind. The specialized technical equipment developed includes carriages, carrier vehicles for manipulators, grabs, TV cameras or measuring gear. In addition to manipulator vehicles, especially loading shovels are used. Radio-controlled vehicles are used where cable operation is either not reliable enough or has failed. (orig.) [de

  2. Large-scale synthesis of bismuth sulfide nanorods by microwave irradiation

    International Nuclear Information System (INIS)

    Wu Jiliang; Qin Fan; Cheng Gang; Li Hui; Zhang Jiuhong; Xie Yaoping; Yang Haijian; Lu Zhong; Yu Xianglin; Chen Rong

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Large-scale Bi 2 S 3 nanorods have been prepared by microwave irradiation methods. → CTAB and β-CD are beneficial to the formation of Bi 2 S 3 nanorods. → DMF, EG and DEG were favorable solvents. → Bismuth and sulfur precursors influenced the size and morphology. → A proposed formation mechanism of Bi 2 S 3 nanorods was summarized. - Abstract: Bismuth sulfide (Bi 2 S 3 ) has attracted considerable interest due to its potential applications in thermoelectric and electronic devices, optoelectronic devices, and biomedicine. In this study, large-scale highly crystalline Bi 2 S 3 nanorods were successfully prepared from bismuth citrate and thiourea (Tu) by microwave irradiation methods. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM, HRTEM) and selected area electron diffraction (SAED). The influences of reaction time, surfactants, solvents, and precursors on the formation of Bi 2 S 3 nanorods were discussed. The microwave irradiation method reduced reaction time by at least 80% in the synthesis of Bi 2 S 3 nanorods compared with the refluxing method. Cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD) were found to be beneficial to the formation of Bi 2 S 3 nanorods. N,N-dimethylformamide, ethylene glycol, and diethylene glycol were the favorable solvents in the fabrication of these nanorods. It was found that different bismuth and sulfur precursors influenced the sizes and morphologies of the Bi 2 S 3 nanorods. The proposed growth mechanism of Bi 2 S 3 nanorods was also discussed.

  3. Hydrothermal growth of ZnO nanorods: The role of KCl in controlling rod morphology

    International Nuclear Information System (INIS)

    Downing, Jonathan M.; Ryan, Mary P.; McLachlan, Martyn A.

    2013-01-01

    The role of potassium chloride (KCl) in controlling ZnO nanorod morphology of large area thin films prepared by hydrothermal growth has been extensively investigated. The influence of KCl and growth time on the orientation, morphology and microstructure of the nanorod arrays has been studied with systematic changes in the length, width, density and termination of the nanorods observed. Such changes are attributed to stabilization of the high-energy (002) nanorod surface by the KCl. At low KCl concentrations (< 100 mM) c-axis growth i.e. perpendicular to the polar surface, dominates, leading to nanorods with increased length over the control sample (0 mM KCl). At higher concentrations (> 100 mM) stabilization of the high-energy surface by KCl occurs and planar (002) facets are observed accompanied by increased lateral (100) growth, at the highest KCl concentrations near coalesced (002) terminated rods are observed. Additionally we correlate the KCl concentration with the uniformity of the nanorod arrays; a decrease in polydispersity with increased KCl concentration is observed. The vertical alignment of nanorod arrays was studied using X-ray diffraction, it was found that this parameter increases as growth time and KCl concentration are increased. We propose that the increase in vertical alignment is a result of nanorod–nanorod interactions during the early stages of growth. - Highlights: • Modified hydrothermal growth was used for controlled ZnO nanorod synthesis. • Growth conditions varied to study influence on nanorod morphology and orientation. • A highly controlled and reproducible method is established. • A mechanism for growth and the role of ionic additives is proposed

  4. Leadership Manipulation and Ethics in Storytelling

    OpenAIRE

    Auvinen, Tommi; Lämsä, Anna-Maija; Sintonen, Teppo; Takala, Tuomo

    2013-01-01

    This article focuses on exerting influence in leadership, namely manipulation in storytelling. Manipulation is usually considered an unethical approach to leadership. We will argue that manipulation is a more complex phenomenon than just an unethical way of acting in leadership. We will demonstrate through an empirical qualitative study that there are various types of manipulation through storytelling. This article makes a contribution to the literature on manipulation through leadership stor...

  5. Dynamic Control of Kinematically Redundant Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Erling Lunde

    1987-07-01

    Full Text Available Several methods for task space control of kinematically redundant manipulators have been proposed in the literature. Most of these methods are based on a kinematic analysis of the manipulator. In this paper we propose a control algorithm in which we are especially concerned with the manipulator dynamics. The algorithm is particularly well suited for the class of redundant manipulators consisting of a relatively small manipulator mounted on a larger positioning part.

  6. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  7. Adaptive Control Of Remote Manipulator

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  8. Indicial tensor manipulation on MACSYMA

    International Nuclear Information System (INIS)

    Bogen, R.A.; Pavelle, R.

    1977-01-01

    A new computational tool for physical calculations is described. It is the first computer system capable of performing indicial tensor calculus (as opposed to component tensor calculus). It is now operational on the symbolic manipulation system MACSYMA. The authors outline the capabilities of the system and describe some of the physical problems considered as well as others being examined at this time. (Auth.)

  9. Manipulations of Totalitarian Nazi Architecture

    Science.gov (United States)

    Antoszczyszyn, Marek

    2017-10-01

    The paper takes under considerations controversies surrounding German architecture designed during Nazi period between 1933-45. This architecture is commonly criticized for being out of innovation, taste & elementary sense of beauty. Moreover, it has been consequently wiped out from architectural manuals, probably for its undoubted associations with the totalitarian system considered as the most maleficent in the whole history. But in the meantime the architecture of another totalitarian system which appeared to be not less sinister than Nazi one is not stigmatized with such verve. It is Socrealism architecture, developed especially in East Europe & reportedly containing lots of similarities with Nazi architecture. Socrealism totalitarian architecture was never condemned like Nazi one, probably due to politically manipulated propaganda that influenced postwar public opinion. This observation leads to reflection that maybe in the same propaganda way some values of Nazi architecture are still consciously dissembled in order to hide the fact that some rules used by Nazi German architects have been also consciously used after the war. Those are especially manipulations that allegedly Nazi architecture consisted of. The paper provides some definitions around totalitarian manipulations as well as ideological assumptions for their implementation. Finally, the register of confirmed manipulations is provided with use of photo case study.

  10. Mapping and Manipulating Facial Expression

    Science.gov (United States)

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  11. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  12. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    International Nuclear Information System (INIS)

    Geisinger, Joseph W. Ph.D.

    2001-01-01

    ARM Automation, Inc. is developing a FR-amework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator FR-om these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC(trademark)s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost

  13. Temperature-dependent luminescence dynamics in ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Priller, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany)]. E-mail: heiko.priller@physik.uni-karlsruhe.de; Hauschild, R. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Zeller, J. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Klingshirn, C. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kling, R. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Reuss, F. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Kirchner, Ch. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Waag, A. [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany)

    2005-04-15

    We report on an experimental study of the temporal photoluminescence dynamics of high-quality ZnO nanopillars from 10 K to room temperature. We find that defect states play an important role in the time evolution of the photoluminescence signal. At low excitation intensities capture into defects dominates the time dependence of the PL, at higher intensities they are saturated and the intrinsic excitation decay is observed. We separate the intrinsic exciton decay from the fast nonlinear M-band with the method of decay associated spectra and obtain the temperature dependence of the intrinsic exciton decay. High excitation measurements show a reduced exciton-exciton scattering in these thin nanorods.

  14. Zinc oxide nano-rods based glucose biosensor devices fabrication

    Science.gov (United States)

    Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.

    2018-06-01

    ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.

  15. Manipulators

    International Nuclear Information System (INIS)

    Papet, I.; Lune, P.; Pellerin, O.; Sapoval, M.; Brisse, H.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.

    2005-01-01

    These two articles bring notions relative to the safety of procedures, specially in term of irradiation, they give information on different methods in order to reduce the radiation doses delivered to the patients, especially when the examinations concern children or young patients. (N.C.)

  16. Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jooyoung; Lee, Juneyoung [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.k [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749 (Korea, Republic of)

    2010-06-01

    Dye-sensitized solar cells (DSSCs) were fabricated using ZnO nanorod arrays vertically grown on fluorine-doped tin oxide (FTO) glass using a low-temperature hydrothermal method. When the ZnO seed layer was annealed, greater DSSC efficiency was obtained. This may be attributed to the improvement of adhesion between the FTO and the seed layer and the corresponding effective growth of the ZnO nanorods. The DSSCs fabricated using ZnO nanorods which underwent annealing were more efficient than those that did not undergo annealing. The ZnO nanorods which were annealed in N{sub 2}/H{sub 2} or O{sub 2} had increased dye loadings due to higher OH concentrations on the hydrophilic surface, which contributed to the improved DSSC efficiency. The fill factor increased after the annealing of the ZnO nanorods, potentially due to the improved crystallinity of the ZnO nanorods. In this study, annealing of both the seed layer and the ZnO nanorods resulted in the greatest DSSC efficiency.

  17. Y-Doped ZnO Nanorods by Hydrothermal Method and Their Acetone Gas Sensitivity

    Directory of Open Access Journals (Sweden)

    Peng Yu

    2013-01-01

    Full Text Available Pure and yttrium- (Y- doped (1 at%, 3 at%, and 7 at% ZnO nanorods were synthesized using a hydrothermal process. The crystallography and microstructure of the synthesized samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray spectroscopy (EDX. Comparing with pure ZnO nanorods, Y-doped ZnO exhibited improved acetone sensing properties. The response of 1 at% Y-doped ZnO nanorods to 100 ppm acetone is larger than that of pure ZnO nanorods. The response and recovery times of 1 at% Y-doped ZnO nanorods to 100 ppm acetone are about 30 s and 90 s, respectively. The gas sensor based on Y-doped ZnO nanorods showed good selectivity to acetone in the interfere gases of ammonia, benzene, formaldehyde, toluene, and methanol. The formation mechanism of the ZnO nanorods was briefly analyzed.

  18. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    Science.gov (United States)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  19. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology (China)

    2015-09-15

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH{sub 4}. By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY{sup 2−} to EY{sup 3−}. The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods.

  20. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    International Nuclear Information System (INIS)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH 4 . By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY 2− to EY 3− . The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods

  1. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    Science.gov (United States)

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    Science.gov (United States)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu

    2015-09-01

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH4. By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY2- to EY3-. The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods.

  3. Electrochemical characterization of silver nanorod electrodes prepared by oblique angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X-J [Department of Physics and Astronomy, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States); Zhang, G [Department of Biological and Agriculture Engineering, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States); Zhao, Y-P [Department of Physics and Astronomy, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States)

    2006-09-14

    Ag nanorod electrodes with different nanorod lengths are fabricated by a simple vacuum deposition technique, oblique angle deposition (OAD). The as-grown Ag nanorods are aligned on the substrate and have a diameter of {approx}60-70 nm, a density of {approx}200-300 x 10{sup 7} cm{sup -2}, and a tilting angle of {approx}70 deg. -80 deg. with respect to the surface normal. The electrochemical behaviours of the Ag nanorod electrode are characterized by cyclic voltammetry at various scan rates with comparison to an Ag thin-film electrode. The capacitive current is found to be proportional to the actual surface area, and the faradic redox current also increases monotonically with the surface area of the nanorod electrodes, but the increase is not as significant as that of the capacitive current due to the diffusion layer overlapping for the highly compacted nanorods. This indicates that the Ag nanorod electrode could improve the electrolytic sensor for amperometric response measurements, especially for the bimolecular measurements due to the biocompatibility of Ag. The high capacitance also suggests a promising usage of the developed nanostructures for battery and energy storage applications.

  4. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id [Jurusan Fisika, FMIPA-UNJ, Rawamangun, Jakarta (Indonesia); Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Fauzia, Vivi [Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Umar, A. A. [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Sun, X. W. [School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue (Singapore)

    2016-04-19

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffraction peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.

  5. Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell

    Science.gov (United States)

    Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-12-01

    An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.

  6. TEM characterization of catalyst- and mask-free grown GaN nanorods

    International Nuclear Information System (INIS)

    Schowalter, M; Aschenbrenner, T; Kruse, C; Hommel, D; Rosenauer, A

    2010-01-01

    Catalyst- and mask-free grown GaN nanorods have been investigated using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy filtered transmission electron microscopy (EFTEM). The nanorods were grown on nitridated r-plane sapphire substrates in a molecular beam epitaxy reactor. We investigated samples directly after the nitridation and after the overgrowth of the structure with GaN. High resolution transmission electron microscopy (HRTEM) and EFTEM revealed that AlN islands have formed due to nitridation. After overgrowth, the AlN islands could not be observed any more, neither by EFTEM nor by Z-contrast imaging. Instead, a smooth layer consisting of AlGaN was found. The investigation of the overgrown sample revealed that an a-plane GaN layer and GaN nanorods on top of the a-plane GaN have formed. The nanorods reduced from top of the a-plane GaN towards the a-plane GaN/sapphire interface suggesting that the nanorods originate at the AlN islands found after nitridation. However, this could not be shown unambiguously. The number of threading dislocations in the nanorods was very low. The analysis of the epitaxial relationship to the a-plane GaN showed that the nanorods grew along the [000-1] direction, and the [1-100] direction of the rods was parallel to the [0001] direction of the a-plane GaN.

  7. Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods

    International Nuclear Information System (INIS)

    Gao, Bin; Fan, Huiqing; Zhang, Xiaojun; Song, Lixun

    2012-01-01

    Highlights: ► ZnWO 4 nanorods with uniform diameter are successfully prepared through a template-free hydrothermal method. ► The crystallinity of the products is influenced by the pH value of initial precursor suspension. ► Photocatalytic activity of the ZnWO 4 nanorods for degradation of methylene blue is evaluated. ► The ZnWO 4 nanorods exhibit good stability of photocatalytic activity. - Abstract: ZnWO 4 nanorods are successfully synthesized by a template-free hydrothermal method, and are characterized in detail by X-ray diffractometer (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results show that the ZnWO 4 nanorods with wolframite structure are well-crystallized single crystallites. The crystallinity of the products is influenced by the pH value of initial precursor suspension. The width and length of the synthesized samples increase with hydrothermal reaction temperature. The photocatalytic efficiency of the ZnWO 4 nanorods for degradation of methylene blue (MB) in aqueous solution under UV light irradiation declines greatly with increasing crystallinity. The ZnWO 4 nanorods prepared at pH of 4 have the best activity in photo-degradation of MB. After six recycles, photocatalytic activity loss of the catalyst is not obvious.

  8. Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time

    Directory of Open Access Journals (Sweden)

    R. Shabannia

    2015-04-01

    Full Text Available Vertically aligned ZnO nanorods were successfully grown on porous silicon (PS substrates by chemical bath deposition at a low temperature. X-ray diffraction, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, and photoluminescence (PL analyses were carried out to investigate the effect of growth duration (2 h to 8 h on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO (0 0 2 peaks of the ZnO nanorods proved that the aligned ZnO nanorods were preferentially fabricated along the c-axis of the hexagonal wurtzite structure. FESEM images demonstrated that the ZnO nanorod arrays were well aligned along the c-axis and perpendicular to the PS substrates regardless of the growth duration. The TEM image showed that the top surfaces of the ZnO nanorods were round with a smooth curvature. PL spectra demonstrated that the ZnO nanorods grown for 5 h exhibited the sharpest and most intense PL peaks within the ultraviolet range among all samples.

  9. Effect of Zn(NO3)2 concentration in hydrothermal-electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods

    Science.gov (United States)

    Yilmaz, Ceren; Unal, Ugur

    2016-04-01

    Zn(NO3)2 concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO3)2 concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.

  10. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    International Nuclear Information System (INIS)

    Zirak, M.; Akhavan, O.; Moradlou, O.; Nien, Y.T.; Moshfegh, A.Z.

    2014-01-01

    Highlights: • Synthesis of vertically aligned ZnO@CdS nanorod heterostructures. • Effective antibacterial application of the ZnO@CdS nanorods under visible light irradiation. • Determination of the optimum loading of CdS on the ZnO nanorods in the antibacterial application. -- Abstract: Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (E g ) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with E g ∼2.5–2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve a complete inactivation of the bacteria after 24 h visible light irradiation at room temperature. Using X-ray photoelectron spectroscopy, the lower photoinactivation efficiencies of the ZnO@CdS nanorod heterostructure at CdS thicknesses lower and higher than the optimum one were assigned to lower amounts of CdS nanoparticles and OH bonds (substantially existed on the hydrothermally synthesized ZnO nanorods) which are responsible for absorption of the visible light and production of hydroxyl radicals, respectively. Water contact angle measurements showed that the sample with more surface OH groups has a more hydrophilic surface and so more antibacterial activity

  11. Cu-implanted ZnO nanorods array film: An aqueous synthetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ajaya Kumar, E-mail: ajayaksingh_au@yahoo.co.in [Department of Chemistry, Govt. VYT PG. Autonomous College Durg, Chhattisgarh (India); Thool, Gautam Sheel [Department of Chemistry, Govt. VYT PG. Autonomous College Durg, Chhattisgarh (India); Singh, R.S. [Department of Physics, Govt. D.T. College, Utai, Durg, Chhattisgarh (India); Singh, Surya Prakash, E-mail: spsingh@iict.res.in [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad 500007 (India)

    2015-01-05

    Highlights: • Cu doped ZnO nanorods were synthesized using low temperature aqueous solution method. • We demonstrated the capping action of TEA via theoretical simulation. • Raman analysis revealed the presence of tensile strain in Cu doped ZnO nanorods. • Growth rate was found to be high in Cu doped ZnO nanorods. - Abstract: Pure and Cu doped ZnO nanorods array are synthesized via two step chemical bath deposition method. The seed layer is prepared by successive ionic layer adsorption reaction (SILAR) method. The synthesized materials have been systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. SEM pictures show the existence of vertically well aligned hexagonal ZnO nanorods. EDAX spectrum confirms the presence of Cu in ZnO nanorods. High intense peak of (0 0 2) plane and E{sub 2}{sup high} mode for XRD and Raman spectrum respectively, suggest the ZnO nanorods are adopted c-axis orientation perpendicular to substrate. XRD and Raman analysis shows the presence of tensile strain in Cu doped ZnO nanorods. Effect of Cu doping on lattice constants, unit cell volume and Zn–O bond length of ZnO nanorods have also been studied. Room temperature PL measurement exhibits two luminescence bands in the spectra i.e. UV emission centered at 3.215 eV and a broad visible band. Theoretical investigation for capping action of triethanolamine is done by Hartree–Fock (HF) method with 3-21G basis set using Gaussian 09 program package.

  12. Synthesis of CdS nanorods in soft template under gamma-irradiation.

    Science.gov (United States)

    Zhao, Bing; Wang, Yanli; Zhang, Haijiao; Jiao, Zheng; Wang, Haobo; Ding, Guoji; Wu, Minghong

    2009-02-01

    CdS nano material which has a band gap of 2.42 eV at room temperature is a typical II-VII semiconductor having many commercial or potential applications, e.g., light-emitting diodes, solar cell and optoelectronic devices. In this paper, we use a new strategy to synthesize CdS nanorods. CdS nanorods were prepared in soft template under gamma-irradiation though the reaction of cadmium sulphide and thiacetamide (TAA). The formation process and characters of CdS nanorods was investigated in detail by transmission electron microscopy (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), ultraviolet spectrophotometer (UV) and photoluminescence spectrophotometer (PL). In the experiment we proposed that the irradiation of gamma-ray accelerated the formation of S(2-) under acidic condition (pH = 3) and vinyl acetate (VAc) monomer formed pre-organized nano polymer tubules which were used as both templates and nanoreacters for the growth of CdS nanorods. In this process, we have obtained the CdS polycrystal nanorods with PVAc nano tubules and CdS single-crystal nanorods. The result of X-ray powder diffraction confirms that the crystal type of CdS nanorods is cubic F-43 m (216). The results from transmission electron microscopy and electron diffraction show that the concentrations of reactants and the dose rate of gamma-ray are key to produce appropriate CdS nanorods. Relatively low concentrations (Cd2+: 0.008-0.02 mol/L, Cd2+ : S(2-) = 1 : 2) of reactants and long time (1-2 d) of irradiation in low dose rate (6-14 Gy/min) are propitious to form CdS single-crystal nanorods with small diameter (less than 100 nm) and well length (2-5 microm). UV and PL characterizations show the sample have well optical properties.

  13. Synthesis and characterization of uniaxial ferrogels with Ni nanorods as magnetic phase

    International Nuclear Information System (INIS)

    Bender, P.; Guenther, A.; Tschoepe, A.; Birringer, R.

    2011-01-01

    In the present study, the rotation of magnetic nanorods in a soft hydrogel matrix induced by a homogeneous magnetic field is investigated. Magnetic nanorods of ∼151.2nm length and ∼17.7nm diameter are synthesized via current-pulsed electrodeposition of nickel into porous aluminum oxide-templates. The nanorods are processed towards a stable colloidal dispersion by dissolution of the alumina template in aqueous NaOH to which PVP (polyvinyl-pyrrolidone) is added as surfactant. These suspensions are used to prepare gelatine-based ferrogels of different shear modulus with either isotropic or uniaxial orientation-distribution of the nanorods. While magnetization measurements of rigid ferrogels mainly reflect the magnetic properties of the nickel nanorods, the magnetization behavior of soft ferrogels is significantly influenced by a field-induced rotation of the nickel nanorods in the low compliant matrix. A particular analysis of magnetization measurements on uniaxial ferrogels enables to quantify the rotation angle of the nanorods with respect to their initial orientation under the influence of a transversal homogeneous magnetic field. The analysis of the field-dependent rotation also allows to estimate the local shear modulus of the matrix which is demonstrated by an investigation of room temperature ageing process of the ferrogel. - Highlights: → We present the synthesis of ferrogels containing ferromagnetic Ni nanorods. → The torque in the homogeneous magnetic field leads to a rotation of the nanorods. → The rotation angle increases with decreasing shear modulus of the gel matrix. → The local shear modulus can be estimated by analyzing magnetization measurements.

  14. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.

    Science.gov (United States)

    Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-06-15

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  15. Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kunal [Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); De, Debashis, E-mail: dr.debashis.de@ieee.org [Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); Bandyopadhyay, Jaya [Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); Dutta, Nabanita; Rana, Subhasis; Sen, Pintu [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata, 700 064 (India); Bandyopadhyay, Sujit Kumar, E-mail: drsujitkumar@gmail.com [Meghnad Saha Institute of Technology, Nazirabad Rd, Uchhepota, Kolkata, West Bengal, 700150 (India); Chakraborty, P.K. [Department of Physics, Burdwan University, Burdwan, 713104 (India)

    2017-07-01

    The present work reports on the physical and biophysical characterization of bismuth ferrite (BFO) nanorods fabricated on porous anodized alumina (AAO) templates. The diameter of the nanorods was quite large, which vary in the range of 20–100 nm. The BFO nanorods exhibited enhanced polarization and significant magnetic susceptibility. Moreover, an enhanced magnetoelectric coupling was evident from magnetocapacitance measurements, which exhibited a power law. Upon analyzing through optical, petri-plate and electron microscopy imaging, we observed that, the asymmetric structure of the nanorods gave rise to augmented antibacterial response against the chosen bacteria (Staphylococcus aureus). The x-ray photoelectron spectra (XPS) data have exhibited significant peak shifts upon interaction with bacterial cells owing to a change of Bi oxidation state from one to another. Thus potential redox reaction, which might take place at the material-bio interface, is ascertained for bacterial death. Apart from physical insights, understanding the interaction between the bacteria and the nanorods of BFO could pave the way in exploring the antibacterial potentiality of such anisotropic nanoscale systems. - Highlights: • AAO supported BiFeO3 (BFO) nanorods have been investigated. • The polarization of BFO nanorods was observed to be remarkably high (∼0.04 μC/cm{sup 2}). • Strong antibacterial activity of nanorods was witnessed against Staphylococcus aureus. • The deskinned area on cytoskeletal parts as revealed through TEM imaging, suggest strong cidal activity of the nanorods. • XPS data justifies shifting of the peak due to biophysical interaction at the interface releasing reactive oxygen species.

  16. Effect of phosphorus incorporation on morphology and optical properties of ZnO nanorods

    International Nuclear Information System (INIS)

    Fan, Donghua; Zhang, Rong; Wang, Xianghu

    2011-01-01

    Graphical abstract: XPS spectra of the P-doped ZnO nanorods: (a) Zn 2p, (b) O 1s, and (c) P 2p spectra. The red curve in c is the Gauss-fitting curve. (d) Raman spectra of P-doped (curve 1) and pure (curve 2) ZnO nanorods. Research highlights: → P-doped ZnO nanorods have been prepared on Si substrates without any catalyst. → The introduction of phosphorus leads to the growth of tapered tip in the nanorods. → The formation of tapered tip is attributed to the relaxation of the lattice strain along the radial direction. → The strong ultraviolet peak is connected with the phosphorus acceptor-related emissions. -- Abstract: Phosphorus-doped ZnO nanorods have been prepared on Si substrates by thermal evaporation process without any catalyst. X-ray photoelectron spectroscopy and Raman spectra indicate that phosphorus entering into ZnO nanorods mainly occupies Zn site rather than O one. The introduction of phosphorus leads to the morphological changes of nanorods from hexagonal tip to tapered one, which should be attributed to the relaxation of the lattice strain caused by phosphorus occupying Zn site along the radial direction. Transmission electron microscopy shows that phosphorus-doped ZnO nanorods still are single crystal and grow along [0 0 0 1] direction. The effect of phosphorous dopant on optical properties of ZnO nanorods also is studied by the temperature-dependent photoluminescence spectra, which indicates that the strong ultraviolet emission is connected with the phosphorus acceptor-related emissions.

  17. Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods

    International Nuclear Information System (INIS)

    Biswas, Kunal; De, Debashis; Bandyopadhyay, Jaya; Dutta, Nabanita; Rana, Subhasis; Sen, Pintu; Bandyopadhyay, Sujit Kumar; Chakraborty, P.K.

    2017-01-01

    The present work reports on the physical and biophysical characterization of bismuth ferrite (BFO) nanorods fabricated on porous anodized alumina (AAO) templates. The diameter of the nanorods was quite large, which vary in the range of 20–100 nm. The BFO nanorods exhibited enhanced polarization and significant magnetic susceptibility. Moreover, an enhanced magnetoelectric coupling was evident from magnetocapacitance measurements, which exhibited a power law. Upon analyzing through optical, petri-plate and electron microscopy imaging, we observed that, the asymmetric structure of the nanorods gave rise to augmented antibacterial response against the chosen bacteria (Staphylococcus aureus). The x-ray photoelectron spectra (XPS) data have exhibited significant peak shifts upon interaction with bacterial cells owing to a change of Bi oxidation state from one to another. Thus potential redox reaction, which might take place at the material-bio interface, is ascertained for bacterial death. Apart from physical insights, understanding the interaction between the bacteria and the nanorods of BFO could pave the way in exploring the antibacterial potentiality of such anisotropic nanoscale systems. - Highlights: • AAO supported BiFeO3 (BFO) nanorods have been investigated. • The polarization of BFO nanorods was observed to be remarkably high (∼0.04 μC/cm 2 ). • Strong antibacterial activity of nanorods was witnessed against Staphylococcus aureus. • The deskinned area on cytoskeletal parts as revealed through TEM imaging, suggest strong cidal activity of the nanorods. • XPS data justifies shifting of the peak due to biophysical interaction at the interface releasing reactive oxygen species.

  18. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, M. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Akhavan, O., E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Moradlou, O. [Department of Chemistry, Faculty of Sciences, Alzahra University, P.O. Box 1993893973, Tehran (Iran, Islamic Republic of); Nien, Y.T. [Department of Materials Science and Engineering, National Formosa University, Huwei District, Taiwan (China); Moshfegh, A.Z. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-03-25

    Highlights: • Synthesis of vertically aligned ZnO@CdS nanorod heterostructures. • Effective antibacterial application of the ZnO@CdS nanorods under visible light irradiation. • Determination of the optimum loading of CdS on the ZnO nanorods in the antibacterial application. -- Abstract: Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (E{sub g}) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with E{sub g} ∼2.5–2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve a complete inactivation of the bacteria after 24 h visible light irradiation at room temperature. Using X-ray photoelectron spectroscopy, the lower photoinactivation efficiencies of the ZnO@CdS nanorod heterostructure at CdS thicknesses lower and higher than the optimum one were assigned to lower amounts of CdS nanoparticles and OH bonds (substantially existed on the hydrothermally synthesized ZnO nanorods) which are responsible for absorption of the visible light and production of hydroxyl radicals, respectively. Water contact angle measurements showed that the sample with more surface OH groups has a more hydrophilic surface and so more antibacterial activity.

  19. Modeling the manipulator and flipper pose effects on tip over stability of a tracked mobile manipulator

    CSIR Research Space (South Africa)

    Dube, C

    2011-11-01

    Full Text Available Mobile manipulators are used in a number of different applications such as bomb disposal, mining robotics, and search and rescue operations. These mobile manipulators are highly susceptible to tip over due to the motion of the manipulator...

  20. A control method for manipulators with redundancy

    International Nuclear Information System (INIS)

    Furusho, Junji; Usui, Hiroyuki

    1989-01-01

    Redundant manipulators have more ability than nonredundant ones in many aspects such as avoiding obstacles, avoiding singular states, etc. In this paper, a control algorithm for redundant manipulators working under the circumstance in the presence of obstacles is presented. First, the measure of manipulability for robot manipulators under obstacle circumstances is defined. Then, the control algorithm for the obstacle avoidance is derived by using this measure of manipulability. The obstacle avoidance and the maintenance of good posture are simultaneously achieved by this algorithm. Lastly, an experiment and simulation results using an eight degree of freedom manipulator are shown. (author)

  1. Adaptive hybrid control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  2. Master-slave type manipulator

    International Nuclear Information System (INIS)

    Haaker, L.W.; Jelatis, D.G.

    1979-01-01

    Remote control manipulator of the master-slave type for carrying out work on the other side of a shield wall. This appliance allows a Y movement relative displacement, the function of which is to extend the range of the manipulator towards the front and also to facilitate its installation, the lateral rotation or inclination of the slave arm in relation to the master arm, and the Z movement extension through which the length of the slave arm is increased in comparison with that of the master arm. Devices have been developed which transform the linear movements into rotational movements to enable these movements to be transmitted through rotational seal fittings capable of ensuring the safety of the separation between the operator's environment and that in the work area. Particular improvements have been made to the handles, handle seals, pincer mechanisms, etc [fr

  3. Genetic manipulation of Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Xhavit eZogaj

    2011-01-01

    Full Text Available Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a select A agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.

  4. Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets

    International Nuclear Information System (INIS)

    Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-01-01

    Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed

  5. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  6. Water resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property

    OpenAIRE

    Ennaceri, H.; Wang, L.; Erfurt, D.; Riedel, W.; Mangalgiri, G.; Khaldoun, A.; El Kenz, A.; Benyoussef, A.; Ennaoui, A

    2016-01-01

    This study presents an experimental approach for fabricating super hydrophobic coatings based on a dual roughness structure composed of zinc oxide nanorod arrays coated with a sputtered zinc oxide nano layer. The ZnO nanorod arrays were grown by means of a low temperature electrochemical deposition technique 75 C on FTO substrates. The ZnO nanorods show a 002 orientation along the c axis, and have a hexagonal structure, with an average length of 710 nm, and average width of 156 nm. On th...

  7. Facile aqueous synthesis and growth mechanism of CdTe nanorods

    International Nuclear Information System (INIS)

    Gong Haibo; Hao Xiaopeng; Gao Chang; Wu Yongzhong; Du Jie; Xu Xiangang; Jiang Minhua

    2008-01-01

    Single-crystal CdTe nanorods with diameters of 50-100 nm were synthesized under a surfactant-assisted hydrothermal condition. The experimental results indicated that with a temporal dependence the morphologies of CdTe nanocrystallites changed from nanoparticles to smooth surface nanorods. The crystal structure, morphology and optical properties of the products were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and fluorescence spectrophotometer. Furthermore, the formation mechanisms of the nanorods were investigated and discussed on the basis of the experimental results.

  8. Effects of thermal annealing temperature and duration on hydrothermally grown ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.Q.; Kim, C.R.; Lee, J.Y.; Shin, C.M.; Heo, J.H.; Leem, J.Y. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of)], E-mail: hhryu@inje.ac.kr; Chang, J.H. [Major of Nano Semiconductor, Korea Maritime University, 1 Dongsam-dong, Yeongdo-Ku, Busan 606-791 (Korea, Republic of); Lee, H.C. [Department of Mechatronics Engineering, Korea Maritime University, 1 Dongsam-dong, Yeongdo-Ku, Busan 606-791 (Korea, Republic of); Son, C.S. [Department of Electronic Materials Engineering, Silla University, Gwaebeop-dong, Sasang-gu, Busan 617-736 (Korea, Republic of); Shin, B.C.; Lee, W.J. [Department of Nano Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Jung, W.G. [School of Advanced Materials Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Tan, S.T. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Zhao, J.L. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Sun, X.W. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2009-03-15

    In this study, the effects of thermal annealing temperature and duration on ZnO nanorod arrays fabricated by hydrothermal method were investigated. The annealed ZnO/Si(1 1 1) substrate was used for ZnO nanorod array growth. The effects of annealing treatment on the structural and optical properties were investigated by scanning electron microscopy, X-ray diffraction, and room-temperature photoluminescence measurements. With the annealing temperature of 750 {sup o}C and the annealing duration of 10 min, both the structural and optical properties of the ZnO nanorod arrays improved significantly, as indicated in the X-ray diffraction and photoluminescence measurement.

  9. Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics.

    Science.gov (United States)

    Lin, Chenxi; Huang, Ningfeng; Povinelli, Michelle L

    2012-01-02

    We carry out a systematic numerical study of the effects of aperiodicity on silicon nanorod anti-reflection structures. We use the scattering matrix method to calculate the average reflection loss over the solar spectrum for periodic and aperiodic arrangements of nanorods. We find that aperiodicity can either improve or deteriorate the anti-reflection performance, depending on the nanorod diameter. We use a guided random-walk algorithm to design optimal aperiodic structures that exhibit lower reflection loss than both optimal periodic and random aperiodic structures.

  10. An environment-friendly microemulsion approach to α-FeOOH nanorods at room temperature

    International Nuclear Information System (INIS)

    Geng Fengxia; Zhao Zhigang; Cong Hongtao; Geng Jianxin; Cheng Huiming

    2006-01-01

    α-FeOOH nanorods have been prepared at room temperature by an environment-friendly microemulsion approach. X-ray diffraction and transmission electron microscopy revealed that the single-crystalline orthorhombic α-FeOOH nanorods are 8.2 ± 1.5 nm in diameter and 106 ± 16 nm in length. Furthermore, the mechanism for the formation of α-FeOOH nanorods is preliminarily presented. This method may be widely used for reference to fabricate other inorganic one-dimensional nanostructured materials and easily realized in industrial-scale synthesis

  11. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods.

    Science.gov (United States)

    Hughes, Steven M; Alivisatos, A Paul

    2013-01-09

    Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

  12. Effect of thermal implying during ageing process of nanorods growth on the properties of zinc oxide nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, M., E-mail: rusop@salam.uitm.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Malek, M. F., E-mail: firz-solarzelle@yahoo.com; Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Sin, M. D., E-mail: diyana0366@johor.uitm.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    Undoped and Sn-doped Zinc oxide (ZnO) nanostructures have been fabricated using a simple sol-gel immersion method at 95°C of growth temperature. Thermal sourced by hot plate stirrer was supplied to the solution during ageing process of nanorods growth. The results showed significant decrement in the quality of layer produced after the immersion process where the conductivity and porosity of the samples reduced significantly due to the thermal appliance. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM) electrical properties has been characterized using current voltage (I-V) measurement.

  13. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    Science.gov (United States)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  14. Viruses manipulate the marine environment.

    Science.gov (United States)

    Rohwer, Forest; Thurber, Rebecca Vega

    2009-05-14

    Marine viruses affect Bacteria, Archaea and eukaryotic organisms and are major components of the marine food web. Most studies have focused on their role as predators and parasites, but many of the interactions between marine viruses and their hosts are much more complicated. A series of recent studies has shown that viruses have the ability to manipulate the life histories and evolution of their hosts in remarkable ways, challenging our understanding of this almost invisible world.

  15. Manipulating a stated choice experiment

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Borjesson, Maria

    2015-01-01

    This paper considers the design of a stated choice experiment intended to measure the marginal rate of substitution (MRS) between cost and an attribute such as time using a conventional logit model. Focusing the experimental design on some target MRS will bias estimates towards that value....... The paper shows why this happens. The resulting estimated MRS can then be manipulated by adapting the target MRS in the experimental design. (C) 2015 Elsevier Ltd. All rights reserved....

  16. List manipulation in Turbo Prolog

    Directory of Open Access Journals (Sweden)

    V.Cotelea

    1995-06-01

    Full Text Available The present paper is concerned with list processing in Turbo Prolog language. It doesn't claim to be an exhaustive description of operations which can be performed upon lists. Nevertheless adduced programs are most representative, more or less known to specialists in logic programming domain. By means of examples are explained the list manipulation techniques, use of recursion, declarative comparison of predicates, analysis and fixation of acceptable prototypes and some problems of predicates' inconsistency. Index terms. Prolog, list, recursion.

  17. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  18. Photodegradation of phenol by N-Doped TiO{sub 2} anatase/rutile nanorods assembled microsphere under UV and visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mohamad Azuwa [Advanced Membrane Technology Research Centre, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Faculty of Petroleum and Renewable Energy Engineering, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Salleh, W.N.W., E-mail: hayati@petroleum.utm.my [Advanced Membrane Technology Research Centre, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Faculty of Petroleum and Renewable Energy Engineering, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Jaafar, Juhana; Ismail, A.F.; Nor, Nor Azureen Mohamad [Advanced Membrane Technology Research Centre, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Faculty of Petroleum and Renewable Energy Engineering, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2015-07-15

    N-doped TiO{sub 2} anatase/rutile nanorods assembled microspheres were successfully synthesized via a simple and direct sol–gel method containing titanium-n-butoxide Ti(OBu){sub 4} as a precursor material, nitric acid as a catalyst, and isopropanol as a solvent. By manipulating calcination temperature, the photocatalyst consisting of different phase compositions of anatase and rutile was obtained. The prepared TiO{sub 2} nanoparticles were characterized by means of x-ray diffraction (XRD), field emission scanning microscope (FESEM), atomic force microscopy (AFM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis–NIR spectroscopy, and fourier transform infrared (FTIR). The results from UV–Vis–NIR spectroscopy and FTIR revealed the direct incorporation of nitrogen in TiO{sub 2} lattice since visible absorption capability was observed at 400–600 nm. XPS study indicated the incorporation of nitrogen as dopant in TiO{sub 2} at binding energies of 396.8, 397.5, 398.7, 399.8, and 401 eV. Calcination temperature was observed to have a great influence on the photocatalytic activity of the TiO{sub 2} nanorods. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO{sub 2} nanoparticles was measured by photodegradation phenol in an aqueous solution under UV and visible irradiations. N-doped TiO{sub 2} anatase/rutile nanorods assembled microsphere (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400 °C exhibited the highest photocatalytic activity after irradiated under visible and UV light for 540 min. The high performance of photocatalyst materials could be obtained by adopting a judicious combination of anatase/rutile prepared at optimum calcination conditions. - Highlights: • Synthesis of N-Doped TiO{sub 2} Anatase/Rutile Nanorods via simple preparation method. • Direct incorporation of HNO{sub 3} as the nitrogen dopant source. • The photocatalytic properties were studied upon UV and visible light irradiation.

  19. Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Mohamed, Mohamad Azuwa; Salleh, W.N.W.; Jaafar, Juhana; Ismail, A.F.; Nor, Nor Azureen Mohamad

    2015-01-01

    N-doped TiO 2 anatase/rutile nanorods assembled microspheres were successfully synthesized via a simple and direct sol–gel method containing titanium-n-butoxide Ti(OBu) 4 as a precursor material, nitric acid as a catalyst, and isopropanol as a solvent. By manipulating calcination temperature, the photocatalyst consisting of different phase compositions of anatase and rutile was obtained. The prepared TiO 2 nanoparticles were characterized by means of x-ray diffraction (XRD), field emission scanning microscope (FESEM), atomic force microscopy (AFM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis–NIR spectroscopy, and fourier transform infrared (FTIR). The results from UV–Vis–NIR spectroscopy and FTIR revealed the direct incorporation of nitrogen in TiO 2 lattice since visible absorption capability was observed at 400–600 nm. XPS study indicated the incorporation of nitrogen as dopant in TiO 2 at binding energies of 396.8, 397.5, 398.7, 399.8, and 401 eV. Calcination temperature was observed to have a great influence on the photocatalytic activity of the TiO 2 nanorods. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO 2 nanoparticles was measured by photodegradation phenol in an aqueous solution under UV and visible irradiations. N-doped TiO 2 anatase/rutile nanorods assembled microsphere (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400 °C exhibited the highest photocatalytic activity after irradiated under visible and UV light for 540 min. The high performance of photocatalyst materials could be obtained by adopting a judicious combination of anatase/rutile prepared at optimum calcination conditions. - Highlights: • Synthesis of N-Doped TiO 2 Anatase/Rutile Nanorods via simple preparation method. • Direct incorporation of HNO 3 as the nitrogen dopant source. • The photocatalytic properties were studied upon UV and visible light irradiation. • The optimum calcination temperature is 400 °C for

  20. Dispersions of Goethite Nanorods in Aprotic Polar Solvents

    Directory of Open Access Journals (Sweden)

    Delphine Coursault

    2017-10-01

    Full Text Available Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation. For many examples of these colloidal suspensions, the solvent is water, which hinders most electro-optic applications. Here, for goethite (α-FeOOH nanorod dispersions, we show that water can be replaced by polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylsulfoxide (DMSO, without loss of colloidal stability. By polarized-light microscopy, small-angle X-ray scattering and electro-optic measurements, we found that the nematic phase, with its field-response properties, is retained. Moreover, a strong Kerr effect was also observed with isotropic goethite suspensions in these polar aprotic solvents. Furthermore, we found no significant difference in the behavior of both the nematic and isotropic phases between the aqueous and non-aqueous dispersions. Our work shows that goethite nanorod suspensions in polar aprotic solvents, suitable for electro-optic applications, can easily be produced and that they keep all their outstanding properties. It also suggests that this solvent replacement method could be extended to the aqueous colloidal suspensions of other kinds of charged anisotropic nanoparticles.

  1. Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene

    International Nuclear Information System (INIS)

    Joseph Nathanael, A.; Mangalaraj, D.; Chi Chen, P.; Ponpandian, N.

    2011-01-01

    Hydroxyapatite (HAp) nanostructures may be an advanced candidate in biomedical applications for an apatite substitute of bone and teeth than other form of HAp. In contrast, well-defined size and shape control in synthesizing HAp nanostructures is always difficult. In this study, hydroxyapatite nanorods (HAp NRs) were prepared by simple hydrothermal method with controlling the reaction time without using any surfactant or templating agents. The nanostructure clearly depicts the growth stages of the HAp NRs by increasing the reaction time. The synthesized HAp has the rod like morphology with uniform size distribution with the aspect ratio of about 8–10. Transmission electron microscopic (TEM) and high resolution TEM (HRTEM) images show that the growth direction of the HAp is parallel to the (001) plane. The interplanar distances measured in segments (fringes) of the HRTEM micrograph were ∼0.35 nm, corresponding to the interplanar spacing of the (002) plane of the hexagonal HAp. X-ray diffraction (XRD) measurements indicate that the improved crystallinity of the HAp by increasing the reaction time. The mechanical studies reveal that the improved tensile strength and the abrasion resistance are observed for the HAp nanorods reinforcing with high molecular weight polyethylene (HMWPE).

  2. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  3. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.

    Science.gov (United States)

    Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B

    2017-06-27

    A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.

  4. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Directory of Open Access Journals (Sweden)

    Mikli Valdek

    2011-01-01

    Full Text Available Abstract Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm were grown in air onto a preheated soda-lime glass (SGL or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km

  5. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  6. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  7. An evolutionary resolution of manipulation conflict.

    Science.gov (United States)

    González-Forero, Mauricio

    2014-07-01

    Individuals can manipulate the behavior of social partners. However, manipulation may conflict with the fitness interests of the manipulated individuals. Manipulated individuals can then be favored to resist manipulation, possibly reducing or eliminating the manipulated behavior in the long run. I use a mathematical model to show that conflicts where manipulation and resistance coevolve can disappear as a result of the coevolutionary process. I find that while manipulated individuals are selected to resist, they can simultaneously be favored to express the manipulated behavior at higher efficiency (i.e., providing increasing fitness effects to recipients of the manipulated behavior). Efficiency can increase to a point at which selection for resistance disappears. This process yields an efficient social behavior that is induced by social partners, and over which the inducing and induced individuals are no longer in conflict. A necessary factor is costly inefficiency. I develop the model to address the evolution of advanced eusociality via maternal manipulation (AEMM). The model predicts AEMM to be particularly likely in taxa with ancestrally imperfect resistance to maternal manipulation. Costly inefficiency occurs if the cost of delayed dispersal is larger than the benefit of exploiting the maternal patch. I discuss broader implications of the process. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  8. Using Manipulatives to Teach Elementary Mathematics

    Science.gov (United States)

    Boggan, Matthew; Harper, Sallie; Whitmire, Anna

    2010-01-01

    The purpose of this paper is to explain the importance and benefits of math manipulatives. For decades, the National Council of Teachers of Mathematics has encouraged school districts nationwide to use manipulatives in mathematical instruction. The value of manipulatives has been recognized for many years, but some teachers are reluctant to use…

  9. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    Science.gov (United States)

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  10. Electrical conduction and NO{sub 2} gas sensing properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yasin [Council of Forensic Medicine, Bahçelievler, 34196 Istanbul (Turkey); Öztürk, Sadullah, E-mail: sadullahozturk@gyte.edu.tr [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Kılınç, Necmettin [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Koc University, Department of Electrical and Electronics Engineering, Sariyer, 34450 Istanbul (Turkey); Kösemen, Arif [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Mus Alparslan University, Department of Physics, 49100 Mus (Turkey); Erkovan, Mustafa [SAKARYA University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya (Turkey); Öztürk, Zafer Ziya [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); TÜBİTAK-Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey)

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO{sub 2} (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO{sub 2} gas decreased by exposing to white light.

  11. Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors

    Science.gov (United States)

    Ma, Biao; Zhou, Xiao; Bao, Hua; Li, Xingwei; Wang, Gengchao

    2012-10-01

    Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods (sGNS/PANI) are successfully synthesized via interfacial polymerization of aniline monomers in the presence of sulfonated graphene nanosheets (sGNS). The FE-SEM images indicate that the morphologies of sGNS/PANI composites can be controlled by adjusting the concentration of aniline monomers. FTIR and Raman spectra reveal that aligned PANI nanorod arrays for sGNS/PANI exhibit higher degree of conjugation compared with pristine PANI nanorods. The hierarchical composite based on the two-electrode cell possesses higher specific capacitance (497 F g-1 at 0.2 A g-1), better rate capability and cycling stability (5.7% capacitance loss after 2000 cycles) than those of pristine PANI nanorods.

  12. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    Science.gov (United States)

    Kopwitthaya, Atcha; Yong, Ken-Tye; Hu, Rui; Roy, Indrajit; Ding, Hong; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-08-01

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  13. PEG-nanotube liquid crystals as templates for construction of surfactant-free gold nanorods.

    Science.gov (United States)

    Kameta, Naohiro; Shiroishi, Hidenobu

    2018-04-23

    Lyotropic liquid crystals, in which nanotubes coated with polyethylene glycol were aligned side-by-side in aqueous dispersions, acted as templates for the construction of surfactant-free gold nanorods with controllable diameters, functionalizable surfaces, and tunable optical properties.

  14. A two-step obtainment of quantum confinement in ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A C; El-Shaer, A; Suleiman, M; Bakin, A; Waag, A [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany)

    2006-10-14

    ZnO nanorod-based single quantum well heterostructures were fabricated in a two-step process. Nanorods were first grown using vapour transport. Subsequently, high-quality ZnO/Zn{sub 0.85}Mg{sub 0.15}O heterostructures were grown on the nanorods using molecular beam epitaxy. The nanorods are well aligned along the c-axis of ZnO, as indicated by a very narrow rocking curve full width at half maximum. Quantum confinement was clearly observed within the ZnO well for different well widths. The quantum wells show photoluminescence peaks with a full width at half maximum as small as 15 meV.

  15. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  16. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    Science.gov (United States)

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Properties and Photocatalytic Activity of β-Ga2O3 Nanorods under Simulated Solar Irradiation

    Directory of Open Access Journals (Sweden)

    Yinzhen Wang

    2015-01-01

    Full Text Available β-Ga2O3 nanorods are prepared by hydrothermal method and characterized by X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectra. The results reveal that high crystallinity, monoclinic phase of β-Ga2O3 nanorods were prepared with a diameter of about 60 nm and length of 500 nm. Photoluminescence study indicates that the β-Ga2O3 nanorods exhibit a broad blue light emission at room temperature. The β-Ga2O3 nanorods displayed high photocatalytic activity under simulated solar irradiation; after 2 h irradiation, over 95% of methylene blue solution and over 90% of methyl orange solution were decolorized. Since this process does not require additional hydrogen peroxide and uses solar light, it can be developed as an economically feasible and environmentally friendly method to treat dye effluent.

  18. Low temperature growth and properties of ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Wu, Xiang; Zheng, Yufeng; Chen, Huibo; Gong, Lihong; Qu, Fengyu

    2011-01-01

    In this paper, well aligned ZnO nanorod arrays were synthesized by a simple hydrothermal route at a low temperature. The diameters of the as-synthesized products were 20–60 nm and the lengths were as much as several micrometers. The surfaces and tops of the nanorods were smooth. The as-grown nanorod arrays were investigated by x-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) spectroscopy and contact angle (CA) analysis. The as-grown nanorods were single crystalline structures with a wurtzite phase, and grew along the [0001] direction. The PL spectrum with only one strong peak at 383 nm shows good intrinsic emission

  19. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    Energy Technology Data Exchange (ETDEWEB)

    Kopwitthaya, Atcha; Hu Rui; Roy, Indrajit; Ding Hong; Vathy, Lisa A; Bergey, Earl J; Prasad, Paras N [Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-4200 (United States); Yong, Ken-Tye, E-mail: ktyong@ntu.edu.sg, E-mail: pnprasad@buffalo.edu [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-08-06

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  20. Microwave-assisted hydrothermal synthesis of Bi2S3 nanorods in flower-shaped bundles

    International Nuclear Information System (INIS)

    Thongtem, Titipun; Pilapong, Chalermchai; Kavinchan, Jutarat; Phuruangrat, Anukorn; Thongtem, Somchai

    2010-01-01

    Bi 2 S 3 nanorods in flower-shaped bundles were successfully synthesized from the decomposition of Bi-thiourea complexes under the microwave-assisted hydrothermal process. X-ray powder diffraction (XRD) patterns and field emission scanning electron microscopy (FE-SEM) show that Bi 2 S 3 has the orthorhombic phase and appears as nanorods in flower-shaped bundles. A transmission electron microscopic (TEM) study reveals the independent single Bi 2 S 3 nanorods with their growth along the [0 0 1] direction. A possible formation mechanism of Bi 2 S 3 nanorods in flower-shaped bundles is also proposed and discussed. Their UV-vis spectrum shows the absorbance at 596 nm, with its direct energy band gap of 1.82 eV.

  1. The (2 × 2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries

    Science.gov (United States)

    Ghouri, Zafar Khan; Zahoor, Awan; Barakat, Nasser A. M.; Alsoufi, Mohammad S.; Bawazeer, Tahani M.; Mohamed, Ahmed F.; Kim, Hak Yong

    2016-02-01

    The (2 × 2) tunnels structured manganese dioxide nanorods with α phase (α-MnO2) are synthesized via simplistic hydrothermal method at low temperature. The obtained tunnels structured α-MnO2 nanorods are characterized by, Transmission electron microscopy, Scanning electron microscopy, and X-ray diffraction techniques. The oxygen reduction reaction (ORR) activity was studied by cyclic voltammetry and rotating ring-disc electrode voltammetry techniques in alkaline media. Moreover; the highly electrocatalytic tunnels structured α-MnO2 nanorods were then also applied as cathode in rechargeable Li-O2 cells. The Li-O2 cells exhibited initial discharge capacity as high as ∼4000 mAh/g with the tunnels structured α-MnO2 nanorods which was double the original capacity of the cells without any catalyst. Also we obtained 100% round trip efficiency upon cycling with limited capacity for more than 50 cycles.

  2. The synthesis of PbF2 nanorods in a microemulsion system

    International Nuclear Information System (INIS)

    Xu Ke; Mao Changjie; Geng Jun; Zhu Junjie

    2007-01-01

    Single-crystalline PbF 2 nanorods with a diameter of 100-500 nm and length of 1-10 μm have been successfully synthesized by a simple sonochemical route in a microemulsion system at room temperature. The morphologies and structures of the nanorods were characterized by x-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The experimental results showed that polyethylene glycol 6000 played an important role in the formation of PbF 2 nanorods. Room-temperature photoluminescence measurements indicated that the as-prepared PbF 2 nanorods had strong green emission, which could have potential applications in optoelectronic devices

  3. ZnO nanorods for simultaneous light trapping and transparent electrode application in solar cells

    KAUST Repository

    Khan, Yasser

    2011-10-01

    Efficacy of using vertically grown ZnO nanorod array in enhancing electromagnetic field intensity and serving as the top contact layer (transparent electrodes) for solar cells was investigated. © 2011 IEEE.

  4. Effect of Co content on magnetic and optical properties of Zn1−xCoxOy nanorods

    International Nuclear Information System (INIS)

    Chen, Jia-Hong; Lin, Yow-Jon; Chang, Hsing-Cheng; Chen, Ya-Hui; Horng, Lance; Chang, Chia-Chi

    2013-01-01

    Highlights: ► The magnetic and optical properties of Zn 1−x Co x O y nanorods were studied. ► The ferromagnetic properties arise from the replacement of Zn by Co and defects. ► A link between the magnetization, nanorod sizes and defects was established. - Abstract: The effect of Co content on the magnetic and optical properties of Zn 1−x Co x O y nanorods have been investigated in this study. X-ray diffraction, energy dispersive spectrometer, photoluminescence and ferromagnetism measurements were used to characterize the Zn 1−x Co x O y nanorods. It is shown that the ferromagnetic properties arise from the replacement of Zn by Co in the ZnO lattice. Combining with photoluminescence and scanning electron microscopic results, a direct link between the magnetization, nanorod sizes and acceptor defects of Zn 1−x Co x O y nanorods was established.

  5. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chen, Yen-Ting; Araki, Tsutomu; Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens; Chen, Li-Chyong; Chen, Kuei-Hsien; Nanishi, Yasushi

    2013-01-01

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm

  6. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Ting [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Araki, Tsutomu [Department of Electrical and Electronic Engineering, Ritsumeikan University, 525-8577 Shiga (Japan); Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Chen, Li-Chyong [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Nanishi, Yasushi [Global Innovation Research Organization, Ritsumeikan University, 525-8577 Shiga (Japan)

    2013-11-11

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.

  7. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  8. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    Science.gov (United States)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  9. Crystallinity improvement of ZnO nanorods by optimization of low-cost electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Özdal, Teoman, E-mail: teomanozdal@hotmail.com; Taktakoğlu, Renna; Özdamar, Havva; Esen, Mehmet; Takçı, Deniz Kadir; Kavak, Hamide

    2015-10-01

    Extremely low-cost electrodeposition technique was developed to deposit ZnO nanorods. The growth process was performed using standard DC power supply, milliammeter and two-electrode electrochemical cell. The deposition was carried out on indium tin oxide (ITO) coated glass substrates by changing deposition parameters such as cathodic deposition current and time, solution molarity and temperature. The parameters varied to obtain optimum transparent semiconductor material for optoelectronic applications. Structural characterizations by X-ray diffraction (XRD) indicate the formation of polycrystalline phase ZnO with strong c-axis orientation and were sensitive to deposition temperatures and molarity as well. Average optical transmittance for the best two ZnO nanorod series was around 60% and 42%, respectively. The optical energy band gap of the ZnO nanorods decreased from 3.24 eV to 3.21 eV as the deposition time increased. All the nanorods were n-type with a high carrier concentration of 1 × 10{sup 20} cm{sup −3} and low 1–2 × 10{sup −3} Ωcm resistivity. - Highlights: • n-Type ZnO nanorods were electrochemically deposited employing standard DC power supply and milliammeter. • ZnO nanorods show very good polycrystalline and electrical properties consistent with the literature. • ZnO nanorod structures are hexagonal wurtzite and highly oriented along the c-axis perpendicular to the substrates. • Produced ZnO nanorod structures show good transparent conductive oxide properties.

  10. Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Maniam, S.M. [Centre for Quantum Technologies, National University of Singapore (Singapore); Sundaramurthy, J. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Arokiaraj, J. [3M R and D Center (Singapore); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Rajarathnam, D. [CERAR, University of South Australia, Mawson Lakes, SA-5095 (Australia); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Jian, L.K. [Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS) (Singapore)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Simple integrated chemical process was adopted for specific ZnO nanorod growth. Black-Right-Pointing-Pointer Size and orientation of nanorods are well controlled by optimum reaction time and temperature. Black-Right-Pointing-Pointer Different site-selective ZnO nanorod growths are demonstrated. - Abstract: A simple and cost effective method has been employed for the random growth and oriented ZnO nanorod arrays over as-prepared and patterned seeded glass substrates by low temperature two step growth process and growth specificity by direct laser writing (DLW) process. Scanning electron microscopy (SEM) images and X-ray diffraction analysis confirm the growth of vertical ZnO nanorods with perfect (0 0 2) orientation along c-axis which is in conjunction with optimizing the parameters at different reaction times and temperatures. Transmission electron microscopy (TEM) images show the formation of vertical ZnO nanorods with diameter and length of {approx}120 nm and {approx}400 nm respectively. Photoluminescence (PL) spectroscopic studies show a narrow emission at {approx}385 nm and a broad visible emission from 450 to 600 nm. Further, site-selective ZnO nanorod growth is demonstrated for its high degree of control over size, orientation, uniformity, and periodicity on a positive photoresist ZnO seed layer by simple geometrical (line, circle and ring) patterns of 10 {mu}m and 5 {mu}m dimensions. The demonstrated control over size, orientation and periodicity of ZnO nanorods process opens up an opportunity to develop multifunctional properties which promises their potential applications in sensor, piezoelectric, and optoelectronic devices.

  11. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites

    International Nuclear Information System (INIS)

    Fu, Min; Jiao, Qingze; Zhao, Yun

    2013-01-01

    Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO 3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene. - Highlights: • Reduction of GO and formation of ferrites were accomplished in a one-step reaction. • Ionic liquid was used to control 1D growth of ferrite nanorods for the first time. • Cobalt ferrite nanorods/graphene composites showed dielectric and magnetic loss. • Cobalt ferrite nanorods/graphene composites exhibited better absorbing properties

  12. Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods

    OpenAIRE

    Kashif, M.; Hashim, U.; Ali, M. E.; Usman Ali, Syed M.; Rusop, M.; Ibupoto, Zafar Hussain; Willander, Magnus

    2012-01-01

    The morphology and electrooptical properties of ZnO nanorods synthesized on monoethanolamine-based seed layer and KOH-based seed layer were compared. The seed solutions were prepared in monoethanolamine in 2-methoxyethanol and potassium hydroxide in methanol, respectively. Zinc acetate dihydrate was as a common precursor in both solutions. The nanorod-ZnOs were synthesized via the spin coating of two different seed solutions on silicon substrates followed by their hydrothermal growth. The sca...

  13. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization

    Directory of Open Access Journals (Sweden)

    Tapas R. Nayak

    2017-06-01

    Full Text Available Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  14. HKUST-1 Membranes Anchored on Porous Substrate by Hetero MIL-110 Nanorod Array Seeds.

    Science.gov (United States)

    Mao, Yiyin; Cao, Wei; Li, Junwei; Sun, Luwei; Peng, Xinsheng

    2013-09-02

    Great anchors and seeds: Hetero-seeding growth processes and anchored nanorod arrays were successfully utilized in the synthesis of HKUST-1 membranes. These arrays were firmly anchored on porous substrates by using a MIL-110 nanorod array as both the anchor and seed. The resulting HKUST-1 membranes demonstrated good separation factors for binary gases exceeding the Knudson selectivity. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Cao, Shiyi; Wang, Chen [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-07-15

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.

  16. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    International Nuclear Information System (INIS)

    Nakate, U.T.; Bulakhe, R.N.; Lokhande, C.D.; Kale, S.N.

    2016-01-01

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  17. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xiaofeng Wu

    2016-02-01

    Full Text Available Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B and Rhodamine B (RhB dyes under visible light irradiation (λ > 420 nm. The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  18. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effective transformation of PCDTBT nanorods into nanotubes by polymer melts wetting approach

    Directory of Open Access Journals (Sweden)

    Fakhra Aziz

    2017-09-01

    Full Text Available In the present study, p-type conducting polymer of poly [N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole] (PCDTBT has been explored for nanostructures. A novel approach has been adopted to transform nanorods into nanotubes by altering template-wetting methods. PCDTBT nanorods are fabricated by infiltrating porous alumina template with various solution concentrations of 5, 10 and 15 mg/ml. Upon thermal annealing PCDTBT beyond its melting point, the nanorods are transformed into nanotubes. The morphological and optical investigations reveal that the nanorods prepared with a concentration of 10 mg/ml are longer, denser, well-arranged and red shifted as compared to other nanorods. The PCDTBT nanotubes of the same concentration prepared at 300 °C are found the best among all other nanotubes with improved length, density and alignment as compared to their nanorod counterparts. Furthermore, the optical spectra of the nanotubes demonstrate broad spectral region, augmented absorption intensity and significant red-shift. The changes observed in Raman shift indicate improvement in molecular arrangement of the nanotubes. Optimization of the solution concentration and annealing temperature leads to improvement of PCDTBT nanostructures. PCDTBT nanotubes, with better molecular arrangement and broad optical spectrum, can be exploited in the state-of-the-art photovoltaic devices.

  20. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.

    Science.gov (United States)

    Haberkorn, Niko; Weber, Stefan A L; Berger, Rüdiger; Theato, Patrick

    2010-06-01

    We describe the synthesis and characterization of a cross-linkable siloxane-derivatized tetraphenylbenzidine (DTMS-TPD), which was used for the fabrication of semiconducting highly ordered nanorod arrays on conductive indium tin oxide or Pt-coated substrates. The stepwise process allow fabricating of macroscopic areas of well-ordered free-standing nanorod arrays, which feature a high resistance against organic solvents, semiconducting properties and a good adhesion to the substrate. Thin films of the TPD derivate with good hole-conducting properties could be prepared by cross-linking and covalently attaching to hydroxylated substrates utilizing an initiator-free thermal curing at 160 degrees C. The nanorod arrays composed of cross-linked DTMS-TPD were fabricated by an anodic aluminum oxide (AAO) template approach. Furthermore, the nanorod arrays were investigated by a recently introduced method allowing to probe local conductivity on fragile structures. It revealed that more than 98% of the nanorods exhibit electrical conductance and consequently feature a good electrical contact to the substrate. The prepared nanorod arrays have the potential to find application in the fabrication of multilayered device architectures for building well-ordered bulk-heterojunction solar cells.

  1. Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble.

    Science.gov (United States)

    Hadar, Ido; Hitin, Gal B; Sitt, Amit; Faust, Adam; Banin, Uri

    2013-02-07

    Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

  2. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  3. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id; Nugraha, E-mail: brian@tf.itb.ac.id [Advanced Functional Materials Laboratory, Engineering Physics Department Faculty of Industrial Technology, Institut Teknologi Bandung (Indonesia)

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  4. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    International Nuclear Information System (INIS)

    Khenfouch, M.; Wéry, J.; Baïtoul, M.; Maaza, M.

    2014-01-01

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods

  5. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    Science.gov (United States)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  6. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods

    Science.gov (United States)

    Reddy, L. Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-09-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  7. Synthesis of GaN Nanorods by a Solid-State Reaction

    Directory of Open Access Journals (Sweden)

    Keyan Bao

    2010-01-01

    Full Text Available An atom-economical and eco-friendly chemical synthetic route was developed to synthesize wurtzite GaN nanorods by the reaction of NaNH2 and the as-synthesized orthorhombic GaOOH nanorods in a stainless steel autoclave at 600∘C. The lengths of the GaN nanorods are in the range of 400–600 nm and the diameters are about 80–150 nm. The process of orthorhombic GaOOH nanorods transformation into wurtzite GaN nanorods was investigated by powder X-ray diffraction (XRD and field emission scanning electron microscope (FESEM, indicating that the GaN product retained essentially the same basic topological morphology in contrast to that of the GaOOH precursor. It was found that rhombohedral Ga2O3 was the intermediate between the starting orthorhombic GaOOH precursor and the final wurtzite GaN product. The photoluminescence measurements reveal that the as-prepared wurtzite GaN nanorods showed strong blue emission.

  8. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

    Directory of Open Access Journals (Sweden)

    Jinzhang Liu

    2014-04-01

    Full Text Available One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  9. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyan; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China); Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, Shaanxi (China); Li, Hui; Zhu, Chenhui [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China); Hua, Xiufu, E-mail: hua_xiufu@163.com [Department of Scientific Research and Development, Tsinghua University, Beijing 100084 (China); Ma, Haixia, E-mail: mahx@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, Shaanxi (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China)

    2017-06-01

    This paper describes a new synthetic strategy and biological application for novel amphiphilic hydroxyapatite (HAp) nanorods. The prepared HAp nanorods were able to be dispersed in water, ethyl alcohol and cyclohexane. The co-anchoring of the multidentate ligands of PEG 20000 and hydrophobic oleic acid (OA) on the rods' surfaces endowed them with excellent amphibious properties. Utilizing amphiphilic HAp nanorods with excellent biocompatibility as the inorganic phase, human-like collagen (HLC) as the organic phase and natural genipin as the cross-linker, optimal HLC/HAp porous scaffolds (HLC: HAp = 1:4, w/w) were fabricated. The compression stress and three-point bending strength of the scaffolds with pore diameters of 150 to 200 μm reached approximately 3.4 MPa and 5.4 MPa, respectively, and their porosity was 77.35 ± 3.75%. Cytological tests showed that HLC/HAp scaffolds could contribute to cell proliferation and differentiation. The results indicated that these novel amphiphilic HAp nanorods can be expected to become recognized as an excellent inorganic material for the porous scaffolds used in repairing bone and related applications. - Highlights: • A simple and effective hydrothermal method was developed for preparing uniform HAp nanorods with amphiphilic surfaces. • The synthesized amphiphilic HAp nanorods could be dispersed in water, ethyl alcohol or cyclohexane. • The prepared HLC/HAp porous scaffolds had good mechanical properties, biocompatibility and osteoconductive etc.

  10. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

    International Nuclear Information System (INIS)

    Zheng, Xiaoyan; Hui, Junfeng; Li, Hui; Zhu, Chenhui; Hua, Xiufu; Ma, Haixia; Fan, Daidi

    2017-01-01

    This paper describes a new synthetic strategy and biological application for novel amphiphilic hydroxyapatite (HAp) nanorods. The prepared HAp nanorods were able to be dispersed in water, ethyl alcohol and cyclohexane. The co-anchoring of the multidentate ligands of PEG 20000 and hydrophobic oleic acid (OA) on the rods' surfaces endowed them with excellent amphibious properties. Utilizing amphiphilic HAp nanorods with excellent biocompatibility as the inorganic phase, human-like collagen (HLC) as the organic phase and natural genipin as the cross-linker, optimal HLC/HAp porous scaffolds (HLC: HAp = 1:4, w/w) were fabricated. The compression stress and three-point bending strength of the scaffolds with pore diameters of 150 to 200 μm reached approximately 3.4 MPa and 5.4 MPa, respectively, and their porosity was 77.35 ± 3.75%. Cytological tests showed that HLC/HAp scaffolds could contribute to cell proliferation and differentiation. The results indicated that these novel amphiphilic HAp nanorods can be expected to become recognized as an excellent inorganic material for the porous scaffolds used in repairing bone and related applications. - Highlights: • A simple and effective hydrothermal method was developed for preparing uniform HAp nanorods with amphiphilic surfaces. • The synthesized amphiphilic HAp nanorods could be dispersed in water, ethyl alcohol or cyclohexane. • The prepared HLC/HAp porous scaffolds had good mechanical properties, biocompatibility and osteoconductive etc.

  11. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    Science.gov (United States)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  12. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  13. Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors

    International Nuclear Information System (INIS)

    Shou Qingliang; Cheng Jipeng; Zhang Li; Nelson, Bradley J.; Zhang Xiaobin

    2012-01-01

    We report a one-step synthesis of a nanocomposite of goethite (α-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge–discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g −1 with an excellent recycling capability making the material promising for electrochemical capacitors. - Graphical abstract: The reduced graphene oxide sheets are decorated with goethite nanorods. The as-prepared composite exhibits a high electrochemical capacitance with good recycling capability, which is promising for supercapacitor applications. Higlights: ► Ferrous ions act as reductant of graphite oxide and precursor of goethite nanorods. ► Goethite nanorods are attached on both sides of the reduced graphene oxide sheets. ► Composite exhibits a high specific capacitance and a good recycling capability. ► Composite is promising for supercapacitor applications.

  14. Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate

    International Nuclear Information System (INIS)

    Ng, Chai Yan; Abdul Razak, Khairunisak; Lockman, Zainovia

    2015-01-01

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO 3 ) nanorods. A WO 3 seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm −2 ) than compact film (lower current density of − 0.54 and + 0.28 mA cm −2 ). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO 3 nanorods exhibited higher electrochromic current density than WO 3 compact film.

  15. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods.

    Science.gov (United States)

    Reddy, L Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-12-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  16. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nakate, U.T., E-mail: umesh.nakate@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India); Bulakhe, R.N.; Lokhande, C.D. [Department of Physics, Thin films Physics Laboratory, Shivaji University Kolhapur 416004 (India); Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India)

    2016-05-15

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  17. Magnetization measurements reveal the local shear stiffness of hydrogels probed by ferromagnetic nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P., E-mail: nano@p-bender.de; Tschöpe, A., E-mail: antsch@mx.uni-saarland.de; Birringer, R., E-mail: r.birringer@nano.uni-saarland.de

    2014-12-15

    The local mechanical coupling of ferromagnetic nanorods in hydrogels was characterized by magnetization measurements. Nickel nanorods were synthesized by the AAO-template method and embedded in gelatine hydrogels with mechanically soft or hard matrix properties determined by the gelatine weight fraction. By applying a homogeneous magnetic field during gelation the nanorods were aligned along the field resulting in uniaxially textured ferrogels. The magnetization curves of the soft ferrogel exhibited not only important similarities but also characteristic differences as compared to the hard ferrogel. The hystereses measured in a field parallel to the texture axis were almost identical for both samples indicating effective coupling of the nanorods with the polymer network. By contrast, measurements in a magnetic field perpendicular to the texture axis revealed a much higher initial susceptibility of the soft as compared to the hard ferrogel. This difference was attributed to the additional rotation of the nanorods allowed by the reduced shear modulus in the soft ferrogel matrix. Two methods for data analysis were presented which enabled us to determine the shear modulus of the gelatine matrix which was interpreted as a local rather than macroscopic quantity in consideration of the nanoscale of the probe particles. - Highlights: • Nanorods are embedded as magnetic probes in gelatine gels. • Elastic rotation of the rods can be induced by applying a homogeneous magnetic field. • Rod rotation has significant influence on the magnetization curves. • Two methods are presented to estimate the shear modulus of the matrix from the magnetization curves.

  18. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    Energy Technology Data Exchange (ETDEWEB)

    Khenfouch, M., E-mail: khenfouch@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Wéry, J. [Institut des Matériaux Jean Rouxel, Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3 (France); Baïtoul, M., E-mail: baitoul@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); Maaza, M. [iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa)

    2014-01-15

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods.

  19. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods.

    Science.gov (United States)

    Liu, Jinzhang; Notarianni, Marco; Rintoul, Llew; Motta, Nunzio

    2014-01-01

    One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  20. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    Science.gov (United States)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  1. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  2. Interpersonal relationship manipulation at a personal level

    Directory of Open Access Journals (Sweden)

    Andreja Hribernik

    2010-12-01

    Full Text Available Manipulation is not unknown or strange to any of us. We have all experienced it, or perhaps even practiced it. It is wrong not to recognize it, to find excuses for it, and, above all, it is wrong not to decide to change one’s behaviour. Long-lasting use of manipulation leaves consequences on all the parties involved: the victim, the observer and the perpetrator. Manipulation is a relation between persons which does not consider the needs of everybody involved. It means exploitation and misleading, inhumane and unethical behaviour on the part of the manipulator, which he uses in order gain success, self-confirmation and to achieve his goals. In the act of manipulation personal boundaries of the other person are violated since the manipulator enforces his dominance and subjectedness of the victim. The manipulator invades the victim’s personal integrity, limiting their potential. He isolates, controls and intimidates them; by devises a system to catch the victims, to entangle them in his net and suck them up like a spider. If the manipulation is very successful, the other person does not recognize it as such; they consider themselves happy to be cooperating with the manipulator, as they identify his goals as their own. Therefore, the manipulator can be said to have stolen the manipulated person’s soul.

  3. Genetic manipulation of Methanosarcina spp.

    Directory of Open Access Journals (Sweden)

    Petra Regine Adelheid Kohler

    2012-07-01

    Full Text Available The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

  4. Covariance Manipulation for Conjunction Assessment

    Science.gov (United States)

    Hejduk, M. D.

    2016-01-01

    The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.

  5. Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics

    International Nuclear Information System (INIS)

    Nobile, Concetta; Carbone, Luigi; Fiore, Angela; Cingolani, Roberto; Manna, Liberato; Krahne, Roman

    2009-01-01

    We deposit droplets of nanorods dispersed in solvents on substrate surfaces and let the solvent evaporate. We find that strong contact line pinning leads to dense nanorod deposition inside coffee stain fringes, where we observe large scale lateral ordering of the nanorods with the long axis of the rods oriented parallel to the contact line. We observe birefringence of these coffee stain fringes by polarized microscopy and we find the direction of the extraordinary refractive index parallel to the long axis of the nanorods.

  6. WO3 nanorods-modified carbon electrode for sustained electron uptake from Shewanella oneidensis MR-1 with suppressed biofilm formation

    International Nuclear Information System (INIS)

    Zhang, Feng; Yuan, Shi-Jie; Li, Wen-Wei; Chen, Jie-Jie; Ko, Chi-Chiu; Yu, Han-Qing

    2015-01-01

    Highlights: • WO 3 nanorods-modified carbon paper was used as the anode of MFC. • WO 3 nanorods suppressed biofilm growth on the electrode surface. • Sustained electron transfer from cells to electrode via riboflavin was achieved. • C–WO 3 nanorods enable stable and efficient EET process in long-time operation. - Abstract: Carbon materials are widely used as electrodes for bioelectrochemical systems (BES). However, a thick biofilm tends to grow on the electrode surface during continuous operation, resulting in constrained transport of electrons and nutrients at the cell-electrode interface. In this work, we tackled this problem by adopting a WO 3 -nanorods modified carbon electrode (C–WO 3 nanorods), which completely suppressed the biofilm growth of Shewanella Oneidensis MR-1. Moreover, the C–WO 3 nanorods exhibited high electric conductivity and strong response to riboflavin. These two factors together make it possible for the C–WO 3 nanorods to maintain a sustained, efficient process of electron transfer from the MR-1 planktonic cells. As a consequence, the microbial fuel cells with C–WO 3 nanorods anode showed more stable performance than the pure carbon paper and WO 3 -nanoparticles systems in prolonged operation. This work suggests that WO 3 nanorods have the potential to be used as a robust and biofouling-resistant electrode material for practical bioelectrochemical applications

  7. Separation of gold nanorods by viscosity gradient centrifugation

    International Nuclear Information System (INIS)

    Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye

    2016-01-01

    Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)

  8. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Cole, Joseph R; Joshi, Amit; Halas, Naomi J

    2009-03-24

    Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.

  9. Photo-stimulated resistive switching of ZnO nanorods

    International Nuclear Information System (INIS)

    Park, Jinjoo; Lee, Seunghyup; Yong, Kijung

    2012-01-01

    Resistive switching memory devices are promising candidates for emerging memory technologies because they yield outstanding device performance. Storage mechanisms for achieving high-density memory applications have been developed; however, so far many of them exhibit typical resistive switching behavior from the limited controlling conditions. In this study, we introduce photons as an unconventional stimulus for activating resistive switching behaviors. First, we compare the resistive switching behavior in light and dark conditions to describe how resistive switching memories can benefit from photons. Second, we drive the switching of resistance not by the electrical stimulus but only by the modulation of photon. ZnO nanorods were employed as a model system to demonstrate photo-stimulated resistive switching in high-surface-area nanomaterials, in which photo-driven surface states strongly affect their photoconductivity and resistance states. (paper)

  10. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  11. Bismuth oxide nanorods based immunosensor for mycotoxin detection

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, Pratima R., E-mail: pratimarsolanki@gmail.com [DST Centre for Biomolecular Electronics, CSIR-National Physical Laboratory, K.S. Krishnan Marg, New Delhi (India); Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Singh, Jay [DST Centre for Biomolecular Electronics, CSIR-National Physical Laboratory, K.S. Krishnan Marg, New Delhi (India); Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Rupavali, Bharti [DST Centre for Biomolecular Electronics, CSIR-National Physical Laboratory, K.S. Krishnan Marg, New Delhi (India); Tiwari, Sachchidanand [Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Malhotra, Bansi D., E-mail: bansi.malhotra@gmail.com [DST Centre for Biomolecular Electronics, CSIR-National Physical Laboratory, K.S. Krishnan Marg, New Delhi (India); Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India)

    2017-01-01

    We report results of the studies relating to fabrication of an efficient immunosensor based on bismuth oxide nanorods (nBi{sub 2}O{sub 3}), electrophoretically deposited onto indium-tin-oxide (ITO) coated glass substrate. This immunosensor was fabricated by immobilization of anti-aflatoxin monoclonal antibodies (Ab-AFB1) and bovine serum albumin (BSA) for aflatoxin B1 detection. The structural and morphological studies of n-Bi{sub 2}O{sub 3} have been carried out by XRD, UV–vis spectrophotometer; SEM, AFM and FTIR. It was found that the nBi{sub 2}O{sub 3} provided improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The results of electrochemical response studies of this BSA/Ab-AFB1/nBi{sub 2}O{sub 3}/ITO immunosensor revealed good linearity in the range of 1–70 ng dL{sup −1} with low detection limit of 8.715 ng/dL, improved sensitivity of 1.132 μA/(ng/dL cm{sup −2}), regression coefficient R{sup 2} of 0.918 and reproducibility of > 11 times. The association constant for the BSA/Ab-AFB1/nBi{sub 2}O{sub 3}/ITO immunosensor was determined as 7.318 ng/dL. - Highlights: • Use of Bismuth oxide nanorods for aflatoxin B1 detection. • It improved the electrochemical properties. • First report on nBi{sub 2}O{sub 3} for mycotoxin detection.

  12. Charging up for the future of plug-in hybrids and range extenders. An exploration of options for increased battery utilisation; Opladen voor de toekomst van plug-in hybrides en range extenders. Een verkenning naar mogelijkheden voor vergroten van het elektrische gebruik

    Energy Technology Data Exchange (ETDEWEB)

    Van Essen, H.; Schroten, A.; Aarnink, S.

    2013-05-15

    If the full potential of plug-in hybrids and electric cars with a range extender is to be usefully exploited, it is important that these vehicles be used in battery mode as much as possible. This means that users' charging and driving behaviour needs to be positively influenced. This can be achieved through suitably designed financial incentives on the part of employers and government, further expansion of battery-charging infrastructure, and transferring knowledge on driving style. Improved driving and charging behaviour will lead to lower effective fuel consumption, reduced CO2 emissions and improved air quality. These are some of the results of this study in which it is examined how the performance of plug-in hybrids and cars with a range extender can be improved. It is the first study to look into the factors governing practical usage of such vehicles and the options available to the various parties to improve that usage. To this end a literature study was carried out and interviews were held with employers, leasing companies, trade associations, government agencies and other parties [Dutch] Om het potentieel van plug-in hybrides en elektrische auto's met een range extender te benutten is het van belang dat deze auto's zoveel mogelijk elektrisch worden gereden. Hiervoor is het nodig om het oplaad- en rijgedrag van de gebruikers positief te beïnvloeden. Dit kan door het geven van slimme financiële prikkels door werkgevers en overheid, het verder uitbreiden van de laadinfrastructuur en kennisoverdracht over rijgedrag. Een verbeterd rij- en laadgedrag zorgt voor een lager brandstofpraktijkverbruik, minder CO2-uitstoot en een betere luchtkwaliteit. Dit staat onder meer in de studie 'Opladen voor de toekomst van plug-in hybrides en range extenders' van CE Delft, waarin op verzoek van de Nederlandse importeurs van Toyota en Opel is onderzocht hoe het elektrisch gebruik kan worden verbeterd. Hierin is voor het eerst gekeken naar de factoren

  13. Wave Manipulation by Topology Optimization

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders

    topology optimization can be used to design structures for manipulation of the electromagnetic and acoustic waves. The wave problems considered here fall within three classes. The first class concerns the design of cloaks, which when wrapped around an object will render the object undetectable...... for the cloak is to delay the waves in regions of higher permittivity than the background and subsequently phase match them to the waves outside. Directional acoustic cloaks can also be designed using the topology optimization method. Aluminum cylinders constitutes the design and their placement and size...... concerns the design of planar Fresnel zone plate lenses for focusing electromagnetic waves. The topology optimized zone plates improve the focusing performance compared to results known from the literature....

  14. Ion manipulation method and device

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gordon A.; Baker, Erin M.; Smith, Richard D.; Ibrahim, Yehia M.

    2017-11-07

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  15. Multidiscipline simulation of elastic manipulators

    Directory of Open Access Journals (Sweden)

    T. Rølvåg

    1992-10-01

    Full Text Available This paper contributes to multidiscipline simulation of elastic robot manipulators in FEDEM. All developments presented in this paper are based on the formulations in FEDEM, a simulation system developed by the authors which combines finite element, mechanism and control analysis. In order to establish this general simulation system as an efficient multidiscipline robot design tool a robot control system including a high level robot programming language, interpolation algorithms, path generation algorithms, forward and inverse kinematics, control systems, gear and transmission models are implemented. These new features provide a high level of integration between traditionally separate design disciplines from the very beginning of the design and optimization process. Several simulations have shown that high fidelity mathematical models can be derived and used as a basis for dynamic analysis and controller design in FEDEM.

  16. Photoelectrochemical properties of the TiO2-ZnO nanorod hierarchical structure prepared by hydrothermal process

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2018-02-01

    Full Text Available In order to increase the transport channels of the photogenerated electrons and enhance the photosensitizer loading ability of the electrode, a new TiO2-ZnO nanorod hierarchical structure is prepared through two-step hydrothermal process. First, TiO2 nanorod array is grown on the FTO conductive glass substrate by hydrothermal proess. Then, ZnO sol is coated onto the TiO2 nanorods through dip-coating method and inverted to ZnO seed layer by sintering. Finally, the secondary ZnO nanorods are grown onto the TiO2 nanorods by the sencond hydrothermal method to form the designed TiO2-ZnO nanorod hierarchical structure. A spin-coating assisted successive ionic layer reaction method (SC-SILR is used to deposit the CdS nanocrystals into the TiO2 nanorod array and the TiO2-ZnO nanorod hierarchical structure is used to form the CdS/TiO2 and CdS/TiO2-ZnO nanocomposite films. Different methods, such as SEM, TEM, XRD, UV-Vis and transient photocurrent, are employed to characterize and measure the morphologies, structures, light absorption and photoelectric conversion performance of all the samples, respectively. The results indicate that, compared with the pure TiO2 nanorod array, the TiO2-ZnO nanorod hierarchical structure can load more CdS photosensitizer. The light absorption properties and transient photocurrent performance of the CdS/TiO2-ZnO nanorod hierarchical structure composite film are evidently superior to that of the CdS/TiO2 nanocomposite films. The excellent photoelctrochemical performance of theTiO2-ZnO hierarchical structure reveales its application prospect in photoanode material of the solar cells.

  17. LaPO4:Eu fluorescent nanorods, synthesis, characterization and spectroscopic studies on interaction with human serum albumin

    Science.gov (United States)

    Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun

    2018-06-01

    Eu3+ doped LaPO4 fluorescent nanorods (LaPO4:Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO4:Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100 nm and a diameter of about 10 nm, can emit strong red fluorescence upon excitation at 241 nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO4:Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 103 L mol-1. The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2 nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO4:Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues.

  18. A links manipulator simulation program interim report

    International Nuclear Information System (INIS)

    Noble, R.A.

    1987-04-01

    A computer program to simulate the performance of the Heysham II rail-following manipulator has been developed. The program is being used to develop and test the rail-following control algorithms which will be used to control movements of the manipulator when it is operating below the gas baffle dome. The simulation includes the dynamic responses of the manipulator joint drives, excluding friction, backlash and compliance. It also includes full details of the manipulator's geometry. A method is given whereby the actual manipulator dynamics can be written into the program once these have been established by measurement. The program is written in FORTRAN and runs on a Perkin-Elmer 3220 mini-computer. The simulation program responds to velocity demands on the individual joints. These will normally come from the control program, in which they will be manually controlled by a joystick. A sigma 5664 colour graphics generator is programmed to display the current position of the manipulator. (UK)

  19. Probabilistic approach to manipulator kinematics and dynamics

    International Nuclear Information System (INIS)

    Rao, S.S.; Bhatti, P.K.

    2001-01-01

    A high performance, high speed robotic arm must be able to manipulate objects with a high degree of accuracy and repeatability. As with any other physical system, there are a number of factors causing uncertainties in the behavior of a robotic manipulator. These factors include manufacturing and assembling tolerances, and errors in the joint actuators and controllers. In order to study the effect of these uncertainties on the robotic end-effector and to obtain a better insight into the manipulator behavior, the manipulator kinematics and dynamics are modeled using a probabilistic approach. Based on the probabilistic model, kinematic and dynamic performance criteria are defined to provide measures of the behavior of the robotic end-effector. Techniques are presented to compute the kinematic and dynamic reliabilities of the manipulator. The effects of tolerances associated with the various manipulator parameters on the reliabilities are studied. Numerical examples are presented to illustrate the procedures

  20. Collision Detection for Underwater ROV Manipulator Systems

    Directory of Open Access Journals (Sweden)

    Satja Sivčev

    2018-04-01

    Full Text Available Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  1. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    Directory of Open Access Journals (Sweden)

    Fernandez Cabada T

    2012-03-01

    Full Text Available Tamara Fernandez Cabada1,2,*, Cristina Sanchez Lopez de Pablo1,3,*, Alberto Martinez Serrano2, Francisco del Pozo Guerrero1,3, Jose Javier Serrano Olmedo1,3,*, Milagros Ramos Gomez1–3,* 1Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain; 2Centre for Molecular Biology, "Severo Ochoa" Universidad Autonoma de Madrid, Madrid, Spain; 3Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-bbn, Zaragoza, Spain.*These authors contributed equally to this workBackground: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells.Methods: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods.Results: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death.Conclusion: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.Keywords: laser irradiation, photothermal therapy, surface plasmon resonance, cancer

  2. Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Nguyen, Si Hieu; Lim, Jong Choo; Lee, Joong Kee

    2012-01-01

    Highlights: ► A metal-assisted chemical etching technique was performed on Si thin films. ► The etching process resulted in the formation of bundle-type Si nanorods. ► The morphology of Si electrodes closely relate to electrochemical characteristics. - Abstract: In order to prepare bundle-type silicon nanorods, a silver-assisted chemical etching technique was used to modify a 1.6 μm silicon thin film, which was deposited on Cu foil by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition. The bundle-type silicon nanorods on Cu foil were employed as anodes for a lithium secondary battery, without further treatment. The electrochemical characteristics of the pristine silicon thin film anodes and the bundle-type silicon nanorod anodes are different from one another. The electrochemical performance of the bundle-type silicon nanorod anodes exceeded that of the pristine Si thin film anodes. The specific capacity of the bundle-type silicon nanorod anodes is much higher than 3000 mAh g −1 at the first charge (Li insertion) cycle. The coulombic efficiency of bundle-type silicon anodes was stable at more than 97%, and the charge capacity remained at 1420 mAh g −1 , even after 100 cycles of charging and discharging. The results from the differential voltage analysis showed a side reaction at around 0.44–0.5 V, and the specific potential of this side reaction decreased after each cycle. The apparent diffusion coefficients of the two anode types were in the range of 10 −13 –10 −16 cm 2 s −1 in the first cycle. In subsequent charge cycles, these values for the silicon thin film anodes and the silicon nanorod bundle anode were approximately 10 −12 –10 −14 and 10 −13 –10 −15 cm 2 s −1 , respectively.

  3. Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode

    International Nuclear Information System (INIS)

    Sharma, Manoj K.; Ambolikar, Arvind S.; Aggarwal, Suresh K.

    2012-01-01

    The electrochemical template synthesis of gold nanorods within the cylindrical pores of track-etched polycarbonate (PC) membrane using a removable mercury cathode is reported. The novelty of this new approach is that it eliminates the requirement of coating an approximately 500 nm–1 μm-thick metallic layer, as conducting substrate, onto one surface of the insulating template membrane by the sputter deposition technique. A two-compartment electrochemical cell was designed and used for this work. The PC membrane was placed between the two compartments separating the aqueous solution of HAuCl 4 from mercury. Mercury, filled in one of the compartments, is in contact with one surface of the membrane (similar to sputter-deposited metallic layer) and serves as the conducting substrate/cathode for the electrochemical deposition of gold in the nanopores of track-etched PC membrane. Once the electrodeposition is completed, the mercury and the HAuCl 4 solution are removed from the compartments, and a malleable track-etched PC membrane embedded with free-standing gold nanorods is obtained. The ensemble of the metal nanorods grown in the template membrane is not attached to any conducting substrate, and gold nanorods can be freed from the template membrane after the dissolution. The Au-deposited PC membrane and free-standing Au nanorods were characterized by EDXRF, XRD, UV–Visible spectroscopy, AFM, and FEG-TEM. The EDXRF and XRD studies confirmed the deposition of the face-centered cubic phase of Au in the pores of the PC membrane. The TEM studies showed the formation of a cigar-shaped gold nanorod in the cylindrical pores of the PC membrane. The diameter of gold nanorods ranges from 100 to 200 nm. The new approach is simple, cost-effective, and saves time.

  4. RF power dependent formation of amorphous MoO3-x nanorods by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Navas, I.; Vinodkumar, R.; Detty, A.P.; Mahadevan Pillai, V.P.

    2009-01-01

    Full text: The fabrication of nanorods has received increasing attention for their unique physical and chemical properties and a wide range of potential applications such as photonics and nanoelectronics Molybdenum oxide nanorods with high activity can be used in a wide variety of applications such as cathodes in rechargeable batteries, field emission devices, solid lubricants, superconductors thermoelectric materials, and electrochromic devices. In this paper, amorphous MoO 3-x nanorods can find excellent applications in electrochromic and gas sensing have been successfully prepared by varying the R F power in R F Magnetron Sputtering system without heating the substrate; other parameters which are optimised in our earlier studies. We have found that the optimum RF power for nanorod formation is 200W. At a moderate RF power (200W), sputtering redeposition takes places constructively which leads to formation of fine nanorods. Large RF power creates high energetic ion bombardment on the grains surfaces which can lead to re-nucleation, so the grains become smaller and columnar growth is interrupted. Beyond the RF power 200W, the etching effect of the plasma became more severe and damaged the surface of the nanorods. All the molybdenum oxide films prepared are amorphous; the XRD patterns exhibit no characteristic peak corresponds to MoO 3 . The amorphous nature is preferred for good electrochromic colouration The spectroscopic properties of the nanorods have been investigated systematically using atomic force microscopy, x-ray diffraction, micro-Raman, UV-visible and photoluminescence (PL) spectroscopy. The films exhibit two emission bands; a near band edge UV emission and a defect related deep level visible emission

  5. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Nurul Izni Rusli

    2012-12-01

    Full Text Available The formation of high-density zinc oxide (ZnO nanorods on porous silicon (PS substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn powder in the presence of oxygen (O2 gas was systematically investigated. The high-density growth of ZnO nanorods with (0002 orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS and vapor-solid (VS mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  6. Master-slave-manipulator 'EMSM I'

    International Nuclear Information System (INIS)

    Koehler, G.W.; Salaske, M.

    1976-01-01

    A master-slave manipulator with electric force transmission and reflection was developed for the first time in the German Federal Republic. The apparatus belongs to the class of 200 N carrying capacity. It is intended mainly for nuclear purposes and especially for use in large hot cells and also for medium and heavy manipulator vehicles. The most innovations compared with previously known foreign electric master-slave manipulators are two additional possibilities of movement and the electric dead weight compensation. (orig.) [de

  7. Master-slave-manipulator EMSM I

    International Nuclear Information System (INIS)

    Koehler, G.W.; Salaske, M.

    1976-01-01

    A master-slave manipulator with electric force transmission and reflection was developed for the first time in the German Federal Republic. The aparatus belongs to the class of 200 N carrying capacity. It is intended mainly for nuclear purposes and especially for use in large hot cells and also for medium and heavy manipulator vehicles. The most obvious innovations compared with previously known foreign electric master-slave manipulators are two additional possibilities of movement and the electric dead weightcompensation. (orig.) [de

  8. Positional control of space robot manipulator

    Science.gov (United States)

    Kurochkin, Vladislav; Shymanchuk, Dzmitry

    2018-05-01

    In this article the mathematical model of a planar space robot manipulator is under study. The space robot manipulator represents a solid body with attached manipulators. The system of equations of motion is determined using the Lagrange's equations. The control problem concerning moving the robot to a given point and return it to a given trajectory in the phase space is solved. Changes of generalized coordinates and necessary control actions are plotted for a specific model.

  9. Managerial Incentives and Stock Price Manipulation

    OpenAIRE

    Peng, Lin; Röell, Ailsa A

    2009-01-01

    This paper presents a rational expectations model of optimal executive compensation in a setting where managers are in a position to manipulate short-term stock prices, and managers' propensity to manipulate is uncertain. Stock-based incentives elicit not only productive effort, but also costly information manipulation. We analyze the tradeoffs involved in conditioning pay on long- versus short-term performance and characterize a second-best optimal compensation scheme. The paper shows manipu...

  10. Seismic qualification of existing safety class manipulators

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Moran, T.J.

    1992-01-01

    There are two bridge type electromechanical manipulators within a nuclear fuel handling facility which were constructed over twenty-five years ago. At that time, there were only minimal seismic considerations. These manipulators together with the facility are being reactivated. Detailed analyses have shown that the manipulators will satisfy the requirements of ANSI/AISC N690-1984 when they are subjected to loadings including the site specific design basis earthquake. 4 refs

  11. 3D Laser Scanner for Underwater Manipulation

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2018-04-01

    Full Text Available Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS is used to autonomously grasp an object from the bottom of a water tank.

  12. Long-reach manipulators for decommissioning

    International Nuclear Information System (INIS)

    Webster, D.A.; Challinor, S.F.

    1993-01-01

    A survey of redundant facilities at Sellafield has identified that in many cases the conventional means of deploying remote handling equipment are not appropriate and that novel means must be employed. However, decommissioning is not a value adding activity and so expensive one off designs must be avoided. The paper will describe BNFL's approach to the synthesis from proprietary parts of a manipulator which can lift 3 te at a horizontal reach of over 5 metres and yet can still perform the dextrous manipulation necessary to remove small items. It will also cover the development of the manipulator control systems and the adaption of commercial handtools to be manipulator friendly. (author)

  13. Nano-manipulation of single DNA molecules

    International Nuclear Information System (INIS)

    Hu Jun; Shanghai Jiaotong Univ., Shanghai; Lv Junhong; Wang Guohua; Wang Ying; Li Minqian; Zhang Yi; Li Bin; Li Haikuo; An Hongjie

    2004-01-01

    Nano-manipulation of single atoms and molecules is a critical technique in nanoscience and nanotechnology. This review paper will focus on the recent development of the manipulation of single DNA molecules based on atomic force microscopy (AFM). Precise manipulation has been realized including varied manipulating modes such as 'cutting', 'pushing', 'folding', 'kneading', 'picking up', 'dipping', etc. The cutting accuracy is dominated by the size of the AFM tip, which is usually 10 nm or less. Single DNA fragments can be cut and picked up and then amplified by single molecule PCR. Thus positioning isolation and sequencing can be performed. (authors)

  14. Bioprinting Living Biofilms through Optogenetic Manipulation.

    Science.gov (United States)

    Huang, Yajia; Xia, Aiguo; Yang, Guang; Jin, Fan

    2018-04-18

    In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.

  15. 3D Laser Scanner for Underwater Manipulation.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  16. Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air

    International Nuclear Information System (INIS)

    Zhang Jun; Liu Yanru; Wei Zhiyang; Zhang Junyan

    2013-01-01

    Highlights: ► Oxygen vacancy is the key factor in accounting for the change in morphology of the ZnO nanorod arrays. ► We firstly investigated the wettability alteration of ZnO nanorod arrays annealed in vacuum at different temperature. ► The hydrophilicity of the ZnO nanorod arrays annealed in air is not related to the oxygen vacancy but ascribed to the O adatom on the nanorod surface. - Abstract: The ZnO nanorod arrays were synthesized via a simple hydrothermal process followed by annealing in vacuum and air respectively at different temperature. The wettability of samples was controlled by adjusting the annealing atmosphere and temperature. To investigate the mechanism of wettability alteration, the chemical composition and surface morphology of nanorod arrays were analyzed by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM), respectively. Increasing oxygen vacancy concentration by increasing annealing temperature in vacuum resulted in a great change of surface morphology, which played the major role in wettability change. Under annealing in air, oxygen vacancy concentration reduced and the surface morphology of nanorod arrays showed little change with increasing annealing temperature. The wettability alteration is ascribed to the O adatom on the nanorods surface.

  17. Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors

    Science.gov (United States)

    Sun, Gun-Joo; Lee, Jae Kyung; Lee, Wan In; Dwivedi, Ram Prakash; Lee, Chongmu; Ko, Taegyung

    2017-05-01

    NiO-decorated SnO2 nanorods were synthesized by the thermal evaporation of Sn powders followed by the solvothermal deposition of NiO. A multi-networked p- n heterostructured nanorod sensor was fabricated by dropping the p-NiO-decorated n-SnO2 nanorods onto the interdigited electrode pattern and then annealing. The multi-networked p- n heterostructured nanorod sensor exhibited enhanced response to ethanol compared with the pristine SnO2 nanorod and NiO nanoparticle sensors. The former also exhibited a shorter sensing time for ethanol. Both sensors exhibited selectivity for ethanol over other volatile organic compounds (VOCs) such as HCHO, methanol, benzene and toluene and the decorated sensor exhibited superior selectivity to the other two sensors. In addition, the dominant sensing mechanism is discussed in detail by comparing the sensing properties and current-voltage characteristics of a p-NiO/ n-SnO2 heterostructured nanorod sensor with those of a pristine SnO2 nanorod sensor and a pristine NiO nanoparticle sensor. Of the two competing electronic mechanisms: a potential barrier-controlled carrier transport mechanism at a NiO-SnO2 p- n junction and a surface-depletio n-controlled carrier transport mechanism, the former has some contribution to the enhanced gas sensing performance of the p- n heterostructured nanorod sensor, however, its contribution is not as significant as that of the latter. [Figure not available: see fulltext.

  18. Time of Growth Dependent of ZnO-Nanorods by Self-Assembly Methods and its Structural Properties

    Science.gov (United States)

    Aprilia, A.; Bahtiar, A.; Safriani, L.; Ayunita, C. C.; Afifah, N.; Syakir, N.; Risdiana; Saragi, T.; Hidayat, S.; Fitrilawati; Siregar, R. E.

    2017-05-01

    ZnO-nanorods (ZnO-Nrs) have been successfully prepared on glass substrate using self-assembly method by varying deposition time. Zn acetate dehydrate and 2-methoxyethanol was used as raw material and solvent respectively (for ZnO seed layer preparation), meanwhile Zn nitrate hexahydrate and hexametylenetetramine (HMTA) dissolved in deionized water used as solution growth of ZnO-Nanorods (ZnO-Nrs). In this work, deposition times of ZnO-Nrs were varied by 120 min, 150 min, 180 min and 210 minutes at 100°C of annealing temperature. In order to investigate the physical properties of resulting ZnO, several measurements such as x-ray diffraction (XRD), ultra-violet visible spectroscopy and scanning electron microscopy (SEM) were carried out. Based on ZnO nanorods SEM image with varying time depositions, seems that increasing deposition time the nanorod size decrease but when the time reach 210 min, the average size of nanorods turned back increase. From XRD measurement, the average grain size and lattice constant (c) which is assemble the nanorod structure and lattice constant (c) was determined by Debye-Scherrer formula and Bragg law’s respectively. The growth process of ZnO nanorod by 180 min time deposition was known as an appropriate time to produce ZnO nanorods with high crystal quality due to sharp peak intensity of XRD spectrum.

  19. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Willander, M; Nur, O; Zhao, Q X; Yang, L L [Department of Science and Technology, Linkoeping University, SE-601 74 Norrkoeping (Sweden); Lorenz, M; Cao, B Q; Zuniga Perez, J; Czekalla, C; Zimmermann, G; Grundmann, M [Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestrasse 5, D-04103 Leipzig (Germany); Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A [Institute of Semiconductor Technology, Technical University of Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); Boukos, N; Travlos, A [National Center for Scientific Research ' Demokritos' , Institute of Materials Science, GR 15310 Agia Paraskevi Attikis, Athens (Greece); Kwack, H S, E-mail: magwi@itn.liu.s [CEA-CNRS Group ' Nanophysique et Semiconducteurs' , Institut Neel, CNRS and Universit' e Joseph Fourier, F-38042 Grenoble (France)

    2009-08-19

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  20. Manipulation of plasmonic wavefront and light–matter interaction in metallic nanostructures: A brief review

    International Nuclear Information System (INIS)

    Li Jia-Fang; Li Zhi-Yuan

    2014-01-01

    The control and application of surface plasmons (SPs), is introduced with particular emphasis on the manipulation of the plasmonic wavefront and light–matter interaction in metallic nanostructures. We introduce a direct design methodology called the surface wave holography method and show that it can be readily employed for wave-front shaping of near-infrared light through a subwavelength hole, it can also be used for designing holographic plasmonic lenses for SPs with complex wavefronts in the visible band. We also discuss several issues of light–matter interaction in plasmonic nanostructures. We show theoretically that amplification of SPs can be achieved in metal nanoparticles incorporated with gain media, leading to a giant reduction of surface plasmon resonance linewidth and enhancement of local electric field intensity. We present an all-analytical semiclassical theory to evaluate spaser performance in a plasmonic nanocavity incorporated with gain media described by the four-level atomic model. We experimentally demonstrate amplified spontaneous emission of SP polaritons and their amplification at the interface between a silver film and a polymer film doped with dye molecules. We discuss various aspects of microscopic and macroscopic manipulation of fluorescent radiation from gold nanorod hybrid structures in a system of either a single nanoparticle or an aligned group of nanoparticles. The findings reported and reviewed here could help others explore various approaches and schemes to manipulate plasmonic wavefront and light–matter interaction in metallic nanostructures for potential applications, such as optical displays, information integration, and energy harvesting technologies. (topical review - plasmonics and metamaterials)

  1. Synthesis and Photocatalytic Performance of RGO/ZnO Nanorod Composites

    Directory of Open Access Journals (Sweden)

    LU Jia

    2016-12-01

    Full Text Available ZnO nanorods and RGO/ZnO nanorods composites were prepared by hydrothermal method. The influence of RGO content on the photocatalytic activity of RGO/ZnO nanorods composites was studied. ZnO nanorods and RGO/ZnO nanocomposites were characterized by X-ray diffraction (XRD, field emission electron microscopy (FESEM, X-ray photoelectron spectroscopy (XPS and diffuse reflectance UV-visible absorption spectroscopy techniques. The results show that RGO/ZnO samples are synthesized successfully. With different additions of GO, the RGO/ZnO samples obtained exhibit different absorption characteristics in visible light region. The photocatalytic results of using methyl orange (MO as the simulated pollutant show that RGO/ZnO nanorods composites exhibit high degradation efficiency under UV-Vis light illumination. The highest photocatalytic performance is obtained for RGO/ZnO composites when the mass ratio of RGO to ZnO is 3%. MO is almost completely degraded in 120min. RGO/ZnO also shows the visible-light-driven photocatalytic activity under visible light illumination (λ>400nm, and the maximum MO degradation efficiency in 180min can reach 26.2%, meanwhile, RGO/ZnO samples exhibit good photostability.

  2. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method

    International Nuclear Information System (INIS)

    Zheng, J.H.; Jiang, Q.; Lian, J.S.

    2011-01-01

    Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.

  3. Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, R. [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Junaid Bushiri, M., E-mail: junaidbushiri@gmail.com [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Achary, Sreekumar Rajappan; Muñoz-Sanjosé, Vicente [Departamento de FisicaAplicada y Electromagnetismo, Universitat de Valencia, c/Dr. Moliner 50, Burjassot, Valencia 46100 (Spain)

    2015-01-15

    Highlights: • Single crystalline ZnO:Mn nanorods. • Reduced optical active defects. • Quenching and blue shift of UV emission. - Abstract: ZnO:Mn alloyed nanorods (Mn nominal concentration – 3–5 wt%) were synthesized by using hydrothermal process at an optimized growth temperature of 200 °C and a growth time of 3 h. The XRD, SEM and Raman, FTIR investigations reveal that ZnO:Mn (Mn – 3–5 wt%) retained hexagonal wurtzite crystal structure with nanorod morphology. The HRTEM and SAED analysis confirm the single crystalline nature of hydrothermally grown ZnO and ZnO:Mn (5 wt%) nanorods. The ZnO:Mn nanorods (Mn – 0–5 wt%) displayed optical band gap in the range 3.23–3.28 eV. The blue shift of UV emission peak (PL) from 393 (ZnO) to 386 nm and quenching of photoluminescence emission in ZnO:Mn is due to the Mn incorporation in ZnO lattice. Relative increase in intensity of Raman band at 660 cm{sup −1} with nominal doping of Mn 3–5 wt% in ZnO indicate that defects are introduced in ZnO:Mn system as a result of doping that leads to the quenching of photoluminescence emission at 393 nm.

  4. Large-scale manufacture of ZnO nanorods by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Hembram, K.; Sivaprakasam, D.; Rao, T. N.; Wegner, K.

    2013-01-01

    Large quantities of ZnO nanorods (>3 kg/h throughput) were produced in the gas-phase by flame spray pyrolysis (FSP) of a zinc nitrate–ethanol precursor solution without employing any catalysts or dopants. The nanorods with diameters of 20–30 nm and aspect ratios as high as seven were collected as a dry powder. Several rods self-aligned by forming junctions at the basal planes, while some even assembled into tetrapods. The aspect ratio of the nanorods could be controlled by the concentration of the Zn ions in the starting precursor solution, its delivery rate, and the oxygen flow into the reactor. To the best of our knowledge, this is the first time that synthesis of high aspect ratio ZnO nanorods by FSP is reported. Previous lab-scale experiments always yielded rather spherical albeit slightly elongated nanoparticles unless dopants were added. Such a product powder was obtained here when the ethanol in the precursor solution was replaced by methanol at otherwise constant process conditions. This is attributed to different temperature–time histories of the particles in the flame based on which a mechanism for ZnO nanorod formation in spray flames is proposed.

  5. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Kuznetsov, I.A.; Greenfield, M.J.; Mehta, Y.U.; Merchan-Merchan, W.; Salkar, G.; Saveliev, A.V.

    2011-01-01

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  6. Synthesis, characterization and formation mechanism of metastable phase VO2(A) nanorods

    International Nuclear Information System (INIS)

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-01-01

    Graphical abstract: - Highlights: • Pure phases of VO 2 (B) and VO 2 (A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO 2 (B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO 2 (A) phase. • VO 2 (A) nanorods resulted from VO 2 (B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO 2 (A) nanorods were synthesized via the reduction of V 2 O 5 by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO 2 (A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO 2 (B) was firstly formed and then transformed into VO 2 (A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO 2 (A) from VO 2 (B). For VO 2 (A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO 2 (A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO 2 (A) nanorods. VO 2 nanostructures with controllable phases and properties should find their promising applications in a single VO 2 nanodevice

  7. Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Khranovskyy, Volodymyr, E-mail: volkh@ifm.liu.se [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, 58183 Linkoeping (Sweden); Yakimova, Rositza; Karlsson, Fredrik; Syed, Abdul S.; Holtz, Per-Olof [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, 58183 Linkoeping (Sweden); Nigussa Urgessa, Zelalem [Department of Physics, P.O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Samuel Oluwafemi, Oluwatobi [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag XI 5117 (South Africa); Reinhardt Botha, Johannes [Department of Physics, P.O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The photoluminescence properties of individual ZnO nanorods, grown by atmospheric pressure metalorganic chemical vapor deposition (APMOCV) and chemical bath deposition (CBD) are investigated by means of temperature dependent micro-PL. It was found that the low temperature PL spectra are driven by neutral donor bound exciton emission D{sup 0}X, peaked at 3.359 and 3.363 eV for APMOCVD and CBD ZnO nanorods, respectively. The temperature increase causes a red energy shift of the peaks and enhancement of the free excitonic emission (FX). The FX was found to dominate after 150 K for both samples. It was observed that while APMOCVD ZnO nanorods possess a constant low signal of visible deep level emission with temperature, the ZnO nanorods grown by CBD revealed the thermal activation of deep level emission (DLE) after 130 K. The resulting room temperature DLE was a wide band located at 420-550 nm. The PL properties of individual ZnO nanorods can be of importance for their forthcoming application in future optoelectronics and photonics.

  8. Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques

    International Nuclear Information System (INIS)

    Khranovskyy, Volodymyr; Yakimova, Rositza; Karlsson, Fredrik; Syed, Abdul S.; Holtz, Per-Olof; Nigussa Urgessa, Zelalem; Samuel Oluwafemi, Oluwatobi; Reinhardt Botha, Johannes

    2012-01-01

    The photoluminescence properties of individual ZnO nanorods, grown by atmospheric pressure metalorganic chemical vapor deposition (APMOCV) and chemical bath deposition (CBD) are investigated by means of temperature dependent micro-PL. It was found that the low temperature PL spectra are driven by neutral donor bound exciton emission D 0 X, peaked at 3.359 and 3.363 eV for APMOCVD and CBD ZnO nanorods, respectively. The temperature increase causes a red energy shift of the peaks and enhancement of the free excitonic emission (FX). The FX was found to dominate after 150 K for both samples. It was observed that while APMOCVD ZnO nanorods possess a constant low signal of visible deep level emission with temperature, the ZnO nanorods grown by CBD revealed the thermal activation of deep level emission (DLE) after 130 K. The resulting room temperature DLE was a wide band located at 420–550 nm. The PL properties of individual ZnO nanorods can be of importance for their forthcoming application in future optoelectronics and photonics.

  9. Study on Photoelectric Properties of Composite Films of Graphene/Ti02 Nanorods

    Directory of Open Access Journals (Sweden)

    JIN Guo-li

    2017-02-01

    Full Text Available TiOZ nanorods have large specific surface area and the ability of directional transmission electron, based on which can reduce recombination probability of light-generated electrons and holes,and improve the photoelectric conversion efficiency of DSSC. As graphene has low resistivity,good stability and excellent transparency,it can be introduced into anode film to improve the electronic transmission. The TiOZ nanorods were prepared by hydrothermal method,mixed with different quality of graphene. Its length range was 200-300 nm,with a diameter of about 20 nm. The porous graphene/TiOZ nanorods composite film were prepared by using electro- hydrodynamic technique(EHDand compositing TiOZ nanorods with different quality of grapheme. The photoelectric conversion efficiency of the DSSC device prepared with the photo-anode film with graphene mass content of 3 % was 4. 23 %,the photoelectric conversion efficiency increased by 36%,relative to that of no graphene doped TiOZ nanorods photo-anode film.

  10. Solvothermally synthesized europium-doped CdS nanorods: applications as phosphors

    International Nuclear Information System (INIS)

    Kumar, Sunil; Jindal, Zinki; Kumari, Nitu; Verma, Narendra Kumar

    2011-01-01

    To exploit the photoluminescent behavior of CdS at nanoscale with different doping concentration of europium—a rare earth element, we report the synthesis of Eu-doped CdS nanorods by using low temperature solvothermal process by using ethylenediamine. The outcomes can have future applications as phosphors, photovoltaic cells, lasers, light emitting diodes, bio-imaging, and sensors. The doping was confirmed by electron dispersive spectroscopy supported by X-ray diffraction. From scanning electron microscopy and transmission electron microscopy analysis it was observed that the average diameter of the Cd 1−x Eu x S nanorods is about 10–12 nm having lengths in the range of 50–100 nm. UV–Visible spectroscopy study was carried out to determine the band gap of the nanorods and the absorbance peaks showed blue shift with respect to the bulk CdS. The blue shift was also observed as the doping concentration of Eu increases. From photoluminescence (PL) studies at λ ex = 450 nm, peaks at 528 and 540 nm were observed due to CdS, peak at 570 nm is due to defects related transitions, while the peak at 613 nm is due to Eu. As the doping concentration of Eu is increased the intensity of the luminescent peak at 613 nm is increased. Thermogravimetric analysis showed the nanorods are thermally stable up to 300 °C. The traces of impurities adsorbed on the nanorods were confirmed by Fourier transform infrared spectroscopy.

  11. Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods

    Directory of Open Access Journals (Sweden)

    M. Kashif

    2012-01-01

    Full Text Available The morphology and electrooptical properties of ZnO nanorods synthesized on monoethanolamine-based seed layer and KOH-based seed layer were compared. The seed solutions were prepared in monoethanolamine in 2-methoxyethanol and potassium hydroxide in methanol, respectively. Zinc acetate dihydrate was as a common precursor in both solutions. The nanorod-ZnOs were synthesized via the spin coating of two different seed solutions on silicon substrates followed by their hydrothermal growth. The scanning electron microscopy (SEM, X-ray diffraction (XRD, photoluminescence (PL, and Raman studies revealed that the ZnO nanorods obtained from monoethanolamine-based seed layer had fewer defects, better crystals, and better alignment than those realized via KOH-based seed layer. However, the current-voltage (I-V characteristics demonstrated better conductivity of the ZnO nanorods obtained via KOH-based seed layer. The current measured in forward bias was 4 mA and 40 μA for ZnO-nanorods grown on KOH-based seed layer and monoethanolamine-based with the turn on voltage of approximately 1.5 V and 2.5 V, respectively, showing the feasibility of using both structures in optoelectric devices.

  12. Phase coexistence and exchange-bias effect in LiM n2O4 nanorods

    Science.gov (United States)

    Zhang, X. K.; Yuan, J. J.; Xie, Y. M.; Yu, Y.; Kuang, F. G.; Yu, H. J.; Zhu, X. R.; Shen, H.

    2018-03-01

    In this paper, the magnetic properties of LiM n2O4 nanorods with an average diameter of ˜100 nm and length of ˜1 μ m are investigated. The temperature dependences of dc and ac susceptibility measurements show that LiM n2O4 nanorods experience multiple magnetic phase transitions upon cooling, i.e., paramagnetic (PM), antiferromagnetic (AFM), canted antiferromagnetic (CAFM), and cluster spin glass (SG). The coexistence between a long-range ordered AFM phase due to a M n4 +-M n4 + interaction and a cluster SG phase originating from frozen AFM clusters at low temperature in LiM n2O4 nanorods is elucidated. Field-cooled hysteresis loops (FC loops) and magnetic training effect (TE) measurements confirm the presence of an exchange-bias (EB) effect in LiM n2O4 nanorods below the Néel temperature (TN˜60 K ) . Furthermore, by analyzing the TE, we conclude that the observed EB effect originates completely from an exchange coupling interaction at the interface between the AFM and cluster SG states. A phenomenological model based on phase coexistence is proposed to interpret the origin of the EB effect below 60 K in the present compound. In turn, the appearance of the EB effect further supports the coexistence of AFM order along with a cluster SG state in LiM n2O4 nanorods.

  13. Polarity analysis of GaN nanorods by photo-assisted Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiandong; Neumann, Richard; Wang, Xue; Li, Shunfeng; Fuendling, Soenke; Merzsch, Stephan; Al-Suleiman, Mohamed A.M.; Soekmen, Uensal; Wehmann, Hergo-H.; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany)

    2011-07-15

    Polarity dependence (N-polar (000-1) and Ga-polar (0001)) of surface photovoltage of epitaxially grown, vertically aligned GaN nanorods has been investigated by photo-assisted Kelvin probe force microscopy (KPFM). Commercial GaN substrates with known polarities are taken as reference samples. The polarity of GaN substrates can be well distinguished by the change in surface photovoltage upon UV illumination in air ambient. These different behaviors of Ga- and N-polar surfaces are attributed to the polarity-related surface-bound charges and photochemical reactivity. GaN nanorods were grown on patterned SiO{sub 2}/sapphire templates by metal-organic vapor phase epitaxy (MOVPE). In order to analyze the bottom surface of the grown GaN nanorods, a technique known from high power electronics and joining techniques is applied to remove the substrate. The top and bottom surfaces of the GaN nanorods are identified to be N-polar and Ga-polar according to the KPFM results, respectively. Our experiments demonstrate that KPFM is a simple and suitable method capable to identify the polarity of GaN nanorods. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  15. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    Science.gov (United States)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  16. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    Science.gov (United States)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  17. Rapid hydrothermal route to synthesize cubic-phase gadolinium oxide nanorods

    International Nuclear Information System (INIS)

    Hazarika, Samiran; Paul, Nibedita; Mohanta, Dambarudhar

    2014-01-01

    An inexpensive fabrication route and growth mechanism is being reported for obtaining quality gadolinium oxide ( Gd 2 O 3 ) nanoscale rods. The elongated nanoscale systems, as produced via a hydrothermal process, were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), optical absorption spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy and magnetic hysteresis measurements. XRD patterns of the nanorods, as-prepared from independent precursors of different pH, depict a cubic crystal phase and an average crystallite size of 5-6.5 nm. As revealed from HRTEM micrographs, diameter of the nanorods prepared at pH = 13.3 (∼7 nm) was much smaller than the rods prepared at pH = 10.8 (∼19 nm). However, the aspect ratio was more than double in the former case than the latter case. PL response was found to be dominated by defect mediated emissions, whereas Raman spectrum of a given specimen (pH = 10.8) has revealed characteristic F g + A g modes of cubic phase of Gd 2 O 3 nanorods, apart from other independent modes. Furthermore, M ∼ H plot of the nanorod system (pH = 10.8) exhibited slight departure from the ideal superparamagnetic behaviour, with low remanence and coercive field values. The exploitation of one-dimensional Gd 2 O 3 nanorods have immense potential in the production of advanced contrast agents, smart drives and also in making novel ferrofluids of technological relevance. (author)

  18. Synthesis and properties of ZnO nanorods as ethanol gas sensors

    International Nuclear Information System (INIS)

    Mirabbaszadeh, K; Mehrabian, M

    2012-01-01

    Uniform ZnO nanorods were synthesized via the sol-gel process under mild conditions in which different ZnO nanostructures have been prepared by changing the pH of growth solution. It was seen that the optimum nanorods were grown at pH 11.33. The prepared ZnO nanostructures and morphologies were characterized by x-ray diffraction and scanning electron microscopy measurements. The ZnO one-dimensional nanostructures were found to have a wurtzite hexagonal crystalline structure and grow along the [001] direction. The optimum nanorods were about 1 μm in length and less than 100 nm in diameter. The ZnO nanostructures have been tested for different concentrations and different operating temperatures for ethanol vapor in air and the surface resistance of the sensors has been evaluated as a function of different parameters. The gas sensor fabricated from ZnO nanorods grown in solution with a special pH exhibited good performance. The sensor response to 5000 ppm ethanol was up to about 2.5 at the operating temperature of 300 °C. The differences in gas-sensing performance between the sensors were analyzed based on the defects created in the nanorods during their fast growth. The correlations between material structures and the properties of the gas sensors are discussed.

  19. Chemical Separation on Silver Nanorods Surface Monitored by TOF-SIMS

    Directory of Open Access Journals (Sweden)

    Ondrej Petruš

    2017-01-01

    Full Text Available The article introduces a possible chemical separation of a mixture of two compounds on the metal nanorods surface. A silver nanorods surface has been prepared by controlled electrochemical deposition in anodic alumina oxide (AAO template. Rhodamine 6G and 4-aminothiophenol have been directly applied to the sampling point on a silver nanorods surface in an aliquot mixture. The position of the resolved compounds was analysed by time-of-flight secondary ion mass spectrometry (TOF-SIMS which measured the fragments and the molecular ions of the two compounds separated on the silver nanorods surface. Rhodamine 6G has been preconcentrated as 1.5 mm radial from the sampling point while 4-aminothiophenol formed a continuous self-assembled monolayer on the silver nanorods surface with a maximum molecular ion intensity at a distance of 0.5 mm from the sampling point. The separation of the single chemical components from the two-component mixture over the examined silver nanostructured films could clearly be shown. A fast separation on the mentioned nanotextured films was observed (within 50 s. This procedure can be easily integrated into the micro/nanofluidic systems or chips and different detection systems can be applied.

  20. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    International Nuclear Information System (INIS)

    Huang, Lei; Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-01-01

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices