WorldWideScience

Sample records for nanoporous silica spheres

  1. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...

  2. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  4. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  5. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    Science.gov (United States)

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  6. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  7. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  8. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  9. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    Directory of Open Access Journals (Sweden)

    Wang Y

    2013-10-01

    Full Text Available Ying Wang, Qinfu Zhao, Yanchen Hu, Lizhang Sun, Ling Bai, Tongying Jiang, Siling WangDepartment of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People’s Republic of ChinaAbstract: The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15 with well-ordered two dimensional (2D cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC via the solvent deposition method. Scanning electron microscopy (SEM, N2 adsorption, differential scanning calorimetry (DSC, and X-ray diffraction (XRD were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41 has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and Cell Counting Kit (CCK-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous

  10. A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Junjie, E-mail: yuanjunjie@tongji.edu.c [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433 (China); Zhang Xiong; Qian He [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)

    2010-08-15

    We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe{sub 3}O{sub 4} nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe{sub 3}O{sub 4} nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe{sup 2+} and Fe{sup 3+} and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.

  11. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    Science.gov (United States)

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    Science.gov (United States)

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-01

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound.

  13. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  14. Controlling pore morphology and properties of nanoporous silica films using the different architecture PS-b-P2VP as a template.

    Science.gov (United States)

    Yu, Yang-Yen; Chien, Wen-Chen; Chen, Shih-Ting

    2010-07-01

    Nanoporous silica films were prepared through the templating of amphiphilic block copolymer, poly(styrene-2-vinyl pyridine) (PS-b-P2VP), and monodispersed colloidal silica nanoparticles. The experimental and theoretical studies suggested that the intermolecular hydrogen bonding existes between the colloidal silica nanoparticles and PS-b-P2VP. The effects of the loading ratio and P2VP chain length on the morphology and properties of the prepared nanoporous silica films were investigated. TEM and AFM studies showed that the uniform pore size could be achieved and the pore size increased with increasing porogen loading. The refractive index and dielectric constant of the prepared nanoporous films decreased with an increase in PS-b-P2VP loading. On the other hand, the porosity increased with an increasing PS-b-P2VP loading. This study demonstrated a methodology to control pore morphology and properties of the nanoporous silica films through the templating of PS-b-P2VP.

  15. Hexadecane trapped in nano-pores of silica-aerogel

    International Nuclear Information System (INIS)

    Slavikova, B.; Jesenak, K.; Iskrova, M.; Majernik, V.; Sausa, O.; Kristiak, J.

    2009-01-01

    Ways of filling of the high-porous silica-aerogel with hydrocarbon C 16 H 34 and its efficient removal from the pores by physical method of the Positron Annihilation Spectroscopy were studied. As the most effective way to fill the SiO 2 aerogel appears through the implementation of a liquid phase, while the most appropriate way of removing of hexadecane is firing at an elevated temperature. Molecular system of hexadecane closed in nano-pores of silica-aerogel behaves otherwise than volume system of the same molecules. In the case of pure hexadecane phase transition was observed at 291 K, while solidification process is gradual with decrease of temperature in cetane trapped in pores of silica-aerogel. The results of the periods of life of o-Ps indicate greater turbidity in the pores of the molecular system compared to the volume sample of hexadecane.

  16. Silica-coated quantum dots fluorescent spheres synthesized using a quaternary 'water-in-oil' microemulsion system

    International Nuclear Information System (INIS)

    Chu Maoquan; Sun Ye; Xu Shi

    2008-01-01

    Nanoscale and microscale silica spheres embedded with multiple CdSe quantum dots (QDs, having average diameters of about 2.4 and 5.0 nm, respectively.) were synthesized by using a quaternary 'water-in-oil' microemulsion. Comparing the uncoated QDs, the quantum yields (QYs) of the silica-coated QD spheres were enhanced when the QD cores were synthesized using mercaptoacetic acid (MA) as a stabilizer, while the QYs were dramatically decreased when the cores were synthesized using citric acid (CA) as a stabilizer. The enhanced QYs could be further improved by heating the silica-coated QDs in aqueous solution. Although the QYs of the silica-coated QDs were not high, these spheres emitted bright fluorescence. The silica shells contained numerous micropores (∼0.58-0.91 nm), and small amounts of toxic ions (such as Cd 2+ ) could be released from the silica spheres. However, the release rate of toxic ions from the silica spheres was significantly reduced compared with that of the uncoated QDs

  17. Magnetic properties of Ni nanoparticles on microporous silica spheres

    International Nuclear Information System (INIS)

    Godsell, Jeffrey F.; Donegan, Keith P.; Tobin, Joseph M.; Copley, Mark P.; Rhen, Fernando M.F.; Otway, David J.; Morris, Michael A.; O'Donnell, Terence; Holmes, Justin D.; Roy, Saibal

    2010-01-01

    Ni nanoparticles (∼32 nm particle diameter) have been synthesized on the walls of microporous (∼1 nm pore diameter) silica spheres (∼2.6 μm sphere diameter) and characterised magnetically to potentially produce a new class of core (silica micro-spheres)-shell (nanometallic)-type nanocomposite material. These magnetic nanocomposite materials display a characteristic increase in coercivity with reducing temperature. The average particle size has been used to calculate the anisotropy constant for the system, K. The discussion postulates the potential mechanisms contributing to the difference between the calculated K value and the magnetocrystalline anisotropy constant of bulk Ni. Various factors such as surface anisotropy and interparticle interactions are discussed as possible contributing factors to the anisotropy values calculated in the paper.

  18. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    International Nuclear Information System (INIS)

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-01-01

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol

  19. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Margarita, E-mail: mpopova@orgchem.bas.bg [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Szegedi, Agnes [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2. (Hungary); Mavrodinova, Vesselina [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Novak Tušar, Natasa [National Institute of Chemistry, Ljubljana (Slovenia); Mihály, Judith; Klébert, Szilvia [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2. (Hungary); Benbassat, Niko; Yoncheva, Krassimira [Faculty of Pharmacy, 2 Dunav Str., 1000 Sofia (Bulgaria)

    2014-11-15

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.

  20. Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    International Nuclear Information System (INIS)

    Ganjoo, S; Azimirad, R; Akhavan, O; Moshfegh, A Z

    2009-01-01

    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 deg. C and then annealed in a temperature range of 200-500 deg. C. The average water contact angle of the silica films prepared with low water content and annealed at 300 deg. C measured about 5 deg. for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle greater than 60 deg. Atomic force microscopic analysis revealed that the silica films prepared with low water had a rough surface (∼30 nm), while the films prepared with high water had a smoother surface (∼2 nm). Using x-ray photoelectron spectroscopy, we have shown that with a decrease in the surface water on the film, its hydrophilicity increases logarithmically.

  1. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  2. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Moosavifard, Seyyed Ebrahim, E-mail: info_seyyed@yahoo.com [Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elyasi, Saeed [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Shahraki, Mohammad [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Nanoporous CuS nano-hollow spheres were synthesized by a facile method. • Nano-hollow spheres have a large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). • Such unique structures exhibit excellent electrochemical properties for high-performance SCs. - Abstract: Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). This interesting electrode structure plays a key role in providing more active sites for electrochemical reactions, short ion and electron diffusion pathways and facilitated ion transport. The CuS nano-hollow spheres electrode exhibits excellent electrochemical performance including a maximum specific capacitance of 948 F g{sup −1} at 1 A g{sup −1}, significant rate capability of 46% capacitance retention at a high current density of 50 A g{sup −1}, and outstanding long-term cycling stability at various current densities. This work not only demonstrates the promising potential of the CuS-NHS electrodes for application in high-performance supercapacitors, but also sheds a new light on the metal sulfides design philosophy.

  3. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    Science.gov (United States)

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  4. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Caparros, C., E-mail: ccaparros@fisica.uminho.pt [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Benelmekki, M.; Martins, P.M. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Xuriguera, E. [Facultat de Quimica, Universitat de Barcelona, 08028 Barcelona (Spain); Silva, C.J.R. [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Parc Tecnologic del Valles, 08290 Barcelona (Spain); Lanceros-Mendez, S. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2012-08-15

    Porous Magnetic Silica (PMS) spheres of about 400 nm diameter were synthesised by one-pot process using the classical Stber method combined with hydrothermal treatment. Maghemite nanoparticles ({gamma}-Fe{sub 2}O{sub 3}) were used as fillers and cetyltrimethylammonium bromide (CTAB) was used as templating agent. The application of the hydrothermal process (120 Degree-Sign C during 48 h) before the calcination leads to the formation of homogeneous and narrow size distribution PMS spheres. X-ray diffraction patterns (XRD), Infrared measurements (FTIR) and Transmission Electron microscopy (TEM) methods were used to determine the composition and morphology of the obtained PMS spheres. The results show a homogeneous distribution of the {gamma}-Fe{sub 2}O{sub 3} nanoparticles in the silica matrix with a 'hollow-like' morphology. Magnetophoresis measurements at 60 T m{sup -1} show a total separation time of the PMS spheres suspension of about 16 min. By using this synthesis method, the limitation of the formation of silica spheres without incorporation of magnetic nanoparticles is overcome. These achievements make this procedure interesting for industrial up scaling. The obtained PMS spheres were evaluated as adsorbents for Ni{sup 2+} in aqueous solution. Their adsorption capacity was compared with the adsorption capacity of magnetic silica spheres obtained without hydrothermal treatment before calcination process. PMS spheres show an increase of the adsorption capacity of about 15% of the initial dissolution of Ni{sup 2+} without the need to functionalize the silica surface. Highlights: Black-Right-Pointing-Pointer Homogeneous and controlled size porous magnetic silica spheres were obtained. Black-Right-Pointing-Pointer Magnetophoretic removing of Ni{sup 2+} processes was successfully preformed at HLGMF. Black-Right-Pointing-Pointer PMS show higher Ni{sup 2+} removing capacity than spheres without hydrothermal treatment. Black-Right-Pointing-Pointer PMS can be

  5. Nanoporous Silica-Based Protocells at Multiple Scales for Designs of Life and Nanomedicine

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2015-01-01

    Full Text Available Various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1 to emulate life in order to understand it; and (2 to use biomimicry to engineer desired cellular interactions.

  6. Densification of Silica Spheres: A New Pathway to Nano-Dimensioned Zeolite-Based Catalysts.

    Science.gov (United States)

    Machoke, Albert Gonche Fortunatus; Apeleo Zubiri, Benjamin; Leonhardt, Rainer; Marthala, Venkata Ramana Reddy; Schmiele, Martin; Unruh, Tobias; Hartmann, Martin; Spiecker, Erdman; Schwieger, Wilhelm

    2017-08-16

    Nanosized materials are expected to play a unique role in the development of future catalytic processes. Herein, pre-prepared and geometrically well-defined amorphous silica spheres are densified into silica-rich zeolites with nanosized dimensions. After the densification, the obtained nanosized zeolites exhibit the same spherical morphology like the starting precursor but characterized by a drastically reduced size, higher density, and high crystallinity. The phase transformation into crystalline zeolite material and the densification effect are achieved through a well-controlled steam-assisted treatment of the larger precursor particles so that the transformation process proceeds always towards the center of the spheres, just like a shrinking process. Furthermore, this procedure is applicable also to commercially available silica particles, as well as aluminum-containing systems (precursors) leading to acidic nano-catalysts with improved catalytic performance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. In situ synthesis of copper nanoparticles on SBA-16 silica spheres

    Directory of Open Access Journals (Sweden)

    Asma Tufail Shah

    2016-07-01

    Full Text Available A chemical method for in situ synthesis of copper nanoparticles on SBA-16 silica spheres under ambient conditions has been reported. The silica support has been introduced into copper precursor solution before chemical reduction. Metal ions diffuse into mesopores (pore diameter 5–7 nm of silica where in situ reduction by hydrazine leads to formation of nanoparticles. These mesopores act as nanoreactor and their walls prevent metal particle’s agglomeration by providing a physical barrier. The obtained copper nanoparticles have been investigated by electron microscopy, X-ray diffraction, UV–Visible spectroscopy, Fourier transform Infra-red spectroscopy and thermogravimetric analyzer. SEM, TEM and UV–Visible spectroscopic images revealed that nanosized particles have been successfully synthesized by this method. Thermogravimetric investigations revealed that copper nanoparticles impregnated on silica were thermally more stable compared to unsupported nanoparticles. Silica not only helps in maintaining the particle size but also makes nanoparticles stable at high temperatures due to its thick pore walls. Macro sized silica support also makes separation/handling of nanoparticles easy and simple.

  8. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    Science.gov (United States)

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  9. Enhanced accumulation and visible light-assisted degradation of azo dyes in poly(allylamine hydrochloride)-modified mesoporous silica spheres

    International Nuclear Information System (INIS)

    Tao Xia; Liu Bing; Hou Qian; Xu Hui; Chen Jianfeng

    2009-01-01

    A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstrated that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater

  10. Temperature-modified photonic bandgap in colloidal photonic crystals fabricated by vinyl functionalized silica spheres

    International Nuclear Information System (INIS)

    Deng Tiansong; Zhang Junyan; Zhu Kongtao; Zhang Qifeng; Wu Jinlei

    2011-01-01

    Graphical abstract: A thermal annealing procedure was described for fine modifying the photonic bandgap properties of colloidal photonic crystals, which were self-assembled from vinyl-functionalized silica spheres by a gravity sedimentation process. Highlights: → We described a thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals. → The position of its stop band had more than 25% blue shift by annealing the sample from 60 to 600 deg. C. → The annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. → The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals. - Abstract: A thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals was described. The colloidal photonic crystals were assembled from monodisperse vinyl functionalized silica spheres by a gravity sedimentation process. The samples diffract light following Bragg's law combined with Snell's law. By annealing the sample at temperatures in the range of 60-600 deg. C, the position of its stop band shifted from 943 to 706 nm. It had more than 25% blue shift. In addition, the annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. Fourier transform infrared (FT-IR) spectra and thermo-gravimetric analysis (TGA) curves of vinyl functionalized silica spheres confirmed the above results. The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals.

  11. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    OpenAIRE

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-01-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hol...

  12. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment.

    Science.gov (United States)

    Oh, Jun Kyun; Kohli, Nandita; Zhang, Yuanzhong; Min, Younjin; Jayaraman, Arul; Cisneros-Zevallos, Luis; Akbulut, Mustafa

    2016-02-26

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol-gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs.

  13. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment

    International Nuclear Information System (INIS)

    Oh, Jun Kyun; Akbulut, Mustafa; Kohli, Nandita; Jayaraman, Arul; Zhang, Yuanzhong; Min, Younjin; Cisneros-Zevallos, Luis

    2016-01-01

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol–gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs. (paper)

  14. Synthesis of nano grade hollow silica sphere via a soft template method.

    Science.gov (United States)

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  15. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    Science.gov (United States)

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  16. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Cerium (Ce corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0×10−14 m2s for Ce3+ compared to 2.5×10−13 m2s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  17. A nanoporous gold membrane for sensing applications

    Directory of Open Access Journals (Sweden)

    Swe Zin Oo

    2016-03-01

    Full Text Available Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. Keywords: Nanopore, Polymer sphere, Gold membrane, Plasmons, Sensing, SERS

  18. Multimodal nanoporous silica nanoparticles functionalized with aminopropyl groups for improving loading and controlled release of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Xin; Li, Chang; Fan, Na; Li, Jing; He, Zhonggui; Sun, Jin

    2017-09-01

    The purpose of this study was to develop amino modified multimodal nanoporous silica nanoparticles (M-NSNs-NH 2 ) loaded with doxorubicin hydrochloride (DOX), intended to enhance the drug loading capacity and to achieve controlled release effect. M-NSNs were functionalized with aminopropyl groups through post-synthesis. The contribution of large pore sizes and surface chemical groups on DOX loading and release were systemically studied using transmission electron microscope (TEM), nitrogen adsorption/desorption measurement, Fourier transform infrared spectroscopy (FTIR), zeta potential analysis, X-ray photoelectron spectroscopy (XPS) and ultraviolet spectrophotometer (UV). The results demonstrated that the NSNs were functionalized with aminopropyl successfully and the DOX molecules were adsorbed inside the nanopores by the hydrogen bonding. The release performance indicated that DOX loaded M-NSNs significantly controlled DOX release, furthermore DOX loaded M-NSNs-NH 2 performed slower controlled release, which was mainly attributed to its stronger hydrogen bonding forces. As expected, we developed a novel carrier with high drug loading capacity and controlled release for DOX. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  20. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    Science.gov (United States)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  1. Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin

    Science.gov (United States)

    Zeleňák, Vladimír; Halamová, Dáša; Almáši, Miroslav; Žid, Lukáš; Zeleňáková, Adriána; Kapusta, Ondrej

    2018-06-01

    Ordered MCM-48 nanoporous silica (SBET = 923(3) m2·g-1, VP = 0.63(2) cm3·g-1) with cubic Ia3d symmetry was used as a support for drug delivery of anti-inflammatory poorly soluble drug indomethacin. The delivery from parent, unmodified MCM-48, and 3-aminopropyl modified silica carrier was studied into the simulated body fluids with the pH = 2 and pH = 7.4. The studied samples were characterized by thermal analysis (TG/DTG-DTA), N2 adsorption/desorption, infrared spectroscopy (FT-IR), powder XRD, SEM, HRTEM methods, measurements of zeta potential (ζ) and dynamic light scattering (DLS). The determined content of indomethacin in pure MCM-48 was 21 wt.% and in the amine-modified silica MCM-48A-I the content was 45 wt.%. The release profile of the drug, in the time period up to 72 h, was monitored by TLC chromatographic method. It as shown, that by the modification of the surface, the drug release can be controlled. The slower release of indomethacin was observed from amino modified sample MCM-48A-I in the both types of studied simulated body fluids (slightly alkaline intravenous solution with pH = 7.4 and acidic gastric fluid with pH = 2), which was supported and explained by zeta potential and DLS measurements. The amount of the released indomethacin into the fluids with various pH was different. The maximum released amount of the drug was 97% for sample containing unmodified silica, MCM-48-I at pH = 7.4 and lowest released amount, 57%, for amine modified sample MCM-48A-I at pH = 2. To compare the indomethacin release profile four kinetic models were tested. Results showed, that that the drug release based on diffusion Higuchi model, mainly governs the release.

  2. Selective oxidation with nanoporous silica supported sensitizers: An environment friendly process using air and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Cricq, Philippe; Pigot, Thierry; Blanc, Sylvie [Institut des Sciences Analytiques et de Physicochimie pour l' Environnement et les Materiaux, Universite de Pau et des Pays de l' Adour, Helioparc-2 Av. du President Angot, F-64053 Pau Cedex 09 (France); Lacombe, Sylvie, E-mail: sylvie.lacombe@univ-pau.fr [Institut des Sciences Analytiques et de Physicochimie pour l' Environnement et les Materiaux, Universite de Pau et des Pays de l' Adour, Helioparc-2 Av. du President Angot, F-64053 Pau Cedex 09 (France)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Photo-sensitizers were covalently grafted on silica matrices. Black-Right-Pointing-Pointer Grafted powdered silica was characterized by diffuse reflectance and emission spectroscopy. Black-Right-Pointing-Pointer Selective solvent-free photo-oxygenation was carried out with air under visible light. Black-Right-Pointing-Pointer Singlet generation and reactivity at the gas-solid interface was demonstrated. - Abstract: Transparent and porous silica xerogels containing various grafted photosensitizers (PSs) such as anthraquinone derivatives, Neutral Red, Acridine Yellow and a laboratory-made dicyano aromatics (DBTP) were prepared. In most cases, the xerogels were shown to be mainly microporous by porosimetry. The PSs were characterized in the powdered monoliths (form, aggregation, concentration) by electronic spectroscopy which also proved to be a useful tool for monitoring the material evolution after irradiation. These nanoporous xerogels were used as microreactors for gas/solid solvent-free photo-oxygenation of dimethylsulfide (DMS) using visible light and air as the sole reactant. All these PSs containing monoliths were efficient for gas-solid DMS oxidation, leading to sulfoxide and sulfone in varying ratios. As these polar oxidation products remained strongly adsorbed on the silica matrix, the gaseous flow at the outlet of the reactor was totally free of sulfide and odorless. The best results in term of yield and initial rate of degradation of DMS were obtained with DBTP containing xerogels. Moreover, as these materials were reusable without loss of efficiency and sensitizer photobleaching after a washing regeneration step, the concept of recyclable sensitizing materials was approved, opening the way to green process.

  3. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    Science.gov (United States)

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  4. A Three-Dimensional Nanoporous Silicon Anode for High-Energy Density Lithium-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I program is directed toward the development of novel, nanoporous silica anodes for low-earth-orbiting (LEO) spacecraft power applications. Silica...

  5. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Piotrowo 3, 60-965 Poznań (Poland); Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2014-08-01

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N{sub 2} adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm{sup 3}. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  6. Pore fabrication in various silica-based nanoparticles by controlled etching

    KAUST Repository

    Zhao, Lan

    2010-07-20

    A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated γ-Fe 2O 3 nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals. © 2010 American Chemical Society.

  7. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  8. Effect of the nature of the surface on the reactivity of nanoporous silica under irradiation

    International Nuclear Information System (INIS)

    Le Caer, S.; Alam, M.S.; Chatelain, C.; Brunet, F.; Charpentier, T.; Renault, J.P.; Brodie-Linder, N.; Alba-Simionesco, C.

    2011-01-01

    Complete text of publication follows. Materials such as concrete, clays and zeolites which embed radioactive wastes adsorb in their pores significant amounts of water that can be decomposed under ionizing radiation leading to the formation of H 2 which is potentially explosive. It is well established that the H 2 production arises from chemi- or physi-sorbed OH groups at the surface of oxides. In this context, we have studied the behaviour of water confined in nanoporous silica. To distinguish the behavior of the two kinds of OH, we have performed different thermal treatments on SBA-15 materials prior to their irradiation. The IR analysis and H 2 measurements have proven that in the radiolysis of SBA-15 materials, silanol groups are only attacked when they are in the majority with respect to adsorbed water. However they are much less efficient at producing H 2 . The comparison between water content before and after electron irradiation and the corresponding H 2 production indicates that water desorption is the main route to adsorbed water loss. On the other hand, surface silanol groups are more susceptible to attack, leading to H 2 production when SBA-15 samples have undergone extensive thermal treatment. The surface of nanoporous glasses were then grafted using chloroaklyldimethylsilane. The effect of irradiation on these grafted surfaces was studied by means of mass spectrometry and NMR experiments. These different techniques reveal an original reactivity of the surface under irradiation.

  9. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  10. A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Li Yuanting

    2012-09-01

    Full Text Available Abstract Background Biosensors have attracted increasing attention as reliable analytical instruments in in situ monitoring of public health and environmental pollution. For enzyme-based biosensors, the stabilization of enzymatic activity on the biological recognition element is of great importance. It is generally acknowledged that an effective immobilization technique is a key step to achieve the construction quality of biosensors. Results A novel disposable biosensor was constructed by immobilizing laccase (Lac with silica spheres on the surface of multi-walled carbon nanotubes (MWCNTs-doped screen-printed electrode (SPE. Then, it was characterized in morphology and electrochemical properties by scanning electron microscopy (SEM and cyclic voltammetry (CV. The characterization results indicated that a high loading of Lac and a good electrocatalytic activity could be obtained, attributing to the porous structure, large specific area and good biocompatibility of silica spheres and MWCNTs. Furthermore, the electrochemical sensing properties of the constructed biosensor were investigated by choosing dopamine (DA as the typical model of phenolic compounds. It was shown that the biosensor displays a good linearity in the range from 1.3 to 85.5 μM with a detection limit of 0.42 μM (S/N = 3, and the Michaelis-Menten constant (Kmapp was calculated to be 3.78 μM. Conclusion The immobilization of Lac was successfully achieved with silica spheres to construct a disposable biosensor on the MWCNTs-doped SPE (MWCNTs/SPE. This biosensor could determine DA based on a non-oxidative mechanism in a rapid, selective and sensitive way. Besides, the developed biosensor could retain high enzymatic activity and possess good stability without cross-linking reagents. The proposed immobilization approach and the constructed biosensor offer a great potential for the fabrication of the enzyme-based biosensors and the analysis of phenolic compounds.

  11. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  12. Drag reduction in silica nanochannels induced by graphitic wall coatings

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    . In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbonnanotubes (CNTs), respectively...

  13. Stability and Catalytic Kinetics of Horseradish Peroxidase Confined in Nanoporous SBA-15

    DEFF Research Database (Denmark)

    Ikemoto, Hediki; Chi, Qijin; Ulstrup, Jens

    2010-01-01

    We have synthesized nanoporous silica, SBA-15 in the 1 m size range with the pore diameter of 7.6 nm. The redox enzyme horseradish peroxidase (HRP) was entrapped in the pores to form nanostructured hybrid materials. The catalytic activity of free and immobilized enzyme was first compared at room...... likely due to different hydrogen bonding of water and increased hydration strength of the protein inside the nanopores....

  14. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Ariga, Katsuhiko; Vinu, Ajayan [International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sivakumar, Thiripuranthagan [Department of Chemical Engineering, Anna University, Gundy, Chennai 600025 (India); Aldeyab, Salem S [Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, PO Box 2455 Riyadh 11451 (Saudi Arabia); Zaidi, Javaid S M, E-mail: vinu.ajayan@nims.go.jp [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-08-15

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g{sup -1} at a 20 mV s{sup -1} scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  15. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Science.gov (United States)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  16. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Directory of Open Access Journals (Sweden)

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    Full Text Available We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD, high-resolution scanning electron microscopy (HRSEM and high-resolution transmission electron microscopy (HRTEM. XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  17. Simultaneous chemical modification and structural transformation of Stöber silica spheres for integration of nanocatalysts

    KAUST Repository

    Yao, Kexin

    2012-01-10

    A synthetic approach has been devised to convert conventional Stöber silica (SiO 2) spheres into a new type of porous structural platform for supporting multicomponent catalysts. With this approach, we have first prepared zinc-doped SiO 2 (Zn-SiO 2) hollow spheres, on which zinc oxide (ZnO) phase and ruthenium (Ru) nanoparticles have been deposited and assembled sequentially in solution phase. A series of complex Ru/ZnO/Zn-SiO 2 nanocatalysts has been thus been integrated onto the zinc-doped SiO 2 supports after additional thermal treatment and reduction. To test their workability under harsh reactive environments, we have further evaluated the above prepared catalysts using arene hydrogenation as model reactions. These integrated nanocatalysts have shown superior activity, high robustness, and easy recovery in the studied heterogeneous catalysis. © 2011 American Chemical Society.

  18. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  19. Configuration of organic dye excimers in nanoporous SiO2 matrices

    International Nuclear Information System (INIS)

    Sorokin, A.V.; Gnap, B.A.; Bespalova, I.I.; Yefimova, S.L.; Malyukin, Yu.V.

    2016-01-01

    The effect of cyanine dye 3,3′-dioctadecyloxacarbocyanine perchlorate (DiO) and benzimidazole dye 4-dimethylamino-1,8-naphthoylene-1′,2′-benzimidazole (DNBI) accumulation in nanoporous silica matrices on the dyes luminescence properties has been studied. For both dyes, ground state dimer formation with perpendicular transition dipoles at high dye concentrations has been considered as a result of restricted geometry of the nanoscale pores. The dimer excitation leads to excimer formation revealing by appearance of new long-wavelength luminescence band and shortening the dye luminescence lifetime. In the excimer luminescence excitation spectra two additional bands have been observed, one of which is bathochromically shifted relatively to the absorption band and another one is hypsocromically shifted. Using the Kasha exciton model it was shown that the excimers possess oblique transition dipoles configuration. - Highlights: • Organic dye molecules are efficiently accumulated in nanoporous silica matrices. • Restricted geometry of SiO 2 nanopores provokes excimerization of both cyanine and benzimidazole dyes. • The excimers reveal configuration of oblique dimers. • The excimers are originated from ground state dimers with a perpendicular arrangement of transition dipoles.

  20. Measurement of Fluorescence in a Rhodamine-123 Doped Self-Assembled “Giant” Mesostructured Silica Sphere Using a Smartphone as Optical Hardware

    Directory of Open Access Journals (Sweden)

    Ingemar Petermann

    2011-07-01

    Full Text Available The blue OLED emission from a mobile phone was characterised, revealing a sharp emission band centred at λ = 445 nm with a 3dB bandwidth Δλ ~ 20 nm. It was used to excite Rhodamine 123 doped within a “giant” mesostructured silica sphere during fabrication through evaporative self-assembly of silica nanoparticles. Fluorescence was able to be detected using a standard optical microscope fitted with a green transmission pass filter and cooled CCD and with 1 ms exposure time demonstrating the potential of mobile platforms as the basis for portable diagnostics in the field.

  1. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  2. A methodology for the preparation of nanoporous polyimide films with low dielectric constants

    International Nuclear Information System (INIS)

    Jiang Lizhong; Liu Jiugui; Wu Dezhen; Li Hangquan; Jin Riguang

    2006-01-01

    A method to generate nanoporous polyimide films with low dielectric constants was proposed. The preparation consisted of two steps. Firstly, a polyimide/silica hybrid film was prepared via sol-gel process. Secondly, the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 20 and 120 nm, depending on the size of silica particles. Both hybrid and porous films were subjected to a variety of characterizations including transmission electron microscopy observation, dielectric constant measurement and tensile strength measurement

  3. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    OpenAIRE

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD r...

  4. Measurement and modelization of silica opal optical properties

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  5. Measurement and modelization of silica opal optical properties

    International Nuclear Information System (INIS)

    Avoine, Amaury; Ngoc Hong, Phan; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Gallas, Bruno; Maître, Agnès; Thu Nga, Pham

    2014-01-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter. (paper)

  6. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    Science.gov (United States)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  7. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. CO_2 capture by amine-functionalized nanoporous materials: A review

    International Nuclear Information System (INIS)

    Chen, Chao; Kim, Jun; Ahn, Wha-Seung

    2014-01-01

    Amine-functionalized nanoporous materials can be prepared by the incorporation of diverse organic amine moieties into the pore structures of a range of support materials, such as mesoporous silica and alumina, zeolite, carbon and metal organic frameworks (MOFs), either by direct functionalization or post-synthesis through physical impregnation or grafting. These hybrid materials have great potential for practical applications, such as dry adsorbents for postcombustion CO_2 capture, owing to their high CO_2 capture capacity, high capture selectivity towards CO_2 compared to other gases, and excellent stability. This paper summarizes the preparation methods and CO_2 capture performance based on the equilibrium CO_2 uptake of a range of amine-functionalized nanoporous materials

  9. Modeling the self-assembly of ordered nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Peter [Univ. of Massachusetts, Amherst, MA (United States); Auerbach, Scott [Univ. of Massachusetts, Amherst, MA (United States)

    2017-11-13

    This report describes progress on a collaborative project on the multiscale modeling of the assembly processes in the synthesis of nanoporous materials. Such materials are of enormous importance in modern technology with application in the chemical process industries, biomedicine and biotechnology as well as microelectronics. The project focuses on two important classes of materials: i) microporous crystalline materials, such as zeolites, and ii) ordered mesoporous materials. In the first case the pores are part of the crystalline structure, while in the second the structures are amorphous on the atomistic length scale but where surfactant templating gives rise to order on the length scale of 2 - 20 nm. We have developed a modeling framework that encompasses both these kinds of materials. Our models focus on the assembly of corner sharing silica tetrahedra in the presence of structure directing agents. We emphasize a balance between sufficient realism in the models and computational tractibility given the complex many-body phenomena. We use both on-lattice and off-lattice models and the primary computational tools are Monte Carlo simulations with sampling techniques and ensembles appropriate to specific situations. Our modeling approach is the first to capture silica polymerization, nanopore crystallization, and mesopore formation through computer-simulated self assembly.

  10. Drag reduction in silica nanochannels induced by graphitic wall coatings

    Science.gov (United States)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2017-11-01

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannels is known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbon nanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings. We wish to thank partial funding from CRHIAM Conicyt/ Fondap Project 15130015 and computational support from DTU and NLHPC (Chile).

  11. Fractal dimensions of silica gels generated using reactive molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bhattacharya, Sudin; Kieffer, John

    2005-01-01

    We have used molecular dynamics simulations based on a three-body potential with charge transfer to generate nanoporous silica aerogels. Care was taken to reproduce the sol-gel condensation reaction that forms the gel backbone as realistically as possible and to thereby produce credible gel structures. The self-similarity of aerogel structures was investigated by evaluating their fractal dimension from geometric correlations. For comparison, we have also generated porous silica glasses by rupturing dense silica and computed their fractal dimension. The fractal dimension of the porous silica structures was found to be process dependent. Finally, we have determined that the effect of supercritical drying on the fractal nature of condensed silica gels is not appreciable

  12. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    OpenAIRE

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan?gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that...

  13. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    Science.gov (United States)

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  14. Sedimentation of bidisperse, uncharged colloidal sphere suspensions: Influence of viscosity and irregular surfaces

    NARCIS (Netherlands)

    Thies-Weesie, Dominique M. E.; Philipse, Albert P.; Lekkerkerker, Henk N. W.

    1996-01-01

    The sedimentation velocity of uncharged, nonaggregated silica spheres under gravity is strongly reduced after addition of small amounts of nonsedimenting small spheres. This reduction is largely due to surface irregularities on a nanoscale of the large spheres at which a limited number of small

  15. Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals

    Energy Technology Data Exchange (ETDEWEB)

    Yang Sanming; Coombs, N.; Ozin, G.A. [Toronto Univ., Ont. (Canada). Materials Chemistry Research Group

    2000-12-15

    Regular arrays of hexagonal mesoporous silica spheres are crucial for a number of applications, but until now control of the diameter, dispersity, and packing of the spheres has not proved possible. These authors report a new method-micromolding in inverted polymer opals-that allows the synthesis of such hexagonal mesoporous silica opals for the first time. (orig.)

  16. Measurement and modelization of silica opal optical properties

    OpenAIRE

    Avoine , Amaury; Ngoc Hong , Phan; Frederich , Hugo; Aregahegn , Kifle; Bénalloul , Paul; Coolen , Laurent; Schwob , Catherine; Thu Nga , Pham; Gallas , Bruno; Maître , Agnès

    2014-01-01

    International audience; We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflect...

  17. Transparent Nanoporous Glass-Polymer Composite for U.S. Army Applications

    Science.gov (United States)

    2008-10-01

    material is created by infiltrating nanoporous glass (Vycor, Corning Inc.) with different polymers. The Vycor pores (4–6 nm) are much smaller than the...glass-polymer composite to a carbon-silica composite through pyrolysis . Sotomayor et al. (12) used polyanaline-infused Vycor to produce a pH sensor...Vycor is a registered trademark of Corning , Inc., Corning , NY. 3 In this report, we will explore the processing and mechanical behavior of

  18. Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses

    International Nuclear Information System (INIS)

    Qiao Yanbo; Wen Lei; Wu Botao; Ren Jinjun; Chen Danping; Qiu Jianrong

    2008-01-01

    Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm 2 , respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers

  19. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  20. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  1. Synthesis of Hollow Silica by Stober Method with Double Polymers as Templates

    International Nuclear Information System (INIS)

    Nguyen, Anhthu; Park, Chang Woo; Kim, Sang Hern

    2014-01-01

    The hollow SiO 2 spheres with uniform size were synthesized by a modified stoeber method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail

  2. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    Science.gov (United States)

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    Science.gov (United States)

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa

    2012-05-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  4. Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration

    Science.gov (United States)

    Dodd, Brandon M.; Tepper, Gary

    2017-09-01

    Trace quantities of a uranyl dissolved in water were measured using a simple optical method. A dilute solution of uranium nitrate dissolved in water was forced through nanoporous silica gel at fixed and controlled water flow rates. The uranyl ions deposited and accumulated within the silica gel and the uranyl fluorescence within the silica gel was monitored as a function of time using a light emitting diode as the excitation source and a photomultiplier tube detector. It was shown that the response time of the fluorescence output signal at a particular volumetric flow rate or average liquid velocity through the silica gel can be used to quantify the concentration of uranium in water. The response time as a function of concentration decreased with increasing flow velocity.

  5. The role of concavo-convex walls of a nanopore on the density profile, adsorption, solvation force, and capillary condensation of confined fluids: A DFT study

    International Nuclear Information System (INIS)

    Helmi, Abbas; Keshavarzi, Ezat

    2014-01-01

    Highlights: • The effect of concavo-convex walls of nanopores on the density profile was studied. • For HS fluids the contact density at concave wall is greater than for convex wall. • For Yukawa fluid the contact density at concave wall can be less than convex wall. • Capillary condensation was observed for Yukawa fluids in the homocentric pores. - Abstract: We investigate the effects of concavo-convex walls of a nanopore on the structure and certain thermodynamic properties of confined fluids. Adsorption, solvation force, and capillary condensation in a nanopore formed between two homocentric spheres will be determined using the MFMT. For hard sphere fluids, contact density is greater at the concave wall than it is at the convex wall. In Yukawa fluids, for the thermodynamic state in which the energy effect is the dominant factor, contact density at a concave wall is less than that at a convex wall; this will be reversed for the thermodynamic state in which the entropy effect is the dominant factor. It is possible to find thermodynamic states in which contact densities at concave and convex walls become identical. The adsorption and solvation force of hard sphere fluid show an oscillatory behavior versus H. Capillary condensation is in certain cases observed for Yukawa fluids

  6. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass

    Science.gov (United States)

    Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.

    2015-05-01

    A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.

  7. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    Science.gov (United States)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  8. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    Science.gov (United States)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  9. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    Science.gov (United States)

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  10. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  11. Confinement effects and mechanistic aspects for montmorillonite nanopores.

    Science.gov (United States)

    Li, Xiong; Zhu, Chang; Jia, Zengqiang; Yang, Gang

    2018-08-01

    Owing to the ubiquity, critical importance and special properties, confined microenvironments have recently triggered overwhelming interest. In this work, all-atom molecular dynamics simulations have been conducted to address the confinement effects and ion-specific effects for electrolyte solutions within montmorillonite nanopores, where the pore widths vary with a wide range. The adsorption number, structure, dynamics and stability of inner- and outer-sphere metal ions are affected by the change of pore widths (confinement effects), while the extents are significantly dependent on the type of adsorbed species. The type of adsorbed species is, however, not altered by the magnitude of confinement effects, and confinement effects are similar for different electrolyte concentrations. Ion-specific effects are pronounced for all magnitudes of confinement effects (from non- to strong confined conditions), and Hofmeister sequences of outer-sphere species are closely associated with the magnitude of confinement effects while those of inner-sphere species remain consistent. In addition, mechanistic aspects of confinement have been posed using the electrical double layer theories, and the results can be generalized to other confined systems that are ubiquitous in biology, chemistry, geology and nanotechnology. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Water-dependent photonic bandgap in silica artificial opals.

    Science.gov (United States)

    Gallego-Gómez, Francisco; Blanco, Alvaro; Canalejas-Tejero, Victor; López, Cefe

    2011-07-04

    Some characteristics of silica--based structures-like the photonic properties of artificial opals formed by silica spheres--can be greatly affected by the presence of adsorbed water. The reversible modification of the water content of an opal is investigated here by moderate heating (below 300 °C) and measuring in situ the changes in the photonic bandgap. Due to reversible removal of interstitial water, large blueshifts of 30 nm and a bandgap narrowing of 7% are observed. The latter is particularly surprising, because water desorption increases the refractive index contrast, which should lead instead to bandgap broadening. A quantitative explanation of this experiment is provided using a simple model for water distribution in the opal that assumes a nonclose-packed fcc structure. This model further predicts that, at room temperature, about 50% of the interstitial water forms necks between nearest-neighbor spheres, which are separated by 5% of their diameter. Upon heating, dehydration predominantly occurs at the sphere surfaces (in the opal voids), so that above 65 °C the remaining water resides exclusively in the necks. A near-close-packed fcc arrangement is only achieved above 200 °C. The high sensitivity to water changes exhibited by silica opals, even under gentle heating of few degrees, must be taken into account for practical applications. Remarkably, accurate control of the distance between spheres--from 16 to 1 nm--is obtained with temperature. In this study, novel use of the optical properties of the opal is made to infer quantitative information about water distribution within silica beads and dehydration phenomena from simple reflection spectra. Taking advantage of the well-defined opal morphology, this approach offers a simple tool for the straightforward investigation of generic adsorption-desorption phenomena, which might be extrapolated to many other fields involving capillary condensation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGa

  13. Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots

    Science.gov (United States)

    Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil

    2018-05-01

    Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).

  14. A protecting group approach toward synthesis of Au–silica Janus nanostars

    OpenAIRE

    D. Rodríguez-Fernández; T. Altantzis; H. Heidari; S. Bals; L.M. Liz-Marzán

    2013-01-01

    Abstract: The concept of protecting groups, widely used in organic chemistry, has been applied for the synthesis of Au-silica Janus stars, in which gold branches protrude from one half of Au-silica Janus spheres. This configuration opens up new possibilities to apply the plasmonic properties of gold nanostars, as well as a variety of chemical functionalizations on the silica component.

  15. A protecting group approach toward synthesis of Au-silica Janus nanostars.

    Science.gov (United States)

    Rodríguez-Fernández, Denis; Altantzis, Thomas; Heidari, Hamed; Bals, Sara; Liz-Marzán, Luis M

    2014-01-04

    The concept of protecting groups, widely used in organic chemistry, has been applied for the synthesis of Au-silica Janus stars, in which gold branches protrude from one half of Au-silica Janus spheres. This configuration opens up new possibilities to apply the plasmonic properties of gold nanostars, as well as a variety of chemical functionalizations on the silica component.

  16. Multifunctional Amine Mesoporous Silica Spheres Modified with Multiple Amine as Carriers for Drug Release

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-01-01

    Full Text Available Mesoporous silica spheres were synthesized by using Stöber theory (MSN-40. Calcination of the mesostructured phase resulted in the starting solid. Organic modification with aminopropyl groups resulted in two MSN-40 materials: named MSN-NH2 and MSN-DQ-40, respectively. These two kinds of samples with different pore sizes (obtained from 3-[2-(2-aminoethylaminoethylamino]propyl-trimethox-ysilane (NQ-62 and modified NQ-62 showed control of the delivery rate of ibuprofen (IBU from the siliceous matrix. The obtained sample from modified NQ-62 has an increased loading rate and shows better control of the delivery rate of IBU than the obtained sample from NQ-62. These three solids were characterized using standard solid state procedures. During tests of in vitro drug release, an interesting phenomenon was observed: at high pH (pH 7.45, IBU in all carriers was released slowly; at low pH (pH 4.5, only a part of the IBU was slowly released from this carrier within 25 hours; most IBU was effectively confined in mesoporous material, but the remaining IBU was released rapidly and completely after 25 hours.

  17. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  18. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  19. Radiation hardening in sol-gel derived Er3+-doped silica glasses

    International Nuclear Information System (INIS)

    Hari Babu, B.; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu; Ibarra, Angel

    2015-01-01

    The aim of the present paper is to report the effect of radiation on the Er 3+ -doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er 3+ -doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′ δ point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er 3+ to Er 2+ ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects

  20. Porous silica nanoparticles as carrier for curcumin delivery

    Science.gov (United States)

    Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby

    2018-04-01

    Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.

  1. Manganese–Schiff base complex immobilized silica materials

    Indian Academy of Sciences (India)

    III)]+ and [Mn(salophen)]+: [N,N′-bis(salicylaldehyde)-1,2-phenylenediimino manganese(III)]+ were introduced into/onto the MCM-41 type silica spheres and used for the electrocatalytic reduction of oxygen. Synthesized materials were ...

  2. Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof

    Science.gov (United States)

    Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas

    2016-03-01

    Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting

  3. Self-diffusion of charged colloidal tracer spheres in transparent porous glass media: Effect of ionic strength and pore size

    Science.gov (United States)

    Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.

    1998-05-01

    The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.

  4. Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms

    Science.gov (United States)

    Yilmaz, M. Deniz; Xue, Min; Ambrogio, Michael W.; Buyukcakir, Onur; Wu, Yilei; Frasconi, Marco; Chen, Xinqi; Nassar, Majed S.; Stoddart, J. Fraser; Zink, Jeffrey I.

    2014-12-01

    A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation. Acidification also induces the release of cargo molecules. Further investigations show that the presence of both a low pH and sugar molecules provides cooperative effects which together control the rate of release.A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation

  5. Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres.

    Science.gov (United States)

    Lee, Byeongdu; Park, Young-Hee; Hwang, Yong-Taek; Oh, Weontae; Yoon, Jinhwan; Ree, Moonhor

    2005-02-01

    Integrated circuits that have improved functionality and speed in a smaller package and that consume less power are desired by the microelectronics industry as well as by end users, to increase device performance and reduce costs. The fabrication of high-performance integrated circuits requires the availability of materials with low or ultralow dielectric constant (low-k: k noise in interconnect conductors, but also minimize power dissipation by reducing the capacitance between the interconnects. Here we describe the preparation of low- and ultralow-k nanoporous organosilicate dielectrics from blends of polymethylsilsesquioxane (PMSSQ) precursor with globular ethyl acrylate-terminated polypropylenimine dendrimers, which act as porogens. These dendrimers are found to mix well with the PMSSQ precursor and after their sacrificial thermal decompositions result in closed, spherical pores of <2.0 nm radius with a very narrow distribution even at high loading. This pore size and distribution are the smallest and the narrowest respectively ever achieved in porous spin-on dielectrics. The method therefore successfully delivers low- and ultralow-k PMSSQ dielectric films that should prove very useful in advanced integrated circuits.

  6. Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials

    Science.gov (United States)

    Chiu, Chi-Kai

    Solution sol-gel synthesis is a versatile approach to create polymer-silica nanocomposite materials. The solution-to-solid transformation results in a solid consisting of interconnected nanoporous structure in 3D space, making it the ideal material for filtration, encapsulation, optics, electronics, drug release, and biomaterials, etc. Although the pore between nano and meso size may be tunable using different reaction conditions, the intrinsic properties such as limited diffusion within pore structure, complicated interfacial interactions at the pore surfaces, shrinkage and stress-induced cracking and brittleness have limited the applications of this material. To overcome these problems, diffusion, pore size, shrinkage and stress-induced defects need further investigation. Thus, the presented thesis will address these important questions such as whether these limitations can be utilized as the novel method to create new materials and lead to new applications. First, the behaviors of polymers such as poly(ethylene glycol) inside the silica pores are examined by studying the nucleation and growth of AgCl at the surface of the porous matrix. The pore structure and the pressure induced by the shrinkage affect have been found to induce the growth of AgCl nanocrystals. When the same process is carried out at 160 °C, silver metallization is possible. Due to the shrinkage-induced stresses, the polymer tends to move into open crack spaces and exterior surfaces, forming interconnected silver structure. This interconnected silver structure is very unique because its density is not related to the size scale of nanopore structures. These findings suggest that it is possible to utilize defect surface of silica material as the template to create interconnected silver structure. When the scale is small, polymer may no longer be needed if the diffusion length of Ag is more than the size of silica particles. To validate our assumption, monoliths of sol-gel sample containing AgNO3

  7. Synthesis of silica nanosphere from homogeneous and ...

    Indian Academy of Sciences (India)

    WINTEC

    avoid it, reaction in heterogeneous system using CTABr was carried out. Nanosized silica sphere with ... Homogeneous system contains a mixture of ethanol, water, aqueous ammonia and ... heated to 823 K (rate, 1 K/min) in air and kept at this.

  8. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Omidi, Fariborz [Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud (Iran, Islamic Republic of); Behbahani, Mohammad, E-mail: mohammadbehbahai89@yahoo.com [Department of Chemistry, Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of); Kalate Bojdi, Majid [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Shahtaheri, Seyed Jamaleddin [Department of Occupational Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe{sub 3}O{sub 4}@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe{sub 3}O{sub 4}@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe{sub 3}O{sub 4}@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe{sub 3}O{sub 4}@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L{sup –1} and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g{sup −1}. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results. - Highlights: • The introducing of modified magnetic mesoporous silica as a novel magnetic sorbent. • Trace monitoring of cadmium ions. • The limit of detection (LOD) by the proposed solid phase extraction method was 0.04 ng mL{sup −1} for the cadmium ions. • High surface areas and magnetic characteristic of the sorbent. • Maximum adsorption capacity of the sorbent was 154 mg g{sup −1}.

  9. Nanoporous thermosetting polymers.

    Science.gov (United States)

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  10. A Highly Stable and Magnetically Recyclable Nanocatalyst System: Mesoporous Silica Spheres Embedded with FeCo/Graphitic Shell Magnetic Nanoparticles and Pt Nanocatalysts.

    Science.gov (United States)

    Kim, Da Jeong; Li, Yan; Kim, Yun Jin; Hur, Nam Hwi; Seo, Won Seok

    2015-12-01

    We have developed a highly stable and magnetically recyclable nanocatalyst system for alkene hydrogenation. The materials are composed of mesoporous silica spheres (MSS) embedded with FeCo/graphitic shell (FeCo/GC) magnetic nanoparticles and Pt nanocatalysts (Pt-FeCo/GC@MSS). The Pt-FeCo/GC@MSS have superparamagnetism at room temperature and show type IV isotherm typical for mesoporous silica, thereby ensuring a large enough inner space (surface area of 235.3 m(2)  g(-1), pore volume of 0.165 cm(3)  g(-1), and pore diameter of 2.8 nm) to undergo catalytic reactions. We have shown that the Pt-FeCo/GC@MSS system readily converts cyclohexene into cyclohexane, which is the only product isolated and Pt-FeCo/GC@MSS can be seperated very quickly by an external magnetic field after the catalytic reaction is finished. We have demonstrated that the recycled Pt-FeCo/GC@MSS can be reused further for the same hydrogenation reaction at least four times without loss in the initial catalytic activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  12. Synthesis and new structure shaping mechanism of silica particles formed at high pH

    International Nuclear Information System (INIS)

    Zhang, Henan; Zhao, Yu; Akins, Daniel L.

    2012-01-01

    For the sol–gel synthesis of silica particles under high pH catalytic conditions (pH>12) in water/ethanol solvent, we have deduced that the competing dynamics of chemical etching and sol–gel process can explain the types of silica particles formed and their morphologies. We have demonstrated that emulsion droplets that are generated by adding tetraethyl orthosilicate (TEOS) to a water–ethanol solution serve as soft templates for hollow spherical silica (1–2 μm). And if the emulsion is converted by the sol–gel process, one finds that suspended solid silica spheres of diameter of ∼900 nm are formed. Moreover, several other factors are found to play fundamental roles in determining the final morphologies of silica particles, such as by variation of the pH (in our case, using OH – ) to a level where condensation dominates; by changing the volume ratios of water/ethanol; and using an emulsifier (specifically, CTAB) - Graphical abstract: “Local chemical etching” and sol–gel process have been proposed to interpret the control of morphologies of silica particles through varying initial pHs in syntheses. Highlights: ► Different initial pHs in our syntheses provides morphological control of silica particles. ► “Local chemical etching” and sol–gel process describes the formation of silica spheres. ► The formation of emulsions generates hollow silica particles.

  13. 4He adsorbed in cylindrical silica nanopores: Effect of size on the single-atom mean kinetic energy

    International Nuclear Information System (INIS)

    Andreani, C.; Senesi, R.; Pantalei, C.

    2007-01-01

    This paper reports a study of the short-time dynamics of helium confined in silica nanopores (xerogel powder), with average pore diameters of 24 and 160 A. The longitudinal momentum distribution of helium adsorbed in xerogels has been determined via deep inelastic neutron scattering (DINS) measurements performed on the VESUVIO spectrometer at the ISIS spallation source. DINS measurements, in the attosecond time scale (i.e., 10 -16 -10 -15 s), were performed at a temperature of T=2.5 K and saturated vapor pressure conditions, with 95% pore volume filling. The average wave-vector transfer q was about 130 A -1 . For confined helium, significant changes in the values of the single-particle mean kinetic energies K > are found in the bulk phase. These are 32.6±8.7 K for the 24 A and 24.4±5.3 K for the 160 A pore diameters, remarkably higher than K >=16.2±0.4 K, the value of normal liquid 4 He at T=2.5 K and saturated vapor pressure conditions. The results are interpreted in terms of a model where 4 He atoms are arranged in concentric annuli along the cylindrical pore axis, with K > mainly dependent on the ratio between the atomic 'effective' diameter and the pore diameter. The number of solid layers close to pore surface is found to be strongly pore-size dependent with one single solid layer for 24 A diameter pore and three solid layers for 160 A diameter pore

  14. Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    NARCIS (Netherlands)

    Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.

    1987-01-01

    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The

  15. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Directory of Open Access Journals (Sweden)

    Zhong Kuo

    2018-03-01

    Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  16. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Science.gov (United States)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  17. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    International Nuclear Information System (INIS)

    Burke, Aoife M.; Hanrahan, John P.; Healy, David A.; Sodeau, John R.; Holmes, Justin D.; Morris, Michael A.

    2009-01-01

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 μmol g -1 for Cr, 340 μmol g -1 for Ni, 358 μmol g -1 for Fe, 364 μmol g -1 for Mn and 188 μmol g -1 for Pd

  18. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Aoife M.; Hanrahan, John P. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Healy, David A.; Sodeau, John R. [Department of Chemistry, Centre of Research in Atmospheric Chemistry, University College Cork, Cork (Ireland); Holmes, Justin D. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Morris, Michael A. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)], E-mail: m.morris@ucc.ie

    2009-05-15

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 {mu}mol g{sup -1} for Cr, 340 {mu}mol g{sup -1} for Ni, 358 {mu}mol g{sup -1} for Fe, 364 {mu}mol g{sup -1} for Mn and 188 {mu}mol g{sup -1} for Pd.

  19. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  20. The thermal conductivity of beds of spheres

    International Nuclear Information System (INIS)

    McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.

    1987-01-01

    The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 μm dia solid Al 2 O 3 , the same Al 2 O 3 spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al 2 O 3 , Al 2 O 3 /center dot/7 w/o Cr 2 O 3 , and partially stabilized ZrO 2 . The hollow microspheres had diameters from 2100 to 3500 μm and wall thicknesses from 80 to 160 μm. 12 refs., 7 figs., 4 tabs

  1. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  2. Nanofluidic Device with Embedded Nanopore

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  3. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  4. Nanopore formation on Au coated pyramid under electron beam irradiations (plasmonic nanopore on pyramid

    Directory of Open Access Journals (Sweden)

    Seong Soo Choi

    2016-03-01

    Full Text Available There have been tremendous interests about the single molecule analysis using a sold-state nanopore. The solid-state nanopore can be fabricated either by drilling technique, or diffusion technique by using electron beam irradiations. The solid-state SiN nanopore device with electrical detection technique recently fabricated, however, the solid-state Au nanopore with optical detection technique can be better utilized as the next generation single molecule sensor. In this report, the nanometer size openings with its size less than 10 nm on the diffused membrane on the 200 nm Au pyramid were fabricated by using field emission scanning electron microscopy (FESEM electron beam irradiations, transmission electron microscopy (TEM, etc. After the sample was being kept under a room environment for several months, several Au (111 clusters with ~6 nm diameter formed via Ostwald ripening are observed using a high resolution TEM imaging. The nanopore with Au nanoclusters on the diffused membrane can be utilized as an optical nanopore device. Keywords: Electron beam irradiation, Surface diffusion, Carbon contamination, Au cluster, Ostwald ripening

  5. Study of Catalyst, Aging Time and Surfactant Effects on Silica Inorganic Polymer Characteristics

    Directory of Open Access Journals (Sweden)

    M. Pakizeh

    2007-06-01

    Full Text Available In the present study the sol-gel method is used for synthesis of amorphous nanostructure silica polymer using tetraethoxysilane (TEOS as silicon source. This polymer can be used in manufacturing of nanoporous asymmetricmembranes. The effect of catalyst on silica particle size has been studied under acidic and basic conditions.زAcid-catalyzed reaction leads to the formation of fine particles while the base-catalyzed reaction produceslarger particles. The presence of cationic template surfactant namely cetyl pyridinium bromide (CPBزdirects the structural formation of the polymer by preventing the highly branched polymeric clusters. This will increase the effective area of the produced silica membrane. Nitrogen physisorption tests by Brunaver- Emmett-Teller (BET and Barrett-Joyner-Halenda (BJH methods revealed that the surface area of the membrane increases significantly around 5-folds when acid-catalyzed reaction is used. 29Si-NMR test is also used to study the aging time effect on the level of silica polymer branching. The results show that in acidic condition, aging time up to three weeks can still affect branching. The calcinations process in which the organic materials and CPB (surfactant are burned and released from the silica particles, is studied on template free silica materials as well as templated silica materials using TGA and DTA techniques.

  6. Nanopore sensors for DNA analysis

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Venkatesan, B.M.; Shim, Jeong

    2012-01-01

    Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene-based, and functionali......Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene...

  7. Preparation of sponge-reinforced silica aerogels from tetraethoxysilane and methyltrimethoxysilane for oil/water separation

    Science.gov (United States)

    Li, Ming; Jiang, Hongyi; Xu, Dong

    2018-04-01

    Polyurethane sponge-reinforced silica aerogels based on tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) were fabricated by a facile method through sol-gel reaction followed by ambient pressure drying. In sponge-reinforced silica aerogels, nanoporous aerogel aggregates fill in the pores of polyurethane sponge. The sponge-reinforced aerogels are hydrophobic and oleophilic and show extremely high absorption for machine oil (10.6 g g‑1 for TEOS-based aerogel and 9.2 g g‑1 for MTMS-based aerogel). In addition, the sponge-reinforced aerogel composites exhibit notable improvements with regards to mechanical properties. The compressive strength was enhanced obviously up to about 349 KPa for TEOS-based aerogel and 60 KPa for MTMS-based aerogel. Specially, sponge-reinforced silica aerogels based on MTMS drastically shrank upon loading and then recovered to the original size when unloaded. The property differences of the sponge-reinforced silica aerogels caused by the two precursors were discussed in terms of morphologies, pore size distributions and chemical structure.

  8. Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry

    Science.gov (United States)

    2013-01-01

    Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed. PMID:24237719

  9. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Science.gov (United States)

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  10. Strategy and method for nanoporous cladding formation on silica optical fiber

    Czech Academy of Sciences Publication Activity Database

    Chen, H.; Tian, F.; Liu, K.; Kaňka, Jiří; Du, H.

    2016-01-01

    Roč. 41, č. 12 (2016), s. 2831-2834 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Fabrication strategies * Optical fiber fabrication * Silica Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.416, year: 2016

  11. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Expanding the functionality and applications of nanopore sensors

    Science.gov (United States)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  13. Lyophilized silica lipid hybrid (SLH) carriers for poorly water-soluble drugs: physicochemical and in vitro pharmaceutical investigations.

    Science.gov (United States)

    Yasmin, Rokhsana; Tan, Angel; Bremmell, Kristen E; Prestidge, Clive A

    2014-09-01

    Lyophilization was investigated to produce a powdery silica-lipid hybrid (SLH) carrier for oral delivery of poorly water-soluble drugs. The silica to lipid ratio, incorporation of cryoprotectant, and lipid loading level were investigated as performance indicators for lyophilized SLH carriers. Celecoxib, a nonsteroidal anti-inflammatory drug, was used as the model poorly soluble moiety to attain desirable physicochemical and in vitro drug solubilization properties. Scanning electron microscopy and confocal fluorescence imaging verified a nanoporous, homogenous internal matrix structures of the lyophilized SLH particles, prepared from submicron triglyceride emulsions and stabilized by porous silica nanoparticles (Aerosil 380), similar to spray-dried SLH. 20-50 wt % of silica in the formulation have shown to produce nonoily SLH agglomerates with complete lipid encapsulation. The incorporation of a cryoprotectant prevented irreversible aggregation of the silica-stabilized droplets during lyophilization, thereby readily redispersing in water to form micrometre-sized particles (water-soluble therapeutics is confirmed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Threading DNA through nanopores for biosensing applications

    International Nuclear Information System (INIS)

    Fyta, Maria

    2015-01-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing. (topical review)

  15. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  16. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  17. An identification of the soft polyelectrolyte gel-like layer on silica colloids using atomic force and electron microscopy.

    Science.gov (United States)

    Škvarla, Jiří; Škvarla, Juraj

    2017-10-01

    A procedure is introduced for measuring the radius of spherical colloid particles from the curvature of upper parts of their central cross-sectional profiles obtained by atomic force microscopy (AFM). To minimize the possible compression and displacement of the spheres, AFM is operated in a mode rendering a constant ultralow pN force on the tip. The procedure allows us to evaluate the mean radius of nearly monodisperse submicrometer spheres of silica in their natively hydrated state in aqueous electrolyte solutions, irrespective of whether they are coagulated or not. A variation in the volume (swelling degree) of layers delimited by the AFM mean radii of these spheres in KCl solutions and their invariable mean radius in vacuum is obtained that follows a scaling power law derived in polymer physics for swellable polyelectrolyte gels and deduced previously by us from coagulation tests. This supports our former suggestion about the existence of soft polyelectrolyte gel-like layer developed spontaneously around silica surfaces and colloids. We discuss this finding in the context of recent knowledge about the structure of the silica/water interface obtained from direct surface force measurements between macroscopic silica surfaces and from particle size measurements of silica colloids and highlight its importance for colloid chemistry and condensed mattter physics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Controlled release of astaxanthin from nanoporous silicified-phospholipids assembled boron nitride complex for cosmetic applications

    Science.gov (United States)

    Lee, Hye Sun; Sung, Dae Kyung; Kim, Sung Hyun; Choi, Won Il; Hwang, Ee Tag; Choi, Doo Jin; Chang, Jeong Ho

    2017-12-01

    Nanoporous silicified-phospholipids assembled boron nitride (nSPLs@BN) powder was prepared and demonstrated for use in controlled release of anti-oxidant astaxanthin (AX) as a cosmetic application. The nanoporous silicified phospholipids (nSPLs) were obtained by the silicification with tetraethyl orthosilicate (TEOS) of the hydrophilic region of phospholipid bilayers. This process involved the co-assembly of chemically active phospholipid bilayers within the porous silica matrix. In addition, nSPLs@BN was characterized using several analytical techniques and tested to assess their efficiency as drug delivery systems. We calculated the maximum release amounts as a function of time and various pH. The release rate of AX from the nSPLs@BN for the initial 24 h was 10.7 μmol/(h mg) at pH 7.4. Furthermore, we determined the antioxidant activity (KD) for the released AX with DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical and the result was 34.6%.

  19. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction.

    Science.gov (United States)

    Hari Babu, B; Lancry, Matthieu; Ollier, Nadege; El Hamzaoui, Hicham; Bouazaoui, Mohamed; Poumellec, Bertrand

    2016-09-20

    The impact of fictive temperature (Tf) on the evolution of point defects and optical attenuation in non-doped and Er3+-doped sol-gel silica glasses was studied and compared to Suprasil F300 and Infrasil 301 glasses before and after γ-irradiation. To this aim, sol-gel optical fiber preforms have been fabricated by the densification of erbium salt-soaked nanoporous silica xerogels through the polymeric sol-gel technique. These γ-irradiated fiber preforms have been characterized by FTIR, UV-vis-NIR absorption spectroscopy, electron paramagnetic resonance, and photoluminescence measurements. We showed that a decrease in the glass fictive temperature leads to a decrease in the glass disorder and strained bonds. This mainly results in a lower defect generation rate and thus less radiation-induced attenuation in the UV-vis range. Furthermore, it was found that γ-radiation "hardness" is higher in Er3+-doped sol-gel silica compared to un-doped sol-gel silica and standard synthetic silica glasses. The present work demonstrates an effective strategy to improve the radiation resistance of optical fiber preforms and glasses through glass fictive temperature reduction.

  20. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    Science.gov (United States)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that

  1. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  2. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  3. Soft template synthesis of yolk/silica shell particles.

    Science.gov (United States)

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  4. Multi-template synthesis of hierarchically porous carbon spheres with potential application in supercapacitors

    NARCIS (Netherlands)

    Zhou, Weizheng; Lin, Zhixing; Tong, Gangsheng; Stoyanov, Simeon D.; Yan, Deyue; Mai, Yiyong; Zhu, Xinyuan

    2016-01-01

    A new and simple multi-template approach towards hierarchical porous carbon (HPC) materials was reported. HPC spheres were prepared by using hierarchical silica capsules (HSCs) as the hard template and triblock copolymer Pluronic P123 as the soft template. Three types of pores were tunably

  5. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  6. Structural and Chemical Characterization of Silica Spheres before and after Modification by Silanization for Trypsin Immobilization

    Directory of Open Access Journals (Sweden)

    Eduardo F. Barbosa

    2017-01-01

    Full Text Available In the last decades, silica particles of a variety of sizes and shapes have been characterized and chemically modified for several applications, from chromatographic separation to dental supplies. The present study proposes the use of aminopropyl triethoxysilane (APTS silanized silica particles to immobilize the proteolytic enzyme trypsin for the development of a bioreactor. The major advantage of the process is that it enables the polypeptides hydrolysis interruption simply by removing the silica particles from the reaction bottle. Silanized silica surfaces showed significant morphological changes at micro- and nanoscale level. Chemical characterization showed changes in elemental composition, chemical environment, and thermal degradation. Their application as supports for trypsin immobilization showed high immobilization efficiency at reduced immobilization times, combined with more acidic conditions. Indirect immobilization quantification by reversed-phase ultrafast high performance liquid chromatography proved to be a suitable approach due to its high linearity and sensitivity. Immobilized trypsin activities on nonmodified and silanized silica showed promising features (e.g., selective hydrolysis for applications in proteins/peptides primary structure elucidation for proteomics. Silanized silica system produced some preferential targeting peptides, probably due to the hydrophobicity of the nanoenvironment conditioned by silanization.

  7. A TRLFS Study on the Interactions of Am(III) at the Interface of Water and Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Kyung; Jung, Euo Chang; Cho, Hye-Ryun; Cha, Wansik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we employed time-resolved laser-induced fluorescence spectroscopy (TRLFS) to characterize Am(III) interactions with SiO{sub 2} nanoparticles at a molecular level. TRLFS results show that adsorption of Am(III) onto the silica broadens the luminescence spectra with red-shifts of 2-3 nm. Luminescence lifetime measurements show the increase in the lifetime from 23.5 ± 0.3 ns to ⁓37 ns as the pH increases from 2.5 to 8 or above. The observations indicate that adsorption takes place via inner-sphere bindings by displacing about four inner-sphere bound water molecules. At the pH 7 and above, additional longer lifetime (> 100 ns) component was identified, which corresponds to displacing all the inner-sphere water molecules. We will discuss more details on the spectral characteristics of the adsorbed Am(III) and their implications. Adsorption of Am(III) onto silica nanoparticles was studied as a function of the pH by using batch-sorption experiments and TRLFS. TRLFS results show that adsorbed Am(III) displays broadened luminescence spectra with longer lifetimes compared to those of the aqueous species, indicating that adsorption takes place via formation of inner-sphere surface complexes. Our data also suggest that at least two different types of Am(III)-silica species are present at the pH above 7.

  8. On the specific surface area of nanoporous materials

    NARCIS (Netherlands)

    Detsi, E.; De Jong, E.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; ten Brinke, G.; De Raedt, H. A.; Onck, P. R.; De Hosson, J. T. M.

    2011-01-01

    A proper quantification of the specific surface area of nanoporous materials is necessary for a better understanding of the properties that are affected by the high surface-area-to-volume ratio of nanoporous metals, nanoporous polymers and nanoporous ceramics. In this paper we derive an analytical

  9. Thermo-stabilized, porous polyimide microspheres prepared from nanosized SiO2 templating via in situ polymerization

    Directory of Open Access Journals (Sweden)

    M. Q. Liu

    2015-01-01

    Full Text Available In this article, we addressed a feasible and versatile method of the fabrication of porous polyimide microspheres presenting excellent heat resistance. The preparation process consisted of two steps. Firstly, a novel polyimide/nano-silica composite microsphere was prepared via the self-assembly structures of poly(amic acid (PAA, precursor of PI/nanosized SiO2 blends after in situ polymerization, following the two-steps imidization. Subsequently, the encapsulated nanoparticles were etched away by hydrofluoric acid treatment, giving rise to the pores. It is found the composite structure of PI/SiO2 is a precondition of the formation of nanoporous structures, furthermore, the morphology of the resultant pore could be relatively tuned by changing the content and initial morphology of silica nano-particles trapped into PI matrix. The thermal properties of the synthesized PI porous spheres were studied, indicating that the introduction of nanopores could not effectively influence the thermal stabilities of PI microspheres. Moreover, the fabrication technique described here may be extended to other porous polymer systems.

  10. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    Science.gov (United States)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  11. Spectroscopy of nanosized composites silicon-organic polymer/nanoporous silicas

    International Nuclear Information System (INIS)

    Ostapenko, N.; Kozlova, N.; Suto, S.; Watanabe, A.

    2006-01-01

    Fluorescence and excitation spectra (T=5-290 K) of nanosized silicon-organic polymers poly(di-n-hexylsilane) and poly(methyl(phenyl)silane) incorporated into porous silica materials MCM-41 and SBA-15 have been studied with varying pore diameter from 2.8 to 10 nm. The controlled variation of the pore diameter in a wide range (2.8-10 nm) permitted us, for the first time, to investigate the optical properties of the polymers on their transition from isolated macromolecules to a film. It is found that this transition depends on polymer type and occurs via the formation of new spatially independent structures of the polymers not observed in the spectra of the film, namely, via the formation of disordered and (or) ordered conformations of polymer chains and clusters

  12. Wear resistance and electrical properties of functionally graded epoxy-resin/silica composites

    International Nuclear Information System (INIS)

    Rihan, Y. A.; Abd El-Bary, B.

    2012-12-01

    In this paper graded Silica/Epoxy composite fabricated by controlled mold filling to obtain a stepwise graded structure. The generated graded structure was controlled by the w 1% content of silica particulates of size range from (45 μm-250 μm). Microstructural characterization was conducted using Scanning Electron Microscope (SEM). Electrical properties were conducted in High Voltage-Lab using Sphere-Plate Electrode System and Insulating resistance equipment s. Wear characteristics were studied using Block-on-Ring wear testing machine for the different layers of the graded silica/epoxy composites, The prepared materials are used as coating materials for the floors of chemical laboratories. (Author)

  13. Grafting of a novel gold(III) complex on nanoporous MCM-41 and evaluation of its toxicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fazaeli, Yousef; Amini, Mostafa M; Ashourion, Hamed; Heydari, Homayoun; Majdabadi, Abbas; Jalilian, Amir Reza; Abolmaali, Shamsozoha

    2011-01-01

    The goal of this research was to investigate the potential of newly synthesized gold complex trichloro(2,4,6-trimethylpyridine)Au(III) as an anticancer agent. The gold(III) complex was synthesized and grafted on nanoporous silica, MCM-41, to produce AuCl(3)@PF-MCM- 41 (AuCl(3) grafted on pyridine-functionalized MCM-41). The toxicity of trichloro(2,4,6- trimethylpyridine)Au(III) and AuCl(3)@PF-MCM-41 in Saccharomyces cerevisiae (as a model system) was studied. The gold(III) complex showed a mid cytotoxic effect on yeast viability. Using the drug delivery system, nanoporous MCM-41, the gold(III) complex became a strong inhibitor for growth of yeast cells at a very low concentration. Furthermore, the animal tests revealed a high uptake of AuCl(3)@PF-MCM-41 in tumor cells. The stability of the compound was confirmed in human serum.

  14. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    Science.gov (United States)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over

  15. Recent Advances in Nanoporous Membranes for Water Purification

    Directory of Open Access Journals (Sweden)

    Zhuqing Wang

    2018-01-01

    Full Text Available Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification.

  16. Nanopores formed by DNA origami: a review.

    Science.gov (United States)

    Bell, Nicholas A W; Keyser, Ulrich F

    2014-10-01

    Nanopores have emerged over the past two decades to become an important technique in single molecule experimental physics and biomolecule sensing. Recently DNA nanotechnology, in particular DNA origami, has been used for the formation of nanopores in insulating materials. DNA origami is a very attractive technique for the formation of nanopores since it enables the construction of 3D shapes with precise control over geometry and surface functionality. DNA origami has been applied to nanopore research by forming hybrid architectures with solid state nanopores and by direct insertion into lipid bilayers. This review discusses recent experimental work in this area and provides an outlook for future avenues and challenges. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Recent advances in nanopore-based nucleic acid analysis and sequencing

    International Nuclear Information System (INIS)

    Shi, Jidong; Fang, Ying; Hou, Junfeng

    2016-01-01

    Nanopore-based sequencing platforms are transforming the field of genomic science. This review (containing 116 references) highlights some recent progress on nanopore-based nucleic acid analysis and sequencing. These studies are classified into three categories, biological, solid-state, and hybrid nanopores, according to their nanoporous materials. We begin with a brief description of the translocation-based detection mechanism of nanopores. Next, specific examples are given in nanopore-based nucleic acid analysis and sequencing, with an emphasis on identifying strategies that can improve the resolution of nanopores. This review concludes with a discussion of future research directions that will advance the practical applications of nanopore technology. (author)

  18. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    International Nuclear Information System (INIS)

    Javanbakht, Mehran; Divsar, Faten; Badiei, Alireza; Fatollahi, Fatemeh; Khaniani, Yeganeh; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaloosi, Marzieh; Ziarani, Ghodsi Mohammadi

    2009-01-01

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s -1 in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  19. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nano Science and Technology Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: mehranjavanbakht@gmail.com; Divsar, Faten [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Fatollahi, Fatemeh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khaniani, Yeganeh [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza; Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Chaloosi, Marzieh [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Department of Chemistry, University of Alzahra, Tehran (Iran, Islamic Republic of)

    2009-09-30

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s{sup -1} in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  20. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  1. Studies on silica sol-clay particle interactions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Moini, A.; Pinnavaia, T.J.; Michigan State Univ., East Lansing; Thiyagarajan, P.; White, J.W.

    1988-01-01

    SANS data were collected on a series of hydrolyzed silica and silica-clay complexes prepared from a 40 A silica sol and aqueous suspensions of Na + montmorillonite. The hydrolyzed silica product showed a peak centered at Q=0.0856 A -1 corresponding to a distance of 73 A between the sol particles. For such an evaporated gel in which the particles are in close contact, this distance is expected to be very close to the particle diameter indicating partial aggregation of the original spheres. A similar feature was observed in the SANS data for silica-clay products indicating the presence of some unintercalated silica. The intensity of this scattering was found to be dependent on the silica:clay ratio and the reaction time. The SANS data in the region from Q=0.006 to 0.025 A -1 were characteristic of clay scattering and exhibited a power-law behavior. The change in the slope of this curve upon reaction of the clay with the silica sol was interpreted in terms of a separation of clay platelets caused by a binding interaction with the sol particles. (orig.)

  2. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  3. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  4. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  5. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M. (University of New Mexico, Albuquerque, NM); Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Barrick, Todd A. (University of New Mexico, Albuquerque, NM); Flores, Adrean (University of New Mexico, Albuquerque, NM)

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  6. Phase diagram of supercooled water confined to hydrophilic nanopores

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  7. Controlling the role of nanopore morphology in capillary condensation.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2012-05-01

    The effect of pore morphology on capillary condensation and evaporation in nanoporous silicon is studied experimentally. A variety of cooperative and local effects are observed in tailored nanopores with well-defined regions by directly probing gas adsorption in each region using optical interferometry. All observations are ascribed to the ability of the nanopore region to access the gas reservoir directly and the nucleation of liquid bridges at local heterogeneities within the nanopore region. These assumptions, consistent with recent simulations, can be extended to any real nanoporous system.

  8. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    International Nuclear Information System (INIS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN) 2 ] + ) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN) 2 ] + complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au 0 ) proceeding by an inner sphere mechanism. The residual [Au(MeCN) 2 ] + complex was allowed to react with water, disproportionating into Au 0 and Au(III), respectively, with the Au 0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au 0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  9. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  10. Fabrication of silica hollow particles using yeast cells as a template

    Science.gov (United States)

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  11. Synthesis and characterization of ruthenium-decorated nanoporous platinum materials

    International Nuclear Information System (INIS)

    Peng Xinsheng; Koczkur, Kallum; Chen, Aicheng

    2007-01-01

    We report on the synthesis of novel three-dimensional nanoporous Pt-Ru bimetallic networks by decorating nanoporous Pt networks with Ru using a hydrothermally assisted precipitating process. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) were used to characterize the morphology and the composition of the nanoporous Pt-Ru networks formed. X-ray diffraction analysis confirmed that, after protected annealing treatment, Pt-Ru bimetallic material was formed. The electrocatalytic activity of the synthesized nanoporous Pt-Ru networks was characterized using electrochemical oxidation of methanol as a probe. The electrocatalytic activity of the nanoporous Pt networks significantly increases with the increments of decorated Ru and reaches the highest value with 41% of Ru. The peak current of methanol oxidation on the nanoporous Pt-Ru(41%) bimetallic networks is over 180% higher than that on the nanoporous Pt networks without Ru decoration. This is very desirable for fuel cell development and electrochemical sensor design

  12. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    Science.gov (United States)

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  13. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  14. Side-gated ultrathin-channel nanopore FET sensors

    International Nuclear Information System (INIS)

    Yanagi, Itaru; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi; Oura, Takeshi

    2016-01-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore. (paper)

  15. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  16. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  17. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification.

    Science.gov (United States)

    Kadhom, Mohammed; Yin, Jun; Deng, Baolin

    2016-12-06

    Thin film nanocomposite (TFN) membranes containing MCM-41 silica nanoparticles (NPs) were synthesized by the interfacial polymerization (IP) process. An m -phenylenediamine (MPD) aqueous solution and an organic phase with trimesoyl chloride (TMC) dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU) support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m²·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi)).

  18. Synthesis of ordered large-scale ZnO nanopore arrays

    International Nuclear Information System (INIS)

    Ding, G.Q.; Shen, W.Z.; Zheng, M.J.; Fan, D.H.

    2006-01-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates

  19. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  20. Erbium-implanted silica colloids with 80% luminescence quantum efficiency

    Science.gov (United States)

    Slooff, L. H.; de Dood, M. J. A.; van Blaaderen, A.; Polman, A.

    2000-06-01

    Silica colloids with a diameter of 240-360 nm, grown by wet chemical synthesis using ethanol, ammonia, water, and tetraethoxysilane, were implanted with 350 keV Er ions, to peak concentrations of 0.2-1.1 at. % and put onto a silicon or glass substrate. After annealing at 700-900 °C the colloids show clear room-temperature photoluminescence at 1.53 μm, with lifetimes as high as 17 ms. By comparing data of different Er concentrations, the purely radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency of about 80%. This high quantum efficiency indicates that, after annealing, the silica colloids are almost free of OH impurities. Spinning a layer of polymethylmethacrylate over the silica spheres results in an optically transparent nanocomposite layer, that can be used as a planar optical waveguide amplifier at 1.5 μm that is fully compatible with polymer technology.

  1. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  2. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    Science.gov (United States)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  3. Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability.

    Science.gov (United States)

    Fedorenko, Svetlana V; Grechkina, Svetlana L; Mustafina, Asiya R; Kholin, Kirill V; Stepanov, Alexey S; Nizameev, Irek R; Ismaev, Ildus E; Kadirov, Marsil K; Zairov, Rustem R; Fattakhova, Alfia N; Amirov, Rustem R; Soloveva, Svetlana E

    2017-01-01

    The present work introduces deliberate synthesis of Gd(III)-doped silica nanoparticles with high relaxivity at magnetic field strengths below 1.5T. Modified microemulsion water-in-oil procedure was used in order to achieve superficial localization of Gd(III) complexes within 40-55nm sized silica spheres. The relaxivities of the prepared nanoparticles were measured at 0.47, 1.41 and 1.5T with the use of both NMR analyzer and whole body NMR scanner. Longitudinal relaxivities of the obtained silica nanoparticles reveal significant dependence on the confinement mode, changing from 4.1 to 49.6mM -1 s -1 at 0.47T when the localization of Gd(III) complexes changes from core to superficial zones of the silica spheres. The results highlight predominant contribution of the complexes located close to silica/water interface to the relaxivity of the nanoparticles. Low effect of blood proteins on the relaxivity in the aqueous colloids of the nanoparticles was exemplified by serum bovine albumin. T 1 - weighted MRI data indicate that the nanoparticles provide strong positive contrast at 1.5T, which along with low cytotoxicity effect make a good basis for their application as contrast agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  5. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  6. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  7. Nanoporous Silica Templated HeteroEpitaxy: Final LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Koleske, Daniel; Rowen, Adam M.; Williams, John Dalton; Fan, Hongyou; Arrington, Christian Lew

    2006-11-01

    This one-year out-of-the-box LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, and the UV curable epoxy, SU-8. Use of SU-8 as a growth mask represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist patterns and pilot work on using SU-8 as a DUV negative resist, another significant potential result. While the late start nature of this project pushed some of the initial research goals out of the time table, significant progress was made. 3 Acknowledgements This work was performed in part at the Nanoscience @ UNM facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS 03-35765). Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported under the Sandia LDRD program (Project 99405). 4

  8. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  9. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  10. The sphere-PAC fuel code 'SPHERE-3'

    International Nuclear Information System (INIS)

    Wallin, H.

    2000-01-01

    Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  11. The sphere-pac fuel code 'SPHERE-3'

    International Nuclear Information System (INIS)

    Wallin, H.; Nordstroem, L.A.; Hellwig, C.

    2001-01-01

    Sphere-pac fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-pac fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  12. Nanopore wall-liquid interaction under scope of molecular dynamics study: Review

    Science.gov (United States)

    Tsukanov, A. A.; Psakhie, S. G.

    2017-12-01

    The present review is devoted to the analysis of recent molecular dynamics based on the numerical studies of molecular aspects of solid-fluid interaction in nanoscale channels. Nanopore wall-liquid interaction plays the crucial role in such processes as gas separation, water desalination, liquids decontamination, hydrocarbons and water transport in nano-fractured geological formations. Molecular dynamics simulation is one of the most suitable tools to study molecular level effects occurred in such multicomponent systems. The nanopores are classified by their geometry to four groups: nanopore in nanosheet, nanotube-like pore, slit-shaped nanopore and soft-matter nanopore. The review is focused on the functionalized nanopores in boron nitride nanosheets as novel selective membranes and on the slit-shaped nanopores formed by minerals.

  13. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  14. Uniform Pore Structure of Mesoporous Silica Microspheres by Using Di(2-ethylhexyl)phosphoric Acid

    International Nuclear Information System (INIS)

    Kim, Jong Yun; Yoon, Suk Bon; Park, Yong Joon; Jee, Kwang Yong

    2007-01-01

    Spherical morphology has been quite attractive in many special applications, such as display materials offering higher packing densities and lower light scattering for better performances in terms of both brightness and resolution, biosensors utilizing microspheres as an ideal dielectric cavities with high quality factors in optical domain, and standard reference particles for nuclear track analysis utilizing their simple well-defined geometry. There are tremendously a wide variety of studies focused on colloidal spheres of 1 nm - 1,000 nm in diameter although the colloidal dimension can be extended further to 100 μm. Some reports have described the sol-gel surfactant template synthesis of mesoporous silica spheres larger than 100 μm. It is necessary for us to prepare the intermediate 10 - 100 μm-sized silica microspheres for the single particle manipulation by using optical microscope, rather than electron microscope, in a microanalytical technique such as thermal ionization mass spectrometry, secondary ionization mass spectrometry, and laser ionization mass spectrometry

  15. Water evaporation in silica colloidal deposits.

    Science.gov (United States)

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  17. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  18. Hydrophilic nanoporous polystyrenes and 1,2-polybutadienes

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Vigild, Martin Etchells

    2008-01-01

    Nanoporous polymers from ordered block copolymers having hydrophilic cavity surfaces were successfully prepared by two methodologies: ' 1. Nanoporous polystyrenes fromPtBA-b-PS diblock or PDMS-b-PtBA-b-PS triblock copolymer precursors by atom transfer radical polymerization (ATRP), or combination...... of living anionic polymerization~ and ATRP r~spectively. The one, PtBA block, can be modified to the hydrophilic PAA, where the dther, polydimethysiloxane (PDMS) block, can be fully degraded. Deprotection of the tert-butyl groups in PtBA and the selective etching of PDMS· chains were accomplished...... by applying HF or TFA in one step. Thus both the di- and triblock copolymers after such a treatment resulted. in nanoporous polystyrenes with hexagonal cavities of different nanosizes (6-11 nm, Figure 1). 2. Nanoporous I,2-polybutadienes (I,2-PB) by grafting various acrylic monomers onto the pore. surfaces...

  19. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    Science.gov (United States)

    2018-01-01

    Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173

  20. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Kaiyu Fu

    2018-01-01

    Full Text Available Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present.

  1. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  2. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  3. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  4. Electronic conductance model in constricted MoS{sub 2} with nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, Aditya [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Leburton, Jean-Pierre, E-mail: jleburto@illinois.edu [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-02-01

    We describe a self-consistent model for electronic transport in a molybdenum di-sulphide (MoS{sub 2}) layer containing a nanopore in a constricted geometry. Our approach is based on a semi-classical thermionic Poisson-Boltzmann technique using a two-valley model within the effective mass approximation to investigate perturbations caused by the nanopore on the electronic current. In particular, we show that the effect of the nanopore on the conductance is reduced as the nanopore is moved from the center to the layer edges. Our model is applied to the detection of DNA translocating through the nanopore, which reveals current features similar to those as predicted in nanopore graphene layers.

  5. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenghai; Wu, Hongmin; Wu, Ying; Shi, Hongyan; Feng, Xun; Jiang, Shang; Chen, Jian; Song, Wenbo, E-mail: wbsong@jlu.edu.cn

    2014-08-01

    Hemi-ordered nanoporous carbon (HONC) was obtained from a mesoporous silica template through a nano-replication method using furfuryl alcohol as the carbon source. The structure and morphology of HONC were characterized and analyzed in detail by X-ray diffraction, N{sub 2}-sorption, Raman spectroscopy and transmission electron microscopy. HONC was then demonstrated as active electrode material for selective determination of nitrite in either physiological or environmental system. Well separated oxidation peaks of ascorbic acid, dopamine, uric acid and nitrite were observed in physiological system, and simultaneous discrimination of catechol, hydroquinone, resorcinol and nitrite in environmental system was also accomplished. Distinctly improved performances for selective determination of nitrite (such as significantly fast and sensitive current response with especially high selectivity) coexisted with ascorbic acid, dopamine and uric acid in the physiological system, as well as with catechol, hydroquinone and resorcinol in the environmental system were achieved at HONC electrode material. The excellent discriminating ability and high selectivity for NO{sub 2}{sup −} determination were ascribed to the good electronic conductivity, unique hemi-ordered porous structure, large surface area and large number of edge plane defect sites contained on the surface of nanopore walls of HONC. Results in this work demonstrated that HONC is one of the promising catalytic electrode materials for nitrite sensor fabrication. - Highlights: • Hemi-ordered nanoporous carbon as an active electrode material • Good discriminating ability towards NO{sub 2}{sup −} from physiological or environmental system • Highly selective determination of nitrite with fast and sensitive current response.

  6. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  7. Nanopore sensors : From hybrid to abiotic systems

    NARCIS (Netherlands)

    Kocer, Armagan; Tauk, Lara; Dejardin, Philippe

    2012-01-01

    The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is

  8. Experimental proof of the existence of a Widom line based on peculiarities of the behavior of hydrogen in nanoporous silicate at -45°C and atmospheric pressure

    Science.gov (United States)

    Bordonskii, G. S.; Gurulev, A. A.

    2017-04-01

    We have experimentally studied the thermal and microwave properties of a nanoporous medium (silica gel) with hydrogen-filled pores. On cooling down to about -45°C at atmospheric pressure, the system exhibited chemical transformations, a first-order phase transition with heat evolution, and a sharp change in the power of microwave radiation at 34 GHz transmitted through a sample. It is concluded that this point on the phase diagram corresponds to a point on the Widom line featuring sharp increase in fluctuations of the entropy and density of supercooled water formed during hydrogen interaction with the surface of pores in silica gel. These results confirm the existence of a second critical point of water, from which the Widom line originates.

  9. Influence of nanopore surface charge and magnesium ion on polyadenosine translocation

    International Nuclear Information System (INIS)

    Lepoitevin, Mathilde; Bechelany, Mikhael; Janot, Jean-Marc; Balme, Sebastien; Coulon, Pierre Eugène; Cambedouzou, Julien

    2015-01-01

    We investigate the influence of a nanopore surface state and the addition of Mg 2+ on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3–5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations. (paper)

  10. Radius ratio rule for surface hydrophilization of polydimethyl siloxane and silica nanoparticle composite

    Energy Technology Data Exchange (ETDEWEB)

    Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jain, Puneet; Sharma, Rina [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Bathula, Sivaiah; Dhar, Ajay [Material Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)

    2015-09-15

    Graphical abstract: - Highlights: • Binary hard sphere silica nanoparticle system based PDMS composite. • Enhanced hydrophilization and retainability of the composite. • Restriction of uncured PDMS from diffusion. • Increased Debye length of electrostatic double layer, measured by F-D Spectroscopy. - Abstract: Polydimethyl siloxane (PDMS) and Silica (SiO{sub 2}) nanoparticle composite blocks of three different batches (CB1–CB3) made by varying the size of SiO{sub 2} nanoparticles (NP), are studied for the degree of hydrophilization and retainability after oxidation by contact angle measurements (CA) and force distance spectroscopy (FDS) using Atomic Force Microscope (AFM). While CA measurements have shown high hydrophilization and retainability for CB3, F-D spectroscopy has reiterated the observation and has shown long range interactive forces and high Debye length of the electrostatic double layer formed. These results are in agreement with the radius ratio rule of binary sphere system for high density packing in the composite and thereby for strong hydrophilization and retainability due to reinforcement and restricted diffusion of uncured polymer.

  11. A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kishore, P.N.R.; Jeevanandam, P.

    2012-01-01

    Highlights: ► Silica-iron oxide core–shell nanoparticles have been synthesized by a novel thermal decomposition approach. ► The silica-iron oxide core–shell nanoparticles are superparamagnetic at room temperature. ► The silica-iron oxide core–shell nanoparticles serve as good photocatalyst for the degradation of Rhodamine B. - Abstract: A simple thermal decomposition approach for the synthesis of magnetic nanoparticles consisting of silica as core and iron oxide nanoparticles as shell has been reported. The iron oxide nanoparticles were deposited on the silica spheres (mean diameter = 244 ± 13 nm) by the thermal decomposition of iron (III) acetylacetonate, in diphenyl ether, in the presence of SiO 2 . The core–shell nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, diffuse reflectance spectroscopy, and magnetic measurements. The results confirm the presence of iron oxide nanoparticles on the silica core. The core–shell nanoparticles are superparamagnetic at room temperature indicating the presence of iron oxide nanoparticles on silica. The core–shell nanoparticles have been demonstrated as good photocatalyst for the degradation of Rhodamine B.

  12. Gassmann Theory Applies to Nanoporous Media

    Science.gov (United States)

    Gor, Gennady Y.; Gurevich, Boris

    2018-01-01

    Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.

  13. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    Science.gov (United States)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  14. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    Science.gov (United States)

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  15. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.

    Directory of Open Access Journals (Sweden)

    Jayesh A Bafna

    Full Text Available We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform.

  16. Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Matthieu Lancry

    2014-09-01

    Full Text Available Recently, we showed that femtosecond laser induced “nanogratings” consist of thin regions with a low refractive index (Δn = −0.15, due to the formation of nanoporous silica surrounded by regions with a positive index change. In this paper, we investigate a wide range of laser parameters to achieve very high retardance within a single layer; as much as 350 nm at λ = 546 nm but also to minimize the competing losses. We show that the total retardance depends on the number of layers present and can be accumulated in the direction of laser propagation to values higher than 1600 nm. This opens the door to using these nanostructures as refined building blocks for novel optical elements based on strong retardance.

  17. Information Dynamics of a Nonlinear Stochastic Nanopore System

    Directory of Open Access Journals (Sweden)

    Claire Gilpin

    2018-03-01

    Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.

  18. Nanostructural control of the release of macromolecules from silica sol–gels

    Science.gov (United States)

    Radin, Shula; Bhattacharyya, Sanjib; Ducheyne, Paul

    2013-01-01

    The therapeutic use of biological molecules such as growth factors and monoclonal antibodies is challenging in view of their limited half-life in vivo. This has elicited the interest in delivery materials that can protect these molecules until released over extended periods of time. Although previous studies have shown controlled release of biologically functional BMP-2 and TGF-β from silica sol–gels, more versatile release conditions are desirable. This study focuses on the relationship between room temperature processed silica sol–gel synthesis conditions and the nanopore size and size distribution of the sol–gels. Furthermore, the effect on release of large molecules with a size up to 70 kDa is determined. Dextran, a hydrophilic polysaccharide, was selected as a large model molecule at molecular sizes of 10, 40 and 70 kDa, as it enabled us to determine a size effect uniquely without possible confounding chemical effects arising from the various molecules used. Previously, acid catalysis was performed at a pH value of 1.8 below the isoelectric point of silica. Herein the silica synthesis was pursued using acid catalysis at either pH 1.8 or 3.05 first, followed by catalysis at higher values by adding base. This results in a mesoporous structure with an abundance of pores around 3.5 nm. The data show that all molecular sizes can be released in a controlled manner. The data also reveal a unique in vivo approach to enable release of large biological molecules: the use more labile sol–gel structures by acid catalyzing above the pH value of the isoelectric point of silica; upon immersion in a physiological fluid the pores expand to reach an average size of 3.5 nm, thereby facilitating molecular out-diffusion. PMID:23643607

  19. Study of polymer molecules and conformations with a nanopore

    Science.gov (United States)

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  20. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

    Science.gov (United States)

    Shankla, Manish; Aksimentiev, Aleksei

    2017-04-20

    Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

  1. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    Science.gov (United States)

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  2. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  3. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    International Nuclear Information System (INIS)

    Zhang Ting; Chai Yaqin; Yuan Ruo; Guo Junxiang

    2012-01-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag + ion ranging from 1.0 × 10 −6 to 1.0 × 10 −1 M with a detection limit of 9.5 × 10 −7 M and a slope of 60.4 ± 0.2 mV dec −1 over a wide pH range (4.0–9.0) with a fast response time (50 s) at 25 °C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl − and Br − ions. - Highlights: ► Functionalized silica gels have become promising materials. ► This work is the first attempt to apply triazene functionalized silica gel. ► The Functionalized silica gels were used to detect silver. ► The response of the previously reported papers are compared with this work. ► The result indicates the proposed electrode is better than reported Ag + electrodes.

  4. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  5. DNA and ion transport through solid-state nanopores

    NARCIS (Netherlands)

    Smeets, R.M.M.

    2008-01-01

    This thesis describes experimental work on a novel type of devices capable of detecting single-(bio)molecules; nanometer-sized pores, or nanopores. Individual nanopores are placed in between two electrolyte-filled liquid compartments and (bio)molecules are electrophoretically driven through them.

  6. Energy absorption behaviors of nanoporous materials functionalized (NMF) liquids

    OpenAIRE

    Kim, Tae Wan

    2011-01-01

    For many decades, people have been actively investigating high-performance energy absorption materials, so as to develop lightweight and small-sized protective and damping devices, such as blast mitigation helmets, vehicle armors, etc. Recently, the high energy absorption efficiency of nanoporous materials functionalized (NMF) liquids has drawn considerable attention. A NMF liquid is usually a liquid suspension of nanoporous particles with large nanopore surface areas (100 - 2,000 m²/g). The ...

  7. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  8. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Patel, N; Mariazzi, S; Toniutti, L; Checchetto, R; Miotello, A; Dire, S; Brusa, R S

    2007-01-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 deg. C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 deg. C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 deg. C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO 3 ) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol

  9. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    Science.gov (United States)

    Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.

    2007-09-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.

  10. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y.

    2017-07-01

    Development of mesoporous silica nanoparticles as carriers for drug delivery systems has increased exponentially during the last decade. The present work is focused on the synthesis of silica carriers by sol–gel from tetraethyl orthosilicate (TEOS) as precursor of silica and cetyltrimethylammonium bromide (CTAB) as pore generating agent. The synthesis conditions were modified varying the molar ratio of water/TEOS, NH3/TEOS and amount of CTAB. The silica particles were characterized by scan electron microscopy techniques (FESEM), high resolution transmission electron microscopy (HR-TEM), N2 adsorption–desorption isotherms, Zeta-potential and Dynamic Light Scattering (DLS). The results show that the specific surface area and the porosity of silica particles were strongly affected by the addition of CTAB and the amount of H2O. The dispersion and stability of silica mesoporous particles is achieved in spite of the high surface reactivity. The synthesis formulation affects considerably to the particle morphology, which changes from spheres to rods when the molar ratio of H2O increases. A maximum specific surface area of 1480m2/g was obtained with pore sizes ranging 2.5–2.8nm. (Author)

  11. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Chengzhen Sun; Bofeng Bai

    2017-01-01

    Two-dimensional graphene nanopores have shown great promise as ultra-permeable molecular sieves based on their size-sieving effects.We design a nitrogen/hydrogen modified graphene nanopore and conduct a transient non-equilibrium molecular dynamics simulation on its molecular sieving effects.The distinct time-varying molecular crossing numbers show that this special nanopore can efficiently sieve CO2 and H2S molecules from CH4 molecules with high selectivity.By analyzing the molecular structure and pore functionalization-related molecular orientation and permeable zone in the nanopore,density distribution in the molecular adsorption layer on the graphene surface,as well as other features,the molecular sieving mechanisms of graphene nanopores are revealed.Finally,several implications on the design of highly-efficient graphene nanopores,especially for determining the porosity and chemical functionalization,as gas separation membranes are summarized based on the identified phenomena and mechanisms.

  12. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ting; Chai Yaqin, E-mail: yqchai@swu.edu.cn; Yuan Ruo; Guo Junxiang

    2012-07-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag{sup +} ion ranging from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -1} M with a detection limit of 9.5 Multiplication-Sign 10{sup -7} M and a slope of 60.4 {+-} 0.2 mV dec{sup -1} over a wide pH range (4.0-9.0) with a fast response time (50 s) at 25 Degree-Sign C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl{sup -} and Br{sup -} ions. - Highlights: Black-Right-Pointing-Pointer Functionalized silica gels have become promising materials. Black-Right-Pointing-Pointer This work is the first attempt to apply triazene functionalized silica gel. Black-Right-Pointing-Pointer The Functionalized silica gels were used to detect silver. Black-Right-Pointing-Pointer The response of the previously reported papers are compared with this work. Black-Right-Pointing-Pointer The result indicates the proposed electrode is better than reported Ag{sup +} electrodes.

  13. Nanopore biosensors for detection of proteins and nucleic acids

    NARCIS (Netherlands)

    Maglia, Giovanni; Soskine, Mikhael

    2014-01-01

    Described herein are nanopore biosensors based on a modified cytolysin protein. The nanopore biosensors accommodate macromoiecules including proteins and nucleic acids, and may additionally comprise ligands with selective binding properties.

  14. The sphere-PAC fuel code 'SPHERE-3'

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, H

    2000-07-01

    Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  15. Ion selection of charge-modified large nanopores in a graphene sheet

    Science.gov (United States)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  16. Synthesis of Pt-immobilized on silica and polystyrene-encapsulated silica and their applications as electrocatalysts in the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Yi, Sung-Chul; Kim, Chang Young; Jung, Chi Young; Jeong, Sung Hoon; Kim, Wha Jung

    2011-01-01

    Nano sized Pt particles were successfully immobilized onto SiO 2 and polystyrene-encapsulated silica core shell (SiO 2 @PS). To make the immobilization of Pt onto both silica and polystyrene-encapsulated silica core shell, SiO 2 was first functionalized with -NH 2 using 3-amino propyl trimethoxysilane (APTMS) while for core shell, the negatively charged surface of polystyrene (PS) was changed with positive charge by cationic surfactant such as cetyltrimethylammonium chloride (CTACl) to make the formation of SiO 2 shell on preformed PS sphere. Transmission electron micrograph (TEM) images shows that Pt nanoparticles immobilized onto SiO 2 and SiO 2 @PS were to be 3-4 nm without agglomeraiton. The energy dispersive spectroscope (EDS) shows that Pt contents on both SiO 2 and SiO 2 @PS were to be 21.45% and 20.28%, respectively. In case of Pt-SiO 2 @PS, it is believed that Pt should have been immobilized onto PS surface and pore within SiO 2 shell as well as SiO 2 surface. The MEA fabricated with Pt-SiO 2 @PS shows better cell performance than of Pt-SiO 2 .

  17. Physisorption of SDS in a Hydrocarbon Nanoporous Polymer

    DEFF Research Database (Denmark)

    Li, Li; Wang, Yanwei; Vigild, Martin Etchells

    2010-01-01

    Surface modification of nanoporous 1,2-polybutadiene of pore diameter similar to 15 nm was accomplished by physisorption of sodium dodecyl sulfate (SDS) in water. Loading of the aqueous solution and the accompanying physisorption of SDS into the hydrophobic nanoporous films were investigated in a...

  18. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  19. Nanoporous carbon actuator and methods of use thereof

    Science.gov (United States)

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  20. Silicon deposition in nanopores using a liquid precursor

    Science.gov (United States)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  1. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    Science.gov (United States)

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  2. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  3. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  4. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  5. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  6. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  7. Nucleation of polystyrene latex particles in the presence of gamma-methacryloxypropyltrimethoxysilane: functionalized silica particles.

    Science.gov (United States)

    Bourgeat-Lami, Elodie; Insulaire, Mickaelle; Reculusa, Stéphane; Perro, Adeline; Ravaine, Serge; Duguet, Etienne

    2006-02-01

    Silica/polystyrene nanocomposite particles with different morphologies were synthesized through emulsion polymerization of styrene in the presence of silica particles previously modified by gamma-methacryloxypropyltrimethoxysilane (MPS). Grafting of the silane molecule was performed by direct addition of MPS to the aqueous silica suspension in the presence of an anionic surfactant under basic conditions. The MPS grafting density on the silica surface was determined using the depletion method and plotted against the initial MPS concentration. The influence of the MPS grafting density, the silica particles size and concentration and the nature of the surfactant on the polymerization kinetics and the particles morphology was investigated. When the polymerization was performed in the presence of an anionic surfactant, transmission electron microscopy images showed the formation of polymer spheres around silica for MPS grafting densities lower than typically 1 micromole x m(-2) while the conversion versus time curves indicated a strong acceleration effect under such conditions. In contrast, polymerizations performed in the presence of a larger amount of MPS moieties or in the presence of a non ionic emulsifier resulted in the formation of "excentered" core-shell morphologies and lower polymerization rates. The paper identifies the parameters that allow to control particles morphology and polymerization kinetics and describes the mechanism of formation of the nanocomposite colloids.

  8. Mechanical Properties of Nanoporous Au: From Empirical Evidence to Phenomenological Modeling

    Directory of Open Access Journals (Sweden)

    Giorgio Pia

    2015-09-01

    Full Text Available The present work focuses on the development of a theoretical model aimed at relating the mechanical properties of nanoporous metals to the bending response of thick ligaments. The model describes the structure of nanoporous metal foams in terms of an idealized regular lattice of massive cubic nodes and thick ligaments with square cross-sections. Following a general introduction to the subject, model predictions are compared with Young’s modulus and the yield strength of nanoporous Au foams determined experimentally and available in literature. It is shown that the model provides a quantitative description of the elastic and plastic deformation behavior of nanoporous metals, reproducing to a satisfactory extent the experimental Young’s modulus and yield strength values of nanoporous Au.

  9. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  10. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  11. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    Science.gov (United States)

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  12. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Saeid [University of Toronto, Department of Chemistry (Canada); Li Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-04-15

    Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

  13. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.

    Science.gov (United States)

    Wen, Chenyu; Zhang, Zhen; Zhang, Shi-Li

    2017-10-27

    Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, L eff , that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e -1 of this maximum. By [Formula: see text], a simple expression S 0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S 0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS 2 , and ultrathin SiN x films. The generality of the model is verified by applying it to micrometer-size pores.

  14. Electro-osmotic flow through nanopores in thin and ultrathin membranes

    Science.gov (United States)

    Melnikov, Dmitriy V.; Hulings, Zachery K.; Gracheva, Maria E.

    2017-06-01

    We theoretically study how the electro-osmotic fluid velocity in a charged cylindrical nanopore in a thin solid state membrane depends on the pore's geometry, membrane charge, and electrolyte concentration. We find that when the pore's length is comparable to its diameter, the velocity profile develops a concave shape with a minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow expansion and contraction near the exit or entrance to the pore and to the reduction of electric field inside the nanopore. The induced pressure is maximal when the pore's length is about equal to its diameter while decreasing for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and shown to be in a good agreement with numerically computed results.

  15. Microtome Sliced Block Copolymers and Nanoporous Polymers as Masks for Nanolithography

    DEFF Research Database (Denmark)

    Shvets, Violetta; Schulte, Lars; Ndoni, Sokol

    2014-01-01

    Introduction. Block copolymers self-assembling properties are commonly used for creation of very fine nanostructures [1]. Goal of our project is to test new methods of the block-copolymer lithography mask preparation: macroscopic pieces of block-copolymers or nanoporous polymers with cross...... PDMS can be chemically etched from the PB matrix by tetrabutylammonium fluoride in tetrahydrofuran and macroscopic nanoporous PB piece is obtained. Both block-copolymer piece and nanoporous polymer piece were sliced with cryomicrotome perpendicular to the axis of cylinder alignment and flakes...... of etching patterns appear only under the certain parts of thick flakes and are not continuous. Although flakes from block copolymer are thinner and more uniform in thickness than flakes from nanoporous polymer, quality of patterns under nanoporous flakes appeared to be better than under block copolymer...

  16. Dynamic crack propagation through nanoporous media

    Science.gov (United States)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  17. Effect of Synthesis Time on Morphology of Hollow Porous Silica Microspheres

    Directory of Open Access Journals (Sweden)

    Qian CHEN

    2012-03-01

    Full Text Available Hollow porous silica microspheres may be applicable as containers for the controlled release in drug delivery systems (DDS, foods, cosmetics, agrochemical, textile industry, and in other technological encapsulation use. In order to control the surface morphological properties of the silica microspheres, the effect of synthesis time on their formation was studied by a method of water-in-oil (W/O emulsion mediated sol-gel techniques. An aqueous phase of water, ammonium hydroxide and a surfactant Tween 20 was emulsified in an oil phase of 1-octanol with a stabilizer, hydroxypropyl cellulose (HPC, and a surfactant, sorbitan monooleate (Span 80 with low hydrophile-lipophile balance (HLB value. Tetraethyl orthosilicate (TEOS as a silica precursor was added to the emulsion. The resulting silica particles at different synthesis time 24, 48, and 72 hours were air-dried at room temperature and calcinated at 773 K for 3 hours. The morphology of the particles was characterized by scanning electron microscopy and the particle size distribution was measured by laser diffraction. The specific surface areas were studied by 1-point BET method, and pore sizes were measured by Image Tool Software. Both dense and porous silica microspheres were observed after all three syntheses. Hollow porous silica microspheres were formed at 24 and 48 hours synthesis time. Under base catalyzed sol-gel solution, the size of silica particles was in the range of 5.4 μm to 8.2 μm, and the particles had surface area of 111 m2/g – 380 m2/g. The longer synthesis time produced denser silica spheres with decreased pore sizes.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1344

  18. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    Science.gov (United States)

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  19. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  20. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

    KAUST Repository

    Yu, Haizhou

    2014-06-17

    The design of micro-or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances. © 2014 Macmillan Publishers Limited.

  1. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2014-06-01

    The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances.

  2. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    Science.gov (United States)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  3. 1/f noise in graphene nanopores

    International Nuclear Information System (INIS)

    Heerema, S J; Schneider, G F; Rozemuller, M; Vicarelli, L; Zandbergen, H W; Dekker, C

    2015-01-01

    Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise magnitude is very high for graphene nanopores: typically two orders of magnitude higher than for silicon nitride pores. This is a drawback as it significantly lowers the signal-to-noise ratio in DNA translocation experiments. We evaluate possible explanations for these exceptionally high noise levels in graphene pores. From examining the noise for pores of different diameters and at various salt concentrations, we find that in contrast to silicon nitride pores, the 1/f noise in graphene pores does not follow Hooge’s relation. In addition, from studying the dependence on the buffer pH, we show that the increased noise cannot be explained by charge fluctuations of chemical groups on the pore rim. Finally, we compare single and bilayer graphene to few-layer and multi-layer graphene and boron nitride (h-BN), and we find that the noise reduces with layer thickness for both materials, which suggests that mechanical fluctuations may be the underlying cause of the high 1/f noise levels in monolayer graphene nanopore devices. (paper)

  4. Electrically tunable solid-state silicon nanopore ion filter

    Directory of Open Access Journals (Sweden)

    Gracheva Maria

    2006-01-01

    Full Text Available AbstractWe show that a nanopore in a silicon membrane connected to a voltage source can be used as an electrically tunable ion filter. By applying a voltage between the heavily doped semiconductor and the electrolyte, it is possible to invert the ion population inside the nanopore and vary the conductance for both cations and anions in order to achieve selective conduction of ions even in the presence of significant surface charges in the membrane. Our model based on the solution of the Poisson equation and linear transport theory indicates that in narrow nanopores substantial gain can be achieved by controlling electrically the width of the charge double layer.

  5. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality.

    Science.gov (United States)

    Fujita, Takeshi

    2017-01-01

    Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.

  6. Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol gel method

    Science.gov (United States)

    Liu, Guixia; Hong, Guangyan; Wang, Jinxian; Dong, Xiangting

    2006-07-01

    The deposition and coating of GdVO4:Eu3+ nanoparticles on spherical silica was carried out using a simple sol-gel method at low temperature. The GdVO4:Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the ~5 nm GdVO4:Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4:Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4:Eu3+-coated silica composites are similar to those of the bulk GdVO4:Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.

  7. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  8. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  9. Single molecule transistor based nanopore for the detection of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S. J., E-mail: ray.sjr@gmail.com [Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  10. Single molecule transistor based nanopore for the detection of nicotine

    Science.gov (United States)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  11. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    OpenAIRE

    Lee, Alpha A; Vella, Dominic; Goriely, Alain; Kondrat, Svyatoslav

    2015-01-01

    Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and he...

  12. Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    Directory of Open Access Journals (Sweden)

    Hu G

    2012-05-01

    Full Text Available Gangfeng Hu,1 Luwei Xiao,2 Peijian Tong,2 Dawei Bi,1 Hui Wang,1 Haitao Ma,1 Gang Zhu,1 Hui Liu21The First People’s Hospital of Xiaoshan, Hangzhou, China; 2Zhejiang Traditional Chinese Medical University, Hangzhou, ChinaAbstract: Nanoporous bioglass containing silver (n-BGS was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT and activated partial thromboplastin time (APTT, indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage.Keywords: antibacterial, bioglass, cytotoxicity, dressing, hemostasis, nanopore, silver

  13. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  14. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  15. Understanding focused ion beam guided anodic alumina nanopore development

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → We study the effect of FIB patterning on pore evolution during anodization. → FIB patterned concaves with 1.5 nm depth can effectively guide nanopore growth. → The edge effect of FIB guided patterns causes nanopores to bend. → Anodization window is enlarged to 50-80 V for 150 nm interpore distance hexagonal arrays. - Abstract: Focused ion beam (FIB) patterning in combination with anodization has shown great promise in creating unique pore patterns. This work is aimed to understand the effect of the FIB patterned sites in guiding anodized pore development. Highly ordered porous anodic alumina has been created with the guidance of FIB created patterns on electropolished aluminum followed by oxalic acid anodization. Shallow concaves created by the FIB with only 1.5 nm depth can effectively guide the growth of ordered nanopore patterns. With the guidance of the FIB pattern, the anodization rate is much faster and the nanopore growth direction bends at the boundary of the FIB patterned and un-patterned regions. FIB patterning also enlarges the anodization window; ordered nanopore arrays with 150 nm interpore distances can be produced under an applied potential from 50 V to 80 V. The fundamental understanding of these unique processes is discussed.

  16. Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2013-11-01

    Full Text Available Fe3O4 spheres with an average size of 273 nm were prepared in the presence of CTAB by a solvothermal method. The spheres were modified by a thin layer of SiO2, and then coated by mesoporous SiO2 (m-SiO2 films, by using TEOS as a precursor and CTAB as a soft template. The resulting m-SiO2/Fe3O4 spheres, with an average particle size of 320 nm, a high surface area (656 m2/g, and ordered nanopores (average pore size 2.5 nm, were loaded with gold nanoparticles (average size 3.3 nm. The presence of m-SiO2 coating could stabilize gold nanoparticles against sintering at 500 °C. The material showed better performance than a conventional Au/SiO2 catalyst in catalytic reduction of p-nitrophenol with NaBH4. It can be separated from the reaction mixture by a magnet and be recycled without obvious loss of catalytic activity. Relevant characterization by XRD, TEM, N2 adsorption-desorption, and magnetic measurements were conducted.

  17. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    Science.gov (United States)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  18. Nanoporous cerium oxide thin film for glucose biosensor.

    Science.gov (United States)

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  19. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...

  20. Boiling of water in flow restricted areas modeled by colloidal silica deposits

    International Nuclear Information System (INIS)

    Peixinho, Jorge; Lefevre, Gregory; Coudert, Francois-Xavier; Hurisse, Olivier

    2012-09-01

    Understanding the effects of particle deposits on evaporation and boiling of water represents an important issue for EDF because it causes a severe reduction in efficiency particularly in steam generators of pressurized water reactor. These deposits are made of oxide metallic particles and the deposition process depends on multiple factors. Here we mimic deposits using a simple system made of hydrophilic silica particles. The present study reports experiments on evaporation or boiling of water confined in the pores of colloidal mono-dispersed silica micro-sphere deposits. The boiling of water confined in the pores of the colloidal crystal is studied using optical microscopy, scanning electron microscopy, nitrogen adsorption, water adsorption through infrared attenuated total reflectance spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. By comparison of the results with silica deposits and alumina membranes with cylindrical pores, our study shows that the morphology of the pores contributes to the evaporation and boiling of water. The measurements suggest that particle resuspension and crust formation take place during drying at elevated temperature and are responsible for cracks formation within the deposit film. (authors)

  1. Gate modulation of proton transport in a nanopore.

    Science.gov (United States)

    Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi

    2016-03-14

    Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.

  2. Study of preparation and surface morphology of self-ordered nanoporous alumina

    International Nuclear Information System (INIS)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany; Silva, Ronald Arreguy

    2013-01-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  3. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-01-01

    Full Text Available Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H with a pore size of 6 nm was proven to be an efficient heterogeneous nanoporous solid acid catalyst in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones from the reaction of aromatic aldehydes with 3-amino-1,2,4-triazole (or 2-aminobenzimidazole and dimedone under solvent free conditions.

  4. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    International Nuclear Information System (INIS)

    Strečková, M.; Füzer, J.; Kobera, L.; Brus, J.; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, Ĺ.; Girman, V.; Hadraba, H.; Bat'ková, M.; Bat'ko, I.

    2014-01-01

    A novel soft magnetic composite (SMC) based on spherical FeSi particles precisely covered by hybrid phenolic resin was designed. The hybrid resin including silica nano-rods chemically incorporated into the phenolic polymer matrix was prepared by the modified sol–gel method. A chemical bridge connecting silica nano-rods with the base polymeric net was verified by FTIR, 13 C and 29 Si NMR spectroscopy, whereas the shape and size of silica nano-rods were determined by TEM. It is shown that the modification of polymeric resin by silica nano-rods generally leads to the improved thermal and mechanical properties of the final samples. The hybrid resin serves as a perfect insulating coating deposited on FeSi particles and the core–shell particles can be further compacted by standard powder metallurgy methods in order to prepare final samples for mechanical, electric and magnetic testing. SEM images evidence negligible porosity, uniform distribution of the hybrid resin around FeSi particles, as well as, dimensional shape stability of the final samples after thermal treatment. The hardness, flexural strength and density of the final samples are comparable to the sintered SMCs, but they simultaneously exhibit much higher specific resistivity along with only slightly lower coercivity and permeability. - Highlights: • Soft magnetic composites are designed for electrotechnical applications. • Electroinsulating layer consists of phenolic resin modified with silica nano-rods. • NMR, FTIR and DSC analysis is used to characterize hybrid resin. • Spherical Fe–Si particles covered by hybrid resin form a core–shell composite. • Mechanical, electrical and magnetic properties are described in detail

  5. Structure of poly(di-n-hexylsilane) in nanoporous materials

    International Nuclear Information System (INIS)

    Korotkova, I.; Sakhno, T.; Drobit'ko, I.; Sakhno, Yu.; Ostapenko, N.

    2010-01-01

    Graphical abstract: On the basis of theoretical calculations using TD/CEP-31G method we found and interpreted the complexation mechanism of poly(di-n-hexylsilane) incorporated in nanoporous materials. - Abstract: In this work the effects of solvent polarity and conformation changing on the electronic characteristics of poly(di-n-hexylsilane) incorporated in the nanoporous materials are calculated. The dependence of energy levels of electronic-excited states of investigated compounds is analyzed as a function of the Si-Si-Si-Si twist angle and length of Si-Si and Si-C bonds. The possibility of complex formation between silicon atom of polymer and oxygen ions of nanoporous materials is shown.

  6. Optical characterization of nanoporous AAO sensor substrate

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  7. Highly sensitive detection using microring resonator and nanopores

    Science.gov (United States)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  8. Enzyme specific activity in functionalized nanoporous supports

    International Nuclear Information System (INIS)

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J

    2008-01-01

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P LD ) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I e , defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH 2 - and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P LD . With decreasing P LD , I e of GOX in FMS increased from 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P LD . With increasing P LD , the corresponding I e of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P LD , consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P LD and may promote a more favorable confinement environment that enhances the OPH activity

  9. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    Science.gov (United States)

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  10. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Science.gov (United States)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  11. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pauline, S. Anne; Rajendran, N., E-mail: nrajendran@annauniv.edu

    2014-01-30

    Niobium oxide was synthesized by sol–gel methodology and a crystalline, nanoporous and adherent coating of Nb{sub 2}O{sub 5} was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb{sub 2}O{sub 5} coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb{sub 2}O{sub 5} coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb{sub 2}O{sub 5} coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  12. Gradient and alternating diameter nanopore templates by focused ion beam guided anodization

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2010-01-01

    Ordered arrays of anodic alumina nanopores with uniform pore diameters have been fabricated by self-organized anodization of aluminum. However, gradient or alternating diameter nanopore arrays with designed interpore distances have not been possible. In this study, focused ion beam lithography is used to fabricate hexagonally arranged concaves with different diameters in designed arrangements on aluminum surfaces. The patterns are then used to guide the further growth of alumina nanopores in the subsequent oxalic acid anodization. Gradient and alternating nanopore arrangements have been attained by FIB patterning guided oxalic acid anodization. The fundamental understanding of the process is discussed.

  13. Controlled Release from Core-Shell Nano porous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    International Nuclear Information System (INIS)

    Jiang, X.; Rathod, Sh.; Shah, P.; Brinker, C.J.; Jiang, X.; Jiang, Y.; Liu, N.; Xu, H.; Brinker, C.J.

    2011-01-01

    Cerium (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0x10-14 m 2 s for Ce 3+ compared to 2.5x10-13 m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  14. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design, production, and characterization of artificial protein- and silica-based biomaterials

    Science.gov (United States)

    Marner, Wesley Darrell, II

    feature sizes on the order of nanometers. C. fusiformis mediates the deposition of these silica features using a family of peptides called silaffins. Silaffin peptides are generally short peptides (˜15 amino acids) rich in lysine residues, and these peptides often have post-translational modifications that include polyamine chains and phosphate groups. In vitro, the silaffin R5 has been shown to direct the deposition of silica to form spheres of uniform size. The silification and self-assembly characteristics of a silaffin-protein polymer chimera were investigated using a chemically synthesized fusion protein of the R5 silaffin and (EAK)1. The fusion protein is capable of self-assembly into fibrous hydrogels and still exhibits autosilification activity. While the silica spheres formed from R5 alone have a relatively uniform diameter (466+/-64nm), the size distribution of silica spheres formed by the chimera is bimodal (83+/-20nm and 463+/-78nm), indicating that the addition of the EAK domain is modulating the silification ability of the R5 peptide. It is also possible to modify the morphology of the matrix by changing the process conditions under which the silification occurs. Given the ability of protein polymers to self-assemble into a variety of matrix morphologies, the combination of silaffin peptides with self-assembling protein elements may provide an even greater range of available silica structures that are useful in an array of applications. Another use of the silaffin technology is in the generation of immobilized enzyme matrices. Immobilized enzyme systems often demonstrate greater stability and improved productivity over their soluble enzyme counterparts, and there is great interest in creating new routes to encapsulation of various enzymes. In these studies, the R5 silaffin was expressed as a translational fusion protein with four biomolecules (green fluorescent protein, phosphodiesterase, organophosphate hydrolase, and the cytochrome P450BM3). In each case

  16. Synthesis and characterization of novel mesocomposites Co3O4 and CuO@OMS (ordered mesoporous silica) as active catalysts for hydrocarbon oxidation

    Science.gov (United States)

    Comănescu, Cezar

    2014-03-01

    Novel metal nanoporous transition metal oxides M x O y (Co3O4, CuO) have been synthesized by thermal decomposition of inorganic salts precursors (acetates, nitrates) impregnated into hexagonal mesoporous silica (OMS, ordered mesoporous silica) of SBA-15 type (prepared in-house) at different precursor loadings, the mesocomposites thus obtained being monitored after each impregnation-calcination step by small and wide angle powder XRD. The pore size for the ordered silica host range from 5.08 to 7.06 nm. Retention of the hexagonal silica framework has been observed in spite of the temperatures up to 500 °C. Mesoporous Co3O4 has been obtained by leaching the silica through overnight HF dissolution, which partially preserved the small-range ordering found in the parent Co3O4@OMS composite prior to leaching. Both Co3O4 ( meso) and Co3O4@SBA-15 have been tested in methane oxidation and were found to be superior to the bulk Co3O4 performance, with mesoporous Co3O4 being able to fully oxidize methane to CO2 and H2O at 350 °C, while Co3O4@OMS exhibits a lower activity with 20 % conversion at 350 °C. CuO@OMS shows the lowest activity, with only 13 % conversion at 500 °C.

  17. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    Science.gov (United States)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  18. Nanoporous carbon tunable resistor/transistor and methods of production thereof

    Science.gov (United States)

    Biener, Juergen; Baumann, Theodore F; Dasgupta, Subho; Hahn, Horst

    2014-04-22

    In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically. In any embodiment, the electrolyte solution saturating the nanoporous carbon active channel is adapted for altering an electrical resistance of the nanoporous carbon active channel based on an applied electrochemical potential.

  19. Water desalination with a single-layer MoS2 nanopore

    Science.gov (United States)

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-10-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ~70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.

  20. Recent progress in molecular simulation of nanoporous graphene membranes for gas separation

    Science.gov (United States)

    Fatemi, S. Mahmood; Baniasadi, Aminreza; Moradi, Mahrokh

    2017-07-01

    If an ideal membrane for gas separation is to be obtained, the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have welldefined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. Graphene is made up of a hexagonal honeycomb lattice of carbon atoms with sp 2 hybridization state forming a one-atom-thick sheet of graphite. Following conversion of the honeycomb lattices into nanopores with a specific geometry and size, a nanoporous graphene membrane that offers high efficiency as a separation membrane because of the ultrafast molecular permeation rate as a result of its one-atom thickness is obtained. Applications of nanoporous graphene membranes for gas separation have been receiving remarkably increasing attention because nanoporous graphene membranes show promising results in this area. This review focuses on the recent advances in nanoporous graphene membranes for applications in gas separation, with a major emphasis on theoretical works. The attractive properties of nanoporous graphene membranes introduce make them appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions.

  1. Solid-state nanopores for scanning single molecules and mimicking biology

    NARCIS (Netherlands)

    Kowalczyk, S.W.

    2011-01-01

    Solid-state nanopores, nanometer-size holes in a thin synthetic membrane, are a versatile tool for the detection and manipulation of charged biomolecules. This thesis describes mostly experimental work on DNA translocation through solid-state nanopores, which we study at the single-molecule level.

  2. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  3. Preparation and Characterization of Highly Spherical Silica-titania Aerogel Beads with High Surface Area

    Directory of Open Access Journals (Sweden)

    YU Yu-xi

    2017-02-01

    Full Text Available The silica-titania aerogel beads were synthesized through sol-gel reaction followed by supercritical drying, in which TEOS and TBT as co-precursors, EtOH as solvents, HAC and NH3·H2O as catalysts. The as-prepared aerogel beads were characterized by SEM,TEM,XRD,FT-IR,TG-DTA and nitrogen adsorption-desorption. The results indicate that the diameter distribution of beads are between 1-8mm, the average diameter of beads is 3.5mm. The aerogel beads have nanoporous network structure with high specific surface area of 914.5m2/g, and the TiO2 particles are distributed in the aerogel uniformly, which keep the anatase crystal under high temperature.

  4. Simple synthesis of Al{sub 2}O{sub 3} sphere composite from hybrid process with improved thermal stability for catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Regina C.R., E-mail: reginaclaudiasantos@yahoo.com.br [Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus of Pici, Fortaleza, CE, CEP: 60440-554 (Brazil); Pinheiro, Antônio N.; Leite, Edson R. [Department of Chemistry, Federal University of São Carlos, São Carlos, SP, CEP: 13560-905 (Brazil); Freire, Valder N. [Department of Physics, Federal University of Ceará, Campus of Pici, Fortaleza, CE, CEP: 60440-554 (Brazil); Longhinotti, Elisane; Valentini, Antoninho [Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus of Pici, Fortaleza, CE, CEP: 60440-554 (Brazil)

    2015-06-15

    Aluminium oxide spheres were synthesized by the hybrid process applying the biopolymer chitosan. After the calcination process the porous spheres were characterized by Chemical elemental analysis (XRF), X-ray diffraction (XRD), Scanning electron microscopy and Energy Dispersive X-ray Spectroscopy (SEM-EDS), N{sub 2} adsorption–desorption isotherms, infrared spectroscopy (IR), and CO{sub 2} temperature programmed desorption (CO{sub 2}-TPD). The effect of thermal treatment on surface properties of the oxide spheres was also evaluated by the catalytic ethanol dehydration reaction. The hybrid method produced interesting results related to the thermal stability against sintering process and consequently low decreases of surface area. The hybrid spheres calcination at 900 and 1200 °C produced a metastable phases of alumina with a high surface area, and nanometric crystallites. Additionally, the spheres of mixed silica-alumina synthesized by this method reveal the formation of porous spheres with highly acidic OH groups, which was suggested by the catalytic performance. - Highlights: • Al and Si/Al oxide spheres with promising properties are synthesized by hybrid method. • Al{sub 2}O{sub 3} spheres show high thermal stability and resistance the loss surface area. • The SiO{sub 2} addition plays an important role in the structure and porosity of the spheres. • Al{sub 2}O{sub 3} and SiO{sub 2}/Al{sub 2}O{sub 3} spheres presented a good activity to conversion ethanol. • The activity is related to the surface area and density of OH groups on surface.

  5. Ion transport in sub-5-nm graphene nanopores

    International Nuclear Information System (INIS)

    Suk, Myung E.; Aluru, N. R.

    2014-01-01

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors

  6. Improving colloidal properties of quantum dots with combined silica and polymer coatings for in vitro immuofluorenscence assay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bingbo [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Xing Da [South China Normal University, MOE Key Laboratory of Laser Life Science (China); Lin Chao; Guo Fangfang; Zhao Peng [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Wen Xuejun [Clemson University, Clemson-MUSC Bioengineering Program, Department of Bioengineering (United States); Bao Zhihao, E-mail: zbao@tongji.edu.cn; Shi Donglu [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China)

    2011-06-15

    Semiconductor quantum dots (QDs) are promising fluorescence probes for immuofluorescence assay in the biological applications. However, water solubilization and non-specific binding are two critical issues to be addressed for the practical uses. Here, we reported a new type of QDs with combined silica and polymer coating. QDs with excellent colloidal properties were prepared via carboxylation of the amino groups on the surface of silica-coated QDs by reacting with multi-carboxyl poly (acrylic acid) (PAA). Hydrodynamic size of PAA-functionalized silica-coated QDs was around 40 nm. They were highly fluorescent (about 47.8% quantum yield). No precipitate of QDs was observed after 3 month storage at 4 Degree-Sign C. When cancer cells (HeLa) were used, the functionalized QDs exhibited little or no non-specific cellular binding. The results from in vitro experiments indicated that PAA-functionalized silica-coated QDs-antibody bioconjugates had excellent antigen-capture ability and exhibited little or no non-specific binding to polystyrene spheres which were used to immobilize the antigen for immuoflurescence assay. The PAA-functionalized silica-coated QDs with improved colloidal properties could serve as excellent alternative fluorescent probes for biodetection.

  7. Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua; Zhao Qitao [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States); Guan Xiyun, E-mail: xguan@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2010-08-24

    Nanopore stochastic sensor works by monitoring the ionic current modulations induced by the passage of analytes of interest through a single pore, which can be obtained from a biological ion channel by self-assembly or artificially fabricated in a solid-state membrane. In this minireview, we overview the use of biological nanopores and artificial nanopores for the detection of terrorist agents including explosives, organophosphorus nerve agents, nitrogen mustards, organoarsenic compounds, toxins, and viruses. We also discuss the current challenge in the development of deployable nanopore sensors for real-world applications.

  8. Detection of DNA hybridizations using solid-state nanopores

    International Nuclear Information System (INIS)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng

    2010-01-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  9. Detection of DNA hybridizations using solid-state nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng, E-mail: Xinsheng_Ling@brown.edu [Department of Physics, Brown University, Providence, RI 02912 (United States)

    2010-08-20

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  10. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    Science.gov (United States)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  11. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule†

    Science.gov (United States)

    Abelow, Alexis E.; Schepelina, Olga; White, Ryan J.; Vallée-Bélisle, Alexis

    2011-01-01

    We report the preparation of 20 and 65 nm radii glass nanopores whose surface is modified with DNA aptamers controlling the molecular transport through the nanopores in response to small molecule binding. PMID:20865192

  12. The effects of inserting a tiny sphere in the center of a nanospherical pore on the structure, adsorption, and capillary condensation of a confined fluid (a DFT study).

    Science.gov (United States)

    Keshavarzi, Ezat; Helmi, Abbas

    2015-02-26

    The modified fundamental measure theory (MFMT) has been employed to investigate the effects of inserting a tiny sphere in the center of a nanospherical pore on the structure, adsorption, and capillary condensation of fluids confined in it. In the first part of this Article, we have solved the weighted density integrals for all pores with spherical symmetries, including spherical and bispherical pores. In the second part, we show that the structure, amount of adsorption, and position of the fluid's capillary condensation change drastically when even a very thin sphere, R(s) = 0.01σ, is inserted into the center of a spherical pore (SP). In fact, the existence of a forbidden region around the inner sphere for the case of bispherical pores, even when R(s) = 0.01σ, causes a remarkable shift in both the amount of adsorption and the bulk density at which the capillary condensation occurs. Moreover, the insertion causes a sudden increase in the value of the contact density of the liquid, or the liquid in equilibrium with its vapor, at the wall of the outer sphere compared to that for an SP. In other words, the insertion of a tiny sphere in an SP causes the liquid droplet, which is formed in the center of the SP, to sprinkle throughout the whole nanopore. Also, we have demonstrated that the critical temperature and densities decrease with decreasing radius of the inner sphere.

  13. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  14. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  15. Protein sequencing via nanopore based devices: a nanofluidics perspective

    Science.gov (United States)

    Chinappi, Mauro; Cecconi, Fabio

    2018-05-01

    Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.

  16. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  17. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  18. Simultaneous chemical modification and structural transformation of Stöber silica spheres for integration of nanocatalysts

    KAUST Repository

    Yao, Kexin; Zeng, Huachun

    2012-01-01

    ) hollow spheres, on which zinc oxide (ZnO) phase and ruthenium (Ru) nanoparticles have been deposited and assembled sequentially in solution phase. A series of complex Ru/ZnO/Zn-SiO 2 nanocatalysts has been thus been integrated onto the zinc-doped SiO 2

  19. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.

    Science.gov (United States)

    McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek

    2018-02-16

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  20. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  1. Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor

    Directory of Open Access Journals (Sweden)

    Huaxing Xu

    2014-01-01

    Full Text Available Nanoporous activated carbon material was produced from the waste rice husks (RHs by precarbonizing RHs and activating with KOH. The morphology, structure, and specific surface area were investigated. The nanoporous carbon has the average pore size of 2.2 nm and high specific area of 2523.4 m2 g−1. The specific capacitance of the nanoporous carbon is calculated to be 250 F g−1 at the current density of 1 A g−1 and remains 80% for 198 F g−1 at the current density of 20 A g−1. The nanoporous carbon electrode exhibits long-term cycle life and could keep stable capacitance till 10,000 cycles. The consistently high specific capacitance, rate capacity, and long-term cycle life ability makes it a potential candidate as electrode material for supercapacitor.

  2. A patch-clamp ASIC for nanopore-based DNA analysis.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj; Pedrotti, Kenneth D; Dunbar, William B

    2013-06-01

    In this paper, a fully integrated high-sensitivity patch-clamp system is proposed for single-molecule deoxyribonucleic acid (DNA) analysis using a nanopore sensor. This system is composed of two main blocks for amplification and compensation. The amplification block is composed of three stages: 1) a headstage, 2) a voltage-gain difference amplifier, and 3) a track-and-hold circuit, that amplify a minute ionic current variation sensed by the nanopore while the compensation block avoids the headstage saturation caused by the input parasitic capacitances during sensing. By employing design techniques novel for this application, such as an instrumentation--amplifier topology and a compensation switch, we minimize the deleterious effects of the input-offset voltage and the input parasitic capacitances while attaining hardware simplicity. This system is fabricated in a 0.35 μm 4M2P CMOS process and is demonstrated using an α-hemolysin protein nanopore for detection of individual molecules of single-stranded DNA that pass through the 1.5 nm-diameter pore. In future work, the refined system will functionalize single and multiple solid-state nanopores formed in integrated microfluidic devices for advanced DNA analysis, in scientific and diagnostic applications.

  3. Nanotopography effects on astrocyte attachment to nanoporous gold surfaces.

    Science.gov (United States)

    Kurtulus, Ozge; Seker, Erkin

    2012-01-01

    Nanoporous gold, synthesized by a self-assembly process, is a new biomaterial with desirable attributes, including tunable nanotopography, drug delivery potential, electrical conductivity, and compatibility with conventional microfabrication techniques. This study reports on the effect of nanotopography in guiding cellular attachment on nanoporous gold surfaces. While the changes in topography do not affect adherent cell density, average cell area displays a non-monotonic dependence on nanotopography.

  4. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    Science.gov (United States)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  5. Falling-sphere radioactive viscometry

    International Nuclear Information System (INIS)

    Souza, R. de.

    1987-01-01

    In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198 Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author) [pt

  6. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  7. Noise and its reduction in graphene based nanopore devices

    International Nuclear Information System (INIS)

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-01-01

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiN x membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices. (paper)

  8. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    Science.gov (United States)

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  9. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth.

    Science.gov (United States)

    Wang, Haoran; Wang, Xueju; Xia, Shuman; Chew, Huck Beng

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of LixSi electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si-Si bonds, while subsequent failure is still brittle-like with the breaking of Si-Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li-Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the LixSi alloys leads to significant strain recovery.

  10. BIOLOGICAL NANOPORES FOR BIOPOLYMER SENSING AND SEQUENCING BASED ON FRAC ACTINOPORIN

    NARCIS (Netherlands)

    Maglia, Giovanni; Wloka, Carsten; Mutter, Natalie Lisa; Soskine, Misha; Huang, Gang

    2018-01-01

    The invention relates generally to the field of nanopores and the use thereof in various applications, such as analysis of biopolymer s and macromolecules, typically by making electrical measurements during translocation through a nanopores. Provided is a system comprising a funnel- shaped

  11. VMware vSphere PowerCLI Reference Automating vSphere Administration

    CERN Document Server

    Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan

    2011-01-01

    Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and

  12. Synthesis of mesoporous silica microsphere from dual surfactant

    Directory of Open Access Journals (Sweden)

    Venkatathri Narayanan

    2008-12-01

    Full Text Available A new procedure is reported to synthesis mesoporous silica micro sphere for the first time. In these method two surfactants namely Span 80 and Tween 80 were used. Small angle X ray diffraction and N2 adsorption analysis shows the synthesized material has mesoporous property. The material has spherical morphology with 1-10 µm particle size. Beside the material found to have microcapsule property as observed from the Transmission electron microscopy. The Fourier transform Infrared spectroscopic analysis reveals that the materials are similar to other mesoporous materials. We also encapsulated an UV-absorber Ibuprofen inside the microcapsule, by mixing it before the synthesis. This shows a possibility of the materials in cosmetic applications.

  13. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    Science.gov (United States)

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  14. Computational and experimental study of nanoporous membranes for water desalination and decontamination.

    Energy Technology Data Exchange (ETDEWEB)

    Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

    2008-11-01

    Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

  15. A nanoporous alumina microelectrode array for functional cell–chip coupling

    International Nuclear Information System (INIS)

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-01-01

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. (paper)

  16. One stone, two birds: silica nanospheres significantly increase photocatalytic activity and colloidal stability of photocatalysts

    Science.gov (United States)

    Rasamani, Kowsalya D.; Foley, Jonathan J., IV; Sun, Yugang

    2018-03-01

    Silver-doped silver chloride [AgCl(Ag)] nanoparticles represent a unique class of visible-light-driven photocatalysts, in which the silver dopants introduce electron-abundant mid-gap energy levels to lower the bandgap of AgCl. However, free-standing AgCl(Ag) nanoparticles, particularly those with small sizes and large surface areas, exhibit low colloidal stability and low compositional stability upon exposure to light irradiation, leading to easy aggregation and conversion to metallic silver and thus a loss of photocatalytic activity. These problems could be eliminated by attaching the small AgCl(Ag) nanoparticles to the surfaces of spherical dielectric silica particles with submicrometer sizes. The high optical transparency in the visible spectral region (400-800 nm), colloidal stability, and chemical/electronic inertness displayed by the silica spheres make them ideal for supporting photocatalysts and significantly improving their stability. The spherical morphology of the dielectric silica particles can support light scattering resonances to generate significantly enhanced electric fields near the silica particle surfaces, on which the optical absorption cross-section of the AgCl(Ag) nanoparticles is dramatically increased to promote their photocatalytic activity. The hybrid silica/AgCl(Ag) structures exhibit superior photocatalytic activity and stability, suitable for supporting photocatalysis sustainably; for instance, their efficiency in the photocatalytic decomposition of methylene blue decreases by only ˜9% even after ten cycles of operation.

  17. Nanoporous ionic organic networks: from synthesis to materials applications

    OpenAIRE

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-01-01

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of specia...

  18. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    Science.gov (United States)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  19. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  20. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  1. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides.

    Science.gov (United States)

    Asandei, Alina; Rossini, Aldo E; Chinappi, Mauro; Park, Yoonkyung; Luchian, Tudor

    2017-12-19

    Nanopore probing of biological polymers has the potential to achieve single-molecule sequencing at low cost, high throughput, portability, and minimal sample preparation and apparatus. In this article, we explore the possibility of discrimination between neutral amino acid residues from the primary structure of 30 amino acids long, engineered peptides, through the analysis of single-molecule ionic current fluctuations accompanying their slowed-down translocation across the wild type α-hemolysin (α-HL) nanopore, and molecular dynamics simulations. We found that the transient presence inside the α-HL of alanine or tryptophan residues from the primary sequence of engineered peptides results in distinct features of the ionic current fluctuation pattern associated with the peptide reversibly blocking the nanopore. We propose that α-HL sensitivity to the molecular exclusion at the most constricted region mediates ionic current blockade events correlated with the volumes that are occluded by at least three alanine or tryptophan residues, and provides the specificity needed to discriminate between groups of neutral amino acids. Further, we find that the pattern of current fluctuations depends on the orientation of the threaded amino acid residues, suggestive of a conformational anisotropy of the ensemble of conformations of the peptide on the restricted nanopore region, related to its relative axial orientation inside the nanopore.

  2. Nanoporous zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghimpu, L.; Lupan, O.; Popescu, L.; Tiginyanu, I.M.

    2011-01-01

    In this paper we demonstrate an inexpensive approach for the fabrication of nanoporous zinc oxide films by using magnetron sputtering. Study of the structural properties proves the crystallographic perfection of porous nanostructures and the possibility of its controlling by adjusting the technological parameters in the growth process. The XRD pattern of nanoporous ZnO films exhibits high intensity of the peaks relative to the background signal which is indicative of the ZnO hexagonal phase and a good crystallinity of the samples grown by magnetron sputtering.

  3. Warming up human body by nanoporous metallized polyethylene textile.

    Science.gov (United States)

    Cai, Lili; Song, Alex Y; Wu, Peilin; Hsu, Po-Chun; Peng, Yucan; Chen, Jun; Liu, Chong; Catrysse, Peter B; Liu, Yayuan; Yang, Ankun; Zhou, Chenxing; Zhou, Chenyu; Fan, Shanhui; Cui, Yi

    2017-09-19

    Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

  4. Hydrogen storage in nanoporous carbon materials: myth and facts.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Terrones, Mauricio; Terrones, Humberto

    2007-04-21

    We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H(2) m(-3)) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H(2) m(-3). The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H(2) m(-3). All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of "clean" energy.

  5. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    International Nuclear Information System (INIS)

    Wang, Haoran; Chew, Huck Beng; Wang, Xueju; Xia, Shuman

    2015-01-01

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li x Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li x Si alloys leads to significant strain recovery

  6. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wang, Xueju; Xia, Shuman [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  7. Interconnected V2O5 nanoporous network for high-performance supercapacitors.

    Science.gov (United States)

    Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G

    2012-09-26

    Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.

  8. Properties of BaTiO.sub.3./sub. confined in nanoporous Vycor and artificial opal silica

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Vaněk, Přemysl; Petzelt, Jan; Bovtun, Viktor; Kempa, Martin; Gregora, Ivan; Savinov, Maxim; Krupková, Radmila; Studnička, Václav; Buršík, Josef; Samoylovich, M.I.; Schranz, W.

    2010-01-01

    Roč. 4, č. 3 (2010), s. 215-223 ISSN 1820-6131 R&D Projects: GA AV ČR KAN301370701 Grant - others:FWF(AT) P19284-N20 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40320502 Keywords : nanocomposite * confined BaTiO 3 * porous silica * stiffened soft mode * effective dielectric properties Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.tf.uns.ac.rs/publikacije/PAC/pdf/PAC%2009%2013.pdf

  9. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    Science.gov (United States)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  10. Nonsymmetric gas transfer phenomena in nanoporous media

    International Nuclear Information System (INIS)

    Kurchatov, I.M.

    2011-01-01

    The regularities of nonsymmetric gas (nitrogen, helium, hydrogen, carbon dioxide) transfer in nanoporous materials are investigated. The effects of anisotropy and hysteresis of permeability in nanoporous media with pore gradient and porosity in objects of various nature are found out. The following objects are studied: polyethylene terephthalate track membranes with asymmetric pore form, commercial polyvinyl trimethylsilane gas-separation membranes with continuous distribution of pores over the membrane thickness and porous composite membranes (born nitride, silicon carbide, aluminium oxide) prepared by self-propagating high-temperature synthesis with abrupt change of pore dimensions over the thickness. The possible mechanisms of nonsymmetric gas transfer effects are under consideration [ru

  11. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    OpenAIRE

    Fan Chengxu; Sun Zhaoyang; Xu Lan

    2017-01-01

    A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  12. Coarsening by network restructuring in model nanoporous gold

    International Nuclear Information System (INIS)

    Kolluri, Kedarnath; Demkowicz, Michael J.

    2011-01-01

    Using atomistic modeling, we show that restructuring of the network of interconnected ligaments causes coarsening in a model of nanoporous gold. The restructuring arises from the collapse of some ligaments onto neighboring ones and is enabled by localized plasticity at ligaments and nodes. This mechanism may explain the occurrence of enclosed voids and reduction in volume in nanoporous metals during their synthesis. An expression is developed for the critical ligament radius below which coarsening by network restructuring may occur spontaneously, setting a lower limit to the ligament dimensions of nanofoams.

  13. Detecting a single molecule using a micropore-nanopore hybrid chip.

    Science.gov (United States)

    Liu, Lei; Zhu, Lizhong; Ni, Zhonghua; Chen, Yunfei

    2013-11-21

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing.

  14. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    Science.gov (United States)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  15. Nuclear reactor using fuel sphere for combustion and fuel spheres for breeding

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu.

    1995-01-01

    The present invention concerns a pebble bed-type reactor which can efficiently convert parent nuclides to fission nuclides. Fuel spheres for combustion having fission nuclides as main fuels, and fuel spheres for breeding having parent nuclides as main fuels are used separately, in the pebble bed-type reactor. According to the present invention, fuel spheres for breeding can be stayed in a reactor core for a long period of time, so that parent nuclides can be sufficiently converted into fission nuclides. In addition, since fuel spheres for breeding are loaded repeatedly, the amount thereof to be used is reduced. Therefore, the amount of the fuel spheres for breeding is small even when they are re-processed. On the other hand, since the content of the fission nuclides in the fuel spheres for breeding is not great, they can be put to final storage. This is attributable that although the fuel spheres for breeding contain fission nuclides generated by conversion, the fission nuclides are annihilated by nuclear fission reactions at the same time with the generation thereof. (I.S.)

  16. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  17. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry.

    NARCIS (Netherlands)

    Soskine, Mikhael; Biesemans, Annemie; Moeyaert, Benjamien; Cheley, Stephen; Bayley, Hagan; Maglia, Giovanni

    Nanopores have been used in label-free single-molecule studies, including investigations of chemical reactions, nucleic acid analysis, and applications in sensing. Biological nanopores generally perform better than artificial nanopores as sensors, but they have disadvantages including a fixed

  18. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    National Research Council Canada - National Science Library

    Hsiao, Vincent K; Waldeisen, John R; Lloyd, Pamela F; Bunning, Timothy J; Huang, Tony J

    2007-01-01

    .... The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a functionalized pre-polymer syrup that facilitates the immobilization of biomolecules...

  19. Graphs with Eulerian unit spheres

    OpenAIRE

    Knill, Oliver

    2015-01-01

    d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...

  20. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia

    2015-05-07

    © 2015 American Chemical Society. In nanopore sensing experiments, the properties of molecules are probed by the variation of ionic currents flowing through the nanopore. In this context, the electronic properties and the single-layer thickness of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics methods with a bioinformatic structural analysis. To obtain a qualitative picture of the translocation process and to identify salient features we performed unsupervised structural clustering on translocation conformations. This allowed us to identify some specific and robust translocation intermediates, characterized by significantly different ionic current flows. We found that the ion current strictly anticorrelates with the amount of pore occupancy by thioredoxin residues, providing a putative explanation of the multilevel current scenario observed in recently published translocation experiments.

  1. Mechanisms of water infiltration into conical hydrophobic nanopores.

    Science.gov (United States)

    Liu, Ling; Zhao, Jianbing; Yin, Chun-Yang; Culligan, Patricia J; Chen, Xi

    2009-08-14

    Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.

  2. Monitoring tetracycline through a solid-state nanopore sensor

    Science.gov (United States)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  3. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    Directory of Open Access Journals (Sweden)

    Fan Chengxu

    2017-01-01

    Full Text Available A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  4. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    Highlights: • Hollow silica–zirconia composite spheres were fabricated on polystyrene templates by the sol–gel method. • We study the effect of preparation conditions on the activity for hydrolytic dehydrogenation of ammonia borane. • The activity of hollow silica–zirconia composite spheres depends on wall thickness. - Abstract: In this paper, we report fabrication of hollow silica–zirconia composite spheres by polystyrene (PS) template method and control of wall thickness of the hollow spheres in nanoscale. Both the hollow spheres before and after calcination were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and powder X-ray diffraction analysis (XRD). Morphology of the hollow spheres does not significantly change after calcination from the results of SEM and TEM images, while the amount of residual PS templates drastically decreases via the calcination procedure from the results of FTIR and elemental analysis. The sample after calcination mainly includes amorphous silica from the results of XRD, indicating that the hollow silica–zirconia composite spheres consist of amorphous phases and/or fine particles. Wall thicknesses of the samples after calcination are controlled by adjusting the amount of PS template suspension, and hollow silica–zirconia composite spheres with the wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are obtained using the PS template suspension of 25.0, 33.5, 100.0, and 400.0 g, respectively. The activities of the hollow spheres for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}) were compared. The evolutions of 2.0, 3.1, 5.0, and 8.0 mL hydrogen from aqueous NH{sub 3}BH{sub 3} solution were finished in about 4, 5, 3, and 7 min in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm, respectively. The molar ratios of the hydrolytically generated hydrogen to

  5. Influence of the ammonium hydroxide concentration in morphological control of meso porous silica particles

    International Nuclear Information System (INIS)

    Yoon, Sukbon; Jung, Chonghun; Yoon, Inho; Kim, Changki; Choi, Wangkyu; Moon, Jeikwon

    2012-01-01

    The discovery of new M41S meso porous silica families in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these meso porous silicas has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Meanwhile, many studies have been conducted on the application as catalysts, adsorbents, and packing materials for separation columns due to their unique properties such as high specific surface area, large pore volume, tuneable pore size, and narrow pore size distribution. The pore sizes of these materials can be easily controlled by changing the alkyl-chain length of the surfactant used. However, the control of the morphology and the pore structure is not so common. The morphological control of these materials in particular is one of the major challenges for their industrial application. Recently, the meso porous silica materials with various shapes such as fibers, films, polyhedral particles, and spheres have been reported. In our previous study, the core-shell nanoparticles with a silica core and a meso porous shell under basic conditions were synthesized using the silica nanoparticles as a core and tetraethyl orthosilicate (TEOS)-cetyltrimethylammonium bromide (CTABr)-NH 4 OH-H 2 O-C 2 H 5 OH system. In this work, we report the synthesis of the most well known hexagonal MCM-41 among three main mesophases in the M41S families using TEOS-CTABr-NH 4 OH-H 2 O system. Also, in the control of the morphology and pore structure of the meso porous silica materials, the influence of the NH 4 OH concentration was investigated

  6. VMware vSphere Design

    CERN Document Server

    Guthrie, Forbes; Saidel-Keesing, Maish

    2011-01-01

    The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late

  7. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  8. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  9. Nanoporous ceramic hybrid materials synthesized by organically modified ceramic precursor with terminal amine group

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Nina E.; Vueva, Yuliya E.; Abdallah, Mohammed E.; Ivanova, Yordanka Y.; Dimitriev, Yanko B. [Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia (Bulgaria); Salvado, Isabel M.; Fernandes, Maria H. [Ceramic and Glass Engineering Department CICECO, University of Aveiro, Aveiro, (Portugal)

    2013-07-01

    Nanoporous ceramic materials was functionalized by co-condensation of tetraethyl orthosilicate (TEOS) and different 3-aminopropyltriethoxysilane (APTES) amounts in the presence of amphiphilic triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (EO{sub 20}PO{sub 70}EO{sub 20} ), who was previously dissolved in acid solution with different acid concentrations. Pluronic P123 was used as structure-directing agent and xylene as a swelling agent. Inorganic salt was introduced in order to improve structure ordering and to tailor framework porosity. The synthesized materials were characterized by scanning electron microscopy (SEM), X-ray diffraction, nuclear magnetic resonance ( {sup 29}Si MAS NMR and {sup 13}C CP MAS NMR), Fourier –transform infrared spectroscopy (FT-IR) and elemental analysis. The results from NMR and FT-IR show that the organic functional group is successfuly incorporated in the silica framework and P123 was successfully extracted. The results from all analyzes prove that the acid concentration has significant influence on the materials morphology and properties. Kay words: sol-gel, mesoporous materials, hybrid materials, as structure-directing agent.

  10. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    Science.gov (United States)

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide

    International Nuclear Information System (INIS)

    Yu Wenhui; Fei Guangtao; Chen Xiaomeng; Xue Fanghong; Xu Xijin

    2006-01-01

    Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration

  12. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography

    International Nuclear Information System (INIS)

    Janssen, Xander J A; Jonsson, Magnus P; Plesa, Calin; Soni, Gautam V; Dekker, Cees; Dekker, Nynke H

    2012-01-01

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafer’s top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 μm × 12 μm) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate. (paper)

  13. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  14. Transport behavior of water molecules through two-dimensional nanopores

    International Nuclear Information System (INIS)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-01-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules

  15. ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE

    Directory of Open Access Journals (Sweden)

    Rosemarie HAINES

    2013-12-01

    Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.

  16. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    International Nuclear Information System (INIS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-01-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  17. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    Science.gov (United States)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  18. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  19. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    Science.gov (United States)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  20. Capillary condensation and evaporation in alumina nanopores with controlled modulations.

    Science.gov (United States)

    Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit

    2010-07-20

    Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.

  1. Electrochemistry at the edge of a single graphene layer in a nanopore

    DEFF Research Database (Denmark)

    Banerjee, Sutanuka; Shim, Jeong; Rivera, J.

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and AlO dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique...

  2. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    KAUST Repository

    Gao, Yangqin; Hou, Yuanfang; Beaujuge, Pierre

    2015-01-01

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    KAUST Repository

    Gao, Yangqin

    2015-04-21

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  5. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    Science.gov (United States)

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  7. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  8. Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2006-01-01

    Roč. 124, č. 6 (2006), s. 64712.1-64712.14 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR(CZ) 1ET400720507; GA AV ČR(CZ) 1ET400720409 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanopore * NO dimerization * reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  9. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  10. DeepSimulator: a deep simulator for Nanopore sequencing

    KAUST Repository

    Li, Yu

    2017-12-23

    Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent years. To keep pace with the explosion of the downstream data analytical tools, a versatile Nanopore sequencing simulator is needed to complement the experimental data as well as to benchmark those newly developed tools. However, all the currently available simulators are based on simple statistics of the produced reads, which have difficulty in capturing the complex nature of the Nanopore sequencing procedure, the main task of which is the generation of raw electrical current signals. Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments performed across four species show that the signals generated by our context-dependent model are more similar to the experimentally obtained signals than the ones generated by the official context-independent pore model. In terms of the simulated reads, we provide a parameter interface to users so that they can obtain the reads with different accuracies ranging from 83% to 97%. The reads generated by the default parameter have almost the same properties as the real data. Two case studies demonstrate the application of DeepSimulator to benefit the development of tools in de novo assembly and in low coverage SNP detection. Availability: The software can be accessed freely at: https://github.com/lykaust15/DeepSimulator.

  11. Nanoindentation and micro-compression testing of nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Epler, Eike; Volkert, Cynthia A. [Institut fuer Materialphysik, Georg-August-Universitaet Goettingen (Germany); Balk, T. John [Department of Chemical and Materials Engineering, University of Kentucky (United States)

    2009-07-01

    Recent studies on materials such as nanoporous Au have shown that the strength of open-cell foams can be increased at a fixed porosity by decreasing the foam length scale (ligament diameter and length). This effect is attributed to the difficulty of activating dislocations in sub-micron crystal volumes. If high strength nanoporous materials are to be used to advantage in technical applications, the details of the parameters determining their strength need to be understood. In this study, the mechanical response of nanoporous Au fabricated by electrochemical dissolution from a Au-Ag alloy, is investigated by indentation using a cube corner tip as well as by micro-compression testing of columns fabricated by focused ion beam machining. The tests reveal a significant time-dependence or creep behavior in the 30% relative density foam that is not observed in fully dense gold. The origins of this effect will be probed by varying the length scale of the foam. In addition, a large scatter in mechanical behavior, particularly in the elastic response, is observed from position to position and sample to sample, which is attributed to small variations in the open cell structure.

  12. Active sieving across driven nanopores for tunable selectivity

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lydéric

    2017-10-01

    Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.

  13. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Characterization of Polycaprolactone and Rice Husk Silica Composite (PCL-SiO2) by E-Spinning to Apply Supporter for Drug Release

    Science.gov (United States)

    Song, Sinae; Hilonga, Askwar; Taik Kim, Hee

    2018-03-01

    Polycaprolactone (PCL) is an interesting material to apply biomedical field owing to its biodegradability and biocompatibility which is suitable for a specific site with longer healing times. Blending the polymer with other materials has degradation property improved with the effective and economic method. This study was conducted to fabricate supporter based on Polycaprolactone and Rice husk silica (PCL-SiO2) by using electrospinning. Nano-porous silica in the composite was synthesized from rice husk having properties of economic, eco-friendly and high surface area. It drew to enhance the amount of drug loading in the carrier. Electrospinning technique is used to fabricate fibrous component by optimization condition obtained from previous mechanical properties experiments. Release experiment was carried out by the degree of dye absorbance at 544nm by ultraviolet–visible spectroscopy, the RhB in SiO2 alternative drug for modelling of drug release was released for 1 ~ 20 days at 37°C in phosphate buffer. Furthermore, the Mechanical property was confirmed by DSC, TGA. Morphology and degree of biodegradation were shown as SEM images and EDS.

  15. Public Sphere

    DEFF Research Database (Denmark)

    Trenz, Hans-Jörg

    2015-01-01

    In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization...... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....

  16. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.

    2015-07-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  17. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.; Patzek, Tadeusz; Sun, Alexander Y.

    2015-01-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  18. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    International Nuclear Information System (INIS)

    Hua, Mengjuan; Wang, Chengquan; Qian, Jing; Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping; Wang, Kun

    2015-01-01

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg 2+ . The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg 2+ , the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg 2+ in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg 2+ contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg 2+ quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg 2+ detection. • The Hg 2+ content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg 2+ detection. • The ratiometric probe is of good simplicity, low toxicity, and excellent stability

  19. Tuneable graphene nanopores for single biomolecule detection.

    Science.gov (United States)

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  20. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Junhua; Wang, Xinying; Zhang, Lei

    2013-01-01

    Highlights: • A green chemistry method for producing nanoporous gold microelectrode was studied. • An ionic liquid plating bath was utilized for electrochemical alloying–dealloying. • Nanostructures of gold surface layers can be tuned by modulating potential. • Nanoporous gold microelectrode has high surface area and merit of a microelectrode. • Nitrite oxidation and reduction on nanoporous gold microelectrode were studied. -- Abstract: Nanoporous gold (NPG) microelectrodes with high surface area and open pore network were successfully prepared by applying modulated potential to a polycrystalline Au-disk microelectrode in ionic liquid electrolyte containing ZnCl 2 at elevated temperature. During cathodic process, Zn is electrodeposited and interacted with Au microdisk substrate to form a AuZn alloy phase. During subsequent anodic process, Zn is selectively dissolved from the alloy phase, leading to the formation of a NPG layer which can grow with repetitive potential modulation. Scanning-electron microscope and energy dispersive X-ray microscope measurements show that the NPG microelectrodes possessing nanoporous structures can be tuned via potential modulation, and chemically contain a small amount of Zn whose presence has no obvious influence on electrochemical responses of the electrodes. Steady-state and cyclic voltammetric studies suggest that the NPG microelectrodes have high surface area and keep diffusional properties of a microelectrode. Electrochemical nitrite reduction and oxidation are studied as model reactions to demonstrate potential applications of the NPG microelectrodes in electrocatalysis and electroanalysis. These facts suggest that the potential-modulated electrochemical alloying/dealloying in ionic liquid electrolyte offers a convenient green-chemistry method for the preparation of nanoporous microelectrodes

  1. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  2. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework.

    Science.gov (United States)

    Salunkhe, Rahul R; Tang, Jing; Kamachi, Yuichiro; Nakato, Teruyuki; Kim, Jung Ho; Yamauchi, Yusuke

    2015-06-23

    Nanoporous carbon and nanoporous cobalt oxide (Co3O4) materials have been selectively prepared from a single metal-organic framework (MOF) (zeolitic imidazolate framework, ZIF-67) by optimizing the annealing conditions. The resulting ZIF-derived carbon possesses highly graphitic walls and a high specific surface area of 350 m(2)·g(-1), while the resulting ZIF-derived nanoporous Co3O4 possesses a high specific surface area of 148 m(2)·g(-1) with much less carbon content (1.7 at%). When nanoporous carbon and nanoporous Co3O4 were tested as electrode materials for supercapacitor application, they showed high capacitance values (272 and 504 F·g(-1), respectively, at a scan rate of 5 mV·s(-1)). To further demonstrate the advantages of our ZIF-derived nanoporous materials, symmetric (SSCs) and asymmetric supercapacitors (ASCs) were also fabricated using nanoporous carbon and nanoporous Co3O4 electrodes. Improved capacitance performance was successfully realized for the ASC (Co3O4//carbon), better than those of the SSCs based on nanoporous carbon and nanoporous Co3O4 materials (i.e., carbon//carbon and Co3O4//Co3O4). The developed ASC with an optimal mass loading can be operated within a wide potential window of 0.0-1.6 V, which leads to a high specific energy of 36 W·h·kg(-1). More interestingly, this ASC also exhibits excellent rate capability (with the highest specific power of 8000 W·kg(-1) at a specific energy of 15 W·h·kg(-1)) combined with long-term stability up to 2000 cycles.

  3. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.

    Science.gov (United States)

    Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M

    2014-09-23

    A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

  4. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  5. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    Science.gov (United States)

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Evolution of Surface Nanopores in Pressurised Gyrospun Polymeric Microfibers

    Directory of Open Access Journals (Sweden)

    U. Eranka Illangakoon

    2017-10-01

    Full Text Available The selection of a solvent or solvent system and the ensuing polymer–solvent interactions are crucial factors affecting the preparation of fibers with multiple morphologies. A range of poly(methylmethacrylate fibers were prepared by pressurised gyration using acetone, chloroform, N,N-dimethylformamide (DMF, ethyl acetate and dichloromethane as solvents. It was found that microscale fibers with surface nanopores were formed when using chloroform, ethyl acetate and dichloromethane and poreless fibers were formed when using acetone and DMF as the solvent. These observations are explained on the basis of the physical properties of the solvents and mechanisms of pore formation. The formation of porous fibers is caused by many solvent properties such as volatility, solubility parameters, vapour pressure and surface tension. Cross-sectional images show that the nanopores are only on the surface of the fibers and they were not inter-connected. Further, the results show that fibers with desired nanopores (40–400 nm can be prepared by carefully selecting the solvent and applied pressure in the gyration process.

  7. Selective Electrochemical Detection of Epinephrine Using Gold Nanoporous Film

    Directory of Open Access Journals (Sweden)

    Dina M. Fouad

    2016-01-01

    Full Text Available Epinephrine (EP is one of the important catecholamine neurotransmitters that play an important role in the mammalian central nervous system. Therefore, it is necessary to determine the change of its concentrations. Nanoporous materials have wide applications that include catalysis, energy storages, environmental pollution control, wastewater treatment, and sensing applications. These unique properties could be attributable to their high surface area, a large pore volume, and uniform pore sizes. A gold nanoporous layer modified gold electrode was prepared and applied for the selective determination of epinephrine neurotransmitter at low concentration in the presence of several other substances including ascorbic acid (AA and uric acid (UA. The constructed electrode was characterized using scanning electron microscopy and cyclic voltammetry. The resulting electrode showed a selective detection of epinephrine with the interferences of dopamine and uric acid over a wide linear range (from 50 μM to 1 mM. The coverage of gold nanoporous on the surface of gold electrode represents a promising electrochemical sensor with high selectivity and sensitivity.

  8. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  9. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O. [LLNL; (Sandia)

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  10. Nanoporous ionic organic networks: from synthesis to materials applications.

    Science.gov (United States)

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-11-21

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of special importance and possess extreme application profiles. Within these nanoporous ionic organic networks (NIONs), here with a pore size in the range from sub-1 nm to 100 nm, we observe a synergistic coupling of the electrostatic interaction of charges, the nanoconfinement within pores and the addressable functional units in soft matter resulting in a wide variety of functions and applications, above all catalysis, energy storage and conversion, as well as environment-related operations. This review aims to highlight the recent progress in this area, and seeks to raise original perspectives that will stimulate future advancements at both the fundamental and applied level.

  11. Sealing-free fast-response paraffin/nanoporous gold hybrid actuator

    Science.gov (United States)

    Ye, Xing-Long; Jin, Hai-Jun

    2017-09-01

    Paraffin-based actuators can deliver large actuation strokes and high actuation stress, but often suffer from a low response rate and leaking problems. Here, we report a new paraffin/metal hybrid actuator, which was fabricated by infiltrating nanoporous gold with paraffin. It exhibits a fast actuation rate owing to the high thermal conductivity of the inter-connected metal phase, and requires no external sealing because liquid paraffin can be well confined in nanoscale channels, due to the large capillarity. We found that in this hybrid actuator, the stress generated by actuation is negligibly small when the characteristic size of the nanoporous gold (L) is above ˜70 nm, and increases dramatically with a decreasing size when L paraffin wax—the paraffin in smaller pores can sustain larger tensile stress, and thus the contraction of paraffin during cooling can be translated into larger compression stress and strain energy in a metal framework, leading to a larger actuation stress and energy. We also demonstrate that complex actuation motions can be achieved by incorporating hierarchical-structured nanoporous metal with paraffin.

  12. Some Durability Characteristics of Micro Silica and Nano Silica Contained Concrete

    Directory of Open Access Journals (Sweden)

    Mohammed Salah Nasr

    2016-12-01

    Full Text Available This paper aims to investigate the influence of replacement of cement with nano and micro silica admixtures on some durability properties of concrete such as water absorption, chloride content and pH tests. Three replacement ratios (5%,10%,15% of micro silica and four replacement proportions (0.5%,1.5%,3%,5% for nano silica were used in this study. Two exposure conditions were considered for chloride content test: wetting-drying and full immersing exposure in 6% of chloride ions solution, NaCl type. Results showed that mixes of %5 micro silica and 5% nano silica had lower content of chloride (about 0.19% and 0.18% for wetting-drying and full immersing exposure respectively. For water absorption test, all mixes incorporated micro and nano silica, except for %5 micro silica mix, showed lower absorption than control mixes. For pH test, results indicated that the adding of nano and micro silica didn’t affect adversely the alkalinity of concrete.

  13. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.

    Science.gov (United States)

    Xu, Xiaolong; Li, Chuanping; Zhou, Ya; Jin, Yongdong

    2017-10-27

    Diameter is a major concern for nanopore based sensing. However, directly pulling glass capillary nanopore with diameter down to sub-10 nm is very difficult. So, post treatment is sometimes necessary. Herein, we demonstrate a facile and effective wet-chemical method to shrink the diameter of glass capillary nanopore from several tens of nanometers to sub-10 nm by disodium silicate hydrolysis. Its benefits for DNA translocation are investigated. The shrinking of glass capillary nanopore not only slows down DNA translocation, but also enhances DNA translocation signal and signal-to-noise ratio significantly (102.9 for 6.4 nm glass nanopore, superior than 15 for a 3 nm silicon nitride nanopore). It also affects DNA translocation behaviors, making the approach and glass capillary nanopore platform promising for DNA translocation studies.

  14. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    Science.gov (United States)

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  15. SURFACES OF HARD-SPHERE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  16. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  17. Deformation behavior of nano-porous polycrystalline silver. Part II: Simulations

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Cugnoni, J.; Duarte, L.I.; Van Petegem, S.; Van Swygenhoven, H.

    2017-01-01

    Three-dimensional finite element simulations of nano-porous silver structures are performed to understand the correlation between the porous morphology and the mechanical behavior. The nanostructures have been obtained from ptychographic X-ray computed tomography. The simulations allow distinguishing between the interplay and role of the ligament size, the pore morphology and the porosity, and therefore provide a better comprehension of the experimental observations. We show that the proposed model has a predictive character for mechanical behavior of nano-porous silver.

  18. Water desalination with a single-layer MoS2 nanopore

    OpenAIRE

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60??2. Water flux is found to ...

  19. Where bio meets nano: The many uses for nanoporous aluminium oxide in biotechnology

    NARCIS (Netherlands)

    Ingham, C.J.; Maat, ter J.; Vos, de W.M.

    2012-01-01

    Porous aluminum oxide (PAO) is a ceramic formed by an anodization process of pure aluminum that enables the controllable assembly of exceptionally dense and regular nanopores in a planar membrane. As a consequence, PAO has a high porosity, nanopores with high aspect ratio, biocompatibility and the

  20. Parametric study of thin film evaporation from nanoporous membranes

    Science.gov (United States)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  1. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  2. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    Science.gov (United States)

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Detecting and identifying small molecules in a nanopore flux capacitor

    International Nuclear Information System (INIS)

    Bearden, Samuel; Zhang, Guigen; McClure, Ethan

    2016-01-01

    A new method of molecular detection in a metallic-semiconductor nanopore was developed and evaluated with experimental and computational methods. Measurements were made of the charging potential of the electrical double layer (EDL) capacitance as charge-carrying small molecules translocated the nanopore. Signals in the charging potential were found to be correlated to the physical properties of analyte molecules. From the measured signals, we were able to distinguish molecules with different valence charge or similar valence charge but different size. The relative magnitude of the signals from different analytes was consistent over a wide range of experimental conditions, suggesting that the detected signals are likely due to single molecules. Computational modeling of the nanopore system indicated that the double layer potential signal may be described in terms of disruption of the EDL structure due to the size and charge of the analyte molecule, in agreement with Huckel and Debye’s analysis of the electrical atmosphere of electrolyte solutions. (paper)

  4. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  5. Nanoporous materials for reducing the over potential of creating hydrogen by water electrolysis

    Science.gov (United States)

    Anderson, Marc A.; Leonard, Kevin C.

    2016-06-14

    Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.

  6. A nanoporous MXene film enables flexible supercapacitors with high energy storage.

    Science.gov (United States)

    Fan, Zhimin; Wang, Youshan; Xie, Zhimin; Xu, Xueqing; Yuan, Yin; Cheng, Zhongjun; Liu, Yuyan

    2018-05-14

    MXene films are attractive for use in advanced supercapacitor electrodes on account of their ultrahigh density and pseudocapacitive charge storage mechanism in sulfuric acid. However, the self-restacking of MXene nanosheets severely affects their rate capability and mass loading. Herein, a free-standing and flexible modified nanoporous MXene film is fabricated by incorporating Fe(OH)3 nanoparticles with diameters of 3-5 nm into MXene films and then dissolving the Fe(OH)3 nanoparticles, followed by low calcination at 200 °C, resulting in highly interconnected nanopore channels that promote efficient ion transport without compromising ultrahigh density. As a result, the modified nanoporous MXene film presents an attractive volumetric capacitance (1142 F cm-3 at 0.5 A g-1) and good rate capability (828 F cm-3 at 20 A g-1). Furthermore, it still displays a high volumetric capacitance of 749 F cm-3 and good flexibility even at a high mass loading of 11.2 mg cm-2. Therefore, this flexible and free-standing nanoporous MXene film is a promising electrode material for flexible, portable and compact storage devices. This study provides an efficient material design for flexible energy storage devices possessing high volumetric capacitance and good rate capability even at a high mass loading.

  7. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  8. Mastering VMware vSphere 5

    CERN Document Server

    Lowe, Scott

    2011-01-01

    A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the

  9. Origin of the electrophoretic force on DNA in solid-state nanopores

    Science.gov (United States)

    van Dorp, Stijn; Keyser, Ulrich F.; Dekker, Nynke H.; Dekker, Cees; Lemay, Serge G.

    2009-05-01

    Despite gel electrophoresis being one of the main workhorses of molecular biology, the physics of polyelectrolyte electrophoresis in a strongly confined environment remains poorly understood. Theory indicates that forces in electrophoresis result from interplay between ionic screening and hydrodynamics, but these ideas could so far be addressed only indirectly by experiments based on macroscopic porous gels. Here, we provide a first direct experimental test by measuring the electrophoretic force on a single DNA molecule threading through a solid-state nanopore as a function of pore size. The stall force gradually decreases on increasing the nanopore diameter from 6 to 90nm, inconsistent with expectations from simple electrostatics and strikingly demonstrating the influence of the hydrodynamic environment. We model this process by applying the coupled Poisson-Boltzmann and Stokes equations in the nanopore geometry and find good agreement with the experimental results.

  10. FABRICATION OF NANOPOROUS Ni VIA DEALLOYING OF ZINC-NICKEL COATINGS

    OpenAIRE

    Seda , Oturak

    2015-01-01

    Dealloying is a selective leaching of one component in a multicomponent alloy so as to produce a nanoporous structure. In this study, it was aimed to produce nanoporous Ni coating by selective leaching of Zn in a Zn-Ni alloy. To achieve this, first the Zn-Ni alloy was obtained by electrodeposition in a bath containing Zn and Ni salts. Then, dealloying was performed at different concentrations of NaOH solution. Dealloying led to crack formation in the coatings which thus prevented the formatio...

  11. Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres

    Science.gov (United States)

    Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.

    2013-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the

  12. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  13. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, Patricio [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, E-46022 Valencia (Spain); Apel, Pavel Yu [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna (Russian Federation); Cervera, Javier; Mafe, Salvador [Departament de Fisica de la Terra i Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain)], E-mail: patraho@fis.upv.es

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  14. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    International Nuclear Information System (INIS)

    RamIrez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafe, Salvador

    2008-01-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores

  15. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    Science.gov (United States)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  16. Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer

    International Nuclear Information System (INIS)

    Mozaffari, Sayed Ahmad; Rahmanian, Reza; Abedi, Mohammad; Amoli, Hossein Salar

    2014-01-01

    Graphical abstract: - Highlights: • Application and optimization of reactive RF magnetron sputtering for homogeneous nanoporous ZnO thin film formation. • Exploiting nanoporous ZnO thin film as a good porous framework with large surface area/volume for having stable immobilized enzyme with minimum loss of activity. • Application of impedimetric assessment for urea biosensing due to its rapidity, sensitivity, and repeatability. - Abstract: Uniform sputtered nanoporous zinc oxide (Nano-ZnO) thin film on the conductive fluorinated-tin oxide (FTO) layer was applied to immobilize urease enzyme (Urs) for urea detection. Highly uniform nanoporous ZnO thin film were obtained by reactive radio frequency (RF) magnetron sputtering system at the optimized instrumental deposition conditions. Characterization of the surface morphology and roughness of ZnO thin film by field emission-scanning electron microscopy (FE-SEM) exhibits cavities of nanoporous film as an effective biosensing area for enzyme immobilization. Step by step monitoring of FTO/Nano-ZnO/Urs biosensor fabrication were performed using electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Fabricated FTO/Nano-ZnO/Urs biosensor was used for urea determination using EIS experiments. The impedimetric results show high sensitivity for urea detection within 0.83–23.24 mM and limit of detection as 0.40 mM

  17. Analytic functionals on the sphere

    CERN Document Server

    Morimoto, Mitsuo

    1998-01-01

    This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the sphere. Because a one-dimensional sphere is a circle, the simplest example of the theory is that of Fourier series of periodic functions. The author first introduces a system of complex neighborhoods of the sphere by means of the Lie norm. He then studies holomorphic functions and analytic functionals on the complex sphere. In the one-dimensional case, this corresponds to the study of holomorphic functions and analytic functionals on the annular set in the complex plane, relying on the Laurent series expansion. In this volume, it is shown that the same idea still works in a higher-dimensional sphere. The Fourier-Borel transformation of analytic functionals on the sphere is also examined; the eigenfunction of the Laplacian can be studied in this way.

  18. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  19. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    International Nuclear Information System (INIS)

    Steele, J A; Lewis, R A; Sirbu, L; Enachi, M; Tiginyanu, I M; Skuratov, V A

    2015-01-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index n eff and compared to effective media approximations. (invited article)

  20. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  1. Pore-Confined Carriers and Biomolecules in Mesoporous Silica for Biomimetic Separation and Targeting

    Science.gov (United States)

    Zhou, Shanshan

    pores to achieve effective delivery of dsRNA to insects for RNA interference (RNAi). The mobility of dsRNA in the nanopores of the pSNPs is expected to have a functional effect on delivery of dsRNA to insects. The importance of pores to a mobile dsRNA network is demonstrated by the lack of measurable mobility for both lengths of RNA on nonporous materials. In addition, when the dsRNA could not penetrate the pores, dsRNA mobility is also not measurable at the surface of the particle. Thus, the pores seem to serve as a "sink" in providing a mobile network of dsRNA on the surface of the particle. This work successfully demonstrates the loading of RNA on functionalized pSNPs and identified factors that affects RNA loading and releasing, which provides basis for the delivery of RNA-loaded silica particles in vivo.

  2. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  3. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  4. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    Science.gov (United States)

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 318-323, 2003

  5. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    DEFF Research Database (Denmark)

    Li, Li; Molin, Søren; Yang, Liang

    2013-01-01

    -b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment...

  6. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    Science.gov (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  7. Using Synthetic Nanopores for Single-Molecule Analyses: Detecting SNPs, Trapping DNA Molecules, and the Prospects for Sequencing DNA

    Science.gov (United States)

    Dimitrov, Valentin V.

    2009-01-01

    This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…

  8. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  9. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    Science.gov (United States)

    Luo, Long; Holden, Deric A; White, Henry S

    2014-03-25

    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  10. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  11. Nanoporous Membrane Technologies for Pathogen Collection, Separation, and Detection

    National Research Council Canada - National Science Library

    Lee, Sang W; Shang, Hao; Lee, Gil U; Griffin, Matthew T; Fulton, Jack

    2003-01-01

    Partial contents: Nanoporous Membranes, Membrane Chemistries, Characterization of Membrane Chemistries,Protein Fouling, Collector,Gas and Liquid Permeabilities, Membrane Permeabilities in the Presence of Water...

  12. Force fluctuations assist nanopore unzipping of DNA

    International Nuclear Information System (INIS)

    Viasnoff, V; Chiaruttini, N; Muzard, J; Bockelmann, U

    2010-01-01

    We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order k B T/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.

  13. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    Directory of Open Access Journals (Sweden)

    Yunqi Li

    2016-04-01

    Full Text Available This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine-block-poly(ethylene oxide (abbreviated as PS-b-P2VP-b-PEO.

  14. Combined Spectroscopic and Calorimetric Studies to Reveal Absorption Mechanisms and Conformational Changes of Protein on Nanoporous Biomaterials

    Directory of Open Access Journals (Sweden)

    Saharnaz Ahmadi

    2015-07-01

    Full Text Available In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B was investigated. For this purpose, non-functionalized (KIT-6 and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6] nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.

  15. Characterization of nanoporous shales with gas sorption

    Science.gov (United States)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  16. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  17. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  18. Infrared Laser Heating Applied to Nanopore Sensing for DNA Duplex Analysis.

    Science.gov (United States)

    Angevine, Christopher E; Seashols-Williams, Sarah J; Reiner, Joseph E

    2016-03-01

    Temperature studies coupled with resistive-pulse nanopore sensing enable the quantification of a variety of important thermodynamic properties at the single-molecule limit. Previous demonstrations of nanopore sensing with temperature control have utilized bulk chamber heating methodologies. This approach makes it difficult to rapidly change temperatures and enable optical access for other analytical techniques (i.e., single-molecule fluorescence). To address these issues, researchers have explored laser-based methodologies through either direct infrared (IR) absorption or plasmonic assisted heating. In this paper, we demonstrate the use of IR-based direct absorption heating with the DNA sensing capabilities of a biological nanopore. The IR heating enables rapid changes of the temperature in and around an α-hemolysin pore, and we use this to explore melting properties for short (≤50 bp) double-stranded DNA homopolymers. We also demonstrate that the IR heating enables one to measure the percentage of different-sized DNA molecules in a binary mixture.

  19. Directed self-assembly of nanoporous metallic- and bimetallic nanoparticle thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Torsten [Fachbereich Physik, Universitaet Konstanz (Germany); Gindy, Nabil; Fahmi, Amir [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham (United Kingdom)

    2010-07-01

    Nanoporous thin films attracted considerable interest due to potential applications in optical coatings, catalysis, sensors as well as electronic devices. Recently, such films were prepared by post deposition treatments. The present study is focused on the fabrication of nanoporous thin films via directed self-assembly of hybrid materials. Due to the nature of this process no additional treatments are necessary to develop the pores. Hierarchical nanoporous structures are fabricated directly via deposition of polymer templated Au-nanoparticles onto hydrophilic substrates. These films exhibit two different pore diameters and a total pore density of more than 10{sup 10} holes per cm{sup 2}. Control over the pore size is achieved by changing the molecular weight of the PS-b-P4VP diblock copolymer. Moreover, the porous morphology is used as a template to fabricate bimetallic nanostructured thin films. Such well-defined nanostructures, not only exhibit unique physical properties but also provide control over the hydrophobicity of the coated surfaces.

  20. Pt–Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    International Nuclear Information System (INIS)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; Wijngaart, Wouter van der; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al 2 O 3 ) on Pt in nanopores to form a metal–insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al 2 O 3 layer on such a Pt film forms a metal–insulator–electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al 2 O 3 using ALD. (paper)

  1. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    Science.gov (United States)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  2. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue.

    Science.gov (United States)

    Wang, Yong; Tian, Kai; Shi, Ruicheng; Gu, Amy; Pennella, Michael; Alberts, Lindsey; Gates, Kent S; Li, Guangfu; Fan, Hongxin; Wang, Michael X; Gu, Li-Qun

    2017-07-28

    Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.

  3. InP nanopore arrays for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong

    2016-02-19

    We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.

  4. DNA base-calling from a nanopore using a Viterbi algorithm.

    Science.gov (United States)

    Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei

    2012-05-16

    Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels

    Directory of Open Access Journals (Sweden)

    Sabine Crunaire

    2014-06-01

    Full Text Available An innovative and low-cost method is proposed for the detection and discrimination of indole-positive pathogen bacteria. The method allows the non-invasive detection of gaseous indole, released by bacteria, with nanoporous colorimetric sensors. The innovation comes from the use of nanoporous matrices doped with 4-(dimethylamino-cinnamaldehyde, which act as sponges to trap and concentrate the targeted analyte and turn from transparent to dark green, long before the colonies get visible with naked eyes. With such sensors, it was possible to discriminate E. coli from H. alvei, two indole-positive and negative bacteria after seven hours of incubation.

  6. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  7. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    Science.gov (United States)

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  8. Non-dissipative energy capture of confined liquid in nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoxing; Chen, Xi [Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Lu, Weiyi; Zhao, Cang [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Qiao, Yu, E-mail: yqiao@ucsd.edu [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Program of Materials Science and Engineering, University of California–San Diego, La Jolla, CA 92093 (United States)

    2014-05-19

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  9. Non-dissipative energy capture of confined liquid in nanopores

    International Nuclear Information System (INIS)

    Xu, Baoxing; Chen, Xi; Lu, Weiyi; Zhao, Cang; Qiao, Yu

    2014-01-01

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  10. Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes.

    Science.gov (United States)

    Gittard, Shaun D; Pierson, Bonnie E; Ha, Cindy M; Wu, Chung-An Max; Narayan, Roger J; Robinson, David B

    2010-02-01

    In this study, nanoporous gold supercapacitors were produced by electrochemical dealloying of gold-silver alloy. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed completion of the dealloying process and generation of a porous gold material with approximately 10 nm diameter pores. Cyclic voltammetry and chronoamperometry of the nanoporous gold electrodes indicated that these materials exhibited supercapacitor behavior. The storage capacity of the electrodes measured by chronoamperometry was approximately 3 mC at 200 mV. Electrochemical storage and voltage-controlled delivery of two model pharmacologic agents, benzylammonium and salicylic acid, was demonstrated. These results suggest that capacitance-based storage and delivery of pharmacologic agents may serve as an alternative to conventional drug delivery methods.

  11. Carbon nanotube-based coatings to induce flow enhancement in hydrophilic nanopores

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    2016-01-01

    With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those in macrochann......With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those...

  12. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-24

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  13. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  14. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    Science.gov (United States)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  15. SPHERE: Irradiation of sphere-pac fuel of UPuO2−x containing 3% Americium

    International Nuclear Information System (INIS)

    D’Agata, E.; Hania, P.R.; McGinley, J.; Somers, J.; Sciolla, C.; Baas, P.J.; Kamer, S.; Okel, R.A.F.; Bobeldijk, I.; Delage, F.; Bejaoui, S.

    2014-01-01

    Highlights: • SPHERE is designed to check the behaviour of MADF sphere-pac concept. • MADF sphere-pac are compared with MADF pellet. • Swelling, helium release and restructuring behaviour will be the main output of the experiment. • An experiment to check sphere-pac MABB fuel behaviour is now under design. - Abstract: Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like 241 Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. The SPHERE irradiation experiment is the latest of a series of European experiments on americium transmutation (e.g. EFTTRA-T4, EFTTRA-T4bis, HELIOS, MARIOS) performed in the HFR (High Flux Reactor). The SPHERE experiment is carried out in the framework of the 4-year project FAIRFUELS of the EURATOM 7th Framework Programme (FP7). During the past years of experimental works in the field of transmutation and tests of innovative nuclear fuels, the release or trapping of helium as well as helium induced fuel swelling have been shown to be the key issues for the design of Am-bearing targets. The main objective of the SPHERE experiment is to study the in-pile behaviour of fuel containing 3% of americium and to compare the behaviour of sphere-pac fuel to pellet fuel, in particular the role of microstructure and temperature on fission gas release (mainly He) and on fuel swelling. The SPHERE experiment is being irradiated since September 2013 in the HFR in Petten (The Netherlands) and is expected to be terminated in spring 2015. The experiment has been designed to last up to 18 reactor cycles (corresponding to 18 months) but may reach its target earlier. This paper discusses the rationale and objective of the SPHERE experiment and provides a general description of its design

  16. Structural evolution in nanoporous anodic aluminium oxide

    International Nuclear Information System (INIS)

    Rocca, Emmanuel; Vantelon, Delphine; Reguer, Solenn; Mirambet, François

    2012-01-01

    Nanoporous and self-organized layers of aluminium alloys are used in many applications as membranes, templates for nanometric objects or corrosion protection for aluminium alloys. The use of this nanometric structure widely remains empirical, especially in the case of very small pores ( 4 into AlO 6 cluster and a partial release of sulphate ions are an important chemical transformation of the amorphous structure. This structural transformation defines the chemistry (pH and surface charge) inside the nanopores, the ageing behaviour and the possible incorporation or diffusion of chemical species in the nanostructure. Highlights: ► Investigations of local chemical environment of aluminium atoms in anodic aluminium oxide. ► The oxide structure is constituted by 2/3 of aluminium in tetrahedral coordination 1/3 in octahedral coordination. ► In contact with water, AlO 4 clusters are transformed into AlO 6 cluster and the aluminium sulphate bonds are hydrolysed. ► These transformations induce a pH decrease inside the nanostructure.

  17. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    Directory of Open Access Journals (Sweden)

    Alpha A. Lee

    2016-06-01

    Full Text Available Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that high capacitances can be obtained for ionophobic pores of widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis trilemma may be avoided.

  18. Stepwise Nanopore Evolution in One-Dimensional Nanostructures

    KAUST Repository

    Choi, Jang Wook

    2010-04-14

    We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon. © 2010 American Chemical Society.

  19. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  20. Nanoporous Cyclic Brush Polymers for Selective Carbon Dioxide Capture

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed work is to develop advanced synthetic methodologies that afford nanoporous materials with selective uptake affinity towards carbon...

  1. Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters

    Energy Technology Data Exchange (ETDEWEB)

    Walton, O.R.; Braun, R.L.

    1993-11-01

    The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.

  2. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and

  3. Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores.

    Science.gov (United States)

    Agrawal, Kumar Varoon; Drahushuk, Lee W; Strano, Michael S

    2016-02-13

    Carbon nanotubes (CNTs) and graphene are the rolled and flat analogues of graphitic carbon, respectively, with hexagonal crystalline lattices, and show exceptional molecular transport properties. The empirical study of a single isolated nanopore requires, as evidence, the observation of stochastic, telegraphic noise from a blocking molecule commensurate in size with the pore. This standard is used ubiquitously in patch clamp studies of single, isolated biological ion channels and a wide range of inorganic, synthetic nanopores. In this work, we show that observation and study of stochastic fluctuations for carbon nanopores, both CNTs and graphene-based, enable precision characterization of pore properties that is otherwise unattainable. In the case of voltage clamp measurements of long (0.5-1 mm) CNTs between 0.9 and 2.2 nm in diameter, Coulter blocking of cationic species reveals the complex structuring of the fluid phase for confined water in this diameter range. In the case of graphene, we have pioneered the study and the analysis of stochastic fluctuations in gas transport from a pressurized, graphene-covered micro-well compartment that reveal switching between different values of the membrane permeance attributed to chemical rearrangements of individual graphene pores. This analysis remains the only way to study such single isolated graphene nanopores under these realistic transport conditions of pore rearrangements, in keeping with the thesis of this work. In summary, observation and analysis of Coulter blocking or stochastic fluctuations of permeating flux is an invaluable tool to understand graphene and graphitic nanopores including CNTs. © 2015 The Author(s).

  4. Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors

    International Nuclear Information System (INIS)

    Gwak, Eun-Ji; Kang, Na-Ri; Baek, Un Bong; Lee, Hae Moo; Nahm, Seung Hoon; Kim, Ju-Young

    2013-01-01

    We fabricate almost crack-free 1.5 μm thick nanoporous gold thin films using free-corrosion dealloying and transfer processes from sputter-deposited precursors. By controlling the temperature and the concentration of the nitric acid solution during free-corrosion dealloying, we obtain ligament sizes in nanoporous gold between 22 and 155 nm. We investigate the effects of dissolution rate of Ag atoms, surface diffusivity of Au atoms and formation of Ag oxide on nanoporosity evolution

  5. Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel cell oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Tang, Sheng; Zhou, Xuejun; Xu, Nengneng; Bai, Zhengyu; Qiao, Jinli; Zhang, Jiujun

    2016-01-01

    Highlights: • 3-D porous N-doped graphene was prepared using one-step silica template-free method. • High specific surface area of 920 m 2 g −1 was achieved for 3-D porous N-doped graphene. • Much higher ORR activity was observed for N-doped graphene than S-doped one in 0.1 M KOH. • The as-prepared catalyst gave a peak power density of 275 mW cm −2 as zinc–air battery cathode. - Abstract: Three-dimensional nanoporous nitrogen-doped graphene (3D-PNG) has been synthesized through a facial one-step synthesis method without additional silica template. The as-prepared 3D-PNGwas used as an electrocatalyst for the oxygen reduction reaction (ORR), which shows excellent electrochemistry performance, demonstrated by half-cell electrochemical evaluation in 0.1 M KOH including prominent ORR activity, four electron-selectivity and remarkable methanol poisoning stability compared to commercial 20%Pt/C catalyst. The physical and surface properties of 3D-PNG catalyst were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET surface area analysis. The experiments show that 3D-PNG catalyst possesses super-large specific surface area reaching 920 m 2 g −1 , which is superior to our most recently reported 3D-PNG synthesized by silica template (670 m 2 g −1 ) and other doped graphene catalysts in literature. When used for constructing a zinc–air battery cathode, such an 3D-PNG catalyst can give a discharge peak power density of 275 mW cm −2 . All the results announce a unique procedure to product high-efficiency graphene-based non-noble metal catalyst materials for electrochemical energy devices including both fuel cells and metal–air batteries.

  6. Oxford Nanopore MinION Sequencing and Genome Assembly

    Directory of Open Access Journals (Sweden)

    Hengyun Lu

    2016-10-01

    Full Text Available The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS technology. The third-generation sequencing (TGS technology, led by Pacific Biosciences (PacBio, is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that promises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT. MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the genomics community. While de novo genome assemblies can be cheaply produced from SGS data, assembly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in genome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

  7. A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing.

    Science.gov (United States)

    Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A

    2015-10-01

    Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.

  8. Highly efficient human serum filtration with water-soluble nanoporous nanoparticles

    Directory of Open Access Journals (Sweden)

    Antonella Pujia

    2010-11-01

    Full Text Available Antonella Pujia1, Francesco De Angelis1,2, Domenica Scumaci3, Marco Gaspari3, Carlo Liberale1,2, Patrizio Candeloro1, Giovanni Cuda3, Enzo Di Fabrizio1,21BIONEM Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ, Italy; 2IIT, Italian Institute of Technology, Genova, Italy; 3Proteomics and Mass Spectrometry Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ, ItalyBackground: Human serum has the potential to become the most informative source of novel biomarkers, but its study is very difficult due to the incredible complexity of its molecular composition. We describe a novel tool based on biodegradable nanoporous nanoparticles (NPNPs that allows the harvesting of low-molecular-weight fractions of crude human serum or other biofluids. NPNPs with a diameter of 200 nm and pore size of a few nm were obtained by ultrasonication of nanoporous silicon. When incubated with a solution, the NPNPs harvest only the molecules small enough to be absorbed into the nanopores. Then they can be recovered by centrifugation and dissolved in water, making the harvested molecules available for further analyses.Results: Fluorescence microscopy, gel electrophoresis, and mass spectrometry were used to show the enrichment of low-molecular-weight fraction of serum under physiological conditions, with a cut-off of 13 kDa and an enrichment factor >50.Conclusion: From these findings, we conclude that ability to tune pore size, combined with the availability of hundreds of biomolecule cross-linkers, opens up new perspectives on complex biofluid analysis, discovery of biomarkers, and in situ drug delivery.Keywords: nanoporous silicon, nanoparticle, biomarker discovery, human serum proteomics, harvesting

  9. Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials.

    Science.gov (United States)

    Okaikue-Woodi, Fanny E K; Kelch, Sabrina E; Schmidt, Michael P; Enid Martinez, Carmen; Youngman, Randall E; Aristilde, Ludmilla

    2018-03-01

    Smectite clay nanoparticles are implicated in the retention of antimicrobials within soils and sediments; these clays are also inspected as drug carriers in physiological systems. Cation exchange is considered the primary adsorption mechanism of antimicrobials within smectite nanopores. However, a dual role of acid-base chemistry and adsorptive structures is speculated by recent studies. Using the prototypical smectite clay montmorillonite, we employed a combination of X-ray diffraction (XRD), nuclear magnetic resonance, attenuated total reflectance-Fourier transform infrared spectroscopy, and molecular dynamics simulations to investigate the interlayer nanopore trapping of two structurally-different fluoroquinolone (FQ) antimicrobials with similar acid-base chemistry: ciprofloxacin (a first-generation FQ) and moxifloxacin (a third-generation FQ). Greater sorption at pH 5.0 than at pH 7.0 for both FQs was consistent with cation-exchange of positively-charged species. However, the clay exhibited a near twofold higher sorption capacity for moxifloxacin than for ciprofloxacin. This difference was shown by the XRD data to be accompanied by enhanced trapping of moxifloxacin within the clay interlayers. Using the XRD-determined nanopore sizes, we performed molecular dynamics simulations of thermodynamically-favorable model adsorbates, which revealed that ciprofloxacin was adsorbed parallel to the clay surface but moxifloxacin adopted a tilted conformation across the nanopore. These conformations resulted in more slowly-exchanged than quickly-exchanged Na complexes with ciprofloxacin compared with moxifloxacin. These different Na populations were also captured by 23 Na nuclear magnetic resonance. Furthermore, the simulated adsorbates uncovered different complexation interactions that were corroborated by infrared spectroscopy. Therefore, beyond acid-base chemistry, our findings imply that distinct adsorbate structures control antimicrobial trapping within clay nanopores

  10. Enhanced light output from the nano-patterned InP semiconductor substrate through the nanoporous alumina mask.

    Science.gov (United States)

    Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha

    2012-07-01

    A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.

  11. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    Science.gov (United States)

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  12. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  13. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. -P.; Gopalan, A. I.; Philips, M. F.; Jeong, K.M., E-mail: kplee@knu.ac.kr [Department of Chemistry Education, Teacher' s College, Kyungpook National University 1370, Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2010-07-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics.

  14. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    International Nuclear Information System (INIS)

    Lee, K.-P.; Gopalan, A.I.; Philips, M.F.; Jeong, K.M.

    2010-01-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics

  15. Experiment SPHERE status 2008

    International Nuclear Information System (INIS)

    Shaulov, S.B.; Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I.; Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I.; Tkaczyk, W.; Finger, M.; Sonsky, M.

    2009-01-01

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10 16 -10 18 eV.

  16. Experiment SPHERE status 2008

    Energy Technology Data Exchange (ETDEWEB)

    Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I. [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I. [Skobeltsyn Institute of Nuclear Physics, Lomonosov State University, Moscow 119992 (Russian Federation); Tkaczyk, W. [Department of Experimental Physics of University of Lodz (Poland); Finger, M. [Karlov University, Prague (Czech Republic); Sonsky, M. [COMPAS Consortium, Turnov (Czech Republic)

    2009-12-15

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10{sup 16}-10{sup 18} eV.

  17. Effect of nanoscale flows on the surface structure of nanoporous catalysts.

    Science.gov (United States)

    Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios

    2017-06-07

    The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.

  18. Nanoporous MnO{sub x} thin-film electrodes synthesized by electrochemical lithiation/delithiation for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2011-02-15

    Nanoporous MnO{sub x} thin-film electrodes are synthesized using a combination of pulsed laser deposition (PLD) and electrochemical lithiation/delithiation methods. A dense Mn{sub 3}O{sub 4} thin-film deposited by PLD can transform into a nanoporous MnO{sub x} thin-film after electrochemical lithiation/delithiation. A nanoporous MnO{sub x} thin-film electrode exhibits significantly improved supercapacitive performance compared with an as-deposited Mn{sub 3}O{sub 4} thin-film electrode. A MnO{sub x} thin-film finally transforms into a MnO{sub 2} thin-film through an electrochemical oxidation process during continuous cyclic voltammetry scanning. (author)

  19. Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages

    Science.gov (United States)

    Bruckman, Michael A.; Randolph, Lauren N.; Gulati, Neetu M.; Stewart, Phoebe L.; Steinmetz, Nicole F.

    2015-01-01

    The molecular imaging of in vivo targets allows non-invasive disease diagnosis. Nanoparticles offer a promising platform for molecular imaging because they can deliver large payloads of imaging reagents to the site of disease. Magnetic resonance imaging (MRI) is often preferred for clinical diagnosis because it uses non-ionizing radiation and offers both high spatial resolution and excellent penetration. We have explored the use of plant viruses as the basis of for MRI contrast reagents, specifically Tobacco mosaic virus (TMV), which can assemble to form either stiff rods or spheres. We loaded TMV particles with paramagnetic Gd ions, increasing the ionic relaxivity compared to free Gd ions. The loaded TMV particles were then coated with silica maintaining high relaxivities. Interestingly, we found that when Gd(DOTA) was loaded into the interior channel of TMV and the exterior was coated with silica, the T1 relaxivities increased by three-fold from 10.9 mM−1 s−1 to 29.7 mM−1s−1 at 60 MHz compared to uncoated Gd-loaded TMV. To test the performance of the contrast agents in a biological setting, we focused on interactions with macrophages because the active or passive targeting of immune cells is a popular strategy to investigate the cellular components involved in disease progression associated with inflammation. In vitro assays and phantom MRI experiments indicate efficient targeting and imaging of macrophages, enhanced contrast-to-noise ratio was observed by shape-engineering (SNP > TMV) and silica-coating (Si-TMV/SNP > TMV/SNP). Because plant viruses are in the food chain, antibodies may be prevalent in the population. Therefore we investigated whether the silica-coating could prevent antibody recognition; indeed our data indicate that mineralization can be used as a stealth coating option to reduce clearance. Therefore, we conclude that the silica-coated protein-based contrast agent may provide an interesting candidate material for further investigation

  20. A Powerful Public Sphere?

    DEFF Research Database (Denmark)

    Fiig, Christina

    The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public......The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public...