WorldWideScience

Sample records for nanopore wall surface

  1. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    Science.gov (United States)

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  2. Nanopore wall-liquid interaction under scope of molecular dynamics study: Review

    Science.gov (United States)

    Tsukanov, A. A.; Psakhie, S. G.

    2017-12-01

    The present review is devoted to the analysis of recent molecular dynamics based on the numerical studies of molecular aspects of solid-fluid interaction in nanoscale channels. Nanopore wall-liquid interaction plays the crucial role in such processes as gas separation, water desalination, liquids decontamination, hydrocarbons and water transport in nano-fractured geological formations. Molecular dynamics simulation is one of the most suitable tools to study molecular level effects occurred in such multicomponent systems. The nanopores are classified by their geometry to four groups: nanopore in nanosheet, nanotube-like pore, slit-shaped nanopore and soft-matter nanopore. The review is focused on the functionalized nanopores in boron nitride nanosheets as novel selective membranes and on the slit-shaped nanopores formed by minerals.

  3. On the specific surface area of nanoporous materials

    NARCIS (Netherlands)

    Detsi, E.; De Jong, E.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; ten Brinke, G.; De Raedt, H. A.; Onck, P. R.; De Hosson, J. T. M.

    2011-01-01

    A proper quantification of the specific surface area of nanoporous materials is necessary for a better understanding of the properties that are affected by the high surface-area-to-volume ratio of nanoporous metals, nanoporous polymers and nanoporous ceramics. In this paper we derive an analytical

  4. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  5. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  6. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  7. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  8. Wall-collision line broadening of molecular oxygen within nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune [Department of Physics, Lund University, P. O. Box 118, SE-221 00 Lund (Sweden); Adolfsson, Erik [Ceramic Materials, SWEREA IVF, Box 104, SE-431 22 Moelndal (Sweden)

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  9. Influence of nanopore surface charge and magnesium ion on polyadenosine translocation

    International Nuclear Information System (INIS)

    Lepoitevin, Mathilde; Bechelany, Mikhael; Janot, Jean-Marc; Balme, Sebastien; Coulon, Pierre Eugène; Cambedouzou, Julien

    2015-01-01

    We investigate the influence of a nanopore surface state and the addition of Mg 2+ on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3–5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations. (paper)

  10. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  11. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  12. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  13. Evolution of Surface Nanopores in Pressurised Gyrospun Polymeric Microfibers

    Directory of Open Access Journals (Sweden)

    U. Eranka Illangakoon

    2017-10-01

    Full Text Available The selection of a solvent or solvent system and the ensuing polymer–solvent interactions are crucial factors affecting the preparation of fibers with multiple morphologies. A range of poly(methylmethacrylate fibers were prepared by pressurised gyration using acetone, chloroform, N,N-dimethylformamide (DMF, ethyl acetate and dichloromethane as solvents. It was found that microscale fibers with surface nanopores were formed when using chloroform, ethyl acetate and dichloromethane and poreless fibers were formed when using acetone and DMF as the solvent. These observations are explained on the basis of the physical properties of the solvents and mechanisms of pore formation. The formation of porous fibers is caused by many solvent properties such as volatility, solubility parameters, vapour pressure and surface tension. Cross-sectional images show that the nanopores are only on the surface of the fibers and they were not inter-connected. Further, the results show that fibers with desired nanopores (40–400 nm can be prepared by carefully selecting the solvent and applied pressure in the gyration process.

  14. Nanotopography effects on astrocyte attachment to nanoporous gold surfaces.

    Science.gov (United States)

    Kurtulus, Ozge; Seker, Erkin

    2012-01-01

    Nanoporous gold, synthesized by a self-assembly process, is a new biomaterial with desirable attributes, including tunable nanotopography, drug delivery potential, electrical conductivity, and compatibility with conventional microfabrication techniques. This study reports on the effect of nanotopography in guiding cellular attachment on nanoporous gold surfaces. While the changes in topography do not affect adherent cell density, average cell area displays a non-monotonic dependence on nanotopography.

  15. The role of concavo-convex walls of a nanopore on the density profile, adsorption, solvation force, and capillary condensation of confined fluids: A DFT study

    International Nuclear Information System (INIS)

    Helmi, Abbas; Keshavarzi, Ezat

    2014-01-01

    Highlights: • The effect of concavo-convex walls of nanopores on the density profile was studied. • For HS fluids the contact density at concave wall is greater than for convex wall. • For Yukawa fluid the contact density at concave wall can be less than convex wall. • Capillary condensation was observed for Yukawa fluids in the homocentric pores. - Abstract: We investigate the effects of concavo-convex walls of a nanopore on the structure and certain thermodynamic properties of confined fluids. Adsorption, solvation force, and capillary condensation in a nanopore formed between two homocentric spheres will be determined using the MFMT. For hard sphere fluids, contact density is greater at the concave wall than it is at the convex wall. In Yukawa fluids, for the thermodynamic state in which the energy effect is the dominant factor, contact density at a concave wall is less than that at a convex wall; this will be reversed for the thermodynamic state in which the entropy effect is the dominant factor. It is possible to find thermodynamic states in which contact densities at concave and convex walls become identical. The adsorption and solvation force of hard sphere fluid show an oscillatory behavior versus H. Capillary condensation is in certain cases observed for Yukawa fluids

  16. Trombe walls with nanoporous aerogel insulation applied to UK housing refurbishments

    Directory of Open Access Journals (Sweden)

    Mark Dowson

    2014-10-01

    Full Text Available There is an opportunity to improve the efficiency of passive Trombe walls and active solar air collectors by replacing their conventional glass covers with lightweight polycarbonate panels filled with nanoporous aerogel insulation. This study investigates the thermal performance, energy savings, and financial payback period of passive Aerogel Trombe walls applied to the existing UK housing stock. Using parametric modeling, a series of design guidance tables have been generated, providing estimates of the energy savings and overheating risk associated with applying areas of Trombe wall to four different house types across the UK built to six notional construction standards. Calculated energy savings range from 183 kWh/m2/year for an 8 m2 system retrofitted to a solid walled detached house to 62 kWh/m2/year for a 32 m2 system retrofitted to a super insulated flat. Predicted energy savings from Trombe walls up to 24 m2 are found to exceed the energy savings from external insulation across all house types and constructions. Small areas of Trombe wall can provide a useful energy contribution without creating a significant overheating risk. If larger areas are to be installed, then detailed calculations would be recommended to assess and mitigate potential overheating issues.

  17. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  18. Effect of nanoscale flows on the surface structure of nanoporous catalysts.

    Science.gov (United States)

    Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios

    2017-06-07

    The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.

  19. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    Science.gov (United States)

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  20. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    Science.gov (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  1. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  2. Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces

    International Nuclear Information System (INIS)

    Martín, Jaime; Martín-González, Marisol; Del Campo, Adolfo; Reinosa, Julián J; Fernández, José Francisco

    2012-01-01

    We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm 2 . The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm 2 . The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130–140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm 2 -scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array. (paper)

  3. High-temperature stability of the hydrate shell of a Na+ cation in a flat nanopore with hydrophobic walls

    Science.gov (United States)

    Shevkunov, S. V.

    2017-11-01

    The effect of elevated temperature has on the hydrate shell of a singly charged sodium cation inside a flat nanopore with smooth walls is studied using the Monte Carlo method. The free energy and the entropy of vapor molecule attachment are calculated by means of a bicanonical statistical ensemble using a detailed model of interactions. The nanopore has a stabilizing effect on the hydrate shell with respect to fluctuations and a destabilizing effect with respect to complete evaporation. At the boiling point of water, behavior is observed that is qualitatively similar to behavior at room temperature, but with a substantial shift in the vapor pressure and shell size.

  4. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    Science.gov (United States)

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  5. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  6. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  7. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  8. Nanoporous ultrahigh specific surface polyacrylonitrile fibres

    International Nuclear Information System (INIS)

    Zhang Lifeng; Hsieh, Y-L

    2006-01-01

    The concept of phase separation was coupled with electrospinning to generate polyacrylonitrile (PAN) and poly(ethylene oxide) (PEO) bicomponent fibres that, upon removal of the phase-separated PEO domains, became nanoporous. Electrospinning of PAN (150 kDa) with 15-50% w/w PEO (10 kDa) at a 8% w/w total concentration in N,N-dimethylformamide produced fibres with decreasing averaged diameters from 390 to 130 nm. Evidence of phase separation between PAN and PEO in the bicomponent fibres was indicated by the characteristic PAN and PEO peaks by Fourier transform infrared (FTIR) spectroscopy and solid-state nuclear magnetic resonance (NMR) imaging, and confirmed by the co-existence of PAN cyclization and PEO melting by differential scanning calorimetry (DSC) and the presence of PEO crystalline diffraction by wide-angle x-ray scattering (WAXS). Removal of PEO by dissolution in water was confirmed by the matched mass loss to PEO fraction and the absence of PEO by FTIR and DSC. The water-treated bicomponent fibres appeared slightly larger in diameter and contained internal pores of nanometre scale. The nanoporous fibres generated from 50/50 PAN/PEO bicomponent precursor contained internal pores of a few nanometres to tens of nanometres in size and had 50% higher pore volume and 2.5-fold higher specific surface

  9. Mechanisms of water infiltration into conical hydrophobic nanopores.

    Science.gov (United States)

    Liu, Ling; Zhao, Jianbing; Yin, Chun-Yang; Culligan, Patricia J; Chen, Xi

    2009-08-14

    Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.

  10. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  11. Hydrogen storage in nanoporous carbon materials: myth and facts.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Terrones, Mauricio; Terrones, Humberto

    2007-04-21

    We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H(2) m(-3)) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H(2) m(-3). The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H(2) m(-3). All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of "clean" energy.

  12. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Flaibani, Marina; Elvassore, Nicola, E-mail: nicola.elvassore@unipd.it

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity ({approx} 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: Black-Right-Pointing-Pointer Gas anti-solvent precipitation and salt leaching for scaffold fabrication. Black-Right-Pointing-Pointer Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. Black-Right-Pointing-Pointer Gas anti-solvent precipitation

  13. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    International Nuclear Information System (INIS)

    Flaibani, Marina; Elvassore, Nicola

    2012-01-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10–15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177–0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (∼ 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: ► Gas anti-solvent precipitation and salt leaching for scaffold fabrication. ► Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. ► Gas anti-solvent precipitation induces nano-porous structures. ► Scaffolds are biocompatible and

  14. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  15. Catalyst Design Using Nanoporous Iron for the Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Tarek M. Abdel-Fattah

    2013-01-01

    Full Text Available Single-walled carbon nanotubes (SWNTs have been synthesized via a novel chemical vapor deposition (CVD approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs.

  16. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  17. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework.

    Science.gov (United States)

    Salunkhe, Rahul R; Tang, Jing; Kamachi, Yuichiro; Nakato, Teruyuki; Kim, Jung Ho; Yamauchi, Yusuke

    2015-06-23

    Nanoporous carbon and nanoporous cobalt oxide (Co3O4) materials have been selectively prepared from a single metal-organic framework (MOF) (zeolitic imidazolate framework, ZIF-67) by optimizing the annealing conditions. The resulting ZIF-derived carbon possesses highly graphitic walls and a high specific surface area of 350 m(2)·g(-1), while the resulting ZIF-derived nanoporous Co3O4 possesses a high specific surface area of 148 m(2)·g(-1) with much less carbon content (1.7 at%). When nanoporous carbon and nanoporous Co3O4 were tested as electrode materials for supercapacitor application, they showed high capacitance values (272 and 504 F·g(-1), respectively, at a scan rate of 5 mV·s(-1)). To further demonstrate the advantages of our ZIF-derived nanoporous materials, symmetric (SSCs) and asymmetric supercapacitors (ASCs) were also fabricated using nanoporous carbon and nanoporous Co3O4 electrodes. Improved capacitance performance was successfully realized for the ASC (Co3O4//carbon), better than those of the SSCs based on nanoporous carbon and nanoporous Co3O4 materials (i.e., carbon//carbon and Co3O4//Co3O4). The developed ASC with an optimal mass loading can be operated within a wide potential window of 0.0-1.6 V, which leads to a high specific energy of 36 W·h·kg(-1). More interestingly, this ASC also exhibits excellent rate capability (with the highest specific power of 8000 W·kg(-1) at a specific energy of 15 W·h·kg(-1)) combined with long-term stability up to 2000 cycles.

  18. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    Science.gov (United States)

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    Science.gov (United States)

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Nanopore formation on Au coated pyramid under electron beam irradiations (plasmonic nanopore on pyramid

    Directory of Open Access Journals (Sweden)

    Seong Soo Choi

    2016-03-01

    Full Text Available There have been tremendous interests about the single molecule analysis using a sold-state nanopore. The solid-state nanopore can be fabricated either by drilling technique, or diffusion technique by using electron beam irradiations. The solid-state SiN nanopore device with electrical detection technique recently fabricated, however, the solid-state Au nanopore with optical detection technique can be better utilized as the next generation single molecule sensor. In this report, the nanometer size openings with its size less than 10 nm on the diffused membrane on the 200 nm Au pyramid were fabricated by using field emission scanning electron microscopy (FESEM electron beam irradiations, transmission electron microscopy (TEM, etc. After the sample was being kept under a room environment for several months, several Au (111 clusters with ~6 nm diameter formed via Ostwald ripening are observed using a high resolution TEM imaging. The nanopore with Au nanoclusters on the diffused membrane can be utilized as an optical nanopore device. Keywords: Electron beam irradiation, Surface diffusion, Carbon contamination, Au cluster, Ostwald ripening

  2. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  3. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration

    Science.gov (United States)

    Zhang, Wenjie; Cao, Huiliang; Zhang, Xiaochen; Li, Guanglong; Chang, Qing; Zhao, Jun; Qiao, Yuqin; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-02-01

    Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants.Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to

  4. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  5. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  6. Study of preparation and surface morphology of self-ordered nanoporous alumina

    International Nuclear Information System (INIS)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany; Silva, Ronald Arreguy

    2013-01-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  7. Surface tectonics of nanoporous networks of melamine-capped molecular building blocks formed through interface Schiff-base reactions.

    Science.gov (United States)

    Liu, Xuan-He; Wang, Dong; Wan, Li-Jun

    2013-10-01

    Control over the assembly of molecules on a surface is of great importance for the fabrication of molecule-based miniature devices. Melamine (MA) and molecules with terminal MA units are promising candidates for supramolecular interfacial packing patterning, owing to their multiple hydrogen-bonding sites. Herein, we report the formation of self-assembled structures of MA-capped molecules through a simple on-surface synthetic route. MA terminal groups were successfully fabricated onto rigid molecular cores with 2-fold and 3-fold symmetry through interfacial Schiff-base reactions between MA and aldehyde groups. Sub-molecular scanning tunneling microscopy (STM) imaging of the resultant adlayer revealed the formation of nanoporous networks. Detailed structural analysis indicated that strong hydrogen-bonding interactions between the MA groups persistently drove the formation of nanoporous networks. Herein, we demonstrate that functional groups with strong hydrogen-bond-formation ability are promising building blocks for the guided assembly of nanoporous networks and other hierarchical 2D assemblies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrophilic nanoporous polystyrenes and 1,2-polybutadienes

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Vigild, Martin Etchells

    2008-01-01

    Nanoporous polymers from ordered block copolymers having hydrophilic cavity surfaces were successfully prepared by two methodologies: ' 1. Nanoporous polystyrenes fromPtBA-b-PS diblock or PDMS-b-PtBA-b-PS triblock copolymer precursors by atom transfer radical polymerization (ATRP), or combination...... of living anionic polymerization~ and ATRP r~spectively. The one, PtBA block, can be modified to the hydrophilic PAA, where the dther, polydimethysiloxane (PDMS) block, can be fully degraded. Deprotection of the tert-butyl groups in PtBA and the selective etching of PDMS· chains were accomplished...... by applying HF or TFA in one step. Thus both the di- and triblock copolymers after such a treatment resulted. in nanoporous polystyrenes with hexagonal cavities of different nanosizes (6-11 nm, Figure 1). 2. Nanoporous I,2-polybutadienes (I,2-PB) by grafting various acrylic monomers onto the pore. surfaces...

  9. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper

    Science.gov (United States)

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-01

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  10. Wettability transition induced transformation and entrapment of polymer nanostructures in cylindrical nanopores.

    Science.gov (United States)

    Feng, Xunda; Mei, Shilin; Jin, Zhaoxia

    2011-12-06

    We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society

  11. Nanopores formed by DNA origami: a review.

    Science.gov (United States)

    Bell, Nicholas A W; Keyser, Ulrich F

    2014-10-01

    Nanopores have emerged over the past two decades to become an important technique in single molecule experimental physics and biomolecule sensing. Recently DNA nanotechnology, in particular DNA origami, has been used for the formation of nanopores in insulating materials. DNA origami is a very attractive technique for the formation of nanopores since it enables the construction of 3D shapes with precise control over geometry and surface functionality. DNA origami has been applied to nanopore research by forming hybrid architectures with solid state nanopores and by direct insertion into lipid bilayers. This review discusses recent experimental work in this area and provides an outlook for future avenues and challenges. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions

    International Nuclear Information System (INIS)

    Kim, Minsoo P; Yi, Gi-Ra; Kim, Hyeong Jun; Kim, Bumjoon J

    2015-01-01

    We present a novel method for producing structured nanoporous thin films using block copolymer (BCP) micelles loaded with metallic ions. The BCP micellar thin films containing gold (Au) ions were prepared by spin-coating poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) micelle solutions in which Au precursors (AuCl 4 − ) were selectively loaded onto the P4VP core. When the micellar films were exposed to cetyltrimethylammonium bromide (CTAB) solutions, the Au precursors were selectively extracted from the P4VP domains due to their strong electrostatic interaction with CTAB, leading to the formation of pores in the micelles. Consequently, regularly patterned nanoporous surfaces were formed. By controlling the molecular weight (M n ) of PS-b-P4VP and the amount of Au precursors (λ) that were loaded in the P4VP domains, the pore size and depth could be tuned precisely. In particular, when a sufficient amount of Au precursors was loaded (λ  ≥ 0.3), the porous surface nanostructure was well developed. In addition, the pore size and depth of the nanostructure increased as the λ value increased. For instance, when the λ value increased from 0.3 to 1.0, the pore size increased from 22.8 nm to 28.8 nm, and the pore depth increased from 2.1 nm to 3.2 nm. Interestingly, the transition from the nonporous structures to the porous structures in the micellar film could be reversibly controlled by adding and removing the Au precursors in the film. Moreover, our method for the preparation of nanoporous films can be extended to micellar film by incorporating other metal ions such as silver (Ag) and iron (Fe). (paper)

  13. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  14. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    Science.gov (United States)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over

  15. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  16. Chemical reactivity of self-organized alumina nanopores in aqueous medium

    International Nuclear Information System (INIS)

    Rocca, E.; Vantelon, D.; Gehin, A.; Augros, M.; Viola, A.

    2011-01-01

    This work is devoted to the characterization of the structure and chemistry of small self-organized nanopores of aluminum oxide in aqueous medium (diameter 4 /AlO 6 clusters is proposed to describe the amorphous oxide constituting the walls of the nanostructure. X-ray absorption near edge spectroscopy measurements, electrokinetic measurements and O 18 tracer experiments bring to light the structural changes and the specific diffusion mechanism in the nanometer network. Immersion in boiling water induces both the transformation of AlO 4 to AlO 6 clusters and the release of sulfate species by hydrolysis. Water molecules rapidly diffuse in the nanostructure, but ion diffusion is selective because of surface positive charges and overlap of the surface electric field in very small pores.

  17. Synthesis of ordered large-scale ZnO nanopore arrays

    International Nuclear Information System (INIS)

    Ding, G.Q.; Shen, W.Z.; Zheng, M.J.; Fan, D.H.

    2006-01-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates

  18. Expanding the functionality and applications of nanopore sensors

    Science.gov (United States)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  19. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    Science.gov (United States)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that

  20. Physisorption of SDS in a Hydrocarbon Nanoporous Polymer

    DEFF Research Database (Denmark)

    Li, Li; Wang, Yanwei; Vigild, Martin Etchells

    2010-01-01

    Surface modification of nanoporous 1,2-polybutadiene of pore diameter similar to 15 nm was accomplished by physisorption of sodium dodecyl sulfate (SDS) in water. Loading of the aqueous solution and the accompanying physisorption of SDS into the hydrophobic nanoporous films were investigated in a...

  1. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  2. Novel insights into nanopore deformation caused by capillary condensation.

    Science.gov (United States)

    Günther, Gerrit; Prass, Johannes; Paris, Oskar; Schoen, Martin

    2008-08-22

    By means of in situ small-angle x-ray diffraction experiments and semi-grand-canonical ensemble Monte Carlo simulations we demonstrate that sorption and condensation of a fluid confined within nanopores is capable of deforming the pore walls. At low pressures the pore is widened due to a repulsive interaction caused by collisions of the fluid molecules with the walls. At capillary condensation the pores contract abruptly on account of attractive fluid-wall interactions whereas for larger pressures they expand again. These features cannot solely be accounted for by effects related to pore-wall curvature but have to be attributed to fluid-wall dispersion forces instead.

  3. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    Science.gov (United States)

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  4. Nanoporous cerium oxide thin film for glucose biosensor.

    Science.gov (United States)

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  5. Energy absorption behaviors of nanoporous materials functionalized (NMF) liquids

    OpenAIRE

    Kim, Tae Wan

    2011-01-01

    For many decades, people have been actively investigating high-performance energy absorption materials, so as to develop lightweight and small-sized protective and damping devices, such as blast mitigation helmets, vehicle armors, etc. Recently, the high energy absorption efficiency of nanoporous materials functionalized (NMF) liquids has drawn considerable attention. A NMF liquid is usually a liquid suspension of nanoporous particles with large nanopore surface areas (100 - 2,000 m²/g). The ...

  6. Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    Directory of Open Access Journals (Sweden)

    Hu G

    2012-05-01

    Full Text Available Gangfeng Hu,1 Luwei Xiao,2 Peijian Tong,2 Dawei Bi,1 Hui Wang,1 Haitao Ma,1 Gang Zhu,1 Hui Liu21The First People’s Hospital of Xiaoshan, Hangzhou, China; 2Zhejiang Traditional Chinese Medical University, Hangzhou, ChinaAbstract: Nanoporous bioglass containing silver (n-BGS was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT and activated partial thromboplastin time (APTT, indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage.Keywords: antibacterial, bioglass, cytotoxicity, dressing, hemostasis, nanopore, silver

  7. Optical characterization of nanoporous AAO sensor substrate

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  8. Effect of the nature of the surface on the reactivity of nanoporous silica under irradiation

    International Nuclear Information System (INIS)

    Le Caer, S.; Alam, M.S.; Chatelain, C.; Brunet, F.; Charpentier, T.; Renault, J.P.; Brodie-Linder, N.; Alba-Simionesco, C.

    2011-01-01

    Complete text of publication follows. Materials such as concrete, clays and zeolites which embed radioactive wastes adsorb in their pores significant amounts of water that can be decomposed under ionizing radiation leading to the formation of H 2 which is potentially explosive. It is well established that the H 2 production arises from chemi- or physi-sorbed OH groups at the surface of oxides. In this context, we have studied the behaviour of water confined in nanoporous silica. To distinguish the behavior of the two kinds of OH, we have performed different thermal treatments on SBA-15 materials prior to their irradiation. The IR analysis and H 2 measurements have proven that in the radiolysis of SBA-15 materials, silanol groups are only attacked when they are in the majority with respect to adsorbed water. However they are much less efficient at producing H 2 . The comparison between water content before and after electron irradiation and the corresponding H 2 production indicates that water desorption is the main route to adsorbed water loss. On the other hand, surface silanol groups are more susceptible to attack, leading to H 2 production when SBA-15 samples have undergone extensive thermal treatment. The surface of nanoporous glasses were then grafted using chloroaklyldimethylsilane. The effect of irradiation on these grafted surfaces was studied by means of mass spectrometry and NMR experiments. These different techniques reveal an original reactivity of the surface under irradiation.

  9. The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

    International Nuclear Information System (INIS)

    Chang, Jeong Ho; Kim, Kyung Ja; Shin, Young Kook

    2004-01-01

    Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 A with the increase of hydrophobic chain lengths and up to 660 m 2 /g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state 13 C and 29 Si NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates

  10. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    Science.gov (United States)

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  11. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films

    Science.gov (United States)

    Gazzola, Enrico; Cittadini, Michela; Brigo, Laura; Brusatin, Giovanna; Guglielmi, Massimo; Romanato, Filippo; Martucci, Alessandro

    2015-08-01

    Nanoporous TiO2 anatase film has been investigated as sensitive layer in Surface Plasmon Resonance sensors for the detection of hydrogen and Volatile Organic Compounds, specifically methanol and isopropanol. The sensors consist of a TiO2 nanoporous matrix deposited above a metallic plasmonic grating, which can support propagating Surface Plasmon Polaritons. The spectral position of the plasmonic resonance dip in the reflectance spectra was monitored and correlated to the interaction with the target gases. Reversible blue-shifts of the resonance frequency, up to more than 2 THz, were recorded in response to the exposure to 10000 ppm of H2 in N2 at 300°C. This shift cannot be explained by the mere refractive index variation due to the target gas filling the pores, that is negligible. Reversible red-shifts were instead recorded in response to the exposure to 3000 ppm of methanol or isopropanol at room temperature, of magnitudes up to 14 THz and 9 THz, respectively. In contrast, if the only sensing mechanism was the mere pores filling, the shifts should have been larger during the isopropanol detection. We therefore suggest that other mechanisms intervene in the analyte/matrix interaction, capable to produce an injection of electrons into the sensitive matrix, which in turn induces a decrease of the refractive index.

  13. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule†

    Science.gov (United States)

    Abelow, Alexis E.; Schepelina, Olga; White, Ryan J.; Vallée-Bélisle, Alexis

    2011-01-01

    We report the preparation of 20 and 65 nm radii glass nanopores whose surface is modified with DNA aptamers controlling the molecular transport through the nanopores in response to small molecule binding. PMID:20865192

  14. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    Science.gov (United States)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  15. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Le Bourhis, E.; Patriarche, G.

    2005-01-01

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  16. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    Science.gov (United States)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  17. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Jan Bornikoel

    2017-09-01

    Full Text Available Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell–cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell–cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.

  18. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.

    2015-07-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  19. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.; Patzek, Tadeusz; Sun, Alexander Y.

    2015-01-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  20. Gate modulation of proton transport in a nanopore.

    Science.gov (United States)

    Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi

    2016-03-14

    Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.

  1. Fabrication of beta-PVDF membranes by track etching and specific functionalization of nano-pores

    International Nuclear Information System (INIS)

    Cuscito, O.

    2008-01-01

    Poly(vinylidene fluoride)(β-PVDF) nano-porous membranes were made by chemical revealing of tracks induced from swift heavy ions irradiation. Pore opening and radii can be varied in a controllable manner with the etching time. nano-pores size in nano-meter scale (from 12 nm to 50 nm) appears to be linearly dependent to the etching time. It was then necessary to adapt the characterization tools to these membranes. Consequently, we resorted to the use of structural analysis methods (Scanning Electron Microscopy, Small Angle Neutron Scattering) and developed evaluation methods of the membranes transport properties like gas permeation and ionic diffusion. Results obtained confirm the pores opening (break through) and the hydrophobicity of material, which we have modified with hydrophilic molecules. In this precise case, the grafting of acrylic acid was initiated by the radicals still remains after track-etching (called radio-grafting). This key result was obtained by a study of Electron Paramagnetic Resonance. The labelling of introduced chemical functionalities with fluorescent probes was a very effective mean to visualize very few amounts of molecules by confocal microscopy. The radio-grafting was found specifically localized inside etched tracks. The protocol offers the possibility to create a double functionality, the one localized inside the nano-pores and the other on the surface of membranes. The modification of radio-grafting parameters (the acrylic acid concentration, solvent nature, use of transfer agent) and the chemical properties of the nano-pore walls have a direct incidence on the transport properties. (author) [fr

  2. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    Science.gov (United States)

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  3. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    , we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.

  4. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    Science.gov (United States)

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  5. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    Directory of Open Access Journals (Sweden)

    Wennerberg Ann

    2011-03-01

    Full Text Available Abstract Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm. Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm

  6. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    Science.gov (United States)

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  7. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Chengzhen Sun; Bofeng Bai

    2017-01-01

    Two-dimensional graphene nanopores have shown great promise as ultra-permeable molecular sieves based on their size-sieving effects.We design a nitrogen/hydrogen modified graphene nanopore and conduct a transient non-equilibrium molecular dynamics simulation on its molecular sieving effects.The distinct time-varying molecular crossing numbers show that this special nanopore can efficiently sieve CO2 and H2S molecules from CH4 molecules with high selectivity.By analyzing the molecular structure and pore functionalization-related molecular orientation and permeable zone in the nanopore,density distribution in the molecular adsorption layer on the graphene surface,as well as other features,the molecular sieving mechanisms of graphene nanopores are revealed.Finally,several implications on the design of highly-efficient graphene nanopores,especially for determining the porosity and chemical functionalization,as gas separation membranes are summarized based on the identified phenomena and mechanisms.

  8. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    DEFF Research Database (Denmark)

    Li, Li; Molin, Søren; Yang, Liang

    2013-01-01

    -b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment...

  9. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  10. Convergent fabrication of a nanoporous two-dimensional carbon network from an aldol condensation on metal surfaces

    International Nuclear Information System (INIS)

    Landers, John; De Santis, Maurizio; Bendiab, Nedjma; Magaud, Laurence; Coraux, Johann; Chérioux, Frédéric; Lamare, Simon

    2014-01-01

    We report a convergent surface polymerization reaction scheme on Au(111), based on a triple aldol condensation, yielding a carbon-rich, covalent nanoporous two-dimensional network. The reaction is not self-poisoning and proceeds up to a full surface coverage. The deposited precursor molecules 1, 3, 5-tri(4’-acetylphenyl) first form supramolecular assemblies that are converted to the porous covalent network upon heating. The formation and structure of the network and of the intermediate steps are studied with scanning tunneling microscopy, Raman spectroscopy and density functional theory. (paper)

  11. Electrically tunable solid-state silicon nanopore ion filter

    Directory of Open Access Journals (Sweden)

    Gracheva Maria

    2006-01-01

    Full Text Available AbstractWe show that a nanopore in a silicon membrane connected to a voltage source can be used as an electrically tunable ion filter. By applying a voltage between the heavily doped semiconductor and the electrolyte, it is possible to invert the ion population inside the nanopore and vary the conductance for both cations and anions in order to achieve selective conduction of ions even in the presence of significant surface charges in the membrane. Our model based on the solution of the Poisson equation and linear transport theory indicates that in narrow nanopores substantial gain can be achieved by controlling electrically the width of the charge double layer.

  12. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  13. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Junhua; Wang, Xinying; Zhang, Lei

    2013-01-01

    Highlights: • A green chemistry method for producing nanoporous gold microelectrode was studied. • An ionic liquid plating bath was utilized for electrochemical alloying–dealloying. • Nanostructures of gold surface layers can be tuned by modulating potential. • Nanoporous gold microelectrode has high surface area and merit of a microelectrode. • Nitrite oxidation and reduction on nanoporous gold microelectrode were studied. -- Abstract: Nanoporous gold (NPG) microelectrodes with high surface area and open pore network were successfully prepared by applying modulated potential to a polycrystalline Au-disk microelectrode in ionic liquid electrolyte containing ZnCl 2 at elevated temperature. During cathodic process, Zn is electrodeposited and interacted with Au microdisk substrate to form a AuZn alloy phase. During subsequent anodic process, Zn is selectively dissolved from the alloy phase, leading to the formation of a NPG layer which can grow with repetitive potential modulation. Scanning-electron microscope and energy dispersive X-ray microscope measurements show that the NPG microelectrodes possessing nanoporous structures can be tuned via potential modulation, and chemically contain a small amount of Zn whose presence has no obvious influence on electrochemical responses of the electrodes. Steady-state and cyclic voltammetric studies suggest that the NPG microelectrodes have high surface area and keep diffusional properties of a microelectrode. Electrochemical nitrite reduction and oxidation are studied as model reactions to demonstrate potential applications of the NPG microelectrodes in electrocatalysis and electroanalysis. These facts suggest that the potential-modulated electrochemical alloying/dealloying in ionic liquid electrolyte offers a convenient green-chemistry method for the preparation of nanoporous microelectrodes

  14. Gradient and alternating diameter nanopore templates by focused ion beam guided anodization

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2010-01-01

    Ordered arrays of anodic alumina nanopores with uniform pore diameters have been fabricated by self-organized anodization of aluminum. However, gradient or alternating diameter nanopore arrays with designed interpore distances have not been possible. In this study, focused ion beam lithography is used to fabricate hexagonally arranged concaves with different diameters in designed arrangements on aluminum surfaces. The patterns are then used to guide the further growth of alumina nanopores in the subsequent oxalic acid anodization. Gradient and alternating nanopore arrangements have been attained by FIB patterning guided oxalic acid anodization. The fundamental understanding of the process is discussed.

  15. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    Science.gov (United States)

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang

    2013-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377

  16. Characterization of nanoporous shales with gas sorption

    Science.gov (United States)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  17. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  18. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-24

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  19. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Saeid [University of Toronto, Department of Chemistry (Canada); Li Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-04-15

    Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

  20. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    Science.gov (United States)

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  1. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

    Science.gov (United States)

    Shankla, Manish; Aksimentiev, Aleksei

    2017-04-20

    Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

  2. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Ariga, Katsuhiko; Vinu, Ajayan [International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sivakumar, Thiripuranthagan [Department of Chemical Engineering, Anna University, Gundy, Chennai 600025 (India); Aldeyab, Salem S [Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, PO Box 2455 Riyadh 11451 (Saudi Arabia); Zaidi, Javaid S M, E-mail: vinu.ajayan@nims.go.jp [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-08-15

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g{sup -1} at a 20 mV s{sup -1} scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  3. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Science.gov (United States)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  4. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Directory of Open Access Journals (Sweden)

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    Full Text Available We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD, high-resolution scanning electron microscopy (HRSEM and high-resolution transmission electron microscopy (HRTEM. XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  5. Drag reduction in silica nanochannels induced by graphitic wall coatings

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    . In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbonnanotubes (CNTs), respectively...

  6. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenghai; Wu, Hongmin; Wu, Ying; Shi, Hongyan; Feng, Xun; Jiang, Shang; Chen, Jian; Song, Wenbo, E-mail: wbsong@jlu.edu.cn

    2014-08-01

    Hemi-ordered nanoporous carbon (HONC) was obtained from a mesoporous silica template through a nano-replication method using furfuryl alcohol as the carbon source. The structure and morphology of HONC were characterized and analyzed in detail by X-ray diffraction, N{sub 2}-sorption, Raman spectroscopy and transmission electron microscopy. HONC was then demonstrated as active electrode material for selective determination of nitrite in either physiological or environmental system. Well separated oxidation peaks of ascorbic acid, dopamine, uric acid and nitrite were observed in physiological system, and simultaneous discrimination of catechol, hydroquinone, resorcinol and nitrite in environmental system was also accomplished. Distinctly improved performances for selective determination of nitrite (such as significantly fast and sensitive current response with especially high selectivity) coexisted with ascorbic acid, dopamine and uric acid in the physiological system, as well as with catechol, hydroquinone and resorcinol in the environmental system were achieved at HONC electrode material. The excellent discriminating ability and high selectivity for NO{sub 2}{sup −} determination were ascribed to the good electronic conductivity, unique hemi-ordered porous structure, large surface area and large number of edge plane defect sites contained on the surface of nanopore walls of HONC. Results in this work demonstrated that HONC is one of the promising catalytic electrode materials for nitrite sensor fabrication. - Highlights: • Hemi-ordered nanoporous carbon as an active electrode material • Good discriminating ability towards NO{sub 2}{sup −} from physiological or environmental system • Highly selective determination of nitrite with fast and sensitive current response.

  7. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    Science.gov (United States)

    Ni, Siyu; Li, Changyan; Ni, Shirong; Chen, Ting; Webster, Thomas J

    2014-01-01

    The aim of this study was to prepare different sized porous anodic alumina (PAA) and examine preosteoblast (MC3T3-E1) attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm) were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (Paluminum by modifying surface nano-roughness alone (and not changing chemistry) through an anodization process to improve osteoblast density, and, thus, should be further studied as a bioactive interface for orthopedic applications. PMID:25045263

  8. Influence of carboxyl group formation on ammonia adsorption of NiO-templated nanoporous carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-11-15

    The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 Degree-Sign C. N{sub 2}/-196 Degree-Sign C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces. -- Graphical abstract: The nanoporous carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate for ammonia adsorption. Highlights: Black-Right-Pointing-Pointer The carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate. Black-Right-Pointing-Pointer The carbon surfaces were modified with HNO{sub 3}/H{sub 2}O{sub 2} solution at different volume radio. Black-Right-Pointing-Pointer The highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The acid oxygen functional groups (such as carboxyl) on carbon surfaces led to an increase in ammonia adsorption.

  9. Drag reduction in silica nanochannels induced by graphitic wall coatings

    Science.gov (United States)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2017-11-01

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannels is known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbon nanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings. We wish to thank partial funding from CRHIAM Conicyt/ Fondap Project 15130015 and computational support from DTU and NLHPC (Chile).

  10. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  11. Nanoporous thermosetting polymers.

    Science.gov (United States)

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  12. Surfaces electrons at dielectric plasma walls

    International Nuclear Information System (INIS)

    Heinisch, Rafael Leslie

    2013-01-01

    The concept of the electron surface layer introduced in this thesis provides a framework for the description of the microphysics of the surplus electrons immediately at the wall and thereby complements the modelling of the plasma sheath. In this work we have considered from a surface physics perspective the distribution and build-up of an electron adsorbate on the wall as well as the effect of the negative charge on the scattering of light by a spherical particle immersed in a plasma. In our electron surface layer model we treat the wall-bound electrons as a wall-thermalised electron distribution minimising the grand canonical potential and satisfying Poisson's equation. The boundary between the electron surface layer and the plasma sheath is determined by a force balance between the attractive image potential and the repulsive sheath potential and lies in front of the crystallographic interface. Depending on the electron affinity χ, that is the offset of the conduction band minimum to the potential in front of the surface, two scenarios for the wall-bound electrons are realised. For χ 0 electrons penetrate into the conduction band where they form an extended space charge. These different scenarios are also reflected in the electron kinetics at the wall which control the sticking coefficient and the desorption time. If χ -3 . For χ>0 electron physisorption takes place in the conduction band. For this case sticking coefficients and desorption times have not been calculated yet but in view of the more efficient scattering with bulk phonons, responsible for electron energy relaxation in this case, we expect them to be larger than for the case of χ 0 the electrons in the bulk of the particle modify the refractive index through their bulk electrical conductivity. In both cases the conductivity is limited by scattering with surface or bulk phonons. Surplus electrons lead to an increase of absorption at low frequencies and, most notably, to a blue-shift of an

  13. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  14. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  15. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  16. Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality.

    Science.gov (United States)

    Lazzara, Thomas D; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia

    2011-04-01

    Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films. © 2011 American Chemical Society

  17. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  18. Experimental Assessment of Mechanical Night Ventilation on Inner Wall Surfaces

    DEFF Research Database (Denmark)

    Ji, Wenhui; Heiselberg, Per Kvols; Wang, Houhua

    2016-01-01

    The cooling potential of night ventilation largely depends on the heat exchange at the internal room surfaces. During night time, increased heat transfer on a vertical wall is expected due to cool supply air that flows along the internal wall surface from the top of the wall. This paper presents ...... an experimental study of the cooling of wall surfaces in a test room by mechanical night-time ventilation. Significant improvement of indoor thermal environment is presented resulting from the enhanced internal convection heat transfer....

  19. Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films

    International Nuclear Information System (INIS)

    Liu, Y-L; Liu, C-S; Cho, C-I; Hwu, M-J

    2007-01-01

    Polyhedral oligomeric silsequioxane (POSS) monomer was fixed to a silicon surface by reacting octakis(glycidyldimethylsiloxy)octasilsesquioxane (OG-POSS) with the OH-terminated silicon surface in the presence of tin (II) chloride. The POSS cage layer then served as a nanoporous interlayer to reduce the dielectric constants of polyimide films on silicon surfaces. The chemical structure and surface morphology of OG-POSS modified silicon surfaces were characterized with XPS. With the introduction of a POSS nanopored interlayer, the dielectric constants of polyimide films were reduced

  20. Selective Electrochemical Detection of Epinephrine Using Gold Nanoporous Film

    Directory of Open Access Journals (Sweden)

    Dina M. Fouad

    2016-01-01

    Full Text Available Epinephrine (EP is one of the important catecholamine neurotransmitters that play an important role in the mammalian central nervous system. Therefore, it is necessary to determine the change of its concentrations. Nanoporous materials have wide applications that include catalysis, energy storages, environmental pollution control, wastewater treatment, and sensing applications. These unique properties could be attributable to their high surface area, a large pore volume, and uniform pore sizes. A gold nanoporous layer modified gold electrode was prepared and applied for the selective determination of epinephrine neurotransmitter at low concentration in the presence of several other substances including ascorbic acid (AA and uric acid (UA. The constructed electrode was characterized using scanning electron microscopy and cyclic voltammetry. The resulting electrode showed a selective detection of epinephrine with the interferences of dopamine and uric acid over a wide linear range (from 50 μM to 1 mM. The coverage of gold nanoporous on the surface of gold electrode represents a promising electrochemical sensor with high selectivity and sensitivity.

  1. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer

    Science.gov (United States)

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, Nosoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-01

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer

  2. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  3. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  4. Mechanical stability of nanoporous metals with small ligament sizes

    International Nuclear Information System (INIS)

    Crowson, Douglas A.; Farkas, Diana; Corcoran, Sean G.

    2009-01-01

    Digital samples of nanoporous gold with small ligament sizes were studied by atomistic simulation using different interatomic potentials that represent varying surface stress values. We predict a surface relaxation driven mechanical instability for these materials. Plastic deformation is induced by the surface stress without external load, related to the combination of the surface stress value and the surface to volume ratio.

  5. Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor

    Directory of Open Access Journals (Sweden)

    Huaxing Xu

    2014-01-01

    Full Text Available Nanoporous activated carbon material was produced from the waste rice husks (RHs by precarbonizing RHs and activating with KOH. The morphology, structure, and specific surface area were investigated. The nanoporous carbon has the average pore size of 2.2 nm and high specific area of 2523.4 m2 g−1. The specific capacitance of the nanoporous carbon is calculated to be 250 F g−1 at the current density of 1 A g−1 and remains 80% for 198 F g−1 at the current density of 20 A g−1. The nanoporous carbon electrode exhibits long-term cycle life and could keep stable capacitance till 10,000 cycles. The consistently high specific capacitance, rate capacity, and long-term cycle life ability makes it a potential candidate as electrode material for supercapacitor.

  6. Parametric study of thin film evaporation from nanoporous membranes

    Science.gov (United States)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  7. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    Science.gov (United States)

    Luo, Long; Holden, Deric A; White, Henry S

    2014-03-25

    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  8. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

    Science.gov (United States)

    Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.

    2018-01-01

    Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

  9. Nanofluidic Device with Embedded Nanopore

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  10. Rapid and Sensitive Detection of Lung Cancer Biomarker Using Nanoporous Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry

    Directory of Open Access Journals (Sweden)

    Jae-Sung Lee

    2015-01-01

    Full Text Available We propose a nanobiosensor to evaluate a lung cancer-specific biomarker. The nanobiosensor is based on an anodic aluminum oxide (AAO chip and functions on the principles of localized surface plasmon resonance (LSPR and interferometry. The pore-depth of the fabricated nanoporous AAO chip was 1 µm and was obtained using a two-step electrochemical anodization process. The sensor chip is sensitive to the refractive index (RI changes of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized on the gold-deposited surface of the AAO chip. In order to confirm the effectiveness of the sensor, the antibodies were immobilized on the surface of the AAO chip, and the lung cancer-specific biomarker was applied atop of the immobilized-antibody layer using the self-assembled monolayer method. The nanoporous AAO chip was used as a sensor system to detect serum amyloid A1, which is a lung cancer-specific biomarker. The specific reaction of the antigen-antibody contributes to the change in the RI. This in turn causes a shift in the resonance spectrum in the refractive interference pattern. The limit of detection (LOD was found to be 100 ag/mL and the biosensor had high sensitivity over a wide concentration range.

  11. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  12. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    International Nuclear Information System (INIS)

    Steele, J A; Lewis, R A; Sirbu, L; Enachi, M; Tiginyanu, I M; Skuratov, V A

    2015-01-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index n eff and compared to effective media approximations. (invited article)

  13. Nanopore sensors for DNA analysis

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Venkatesan, B.M.; Shim, Jeong

    2012-01-01

    Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene-based, and functionali......Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene...

  14. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    Science.gov (United States)

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  15. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  16. Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer

    International Nuclear Information System (INIS)

    Mozaffari, Sayed Ahmad; Rahmanian, Reza; Abedi, Mohammad; Amoli, Hossein Salar

    2014-01-01

    Graphical abstract: - Highlights: • Application and optimization of reactive RF magnetron sputtering for homogeneous nanoporous ZnO thin film formation. • Exploiting nanoporous ZnO thin film as a good porous framework with large surface area/volume for having stable immobilized enzyme with minimum loss of activity. • Application of impedimetric assessment for urea biosensing due to its rapidity, sensitivity, and repeatability. - Abstract: Uniform sputtered nanoporous zinc oxide (Nano-ZnO) thin film on the conductive fluorinated-tin oxide (FTO) layer was applied to immobilize urease enzyme (Urs) for urea detection. Highly uniform nanoporous ZnO thin film were obtained by reactive radio frequency (RF) magnetron sputtering system at the optimized instrumental deposition conditions. Characterization of the surface morphology and roughness of ZnO thin film by field emission-scanning electron microscopy (FE-SEM) exhibits cavities of nanoporous film as an effective biosensing area for enzyme immobilization. Step by step monitoring of FTO/Nano-ZnO/Urs biosensor fabrication were performed using electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Fabricated FTO/Nano-ZnO/Urs biosensor was used for urea determination using EIS experiments. The impedimetric results show high sensitivity for urea detection within 0.83–23.24 mM and limit of detection as 0.40 mM

  17. Threading DNA through nanopores for biosensing applications

    International Nuclear Information System (INIS)

    Fyta, Maria

    2015-01-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing. (topical review)

  18. A nanoporous alumina microelectrode array for functional cell–chip coupling

    International Nuclear Information System (INIS)

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-01-01

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. (paper)

  19. Aerodynamics of a thin airfoil flying over and in proximity to a wavy-wall surface. ; Lifting surface theory

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S [Nagoya University, Nagoya (Japan); Ichikawa, M [Government Industrial Research Institute, Nagoya, Nagoya (Japan)

    1991-05-04

    Aerodynamic characteristics of a thin airfoil flying over and in proximity to a wavy-wall surface such as uneven ground or water surface were analyzed two-dimensionally by lifting surface theory in the simplest fundamental case only. The theoretical equation was simplified assuming that flow is inviscid and incompressible, all disturbances are sufficiently small, the wall surface is sinusoidal and rigid, and the wall moves in the same direction as free stream but with a constant velocity different from that of the stream. The equation was verified in the case where an airfoil with a constant angle-of-attack flies over a flat ground surface, and calculations were made with a set of important parameters such as mean airfoil height from the wall, wave length of the wall surface and the wall velocity. The whole effect of wavy wall proximity was divided into the first and second-order ground effects. The first one was just Kemp{prime}s upwash problem, and the second one was revealed through the present study which becomes significant for lower airfoil heights. 18 refs., 5 figs.

  20. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  1. Highly sensitive detection using microring resonator and nanopores

    Science.gov (United States)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  2. A nanoporous gold membrane for sensing applications

    Directory of Open Access Journals (Sweden)

    Swe Zin Oo

    2016-03-01

    Full Text Available Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. Keywords: Nanopore, Polymer sphere, Gold membrane, Plasmons, Sensing, SERS

  3. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    Science.gov (United States)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  4. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  5. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film

    International Nuclear Information System (INIS)

    Singh, S. P.; Arya, Sunil K.; Pandey, Pratibha; Malhotra, B. D.; Saha, Shibu; Sreenivas, K.; Gupta, Vinay

    2007-01-01

    Cholesterol oxidase (ChOx) has been immobilized onto zinc oxide (ZnO) nanoporous thin films grown on gold surface. A preferred c-axis oriented ZnO thin film with porous surface morphology has been fabricated by rf sputtering under high pressure. Optical studies and cyclic voltammetric measurements show that the ChOx/ZnO/Au bioelectrode is sensitive to the detection of cholesterol in 25-400 mg/dl range. A relatively low value of enzyme's kinetic parameter (Michaelis-Menten constant) ∼2.1 mM indicates enhanced enzyme affinity of ChOx to cholesterol. The observed results show promising application of nanoporous ZnO thin film for biosensing application without any functionalization

  6. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  7. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  8. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  9. Photophysics and energy transfer studies of Alq3 confined in the voids of nanoporous anodic alumina.

    Science.gov (United States)

    Mohammadpour, Arash; Utkin, Ilya; Bodepudi, Srikrishna Chanakya; Kar, Piyush; Fedosejevs, Robert; Pramanik, Sandipan; Shankar, Karthik

    2013-04-01

    We report on a hierarchical nanoarchitecture wherein distinct chromophores are deterministically placed at two different types of sites in a nanoporous metal oxide framework. One chromophore, namely Tris(8-hydroxyquinoline)aluminium(III) (Alq3), is embedded in the 1-2 nm sized nanovoids of anodic aluminum oxide (AAO) and another chromophore (carboxyfluorescein or pyrenebutyric acid) is anchored in the form of a monolayer to the surface of the walls of the cylindrical nanopores (- 20 nm in diameter) of AAO. We found the luminescence maximum to occur at 492 nm, blueshifted by at least 18 nm from the value in solutions and thin films. The excited state decay of Alq3 molecules in nanovoids was found to be biexponential with a fast component of 338 ps and a slower component of 2.26 ns, different from Alq3 thin films and solutions. Using a combination of steady state and time-resolved luminescence studies, we found that efficient Forster-type resonance energy transfer (FRET) from Alq3 in the nanovoids to the carboxyfluorescein monolayer could be used to pump the emission of surface-bound chromophores. Conversely, the emission of nanovoid-confined Alq3 could be pumped by energy transfer from a pyrenebutyric acid monolayer. Such intra-nanoarchitecture interactions between chromophores deterministically placed in different spatial locations are important in applications such as organic light emitting diodes, chemical sensors, energy transfer fluorescent labels, light harvesting antennas and organic spintronics.

  10. Warming up human body by nanoporous metallized polyethylene textile.

    Science.gov (United States)

    Cai, Lili; Song, Alex Y; Wu, Peilin; Hsu, Po-Chun; Peng, Yucan; Chen, Jun; Liu, Chong; Catrysse, Peter B; Liu, Yayuan; Yang, Ankun; Zhou, Chenxing; Zhou, Chenyu; Fan, Shanhui; Cui, Yi

    2017-09-19

    Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

  11. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  12. Computational and experimental study of nanoporous membranes for water desalination and decontamination.

    Energy Technology Data Exchange (ETDEWEB)

    Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

    2008-11-01

    Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

  13. Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors

    International Nuclear Information System (INIS)

    Gwak, Eun-Ji; Kang, Na-Ri; Baek, Un Bong; Lee, Hae Moo; Nahm, Seung Hoon; Kim, Ju-Young

    2013-01-01

    We fabricate almost crack-free 1.5 μm thick nanoporous gold thin films using free-corrosion dealloying and transfer processes from sputter-deposited precursors. By controlling the temperature and the concentration of the nitric acid solution during free-corrosion dealloying, we obtain ligament sizes in nanoporous gold between 22 and 155 nm. We investigate the effects of dissolution rate of Ag atoms, surface diffusivity of Au atoms and formation of Ag oxide on nanoporosity evolution

  14. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.

    Science.gov (United States)

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang

    2016-04-28

    We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.

  15. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  16. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Ulstrup, Jens; Li, Hui

    2014-01-01

    Nanoporous gold (NPG) is composed of three-dimensional (3D) bicontinuous nanostructures with large surface area. Nano-channels inside NPG provide an ideal local environment for immobilization of enzyme molecules with expected stabilization of the protein molecules. In this work, glucose oxidase (...

  17. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  18. Characterization and Bone Differentiation of Nanoporous Structure Fabricated on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Yingmin Su

    2015-01-01

    Full Text Available The optimal temperature for the alkaline treatment and subsequent heat treatment is determined to optimize the nanoporous structures formed on Ti6Al4V titanium alloy plates. Surface characterization of the alkali-heat treated samples was performed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The effects of heating temperatures on albumin adhesion, rat bone marrow mesenchymal stem cells (BMMSCs adhesion, alkaline phosphatase activity, osteocalcin production, calcium deposition, and Runx2 mRNA expression were evaluated. The nanotopography, surface chemistry, and surface roughness were unchanged even after heat treatments at 200, 400, and 600°C. Only the amorphous sodium titanate phase changed, increasing with the temperature of the heat treatments, which played a crucial role in promoting superior cell adhesion on the nanoporous surface compared with the sodium hydrogen titanate obtained by a single alkali treatment. The heat treatment at 800°C did not enhance cell attachment on the surface because the nanostructure was dramatically destroyed with the reappearance of Al and V. This study reveals that nanoporous structures with amorphous sodium titanate were fabricated on Ti6Al4V surface through an amended alkali-heat treatment process to improve BMMSCs adhesion.

  19. SIMPLE METHOD TO PRODUCE NANOPOROUS CARBON FOR VARIOUS APPLICATIONS BY PYROLYSIS OF SPECIALLY SYNTHESIZED PHENOLIC RESIN

    Directory of Open Access Journals (Sweden)

    Imam Prasetyo

    2013-08-01

    Full Text Available Nanoporous carbon materials, a unique and useful material, have been widely used in many technologies such as separation processes, catalysis, energy storage, gas storage, energy conversion, etc. due to its high specific surface area and tunable porosity. In this research, nanoporous carbons were prepared using simple and innovative approach based on structural array of phenolic resin polymer without activation during carbonization process. The effect of phenolic reactant type and composition on pore structure and carbon surface morphologies was studied. Nanoporous carbon derived from resorcinol formaldehyde (RF and from resorcinol phenol formaldehyde (RPF polymers was suitable for electrode material supercapacitor and CO2 capture medium. RF-derived and RPF-derived carbons provide electrode material supercapacitor with specific capacitance up to 246 F/g, whereas carbonized RPF exhibited CO2 uptake of 10.63 mmol/g (at 3.5 MPa 298 K. Nanoporous carbon derived from resorcinol para-tert-butyl phenol formaldehyde (RTBPF polymer exhibited attractive characteristics as methane storage media with methane uptake capacity as high as 8.98 mmol/g (at 3.5 MPa 298 K.

  20. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  1. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    Directory of Open Access Journals (Sweden)

    Ni S

    2014-07-01

    Full Text Available Siyu Ni,1 Changyan Li,1 Shirong Ni,2 Ting Chen,1 Thomas J Webster3,4 1College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 2Department of Pathophysiology, Wenzhou Medical University, Wenzhou, People’s Republic of China; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of this study was to prepare different sized porous anodic alumina (PAA and examine preosteoblast (MC3T3-E1 attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05. Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry through an anodization process to improve osteoblast density, and, thus, should be

  2. A fundamental study of fission product deposition on the wall surface

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sakashita, H.; Sugiyama, K.

    1987-01-01

    Deposition of soluble matters on wall surfaces is studied in the present report for the purpose to understand a mechanism of fission product deposition on the wall surface in a molten salt reactor. Calcium carbonate solution is used to observe the fundamental mechanism of deposition. The experiments are performed under conditions of turbulent flow of the solution over a heated wall. According to the experimental results a model is proposed to estimate deposition rate. The model consists of two parts, one is the initial nucleus formation on a clean wall surface and the other is the constant increase of deposition succeeding to the first stage. The model is assessed by comparing it with the experimental results. Both results coincide well in some parameters, but not so well in others. (author)

  3. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate

    International Nuclear Information System (INIS)

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-01-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO–PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO 2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO–PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO–PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE–SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV–Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0–110.0 mg dL −1 with the limit of detection as 5.0 mg dL −1 . - Highlights: • Novel disposable impedimetric urea biosensor fabrication based on ZnO–nanoporous transducer • Exploiting omissible PVA polymer as a simple strategy for ZnO–nanoporous film preparation • ZnO–nanoporous film as a good pore framework with large surface area/volume for enzyme immobilization • Application of impedimetric measurement for urea monitoring due to its rapidity, sensitivity, and repeatability

  4. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanian, Reza; Mozaffari, Sayed Ahmad, E-mail: mozaffari@irost.ir; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO–PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO{sub 2} conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO–PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO–PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE–SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV–Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0–110.0 mg dL{sup −1} with the limit of detection as 5.0 mg dL{sup −1}. - Highlights: • Novel disposable impedimetric urea biosensor fabrication based on ZnO–nanoporous transducer • Exploiting omissible PVA polymer as a simple strategy for ZnO–nanoporous film preparation • ZnO–nanoporous film as a good pore framework with large surface area/volume for enzyme immobilization • Application of impedimetric measurement for urea monitoring due to its rapidity, sensitivity, and

  5. Recent Advances in Nanoporous Membranes for Water Purification

    Directory of Open Access Journals (Sweden)

    Zhuqing Wang

    2018-01-01

    Full Text Available Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification.

  6. Drug loading of nanoporous TiO2 films

    International Nuclear Information System (INIS)

    Ayon, Arturo A; Cantu, Michael; Chava, Kalpana; Agrawal, C Mauli; Feldman, Marc D; Johnson, Dave; Patel, Devang; Marton, Denes; Shi, Emily

    2006-01-01

    The loading of therapeutic amounts of drug on a nanoporous TiO 2 surface is described. This novel drug-loading scheme on a biocompatible surface, when employed on medical implants, will benefit patients who require the deployment of drug-eluting implants. Anticoagulants, analgesics and antibiotics can be considered on the associated implants for drug delivery during the time of maximal pain or risk for patients undergoing orthopedic procedures. Therefore, this scheme will maximize the chances of patient recovery. (communication)

  7. Electrolytic charge inversion at the liquid-solid interface in a nanopore in a doped semiconductor membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, Maria E [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leburton, Jean-Pierre [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-04-11

    The electrostatics of a nanopore in a doped semiconductor membrane immersed in an electrolyte is studied with a numerical model. Unlike dielectric membranes that always attract excess positive ion charges at the electrolyte/membrane interface whenever a negative surface charge is present, semiconductor membranes exhibit more versatility in controlling the double layer at the membrane surface. The presence of dopant charge in the semiconductor membrane, the shape of the nanopore and the negative surface charge resulting from the pore fabrication process have competing influences on the double layer formation. The inversion of the electrolyte surface charge from negative to positive is observed for n-Si membranes as a function of the membrane surface charge density, while no such inversion occurs for dielectric and p-Si membranes.

  8. InP nanopore arrays for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong

    2016-02-19

    We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.

  9. Recent advances in nanopore-based nucleic acid analysis and sequencing

    International Nuclear Information System (INIS)

    Shi, Jidong; Fang, Ying; Hou, Junfeng

    2016-01-01

    Nanopore-based sequencing platforms are transforming the field of genomic science. This review (containing 116 references) highlights some recent progress on nanopore-based nucleic acid analysis and sequencing. These studies are classified into three categories, biological, solid-state, and hybrid nanopores, according to their nanoporous materials. We begin with a brief description of the translocation-based detection mechanism of nanopores. Next, specific examples are given in nanopore-based nucleic acid analysis and sequencing, with an emphasis on identifying strategies that can improve the resolution of nanopores. This review concludes with a discussion of future research directions that will advance the practical applications of nanopore technology. (author)

  10. Track-etched nanopores in spin-coated polycarbonate films applied as sputtering mask

    International Nuclear Information System (INIS)

    Nix, A.-K.; Gehrke, H.-G.; Krauser, J.; Trautmann, C.; Weidinger, A.; Hofsaess, H.

    2009-01-01

    Thin polycarbonate films were spin-coated on silicon substrates and subsequently irradiated with 1-GeV U ions. The ion tracks in the polymer layer were chemically etched yielding nanopores of about 40 nm diameter. In a second process, the nanoporous polymer film acted as mask for structuring the Si substrate underneath. Sputtering with 5-keV Xe ions produced surface craters of depth ∼150 nm and diameter ∼80 nm. This arrangement can be used for the fabrication of track-based nanostructures with self-aligned apertures.

  11. Effect of TiO{sub 2} nanoporous size on cell viability

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Weitzel, Ana Paula dos Reis; Rosario, Camila Jaques; Duarte, Larissa Mara Batista; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Titanium play an important role in the manufacturing of dental implants. The oxide layer naturally formed on the surface of a titanium device provides biocompatible characteristics, which significantly supports the osseointegration process. It has been supported that a nanostructured TiO{sub 2} surface affects positively the adhesion and proliferation of osteoblasts [1]. A widely technique used for obtaining nanoporous titania is anodizing (or anodic oxidation), which is a non-spontaneous reaction induced by a source of electric current, typically using a solution containing HF [1]. TiO{sub 2} pore diameter can be well controlled in a broad range by adjusting the potentiostatic voltage. J. Park et al. have investigated the development of mesenchymal stem cells on a TiO{sub 2} nanoporous surface and reported a direct relation between the cellular responses with the pore diameter, in the range of 15 - 100 nm [2]. The objective of this work was to investigate deeply the influence of TiO{sub 2} pore diameter in cell viability. Titanium surfaces were anodized by using an electrochemical cell under constant agitation, controlled temperature, and different applied voltages in order to produce different pore diameter, in the nanosize range 15-100 nm. Then, cell proliferation, differentiation, adhesion and viability were investigated in vitro [3]. Surface morphology and chemical composition of the surface treated Ti samples were investigated by SEM, EDS and XPS. The results confirmed the production of a uniform layer of nanoporous TiO{sub 2} with different average porous diameter. The details of sample preparation and the results of cell response tests are going to be presented. [1] S. Minagar et al., Acta Biomat. 8 (2012) 2875; M. Kulkarni et al., Nanotechnology 26 (2015) 062002. [2] J. Park et al., Nano Letters 7 (2007) 1686. [3] G. G. Genchi et al., RSC Adv. 6 (2016) 18502. (author)

  12. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  13. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    International Nuclear Information System (INIS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-01-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  14. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  15. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    Science.gov (United States)

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  16. Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, B.; Tsyntsarski, B.; Budinova, T.; Petrov, N.; Ania, C.O.; Parra, J.B.; Mladenov, M.; Tzvetkov, P.

    2010-11-15

    Synthetic nanoporous carbons are prepared by polymerization of mixtures containing coal tar pitch and furfural in different proportions, followed by carbonization of obtained solid product and steam activation of the carbonizate. The chemical composition of the initial mixture significantly affects the physicochemical properties (surface area, pore structure, electro resistance and amount of oxygen-containing groups on the surface) of the obtained materials. The incorporation of oxygen in the precursor mixture by means of furfural, has a strong influence in the synthetic step; increasing the furfural content facilitates the formation of a solid product characterized by a large oxygen content. Moreover, the solid product is more reactive towards activation as the furfural content increases, giving rise to nanoporous carbons with large surface areas and unique chemical features (high density of oxygen functionalities of basic nature). These nanoporous carbons have been investigated as electrodes in electrochemical applications. (author)

  17. Additively Manufactured Macroporous Titanium with Silver-Releasing Micro-/Nanoporous Surface for Multipurpose Infection Control and Bone Repair - A Proof of Concept.

    Science.gov (United States)

    Jia, Zhaojun; Xiu, Peng; Xiong, Pan; Zhou, Wenhao; Cheng, Yan; Wei, Shicheng; Zheng, Yufeng; Xi, Tingfei; Cai, Hong; Liu, Zhongjun; Wang, Caimei; Zhang, Weiping; Li, Zhijiang

    2016-10-26

    Restoring large-scale bone defects, where osteogenesis is slow while infections lurk, with biomaterials represents a formidable challenge in orthopedic clinics. Here, we propose a scaffold-based multipurpose anti-infection and bone repairing strategy to meet such restorative needs. To do this, personalized multifunctional titanium meshes were produced through an advanced additive manufacturing process and dual "TiO 2 -poly(dopamine)/Ag (nano)" post modifications, yielding macroporous constructs with micro-/nanoporous walls and nanosilver bullets immobilized/embedded therein. Ultrahigh loading capacity and durable release of Ag + were accomplished. The scaffolds were active against planktonic/adherent bacteria (Gram-negative and positive) for up to 12 weeks. Additionally, they not only defended themselves from biofilm colonization but also helped destroy existing biofilms, especially in combination with antibiotics. Further, the osteoblasts/bacteria coculture study displayed that the engineered surfaces aided MG-63 cells to combat bacterial invasion. Meanwhile, the scaffolds elicited generally acceptable biocompatibility (cell adhesion, proliferation, and viability) and hastened osteoblast differentiation and maturation (alkaline phosphatase production, matrix secretion, and calcification), by synergy of micro-/nanoscale topological cues and bioactive catecholamine chemistry. Although done ex vivo, these studies reveal that our three-in-one strategy (infection prophylaxis, infection fighting, and bone repair) has great potential to simultaneously prevent/combat infections and bridge defected bone. This work provides new thoughts to the use of enabling technologies to design biomaterials that resolve unmet clinical needs.

  18. Manipulation of near-wall turbulence by surface slip and permeability

    Science.gov (United States)

    Gómez-de-Segura, G.; Fairhall, C. T.; MacDonald, M.; Chung, D.; García-Mayoral, R.

    2018-04-01

    We study the effect on near-wall turbulence of tangential slip and wall-normal transpiration, typically produced by textured surfaces and other surface manipulations. For this, we conduct direct numerical simulations (DNSs) with different virtual origins for the different velocity components. The different origins result in a relative wall-normal displacement of the near-wall, quasi-streamwise vortices with respect to the mean flow, which in turn produces a change in drag. The objective of this work is to extend the existing understanding on how these virtual origins affect the flow. In the literature, the virtual origins for the tangential velocities are typically characterised by slip boundary conditions, while the wall-normal velocity is assumed to be zero at the boundary plane. Here we explore different techniques to define and implement the three virtual origins, with special emphasis on the wall-normal one. We investigate impedance conditions relating the wall-normal velocity to the pressure, and linear relations between the velocity components and their wall-normal gradients, as is typically done to impose slip conditions. These models are first tested to represent a smooth wall below the boundary plane, with all virtual origins equal, and later for different tangential and wall-normal origins. Our results confirm that the change in drag is determined by the offset between the origins perceived by mean flow and the quasi-streamwise vortices or, more generally, the near-wall turbulent cycle. The origin for the latter, however, is not set by the spanwise virtual origin alone, as previously proposed, but by a combination of the spanwise and wall-normal origins, and mainly determined by the shallowest of the two. These observations allow us to extend the existing expression to predict the change in drag, accounting for the wall-normal effect when the transpiration is not negligible.

  19. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  20. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  1. Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity

    Science.gov (United States)

    Pisarek, Marcin; Nowakowski, Robert; Kudelski, Andrzej; Holdynski, Marcin; Roguska, Agata; Janik-Czachor, Maria; Kurowska-Tabor, Elżbieta; Sulka, Grzegorz D.

    2015-12-01

    Self-organized Al2O3 nanoporous/nanotubular (Al2O3-NP) oxide layers decorated with silver nanoparticles (Ag-NPs) exhibiting specific properties may serve as attractive SERS substrates for investigating the interactions between an adsorbate and adsorbent, or as stable platforms for detecting various organic compounds. This article presents the influence of the size of the alumina nanopores with a deposit of silver nanoparticles obtained by the magnetron sputtering technique on the morphology of silver film. Moreover, the effect of pore diameter on the intensity of SERS spectra in Ag-NPs/Al2O3-NP/Al composites has also been estimated. For such investigations we used pyridine as a probe molecule, since it has a large cross-section for Raman scattering. To characterize the morphology of the composite oxide layer Ag-NPs/Al2O3-NP/Al, before and after deposition of Ag-NPs by PVD methods (Physical Vapor Deposition), we used scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface analytical technique of surface-enhanced Raman spectroscopy (SERS) was used to investigate the surface activity of the composite. The results obtained show that, for a carefully controlled amount of Ag (0.020 mg/cm2 - deposited on the top of alumina nanopores whose average size varies from ∼86 nm up to ∼320 nm) in the composites investigated, pore size significantly affects SERS enhancement. We obtained distinctly higher intensities of SERS spectra for substrates with an Ag-NPs deposit having a larger diameter of the alumina nanopores. AFM results suggest that both the lateral and perpendicular distribution of Ag-NPs within and on the top of the largest pores is responsible for the highest SERS activity of the resulting Ag-NPs/Al2O3-NP/Al composite layer, since it produces a variety of cavities and slits which function as resonators for the adsorbed molecules. The Ag-NPs/MeOx-NP/Me composite layers obtained ensure a good reproducibility of the SERS measurements.

  2. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  3. Directed self-assembly of nanoporous metallic- and bimetallic nanoparticle thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Torsten [Fachbereich Physik, Universitaet Konstanz (Germany); Gindy, Nabil; Fahmi, Amir [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham (United Kingdom)

    2010-07-01

    Nanoporous thin films attracted considerable interest due to potential applications in optical coatings, catalysis, sensors as well as electronic devices. Recently, such films were prepared by post deposition treatments. The present study is focused on the fabrication of nanoporous thin films via directed self-assembly of hybrid materials. Due to the nature of this process no additional treatments are necessary to develop the pores. Hierarchical nanoporous structures are fabricated directly via deposition of polymer templated Au-nanoparticles onto hydrophilic substrates. These films exhibit two different pore diameters and a total pore density of more than 10{sup 10} holes per cm{sup 2}. Control over the pore size is achieved by changing the molecular weight of the PS-b-P4VP diblock copolymer. Moreover, the porous morphology is used as a template to fabricate bimetallic nanostructured thin films. Such well-defined nanostructures, not only exhibit unique physical properties but also provide control over the hydrophobicity of the coated surfaces.

  4. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  5. On the stability of surface-confined nanoporous molecular networks

    Energy Technology Data Exchange (ETDEWEB)

    Ghijsens, Elke; Adisoejoso, Jinne, E-mail: Jinne.adisoejoso@chem.kuleuven.be, E-mail: tobe@chem.es.osaka-u.ac.jp, E-mail: Steven.DeFeyter@chem.kuleuven.be; Van Gorp, Hans; Destoop, Iris; Ivasenko, Oleksandr; Van der Auweraer, Mark; De Feyter, Steven, E-mail: Jinne.adisoejoso@chem.kuleuven.be, E-mail: tobe@chem.es.osaka-u.ac.jp, E-mail: Steven.DeFeyter@chem.kuleuven.be [Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven—University of Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium); Noguchi, Aya; Tahara, Kazukuni; Tobe, Yoshito, E-mail: Jinne.adisoejoso@chem.kuleuven.be, E-mail: tobe@chem.es.osaka-u.ac.jp, E-mail: Steven.DeFeyter@chem.kuleuven.be [Graduate School of Engineering Science, Division of Frontier Materials Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2015-03-14

    Self-assembly of molecular building blocks into two-dimensional nanoporous networks has been a topic of broad interest for many years. However, various factors govern the specific outcome of the self-assembly process, and understanding and controlling these are key to successful creation. In this work, the self-assembly of two alkylated dehydrobenzo[12]annulene building blocks was compared at the liquid-solid interface. It turned out that only a small chemical modification within the building blocks resulted in enhanced domain sizes and stability of the porous packing relative to the dense linear packing. Applying a thermodynamic model for phase transition revealed some key aspects for network formation.

  6. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    Science.gov (United States)

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  7. Vapor nucleation paths in lyophobic nanopores.

    Science.gov (United States)

    Tinti, Antonio; Giacomello, Alberto; Casciola, Carlo Massimo

    2018-04-19

    In recent years, technologies revolving around the use of lyophobic nanopores gained considerable attention in both fundamental and applied research. Owing to the enormous internal surface area, heterogeneous lyophobic systems (HLS), constituted by a nanoporous lyophobic material and a non-wetting liquid, are promising candidates for the efficient storage or dissipation of mechanical energy. These diverse applications both rely on the forced intrusion and extrusion of the non-wetting liquid inside the pores; the behavior of HLS for storage or dissipation depends on the hysteresis between these two processes, which, in turn, are determined by the microscopic details of the system. It is easy to understand that molecular simulations provide an unmatched tool for understanding phenomena at these scales. In this contribution we use advanced atomistic simulation techniques in order to study the nucleation of vapor bubbles inside lyophobic mesopores. The use of the string method in collective variables allows us to overcome the computational challenges associated with the activated nature of the phenomenon, rendering a detailed picture of nucleation in confinement. In particular, this rare event method efficiently searches for the most probable nucleation path(s) in otherwise intractable, high-dimensional free-energy landscapes. Results reveal the existence of several independent nucleation paths associated with different free-energy barriers. In particular, there is a family of asymmetric transition paths, in which a bubble forms at one of the walls; the other family involves the formation of axisymmetric bubbles with an annulus shape. The computed free-energy profiles reveal that the asymmetric path is significantly more probable than the symmetric one, while the exact position where the asymmetric bubble forms is less relevant for the free energetics of the process. A comparison of the atomistic results with continuum models is also presented, showing how, for simple

  8. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    OpenAIRE

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD r...

  9. Controlling the role of nanopore morphology in capillary condensation.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2012-05-01

    The effect of pore morphology on capillary condensation and evaporation in nanoporous silicon is studied experimentally. A variety of cooperative and local effects are observed in tailored nanopores with well-defined regions by directly probing gas adsorption in each region using optical interferometry. All observations are ascribed to the ability of the nanopore region to access the gas reservoir directly and the nucleation of liquid bridges at local heterogeneities within the nanopore region. These assumptions, consistent with recent simulations, can be extended to any real nanoporous system.

  10. Fabrication and Modification of Nanoporous Silicon Particles

    Science.gov (United States)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion

  11. Structural evolution in nanoporous anodic aluminium oxide

    International Nuclear Information System (INIS)

    Rocca, Emmanuel; Vantelon, Delphine; Reguer, Solenn; Mirambet, François

    2012-01-01

    Nanoporous and self-organized layers of aluminium alloys are used in many applications as membranes, templates for nanometric objects or corrosion protection for aluminium alloys. The use of this nanometric structure widely remains empirical, especially in the case of very small pores ( 4 into AlO 6 cluster and a partial release of sulphate ions are an important chemical transformation of the amorphous structure. This structural transformation defines the chemistry (pH and surface charge) inside the nanopores, the ageing behaviour and the possible incorporation or diffusion of chemical species in the nanostructure. Highlights: ► Investigations of local chemical environment of aluminium atoms in anodic aluminium oxide. ► The oxide structure is constituted by 2/3 of aluminium in tetrahedral coordination 1/3 in octahedral coordination. ► In contact with water, AlO 4 clusters are transformed into AlO 6 cluster and the aluminium sulphate bonds are hydrolysed. ► These transformations induce a pH decrease inside the nanostructure.

  12. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fengjiao [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Dai, Xiaojuan [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; Zhu, Weikun [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Chung, Hyunjoong [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Diao, Ying [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA

    2017-05-10

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.

  13. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  14. Surface modification of nanoporous anodic alumina photonic crystals for photocatalytic applications

    Science.gov (United States)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    Herein, we report on the development of a rationally designed composite photocatalyst material by combining nanoporous anodic alumina-rugate filters (NAA-RFs) with photo-active layers of titanium dioxide (TiO2). NAA-RFs are synthesised by sinusoidal pulse anodisation and subsequently functionalised with TiO2 by sol-gel method to provide the photonic structures with photocatalytic properties. We demonstrate that the characteristic photonic stopband (PSB) of the surface-modified NAA-RFs can be precisely tuned across the UV-visible-NIR spectrum to enhance the photon-toelectron conversion of TiO2 by `slow photon effect'. We systematically investigate the effect of the anodisation parameters (i.e. anodisation period and pore widening time) on the position of the PSB of NAA-RFs as well as the photocatalytic performances displayed by these photonic crystal structures. When the edges of the PSB of surfacemodified NAA-RFs are positioned closely to the absorption peak of the model organic dye (i.e. methyl orange - MO), the photocatalytic performance of the system to degrade these molecules is enhanced under simulated solar light irradiation due to slow photon effect. Our investigation also reveals that the photocatalytic activity of surface-modified NAA-RFs is independent of slow photon effect and enhances with increasing period length (i.e. increasing anodisation period) of the photonic structures when there is no overlap between the PSB and the absorption peak of MO. This study therefore provides a rationale towards the photocatalytic enhancement of photonic crystals by a rational design of the PSB, creating new opportunities for the future development of high-performance photocatalysts.

  15. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  16. Effect of flattened surface morphology of anodized aluminum oxide templates on the magnetic properties of nanoporous Co/Pt and Co/Pd thin multilayered films

    Science.gov (United States)

    Nguyen, T. N. Anh; Fedotova, J.; Kasiuk, J.; Bayev, V.; Kupreeva, O.; Lazarouk, S.; Manh, D. H.; Vu, D. L.; Chung, S.; Åkerman, J.; Altynov, V.; Maximenko, A.

    2018-01-01

    For the first time, nanoporous Al2O3 templates with smoothed surface relief characterized by flattened interpore areas were used in the fabrication of Co/Pd and Co/Pt multilayers (MLs) with strong perpendicular magnetic anisotropy (PMA). Alternating gradient magnetometry (AGM) revealed perfectly conserved PMA in the Co/Pd and Co/Pt porous MLs (antidot arrays) with a ratio of remanent magnetization (Mr) to saturation magnetization (MS) of about 0.99, anisotropy fields (Ha) of up to 2.6 kOe, and a small deviation angle of 8° between the easy magnetization axis and the normal to the film surface. The sufficient magnetic hardening of the porous MLs with enhanced coercive field HC of up to ∼1.9 kOe for Co/Pd and ∼1.5 kOe for Co/Pt MLs, as compared to the continuous reference samples (∼1.5-2 times), is associated with the pinning of the magnetic moments on the nanopore edges. Application of the Stoner-Wohlfarth model for fitting the experimental M/MS(H) curves yielded clear evidence of the predominantly coherent rotation mechanism of magnetization reversal in the porous films.

  17. Synthesis and characterization of ruthenium-decorated nanoporous platinum materials

    International Nuclear Information System (INIS)

    Peng Xinsheng; Koczkur, Kallum; Chen, Aicheng

    2007-01-01

    We report on the synthesis of novel three-dimensional nanoporous Pt-Ru bimetallic networks by decorating nanoporous Pt networks with Ru using a hydrothermally assisted precipitating process. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) were used to characterize the morphology and the composition of the nanoporous Pt-Ru networks formed. X-ray diffraction analysis confirmed that, after protected annealing treatment, Pt-Ru bimetallic material was formed. The electrocatalytic activity of the synthesized nanoporous Pt-Ru networks was characterized using electrochemical oxidation of methanol as a probe. The electrocatalytic activity of the nanoporous Pt networks significantly increases with the increments of decorated Ru and reaches the highest value with 41% of Ru. The peak current of methanol oxidation on the nanoporous Pt-Ru(41%) bimetallic networks is over 180% higher than that on the nanoporous Pt networks without Ru decoration. This is very desirable for fuel cell development and electrochemical sensor design

  18. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, Patricio [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, E-46022 Valencia (Spain); Apel, Pavel Yu [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna (Russian Federation); Cervera, Javier; Mafe, Salvador [Departament de Fisica de la Terra i Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain)], E-mail: patraho@fis.upv.es

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  19. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    International Nuclear Information System (INIS)

    RamIrez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafe, Salvador

    2008-01-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores

  20. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    Science.gov (United States)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  1. In-situ electrochemical doping of nanoporous anodic aluminum oxide with indigo carmine organic dye

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Budner, Bogusław; Michalska-Domańska, Marta; Nowak-Stępniowska, Agata; Bombalska, Aneta; Kaliszewski, Miron; Mostek, Anna; Thorat, Sanjay; Salerno, Marco; Giersig, Michael; Bojar, Zbigniew

    2016-01-01

    Nanoporous anodic aluminum oxide was formed in sulfuric acid with addition of indigo carmine. During anodizing, the organic dye was incorporated into the porous oxide walls. X-ray photoelectron spectroscopy revealed the presence of nitrogen and sulfur in the anodic aluminum oxide. Two types of incorporated sulfur were found: belonging to the sulfate anions SO_4"2"− of the electrolyte and belonging to the C-SO_3"− side groups of the indigo carmine. Raman spectroscopy confirmed the incorporation and showed that the inorganic–organic hybrid material inherited optical properties from the indigo carmine. Typical modes from pyrrolidone rings, unique for indigo carmine in the investigated system (650 and 1585 cm"−"1), were found to be the strongest for the greatest anodizing voltages used. Despite the indigo carmine incorporation, the morphology of the oxide is still nanoporous and its geometry is still tuned by the voltage applied during aluminum anodization. This work presents an inexpensive and facile approach to doping an inorganic oxide material with organic compounds. - Highlights: • Nanoporous anodic alumina was formed in electrolyte with indigo carmine. • XPS confirmed the presence of N and S in anodic alumina. • Raman spectroscopy revealed indigo carmine bands in anodic alumina. • The higher the voltage, the more indigo carmine was incorporated.

  2. Side-gated ultrathin-channel nanopore FET sensors

    International Nuclear Information System (INIS)

    Yanagi, Itaru; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi; Oura, Takeshi

    2016-01-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore. (paper)

  3. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  4. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers

    Science.gov (United States)

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-03-01

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later.

  6. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers.

    Science.gov (United States)

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-03-02

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO 2 /nanoporous-Si and the TiO 2 /nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO 2 /nanoporous Si are lower than that of the HfO 2 /nanoporous Si, the former is more stable than the later.

  7. A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking

    Energy Technology Data Exchange (ETDEWEB)

    Sun Ye [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506 (United States); Balk, T. John [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506 (United States)], E-mail: balk@engr.uky.edu

    2008-05-15

    We report a simple two-step dealloying method for producing bulk nanoporous gold with no volume change and no significant cracking. The galvanostatic dealloying method used here appears superior to potentiostatic methods for fabricating millimeter-scale samples. Care must be taken when imaging the nanoscale, interconnected sponge-like structure with a focused ion beam, as even brief exposure caused immediate and extensive cracking of nanoporous gold, as well as ligament coarsening at the surface00.

  8. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Qiliang; Yu, Shun; Yan, Min; Berglund, Lars

    2016-04-11

    Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.

  9. Conformational Thermodynamics of DNA Strands in Hydrophilic Nanopores.

    Science.gov (United States)

    Cruz, Fernando J A L; Mota, Jose P B

    2016-08-18

    Enhanced sampling techniques spanning a sub-microsecond timescale reveal that a double-stranded DNA dodecamer can be spontaneously encapsulated into (51,0) and (40,0) single-walled carbon nanotubes under the influence of an electric field, leading to hybrids with a 40 kJ/mol enhanced free-energy. The confinement mechanism allows the nucleic acid to retain its mobility, diffusing anisotropically along the endohedral volume, visiting regions of space determined by entropic factors (diameter, free-volume) and linked by a thermodynamical highway. In spite of the energetic similarities between both topologies (4.1× 103 kJ/mol), the biomolecule favours positioning either parallel to the nanopore central axis, (40,0), or in close contact with the solid walls, (51,0), in the latter encasing a hollow cylindrical domain of diameter 1 - 1.5 nm. Precise physiological conditions allow the extrapolation of results to in vivo systems and constitute a novel and thorough contribution to nanotube technology in the areas of nucleic acid encapsulation/delivery and personalized therapeutics.

  10. Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy.

    Science.gov (United States)

    Paul, Biplab C; El-Ganiny, Amira M; Abbas, Mariam; Kaminskyj, Susan G W; Dahms, Tanya E S

    2011-05-01

    The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.

  11. Applications of Synthetic Microchannel and Nanopore Systems

    Science.gov (United States)

    Hinkle, Thomas Preston

    This thesis describes research conducted on the physics and applications of micro- and nanoscale ion-conducting channels. Making use of the nanoscale physics that takes place in the vicinity of charged surfaces, there is the possibility that nanopores, holes on the order of 1 nm in size, could be used to make complex integrated ionic circuits. For inspiration on what such circuits could achieve we only need to look to biology systems, immensely complex machines that at their most basic level require precise control of ions and intercellular electric potentials to function. In order to contribute to the ever expanding field of nanopore research, we engineered novel hybrid insulator-conductor nanopores that behave analagously to ionic diodes, which allow passage of current flow in one direction but severely limit the current in the opposite direction. The experiments revealed that surface polarization of the conducting material can induce the formation of an electrical double layer in the same way static surface charges can. Furthermore, we showed that the hybrid device behaved similar to an ionic diode, and could see potential use as a standard rectifying element in ionic circuits. Another application based on ion conducting channels is resistive pulse sensing, a single particle detection and characterization method. We present three main experiments that expand the capacity of resistive pulse sensing for particle characterization. First, we demonstrate how resistive pulse sensing in pores with longitudinal irregularities can be used to measure the lengths of individual nanoparticles. Then, we describe an entirely new hybrid approach to resistive pulse sensing, whereby the electrical measurements are combined with simultaneous optical imaging. The hybrid method allows for validation of the resistive pulse signals and will greatly contribute to their interpretability. We present experiments that explore some of the possibilities of the hybrid method. Then, building

  12. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  13. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  14. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  15. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    Science.gov (United States)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  16. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    Science.gov (United States)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  17. Resizing metal-coated nanopores using a scanning electron microscope.

    Science.gov (United States)

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  19. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao; Song, Guanbin

    2014-01-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  20. Nanoporous SiO{sub 2}/TiO{sub 2} coating with enhanced interfacial compatibility for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaobing, E-mail: zhaoxiaobing00@163.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Cao, Hengchun; You, Jing; Cheng, Xingbao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Xie, Youtao [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Cao, Huiliang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • The SiO{sub 2}/TiO{sub 2} coatings were fabricated on the cp-Ti substrates by plasma spraying. • Nanoporous topography was formed on SiO{sub 2}/TiO{sub 2} coating by HF-hydrothermal etching. • The hydrothermal conditions had important effects on the nanoporous topographies. • Nanoporous SiO{sub 2}/TiO{sub 2} coating exhibited enhanced cytocompatibility. - Abstract: Topographic modification in nanoscale is one of the most often used strategies to enhance the interfacial biocompatibility of implant materials. The aim of this work is to produce SiO{sub 2}/TiO{sub 2} coatings with nanoporous structures and favorable biological properties by atmospheric plasma spraying technology and subsequently hydrothermal etching method in hydrogen fluoride solution. The effects of hydrothermal time and temperature on the microstructures and osteoblast behavior of the SiO{sub 2}/TiO{sub 2} coatings were investigated. Results demonstrated that the as-sprayed SiO{sub 2}/TiO{sub 2} coating was mainly composed of rutile and quartz phases. After etching, nanoporous topographies were formed on the surface of the coatings and the hydrothermal parameters had important influences on the size and shape of the pores. The interconnected network pores on the coating surface could only produce at the appropriate hydrothermal conditions (the hydrothermal time and temperature were 60 min and 100 °C, respectively). Compared to TiO{sub 2} and SiO{sub 2}/TiO{sub 2} coatings, nanoporous SiO{sub 2}/TiO{sub 2} coatings could enhance osteoblast adhesion and promote cell proliferation. The results suggested the potential application of the porous coatings for enhancing the biological performance of the currently used dental and orthopedic implant materials.

  1. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  2. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  3. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  4. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping.

    Science.gov (United States)

    Cabria, I; López, M J; Alonso, J A

    2008-04-14

    Density functional calculations are reported for the adsorption of molecular hydrogen on carbon nanopores. Two models for the pores have been considered: (i) The inner walls of (7,7) carbon nanotubes and (ii) the highly curved inner surface of nanotubes capped on one end. The effect of Li doping is investigated in all cases. The hydrogen physisorption energies increase due to the concavity effect inside the clean nanotubes and on the bottom of the capped nanotubes. Li doping also enhances the physisorption energies. The sum of those two effects leads to an increase by a factor of almost 3 with respect to the physisorption in the outer wall of undoped nanotubes and in flat graphene. Application of a quantum-thermodynamical model to clean cylindrical pores of diameter 9.5 A, the diameter of the (7,7) tube, indicates that cylindrical pores of this size can store enough hydrogen to reach the volumetric and gravimetric goals of the Department of Energy at 77 K and low pressures, although not at 300 K. The results are useful to explain the experiments on porous carbons. Optimizations of the pore size, concavity, and doping appear as promising alternatives for achieving the goals at room temperature.

  5. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.-S. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Xu, Y.-P.; Liu, H.-D. [Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Hefei Center for Physical Science and Technology, P.O. Box 1126, Hefei (China); Hefei Science Center of Chinese Academy of Science, P.O. Box 1126, Hefei (China)

    2016-11-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  6. Magnetic properties of ferromagnetic nanowires embedded in nanoporous alumina membranes

    International Nuclear Information System (INIS)

    Kroell, M.; Blau, W.J.; Grandjean, D.; Benfield, R.E.; Luis, F.; Paulus, P.M.; Jongh, L.J. de

    2002-01-01

    Iron, nickel and cobalt nanowires are prepared within the pores of nanoporous alumina membranes using an electrochemical AC plating procedure. Nanowires produced in this way can be easily varied in diameter (5-250 nm) and length (up to several hundred microns). The magnetisation curves for these nanowire/alumina composites can then be determined not only as a function of the temperature but also as a function of the wire diameter and length. Conclusions regarding the magnetisation reversal processes that take place in the wires can be drawn. For Fe and Ni nanowires, we show that the magnetisation process in wires with a diameter smaller than the domain wall width is independent of the wire length and probably takes place via the formation of a small magnetic domain at the end of the wires and a subsequent propagation of the domain wall along the wire. For Co nanowires a competition between the shape anisotropy and the temperature- and size-dependent magnetocrystalline anisotropy could be observed

  7. Control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment

    International Nuclear Information System (INIS)

    Simonen, T.C.; Bulmer, R.H.; Coensgen, F.H.

    1976-01-01

    The control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment is described. Before each plasma shot, the first wall is covered with a freshly gettered titanium surface. Up to 5 MW of neutral beam power has been injected into 2XIIB, resulting in first-wall bombardment fluxes of 10 17 atoms . cm -2 . s -1 of 13-keV mean energy deuterium atoms for several ms. The background gas flux is measured with a calibrated, 11-channel, fast-atom detector. Background gas levels are found to depend on surface conditions, injected beam current, and beam pulse duration. For our best operating conditions, an efective reflex coefficient of 0.3 can be inferred from the measurements. Experiments with long-duration and high-current beam injection are limited by charge exchange; however, experiments with shorter beam duration are not limited by first-wall surface conditions. It is concluded that surface effects will be reduced further with smoother walls. (Auth.)

  8. A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids

    International Nuclear Information System (INIS)

    Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.M.; Koolivand, H.

    2016-01-01

    Highlights: • Stable MWNTs and graphene nanofluids were used in a mechanical wet cooling tower. • Thermal and rheological properties of nanofluids were investigated. • Nanofluids enhanced the efficiency, cooling range and tower characteristic. • Water consumption reduced significantly for both MWNTs and graphene nanofluids. - Abstract: This study deals with an experimental investigation on the thermal performance of a mechanical wet cooling tower with counter flow arrangement by using multi-walled carbon nanotubes (MWNTs) and nanoporous graphene nanofluids. Stable nanofluids were prepared through two-step procedure by using water with properties taken from a working cooling tower in the South of Iran. Zeta potential revealed suitable stability of MWNTs and nanoporous graphene nanofluids. Thermal and rheological properties of the nanofluids were investigated. It was found that thermal conductivity increases by 20% and 16% at 45 °C for MWNTs and nanoporous graphene nanofluids, respectively. The increase in density and viscosity, particularly in low concentrations of nanoparticles, was insignificant enough for industrial applications. Moreover, it was found that by using nanofluids, efficiency, cooling range and tower characteristic (KaV/L) are enhanced in comparison to water. For instance, at inlet water temperature of 45 °C and water/air (L/G) flow ratio of 1.37, the cooling range increases by 40% and 67% for MWNTs and nanoporous graphene nanofluids (0.1 wt.%), respectively. On the other hand water consumption is reduces by 10% and 19% at inlet water temperature of 45 °C for MWNTs and nanoporous graphene nanofluids, respectively.

  9. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    Science.gov (United States)

    2018-01-01

    Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173

  10. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Kaiyu Fu

    2018-01-01

    Full Text Available Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present.

  11. In-situ electrochemical doping of nanoporous anodic aluminum oxide with indigo carmine organic dye

    Energy Technology Data Exchange (ETDEWEB)

    Stępniowski, Wojciech J., E-mail: wojciech.stepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Norek, Małgorzata [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Budner, Bogusław [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Michalska-Domańska, Marta [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Nowak-Stępniowska, Agata; Bombalska, Aneta; Kaliszewski, Miron [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Mostek, Anna [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Thorat, Sanjay; Salerno, Marco [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genova I-16163 (Italy); Giersig, Michael [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland)

    2016-01-01

    Nanoporous anodic aluminum oxide was formed in sulfuric acid with addition of indigo carmine. During anodizing, the organic dye was incorporated into the porous oxide walls. X-ray photoelectron spectroscopy revealed the presence of nitrogen and sulfur in the anodic aluminum oxide. Two types of incorporated sulfur were found: belonging to the sulfate anions SO{sub 4}{sup 2−} of the electrolyte and belonging to the C-SO{sub 3}{sup −} side groups of the indigo carmine. Raman spectroscopy confirmed the incorporation and showed that the inorganic–organic hybrid material inherited optical properties from the indigo carmine. Typical modes from pyrrolidone rings, unique for indigo carmine in the investigated system (650 and 1585 cm{sup −1}), were found to be the strongest for the greatest anodizing voltages used. Despite the indigo carmine incorporation, the morphology of the oxide is still nanoporous and its geometry is still tuned by the voltage applied during aluminum anodization. This work presents an inexpensive and facile approach to doping an inorganic oxide material with organic compounds. - Highlights: • Nanoporous anodic alumina was formed in electrolyte with indigo carmine. • XPS confirmed the presence of N and S in anodic alumina. • Raman spectroscopy revealed indigo carmine bands in anodic alumina. • The higher the voltage, the more indigo carmine was incorporated.

  12. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  13. Electrochemical capacitive performances of nanoporous carbon derived from sunflower seed shell

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Xing, W.; Zhuo, S.; Zhou, J. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    Electrochemical double-layer capacitances (EDLCs) are used in applications were high power density and long cycle life are required. Nanoporous materials are typically used to prepare EDLC electrodes due to their high surface area, good physicochemical stability, and high conductivity. In this study, nanoporous carbon materials were prepared from sunflower seed shells and used as an electrode material for an EDLC. The surface and structural properties of the carbon materials were analyzed using N{sub 2} adsorption and scanning electron microscopy (SEM) techniques. The study showed that AC-X-Y carbons prepared using the impregnation-activation process had a better capacitive behaviour and higher capacitance retention ratio at fast charge-discharge rates than carbons made using the carbonization-activation process. The improved electrochemical performance of the carbons was attributed to the abundant macroscopic pores and decreased interior micropore surface. The specific capacitances of the carbon was approximately twice that of a hard-templated mesoporous carbon in all current densities ranging from 0.25 to 10 A per g. Results indicated that sunflower seed shells can be used to prepare EDLCs. 2 refs., 1 fig.

  14. Ordered nanoporous carbon for increasing CO2 capture

    International Nuclear Information System (INIS)

    Yoo, Hye-Min; Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. The prepared ONCs materials were subjected to a controlled carbonization temperature over the temperature range, 700–1000 °C, to increase the specific surface area and total pore volume of ordered nanoporous carbon followed by carbonization of the phenolic resin. ONCs materials synthesized at various carbonization temperatures were used as adsorbents to improve the CO 2 adsorption efficiency. The surface properties of the ONCs materials were examined by X-ray photoelectron spectroscopy. The structural properties of the ONCs materials were analyzed by X-ray diffraction. The textural properties of the ONCs materials were examined using the N 2 /77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO 2 adsorption capacity was measured by CO 2 isothermal adsorption at 298 K/30 bar and 298 K/1 bar. The carbonization temperature was found to have a major effect on the CO 2 adsorption capacity, resulting from the specific surface area and total pore volumes of the ONCs materials. - Graphical abstract: This schematic diagram described synthesis of ONCs. Highlights: ► ONCs materials can be prepared readily using the direct-triblock-copolymer-templating method. ► The distributions show that prominent development can be observed around the micro-pore region. ► The soft-templating method provides opportunities for controlling the pore structure of ONCs. ► From thermal power plants for CO2 capture by adsorption technology, is a new direction.

  15. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  16. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  17. Theoretical insights into acetylene adsorption on nanoporous gold surfaces: Role of residual silver

    Science.gov (United States)

    Luo, Yafei; Chen, Zhongzhu; Xu, Zhigang; Yang, Donglin; Zhang, Jin; Tang, Dianyong

    2018-03-01

    Unveiling the acetylene adsorption is crucial for designing novel and highly active catalyst for the semihydrogenation of alkyne. In order to achieve this goal, we have studied C2H2 adsorption on the various nanoporous gold models in detail, including the Au(100), Au(111) and Au(321) slab models. The calculated results indicate that the C atoms of C2H2 experience rehybridization from sp toward sp2/sp3 when the adsorption occurs on bridge and hollow sites, which can be illustrated via the projected density of state (PDOS) and crystal orbital Hamilton population (COHP). Meanwhile, the formation of σ(Ausbnd C) bond is beneficial for facilitating acetylene adsorption and the kink Au atom plays an important role for the C2H2 adsorption. In addition, for C2H2 adsorption on the Ag doped nanoporous gold, the configurations strongly depend on the position of superficial unsubstituted Au atoms. Further, the inversely relationship has been found between the adsorption energies and number of the Ag substituents, demonstrating that the superficial Ag substituents are harmful for C2H2 adsorption and activation.

  18. Enhanced piezoelectric output of NiO/nanoporous GaN by suppression of internal carrier screening

    Science.gov (United States)

    Waseem, Aadil; Jeong, Dae Kyung; Johar, Muhammad Ali; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan

    2018-06-01

    The efficiency of piezoelectric nanogenerators (PNGs) significantly depends on the free carrier concentration of semiconductors. In the presence of a mechanical stress, piezoelectric charges are generated at both ends of the PNG, which are rapidly screened by the free carriers. The screening effect rapidly decreases the piezoelectric output within fractions of a second. In this study, the piezoelectric outputs of bulk- and nanoporous GaN-based heterojunction PNGs are compared. GaN thin films were epitaxially grown on sapphire substrates using metal organic chemical vapor deposition. Nanoporous GaN was fabricated using electrochemical etching, depleted of free carriers owing to the surface Fermi-level pinning. A highly resistive NiO thin film was deposited on bulk- and nanoporous GaN using radio frequency magnetron sputter. The NiO/nanoporous GaN PNG (NPNG) under a periodic compressive stress of 4 MPa exhibited an output voltage and current of 0.32 V and 1.48 μA cm‑2, respectively. The output voltage and current of the NiO/thin film-GaN PNG (TPNG) were three and five times smaller than those of the NPNG, respectively. Therefore, the high-resistivity of NiO and nanoporous GaN depleted by the Fermi-level pinning are advantageous and provide a better piezoelectric performance of the NPNG, compared with that of the TPNG.

  19. A nanoscale perspective on the effects of transverse microprestress on drying creep of nanoporous solids

    Science.gov (United States)

    Sinko, Robert; Bažant, Zdeněk P.; Keten, Sinan

    2018-01-01

    The Pickett effect describes the excess non-additive strain developed during drying of a nanoporous solid material under creep. One explanation for its origins, developed using micromechanical models, is the progressive relaxation of internally developed microprestress. However, these models have not explicitly considered the effects of this microprestress on nanoscale energy barriers that govern the relative motion and displacement between nanopore walls during deformation. Here, we evaluate the nanoscale effects of transverse microprestresses on the drying creep behaviour of a nanoscale slit pore using coarse-grained molecular dynamics. We find that the underlying energy barrier depends exponentially on the transverse microprestress, which is attributed to changes in the effective viscosity and degree of nanoconfinement of molecules in the water interlayer. Specifically, as the transverse microprestress is relaxed (i.e. its magnitude decreases), the activation energy barrier is reduced, thereby leading to an acceleration of the creep behaviour and a stronger Pickett effect. Based on our simulation results, we introduce a new microprestress-dependent energy term into our existing Arrhenius model, which describes the relative displacement of pore walls as a function of the underlying activation energy barriers. Our findings further verify the existing micromechanical theories for the origin of the Pickett effect and establish a quantitative relationship between the transverse microprestress and the intensity of the Pickett effect.

  20. A nanoscale perspective on the effects of transverse microprestress on drying creep of nanoporous solids.

    Science.gov (United States)

    Sinko, Robert; Bažant, Zdeněk P; Keten, Sinan

    2018-01-01

    The Pickett effect describes the excess non-additive strain developed during drying of a nanoporous solid material under creep. One explanation for its origins, developed using micromechanical models, is the progressive relaxation of internally developed microprestress. However, these models have not explicitly considered the effects of this microprestress on nanoscale energy barriers that govern the relative motion and displacement between nanopore walls during deformation. Here, we evaluate the nanoscale effects of transverse microprestresses on the drying creep behaviour of a nanoscale slit pore using coarse-grained molecular dynamics. We find that the underlying energy barrier depends exponentially on the transverse microprestress, which is attributed to changes in the effective viscosity and degree of nanoconfinement of molecules in the water interlayer. Specifically, as the transverse microprestress is relaxed (i.e. its magnitude decreases), the activation energy barrier is reduced, thereby leading to an acceleration of the creep behaviour and a stronger Pickett effect. Based on our simulation results, we introduce a new microprestress-dependent energy term into our existing Arrhenius model, which describes the relative displacement of pore walls as a function of the underlying activation energy barriers. Our findings further verify the existing micromechanical theories for the origin of the Pickett effect and establish a quantitative relationship between the transverse microprestress and the intensity of the Pickett effect.

  1. Electronic conductance model in constricted MoS{sub 2} with nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, Aditya [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Leburton, Jean-Pierre, E-mail: jleburto@illinois.edu [Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-02-01

    We describe a self-consistent model for electronic transport in a molybdenum di-sulphide (MoS{sub 2}) layer containing a nanopore in a constricted geometry. Our approach is based on a semi-classical thermionic Poisson-Boltzmann technique using a two-valley model within the effective mass approximation to investigate perturbations caused by the nanopore on the electronic current. In particular, we show that the effect of the nanopore on the conductance is reduced as the nanopore is moved from the center to the layer edges. Our model is applied to the detection of DNA translocating through the nanopore, which reveals current features similar to those as predicted in nanopore graphene layers.

  2. Nanopore sensors : From hybrid to abiotic systems

    NARCIS (Netherlands)

    Kocer, Armagan; Tauk, Lara; Dejardin, Philippe

    2012-01-01

    The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is

  3. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Tabrizi, Mahmoud Amouzadeh

    2011-01-01

    Highlights: → A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. → A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. → The apparent electron transfer rate constant was measured to be 5.27 s -1 . → A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E o ') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k s ) was calculated to be 5.27 s -1 . The dependence of E o ' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  4. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  5. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    Science.gov (United States)

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  6. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    Science.gov (United States)

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  7. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The effect of foil purity on morphology of anodized nanoporous ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wierzbicka, Ewa; Syrek, Karolina [Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow (Poland); Sulka, Grzegorz D., E-mail: sulka@chemia.uj.edu.pl [Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow (Poland); Pisarek, Marcin; Janik-Czachor, Maria [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Anodization of Zr with different purities in an aqueous electrolyte was studied. • The structural parameters of formed anodic oxides were compared. • Effect of Zr foil purity on the hexagonal arrangement of pores and cells in anodic ZrO{sub 2} was investigated. • Current efficiency and rate of anodic oxide formation were estimated. - Abstract: A two-step electrochemical formation of nanoporous zirconium oxide layers on different zirconium foils (purity 99.2% and 99.8%) was investigated. Anodizations were carried out at 20 V in an electrolyte composed of 1 M (NH{sub 4}){sub 2}SO{sub 4} and 0.15 M NH{sub 4}F. It was found that the thickness of grown oxide layer, and consequently, the rate of oxide formation depend slightly on the Zr substrate purity. The pore nucleation and anodization process occur easier in the presence of higher concentration of impurities. From top view SEM images, the structural parameters of oxide layers such as pore diameter, interpore distance, pore density, wall thickness and porosity of anodic oxide layers were estimated for both types of used substrates. On the other hand, cell size, intercell distance and cell density were evaluated from the bottom side of anodic oxide layers. A special emphasis was put on the qualitative analysis of hexagonal arrangement of nanopores and cells. The nanopore and cells arrangements in formed oxides were evaluated using various approaches based on Delaunay triangulations, angular distribution functions (ADFs) and pair distribution functions (PDFs). These results were supported by calculations of percentage of defective pores and cells for both types of used Zr substrates. The use of low purity Zr for anodizing does not affect drastically the morphology of formed nanoporous zirconia and offers a promising perspective to reduce production costs and increase availability of this material.

  9. Gassmann Theory Applies to Nanoporous Media

    Science.gov (United States)

    Gor, Gennady Y.; Gurevich, Boris

    2018-01-01

    Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.

  10. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    Science.gov (United States)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  11. Interaction of flexible surface hairs with near-wall turbulence.

    Science.gov (United States)

    Brücker, Ch

    2011-05-11

    The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 × 10⁶. The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L( + ) = 30) which are arranged in a regular grid (60 × 30 hairs with a streamwise spacing Δx( + )≈15 and a spanwise spacing Δy( + )≈30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

  12. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.

    Directory of Open Access Journals (Sweden)

    Jayesh A Bafna

    Full Text Available We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform.

  13. Information Dynamics of a Nonlinear Stochastic Nanopore System

    Directory of Open Access Journals (Sweden)

    Claire Gilpin

    2018-03-01

    Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.

  14. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  15. Study of polymer molecules and conformations with a nanopore

    Science.gov (United States)

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  16. Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer

    Science.gov (United States)

    Wang, Jin; Agarwal, Karuna; Katz, Joseph

    2017-11-01

    On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.

  17. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko Matsumoto; Kazumasa Yamamoto; Tomoyuki Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues, nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption micro-calorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micro-pore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity. The

  18. Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials.

    Science.gov (United States)

    Okaikue-Woodi, Fanny E K; Kelch, Sabrina E; Schmidt, Michael P; Enid Martinez, Carmen; Youngman, Randall E; Aristilde, Ludmilla

    2018-03-01

    Smectite clay nanoparticles are implicated in the retention of antimicrobials within soils and sediments; these clays are also inspected as drug carriers in physiological systems. Cation exchange is considered the primary adsorption mechanism of antimicrobials within smectite nanopores. However, a dual role of acid-base chemistry and adsorptive structures is speculated by recent studies. Using the prototypical smectite clay montmorillonite, we employed a combination of X-ray diffraction (XRD), nuclear magnetic resonance, attenuated total reflectance-Fourier transform infrared spectroscopy, and molecular dynamics simulations to investigate the interlayer nanopore trapping of two structurally-different fluoroquinolone (FQ) antimicrobials with similar acid-base chemistry: ciprofloxacin (a first-generation FQ) and moxifloxacin (a third-generation FQ). Greater sorption at pH 5.0 than at pH 7.0 for both FQs was consistent with cation-exchange of positively-charged species. However, the clay exhibited a near twofold higher sorption capacity for moxifloxacin than for ciprofloxacin. This difference was shown by the XRD data to be accompanied by enhanced trapping of moxifloxacin within the clay interlayers. Using the XRD-determined nanopore sizes, we performed molecular dynamics simulations of thermodynamically-favorable model adsorbates, which revealed that ciprofloxacin was adsorbed parallel to the clay surface but moxifloxacin adopted a tilted conformation across the nanopore. These conformations resulted in more slowly-exchanged than quickly-exchanged Na complexes with ciprofloxacin compared with moxifloxacin. These different Na populations were also captured by 23 Na nuclear magnetic resonance. Furthermore, the simulated adsorbates uncovered different complexation interactions that were corroborated by infrared spectroscopy. Therefore, beyond acid-base chemistry, our findings imply that distinct adsorbate structures control antimicrobial trapping within clay nanopores

  19. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    Science.gov (United States)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  20. Modified MIS-structure based on nanoporous silicon with enhanced sensitivity to the hydrogen containing gases

    Energy Technology Data Exchange (ETDEWEB)

    Gorbanyuk, T.; Evtukh, A.; Litovchenko, V.; Solntsev, V. [Institute of Semiconductor Physics, Kiev (Ukraine)

    2008-07-01

    The gas sensitivity of metal-insulator-semiconductor (MIS)-structures based on nanoporous silicon with active electrodes from palladium/tungsten oxide composite has been studied. It was found that the using of palladium/tungsten oxide composite (instead of thin palladium film) leads to enhanced sensitivity of MIS structures to hydrogen sulphide in air. The mechanism of this phenomenon has been established. The enhanced H{sub 2}S sensitivity is explained in the following way. The microparticles of tungsten trioxide inside palladium matrix stimulate the dissociation of hydrogen sulphide molecules, and hydrogen atoms and/or protons flow down to palladium surface, are absorbed by palladium volume, diffuse to palladium/oxidized nanoporous silicon interface. Hydrogen atoms adsorbed at the interface are polarized and give rise to a dipole layer. As a result, the voltage shift of the capacity-voltage (C-V) curve proportional to the measured gas concentration is observed. The surface microstructure of Pd/WO{sub 3} composite was studied by AFM microscopy. The chemical content of the composite film has been investigated by SIMS. It was found that the composite film on nanoporous silicon surface poses the holes with the size about 0.05 {mu}m, the mean separation between tungsten oxide microparticles is 1-2 {mu}m. It also was found that the using of the additional double layer polymer film (polymer film (phthalocyanine zinc)/semicon-ductor film (cadmium sulphide)) on composite film surface leads to the additional enhancement of the gas sensitivity to hydrogen sulphide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    Science.gov (United States)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  2. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    Science.gov (United States)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  3. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    International Nuclear Information System (INIS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-01-01

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  4. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zongshuang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Qiu, Li [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Yongkang, E-mail: y.k.chen@herts.ac.uk [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); University of Hertfordshire, School of Engineering and Technology, Hatfield, Hertfordshire AL10 9AB (United Kingdom); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-10-30

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  5. Swelling, Functionalization, and Structural Changes of the Nanoporous Layered Silicates AMH-3 and MCM-22

    KAUST Repository

    Kim, Wun-gwi; Choi, Sunho; Nair, Sankar

    2011-01-01

    Nanoporous layered silicate materials contain 2D-planar sheets of nanoscopic thickness and ordered porous structure. In comparison to porous 3D-framework materials such as zeolites, they have advantages such as significantly increased surface area

  6. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  7. Hydrogen adsorption properties of polymer-derived nanoporous SiC{sub x} fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Zengyong; He, Rongan; Zhang, Xiaobin; Cheng, Haifeng; Li, Xiaodong; Wang, Yingde [State Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China)

    2010-04-15

    In an effort to prepare new hydrogen storage materials, we successfully obtained three types of polymer-derived nanoporous SiC{sub x} (x = 5-7) fibers, whose specific surface areas (SSAs) are larger than 580 m{sup 2}/g. Their hydrogen adsorption properties were studied with a comparison of multi-walled carbon nanotubes (MWCNTs). The results reveal that micropores play a predominant role in hydrogen adsorptions at 77 K and at pressures below 0.5 MPa, and mesopores begin to take greater effect when the pressure increases beyond 0.5 MPa. The maximum hydrogen storage capacity (HSC), 0.33 wt% at 302 K and 4 MPa, was achieved for SiC{sub x}-KN fibers with SSA of 990 m{sup 2}/g, while the HSC of the MWCNTs is 0.09 wt% at the same conditions. For these new materials, this work demonstrates that small pore size, large micropore volume and large SSA are all beneficial for the high hydrogen uptake. It can also be deduced from the work that the HSC of the SiC{sub x} fibers could be further increased if the crystallinity and the composition are better controlled. (author)

  8. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    Science.gov (United States)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  9. Two-step fabrication of nanoporous copper films with tunable morphology for SERS application

    Science.gov (United States)

    Diao, Fangyuan; Xiao, Xinxin; Luo, Bing; Sun, Hui; Ding, Fei; Ci, Lijie; Si, Pengchao

    2018-01-01

    It is important to design and fabricate nanoporous metals (NPMs) with optimized microstructures for specific applications. In this contribution, nanoporous coppers (NPCs) with controllable thicknesses and pore sizes were fabricated via the combination of a co-sputtering of Cu/Ti with a subsequent dealloying process. The effect of dealloying time on porous morphology and the corresponding surface enhanced Raman scattering (SERS) behaviors were systematically investigated. Transmission electron microscopy (TEM) identified the presences of the gaps formed between ligaments and also the nanobumps on the nanoparticle-aggregated ligament surface, which were likely to contribute as the ;hot spots; for electromagnetic enhancement. The optimal NPC film exhibited excellent SERS performance towards Rhodamine 6G (R6G) with a low limiting detection (10-9 M), along with good uniformity and reproducibility. The calculated enhancement factor of ca. 4.71 × 107 was over Au substrates and comparable to Ag systems, promising the proposed NPC as a cheap candidate for high-performance SERS substrate.

  10. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    Directory of Open Access Journals (Sweden)

    Boris Dyatkin

    2015-12-01

    Full Text Available This study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.

  11. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; Gogotsi, Yury

    2015-12-01

    This study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.

  12. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  13. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    Science.gov (United States)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  14. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies.

    Science.gov (United States)

    Kaynar, Ümit H; Ayvacıklı, Mehmet; Hiçsönmez, Ümran; Kaynar, Sermin Çam

    2015-12-01

    The adsorption of thorium (IV) from aqueous solutions onto a novel nanoporous ZnO particles prepared by microwave assisted combustion was studied using batch methods under different experimental conditions. The effect of contact time, solution pH, initial concentration and temperature on adsorption process was studied. The ability of this material to remove Th (IV) from aqueous solution was characterises by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders in optimum conditions were 97% ± 1.02; 8080 L kg(-1)for Th (IV), respectively. Based on the Langmuir model, the maximum adsorption capacity of nanoporous ZnO for Th (IV) was found to be 1500 g kg(-1). Thermodynamic parameters were determined and discussed. The results indicated that nanoporous ZnO was suitable as sorbent material for recovery and adsorption of Th (IV) ions from aqueous solutions. The radioactive Th (VI) in surface water, sea water and waste waters from technologies producing nuclear fuels, mining (uranium and thorium) and laboratories working with radioactive materials (uranium and thorium) can be removed with this nanoporous ZnO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  16. DNA and ion transport through solid-state nanopores

    NARCIS (Netherlands)

    Smeets, R.M.M.

    2008-01-01

    This thesis describes experimental work on a novel type of devices capable of detecting single-(bio)molecules; nanometer-sized pores, or nanopores. Individual nanopores are placed in between two electrolyte-filled liquid compartments and (bio)molecules are electrophoretically driven through them.

  17. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2010-01-01

    ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while...... the morphology was investigated by small-angle X-ray scattering and transmission electron microscopy....

  18. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  19. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  20. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment.

    Science.gov (United States)

    Oh, Jun Kyun; Kohli, Nandita; Zhang, Yuanzhong; Min, Younjin; Jayaraman, Arul; Cisneros-Zevallos, Luis; Akbulut, Mustafa

    2016-02-26

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol-gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs.

  1. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment

    International Nuclear Information System (INIS)

    Oh, Jun Kyun; Akbulut, Mustafa; Kohli, Nandita; Jayaraman, Arul; Zhang, Yuanzhong; Min, Younjin; Cisneros-Zevallos, Luis

    2016-01-01

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol–gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs. (paper)

  2. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  3. Nanopore biosensors for detection of proteins and nucleic acids

    NARCIS (Netherlands)

    Maglia, Giovanni; Soskine, Mikhael

    2014-01-01

    Described herein are nanopore biosensors based on a modified cytolysin protein. The nanopore biosensors accommodate macromoiecules including proteins and nucleic acids, and may additionally comprise ligands with selective binding properties.

  4. Nanoporous-carbon films for microsensor preconcentrators

    Science.gov (United States)

    Siegal, M. P.; Overmyer, D. L.; Kottenstette, R. J.; Tallant, D. R.; Yelton, W. G.

    2002-05-01

    Nanoporous-carbon (NPC) films are grown using physical processes such as low-power pulsed-laser deposition with attenuation of the ablated carbon species kinetic energy attained by using an inert background gas. With room-temperature growth and negligible residual stress, NPC can coat nearly any substrate to any desired thickness. Control of the deposition energetics yields precise morphology, density, and hence, porosity, with no discernable variation in chemical bonding. We produce NPC films 8 μm thick with density <0.2 g/cm3. The well-controlled porosity, i.e., available surface area, is demonstrated by using films with different thicknesses as a preconcentrator for a nerve-gas simulant.

  5. Ion selection of charge-modified large nanopores in a graphene sheet

    Science.gov (United States)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  6. Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-06-01

    Full Text Available Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD, scanning electron microscopy (SEM and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong pore size distribution peaks with average of 37.8 Å and pore volume of 0.41 cm3/g and the (Brunauer–Emmett–TellerBET specific surface area of 365 m2/g. Hydrothermal and non-hydrothermal spherical TiO2 nanoporous have been used as adsorbent to study of the adsorption behavior of Pb(II, Co(II and Ni(II ions from aqueous system in a batch system. Effect of equilibrium time on adsorption Pb(II, Co(II and Ni(II ions on these adsorbent was studied The results show that the shaking time 0.5 to 10h has no serious effect on the percentage of ions removal, and the adsorption is fast in all cases. The maximum uptake capacities of Hydrothermal and non-hydrothermal spherical TiO2 nanoporous was calculated. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential as new adsorbents in removal of these ions. In batch systems the maximum uptake capacities of Pb(II, Ni(II and Co(II on the hydrothermal and non-hydrothermal TiO2 nanoporous materials was Co(II > Pb(II > Ni(II and Co(II > Ni(II > Pb(II, respectively.

  7. Combustion Synthesis Of Ultralow-density Nanoporous Gold Foams

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Bruce C [Los Alamos National Laboratory; Mueller, Alex H [Los Alamos National Laboratory; Steiner, Stephen A [Los Alamos National Laboratory; Luther, Erik P [Los Alamos National Laboratory

    2008-01-01

    A new synthetic pathway for producing nanoporous gold monoliths through combustion synthesis from Au bistetrazoJeamine complexes has been demonstrated. Applications of interest for Au nanofoams include new substrates for nanoparticle-mediated catalysis, embedded antennas, and spectroscopy. Integrated support-and-catalystin-one nanocomposites prepared through combustion synthesis of mixed AuBTA/metal oxide pellets would also be an interesting technology approach for low-cost in-line catalytic conversion media. Furthermore, we envision preparation of ultrahigh surface area gold electrodes for application in electrochemical devices through this method.

  8. Nanoporous carbon actuator and methods of use thereof

    Science.gov (United States)

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  9. Silicon deposition in nanopores using a liquid precursor

    Science.gov (United States)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  10. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    Science.gov (United States)

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  11. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    Science.gov (United States)

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-07

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

  12. Mechanical Properties of Nanoporous Au: From Empirical Evidence to Phenomenological Modeling

    Directory of Open Access Journals (Sweden)

    Giorgio Pia

    2015-09-01

    Full Text Available The present work focuses on the development of a theoretical model aimed at relating the mechanical properties of nanoporous metals to the bending response of thick ligaments. The model describes the structure of nanoporous metal foams in terms of an idealized regular lattice of massive cubic nodes and thick ligaments with square cross-sections. Following a general introduction to the subject, model predictions are compared with Young’s modulus and the yield strength of nanoporous Au foams determined experimentally and available in literature. It is shown that the model provides a quantitative description of the elastic and plastic deformation behavior of nanoporous metals, reproducing to a satisfactory extent the experimental Young’s modulus and yield strength values of nanoporous Au.

  13. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    International Nuclear Information System (INIS)

    Samiee, L.; Shoghi, F.; Vinu, A.

    2013-01-01

    Highlights: ► Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. ► Novel electrocatalytic activity of functionalized nanoporous carbon material. ► Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N 2 adsorption–desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe 2 O 3 -Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  14. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Samiee, L., E-mail: Leila.Samiee83@gmail.com [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Shoghi, F. [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Vinu, A., E-mail: a.vinu@uq.edu.au [Australian Institute for Bioengineering and Nanotechnology(AIBN), University of Queensland, Corner College and Cooper Roads (Bld75), Brisbane, Qld 4072 (Australia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. Black-Right-Pointing-Pointer Novel electrocatalytic activity of functionalized nanoporous carbon material. Black-Right-Pointing-Pointer Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N{sub 2} adsorption-desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe{sub 2}O{sub 3}-Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  15. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    Science.gov (United States)

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  16. Nanoporous magnesium aluminometasilicate tablets for precise, controlled, and continuous dosing of chemical reagents and catalysts

    DEFF Research Database (Denmark)

    Ruhland, T.; Nielsen, S.D.; Holm, P.

    2007-01-01

    Mechanically robust tablets of nanoporous magnesium aluminometasilicate with high surface area and porosity can be loaded with a variety of organic and inorganic reagents and catalysts. The scope of this novel dosing methodology is demonstrated through the evaluation of 14 diverse organic reactions...

  17. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    International Nuclear Information System (INIS)

    Rahimpour, Ahmad; Madaeni, Sayed Siavash; Jahanshahi, Mohsen; Mansourpanah, Yaghoub; Mortazavian, Narmin

    2009-01-01

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  18. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  19. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  20. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.

    Science.gov (United States)

    Wen, Chenyu; Zhang, Zhen; Zhang, Shi-Li

    2017-10-27

    Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, L eff , that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e -1 of this maximum. By [Formula: see text], a simple expression S 0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S 0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS 2 , and ultrathin SiN x films. The generality of the model is verified by applying it to micrometer-size pores.

  1. Electro-osmotic flow through nanopores in thin and ultrathin membranes

    Science.gov (United States)

    Melnikov, Dmitriy V.; Hulings, Zachery K.; Gracheva, Maria E.

    2017-06-01

    We theoretically study how the electro-osmotic fluid velocity in a charged cylindrical nanopore in a thin solid state membrane depends on the pore's geometry, membrane charge, and electrolyte concentration. We find that when the pore's length is comparable to its diameter, the velocity profile develops a concave shape with a minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow expansion and contraction near the exit or entrance to the pore and to the reduction of electric field inside the nanopore. The induced pressure is maximal when the pore's length is about equal to its diameter while decreasing for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and shown to be in a good agreement with numerically computed results.

  2. Microtome Sliced Block Copolymers and Nanoporous Polymers as Masks for Nanolithography

    DEFF Research Database (Denmark)

    Shvets, Violetta; Schulte, Lars; Ndoni, Sokol

    2014-01-01

    Introduction. Block copolymers self-assembling properties are commonly used for creation of very fine nanostructures [1]. Goal of our project is to test new methods of the block-copolymer lithography mask preparation: macroscopic pieces of block-copolymers or nanoporous polymers with cross...... PDMS can be chemically etched from the PB matrix by tetrabutylammonium fluoride in tetrahydrofuran and macroscopic nanoporous PB piece is obtained. Both block-copolymer piece and nanoporous polymer piece were sliced with cryomicrotome perpendicular to the axis of cylinder alignment and flakes...... of etching patterns appear only under the certain parts of thick flakes and are not continuous. Although flakes from block copolymer are thinner and more uniform in thickness than flakes from nanoporous polymer, quality of patterns under nanoporous flakes appeared to be better than under block copolymer...

  3. Dynamic crack propagation through nanoporous media

    Science.gov (United States)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  4. Swelling, Functionalization, and Structural Changes of the Nanoporous Layered Silicates AMH-3 and MCM-22

    KAUST Repository

    Kim, Wun-gwi

    2011-06-21

    Nanoporous layered silicate materials contain 2D-planar sheets of nanoscopic thickness and ordered porous structure. In comparison to porous 3D-framework materials such as zeolites, they have advantages such as significantly increased surface area and decreased diffusion limitations because the layers can potentially be exfoliated or intercalated into polymers to form nanocomposite materials. These properties are particularly interesting for applications as materials for enhancing molecular selectivity and throughput in composite membranes. In this report, the swelling and surface modification chemistry of two attractive nanoporous layered silicate materials, AMH-3 and MCM-22, were studied. We first describe a method, using long-chain diamines instead of monoamines, for swelling of AMH-3 while preserving its pore structure to a greater extent during the swelling process. Then, we describe a stepwise functionalization method for functionalizing the layer surfaces of AMH-3 and MCM-22 via silane condensation reactions. The covalently attached hydrocarbon chain molecules increased the hydrophobicity of AMH-3 and MCM-22 layer surfaces and therefore allow the possibility of effectively dispersing these materials in polymer matrices for thin film/membrane applications. © 2011 American Chemical Society.

  5. Ion-surface interaction: simulation of plasma-wall interaction (ITER)

    International Nuclear Information System (INIS)

    Salou, Pierre

    2013-01-01

    The wall materials of magnetic confinement in fusion machines are exposed to an aggressive environment; the reactor blanket is bombarded with a high flux of particles extracted from the plasma, leading to the sputtering of surface material. This sputtering causes wall erosion as well as plasma contamination problems. In order to control fusion reactions in complex reactors, it is thus imperative to well understand the plasma-wall interactions. This work proposes the study of the sputtering of fusion relevant materials. We propose to simulate the charged particles influx by few keV single-charged ion beams. This study is based on the catcher method; to avoid any problem of pollution (especially in the case of carbon) we designed a new setup allowing an in situ Auger electron spectroscopy analysis. The results provide the evolution of the angular distribution of the sputtering yield as a function of the ion mass (from helium to xenon) and its energy (from 3 keV to 9 keV). (author) [fr

  6. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2010-10-01

    A novel electrocatalyst, nanoporous palladium (npPd) rods can be facilely fabricated by dealloying a binary Al{sub 80}Pd{sub 20} alloy in a 5 wt.% HCl aqueous solution under free corrosion conditions. The microstructure of these nanoporous palladium rods has been characterized using scanning electron microscopy and transmission electron microscopy. The results show that each Pd rod is several microns in length and several hundred nanometers in diameter. Moreover, all the rods exhibit a typical three-dimensional bicontinuous interpenetrating ligament-channel structure with length scale of 15-20 nm. The electrochemical experiments demonstrate that these peculiar nanoporous palladium rods (mixed with Vulcan XC-72 carbon powders to form a npPd/C catalyst) reveal a superior electrocatalytic performance toward methanol oxidation in the alkaline media. In addition, the electrocatalytic activity obviously depends on the metal loading on the electrode and will reach to the highest level (223.52 mA mg{sup -1}) when applying 0.4 mg cm{sup -2} metal loading on the electrode. Moreover, a competing adsorption mechanism should exist when performing methanol oxidation on the surface of npPd rods, and the electro-oxidation reaction is a diffusion-controlled electrochemical process. Due to the advantages of simplicity and high efficiency in the mass production, the npPd rods can act as a promising candidate for the anode catalyst for direct methanol fuel cells (DMFCs). (author)

  7. Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bandosz, Teresa J. [City College of New York, NY (United States). Dept. of Chemistry; Seredych, Mykola [City College of New York, NY (United States). Dept. of Chemistry; Rodríguez-Castellón, Enrique [Univ. of Malaga (Spain). Dept. of Inorganic Chemistry; Cheng, Yongqiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; Daemen, Luke L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; Ramírez-Cuesta, Anibal J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division

    2015-10-08

    CO2 interactions with nanoporous S- and N-doped polymer-derived carbon and commercial wood-based carbon were investigated in a broad range of conditions. The results showed that during CO2 adsorption nitrogen and sulfur species as well as water were released from the carbon surface as a result of chemical reactions of the surface groups with CO2. Inelastic neutron scattering experiments provided the unprecedented ability to characterize very small amounts of CO2 and H2O and revealed for the first time their physical/chemical status in the confined space of nanoporous carbons. The results obtained suggest that the reactivity of the carbon surface should be considered when CO2 storage media are chosen and when CO2 is used as a probe to determine the microporosity of carbon materials.

  8. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    Science.gov (United States)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  9. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    Science.gov (United States)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  10. Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers

    Science.gov (United States)

    Culebras, Mario; Madroñero, Antonio; Cantarero, Andres; Amo, José Maria; Domingo, Concepción; López, Antonio

    2012-10-01

    Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditions: surface tension, mass density, and Raman measurements. A discussion on the validity of the results obtained through the correlation between them is the purpose of the present work.

  11. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    Science.gov (United States)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  12. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy.

    Science.gov (United States)

    Song, Jibin; Yang, Xiangyu; Yang, Zhen; Lin, Lisen; Liu, Yijing; Zhou, Zijian; Shen, Zheyu; Yu, Guocan; Dai, Yunlu; Jacobson, Orit; Munasinghe, Jeeva; Yung, Bryant; Teng, Gao-Jun; Chen, Xiaoyuan

    2017-06-27

    Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au 3+ ). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64 Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.

  13. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  14. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  15. Interaction of flexible surface hairs with near-wall turbulence

    International Nuclear Information System (INIS)

    Bruecker, Ch

    2011-01-01

    The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 x 10 6 . The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L + = 30) which are arranged in a regular grid (60 x 30 hairs with a streamwise spacing Δx + ∼15 and a spanwise spacing Δy + ∼30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D < 5 such that they interact with each other by flow coupling. The non-fluctuating mean part of the flow forces a substantial pre-bending in the streamwise direction (reconfiguration). As a consequence, the hairs align with the streamwise direction, thus imposing anisotropic damping characteristics with regard to flow fluctuations in streamwise and spanwise or wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

  16. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  17. 1/f noise in graphene nanopores

    International Nuclear Information System (INIS)

    Heerema, S J; Schneider, G F; Rozemuller, M; Vicarelli, L; Zandbergen, H W; Dekker, C

    2015-01-01

    Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise magnitude is very high for graphene nanopores: typically two orders of magnitude higher than for silicon nitride pores. This is a drawback as it significantly lowers the signal-to-noise ratio in DNA translocation experiments. We evaluate possible explanations for these exceptionally high noise levels in graphene pores. From examining the noise for pores of different diameters and at various salt concentrations, we find that in contrast to silicon nitride pores, the 1/f noise in graphene pores does not follow Hooge’s relation. In addition, from studying the dependence on the buffer pH, we show that the increased noise cannot be explained by charge fluctuations of chemical groups on the pore rim. Finally, we compare single and bilayer graphene to few-layer and multi-layer graphene and boron nitride (h-BN), and we find that the noise reduces with layer thickness for both materials, which suggests that mechanical fluctuations may be the underlying cause of the high 1/f noise levels in monolayer graphene nanopore devices. (paper)

  18. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  19. Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions

    Energy Technology Data Exchange (ETDEWEB)

    Monty, J.P.; Lien, K.; Chong, M.S. [University of Melbourne, Department of Mechanical Engineering, Parkville, VIC (Australia); Allen, J.J. [New Mexico State University, Department of Mechanical Engineering, Las Cruces, NM (United States)

    2011-12-15

    A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of 'superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements. (orig.)

  20. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality.

    Science.gov (United States)

    Fujita, Takeshi

    2017-01-01

    Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.

  1. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  2. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  3. Single molecule transistor based nanopore for the detection of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S. J., E-mail: ray.sjr@gmail.com [Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  4. Single molecule transistor based nanopore for the detection of nicotine

    Science.gov (United States)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  5. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    OpenAIRE

    Lee, Alpha A; Vella, Dominic; Goriely, Alain; Kondrat, Svyatoslav

    2015-01-01

    Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and he...

  6. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  7. Understanding focused ion beam guided anodic alumina nanopore development

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → We study the effect of FIB patterning on pore evolution during anodization. → FIB patterned concaves with 1.5 nm depth can effectively guide nanopore growth. → The edge effect of FIB guided patterns causes nanopores to bend. → Anodization window is enlarged to 50-80 V for 150 nm interpore distance hexagonal arrays. - Abstract: Focused ion beam (FIB) patterning in combination with anodization has shown great promise in creating unique pore patterns. This work is aimed to understand the effect of the FIB patterned sites in guiding anodized pore development. Highly ordered porous anodic alumina has been created with the guidance of FIB created patterns on electropolished aluminum followed by oxalic acid anodization. Shallow concaves created by the FIB with only 1.5 nm depth can effectively guide the growth of ordered nanopore patterns. With the guidance of the FIB pattern, the anodization rate is much faster and the nanopore growth direction bends at the boundary of the FIB patterned and un-patterned regions. FIB patterning also enlarges the anodization window; ordered nanopore arrays with 150 nm interpore distances can be produced under an applied potential from 50 V to 80 V. The fundamental understanding of these unique processes is discussed.

  8. Low-Z material for limiters and wall surfaces in JET: beryllium and carbon

    International Nuclear Information System (INIS)

    Rebut, P.H.; Hugon, M.; Booth, S.J.; Dean, J.R.; Dietz, K.J.; Sonnenberg, K.; Watkins, M.L.

    1985-01-01

    The relative merits of graphite and beryllium, as a low-Z material for limiters and wall surfaces in JET, are compared. A consideration of data on thermomechanical properties, retention of hydrogen and gettering action, indicates that beryllium offers the best prospects as a material for the JET belt limiters and walls. (U.K.)

  9. Photocatalytic surface reactions on indoor wall paint.

    Science.gov (United States)

    Salthammer, T; Fuhrmann, F

    2007-09-15

    The reduction of indoor air pollutants by air cleaning systems has received considerable interest, and a number of techniques are now available. So far, the method of photocatalysis was mainly applied by use of titanium dioxide (TiO2) in flow reactors under UV light of high intensity. Nowadays, indoor wall paints are equipped with modified TiO2 to work as a catalyst under indoor daylight or artificial light. In chamber experiments carried out under indoor related conditions itwas shown thatthe method works for nitrogen dioxide with air exchange and for formaldehyde without air exchange at high concentrations. In further experiments with volatile organic compounds (VOCs), a small effect was found for terpenoids with high kOH rate constants. For other VOCs and carbon monoxide there was no degradation at all or the surface acted as a reversible sink. Secondary emissions from the reaction of paint constituents were observed on exposure to light. From the results it is concluded that recipes of photocatalytic wall paints need to be optimized for better efficiency under indoor conditions.

  10. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    Science.gov (United States)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  11. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    Science.gov (United States)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  12. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...

  13. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Raoof, Jahan-Bakhsh; Hosseini, Sayed Reza; Ojani, Reza; Mandegarzad, Sakineh

    2015-01-01

    In this work, metal-organic framework Cu_3(BTC)_2 [BTC = 1,3,5-benzenetricarboxylate] (commonly known as MOF-199 or HKUST-1), is used as porous template for preparation of a Cu/nanoporous carbon composite. The MOF-derived Cu/nanoporous carbon composite (Cu/NPC composite) is synthesized by direct carbonization of the MOF-199 without any carbon precursor additive. The physical characterization of the solid catalyst is achieved by using a variety of different techniques, including XRD (X-ray powder diffraction), scanning electron microscopy, thermo-gravimetric analysis, and nitrogen physisorption measurements. The electrochemical results have shown that the Cu/NPC composite modified glassy carbon electrode (Cu/NPC/GCE) as a non-platinum electrocatalyst exhibited favorable catalytic activity for hydrogen evolution reaction, in spite of high resistance to faradic process. This behavior can be attributed to existence of Cu metal confirmed by XRD and/or high effective pore surface area (1025 m"2 g"−"1) in the Cu/NPC composite. The electron transfer coefficient and exchange current density for the Cu/NPC/GCE is calculated by Tafel plot at about 0.34 and 1.2 × 0"−"3 mAcm"−"2, respectively. - Graphical abstract: Metal organic framework-derived Cu/nanoporous carbon composite (Cu/NPC composite) was prepared by direct carbonization of MOF-199 without addition of any carbon source at 900 °C. The Cu/NPC/GCE demonstrated an excellent electrocatalytic activity towards hydrogen evolution reaction compared with bare GCE. - Highlights: • MDNPC (MOF-199 derived nanoporous carbon) is prepared by direct carbonization. • MOF-199 is utilized as a template without addition of carbon resource. • The MDNPC has a good electrocatalytic activity in hydrogen evolution reaction. • High BET surface area and hydrogen adsorption property improved catalyst activity.

  14. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  15. Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases

    International Nuclear Information System (INIS)

    Egle, Tobias; Harvard University, Cambridge, MA; Barroo, Cédric; Janvelyan, Nare; Baumgaertel, Andreas C.

    2017-01-01

    Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal that the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H_3PO_4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.

  16. Fabrication of Polymer Microneedle Electrodes Coated with Nanoporous Parylene

    Science.gov (United States)

    Nishinaka, Yuya; Jun, Rina; Setia Prihandana, Gunawan; Miki, Norihisa

    2013-06-01

    In this study, we demonstrate the fabrication of polymer microneedle electrodes covered with a nanoporous parylene film that can serve as flexible electrodes for a brain-machine interface. In brain wave measurement, the electric impedance of electrodes should be below 10 kΩ at 15 Hz, and the conductive layer needs to be protected to survive its insertion into the stratum corneum. Polymer microneedles can be used as substrates for flexible electrodes, which can compensate for the movement of the skin; however, the adhesion between a conductive metal film, such as a silver film, and a polymer, such as poly(dimethylsiloxane) (PDMS), is weak. Therefore, we coated the electrode surface with a nanoporous parylene film, following the vapor deposition of a silver film. When the porosity of the parylene film is appropriate, it protects the silver film while allowing the electrode to have sufficient conductivity. The porosity can be controlled by adjusting the amount of the parylene dimer used for the deposition or the parylene film thickness. We experimentally verified that a conductive membrane was successfully protected while maintaining a conductivity below 10 kΩ when the thickness of the parylene film was between 25 and 38 nm.

  17. Gas adsorption and capillary condensation in nanoporous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K [Physics Department, University of California-San Diego, La Jolla, CA 92093 (United States); Ruminski, Anne M; Sailor, Michael J [Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (United States)], E-mail: casanova@physics.ucsd.edu

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  18. Gas adsorption and capillary condensation in nanoporous alumina films

    International Nuclear Information System (INIS)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K; Ruminski, Anne M; Sailor, Michael J

    2008-01-01

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation

  19. Gas adsorption and capillary condensation in nanoporous alumina films.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  20. Development of electrochemical supercapacitors with uniform nanoporous silver network

    International Nuclear Information System (INIS)

    Li, Rui; Liu, Xiongjun; Wang, Hui; Wu, Yuan; Lu, Z.P.

    2015-01-01

    Metal oxides such as manganese dioxide (MnO 2 ) are often used as electrode materials for supercapacitors due to their high specific capacitance. In practice, however, their specific capacitance is much smaller than the theoretical limit due to the low electrical conductivity and serious agglomeration. In the present work, we demonstrate that highly conductive nanoporous silver (NPS) network with uniform continuous nanoporosity and high surface area which was fabricated by dealloying Ag-Mg-Ca metallic glasses can be employed as supports and collectors for MnO 2 capacitors. By plating the MnO 2 nanocrystals into the nanopore structure, the NPS/MnO 2 composite electrode provides fast ionic conduction and excellent electron-proton transport, resulting in an ultrahigh specific capacitance of the plated active MnO 2 (∼1088 F g −1 ), which is close to the theoretical limit. The unique combination of high specific capacitance and long cycle life enhanced by the current composite structure makes the NPS/MnO 2 composite promising for electrochemical supercapacitor as electrode material. In addition, our findings suggest that the uniform NPS network is capable for improving capacitance performance of metal oxides in electrochemical supercapacitors.

  1. Structure of poly(di-n-hexylsilane) in nanoporous materials

    International Nuclear Information System (INIS)

    Korotkova, I.; Sakhno, T.; Drobit'ko, I.; Sakhno, Yu.; Ostapenko, N.

    2010-01-01

    Graphical abstract: On the basis of theoretical calculations using TD/CEP-31G method we found and interpreted the complexation mechanism of poly(di-n-hexylsilane) incorporated in nanoporous materials. - Abstract: In this work the effects of solvent polarity and conformation changing on the electronic characteristics of poly(di-n-hexylsilane) incorporated in the nanoporous materials are calculated. The dependence of energy levels of electronic-excited states of investigated compounds is analyzed as a function of the Si-Si-Si-Si twist angle and length of Si-Si and Si-C bonds. The possibility of complex formation between silicon atom of polymer and oxygen ions of nanoporous materials is shown.

  2. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    Science.gov (United States)

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  3. Bistable collective behavior of polymers tethered in a nanopore

    Science.gov (United States)

    Osmanovic, Dino; Bailey, Joe; Harker, Anthony H.; Fassati, Ariberto; Hoogenboom, Bart W.; Ford, Ian J.

    2012-06-01

    Polymer-coated pores play a crucial role in nucleo-cytoplasmic transport and in a number of biomimetic and nanotechnological applications. Here we present Monte Carlo and Density Functional Theory approaches to identify different collective phases of end-grafted polymers in a nanopore and to study their relative stability as a function of intermolecular interactions. Over a range of system parameters that is relevant for nuclear pore complexes, we observe two distinct phases: one with the bulk of the polymers condensed at the wall of the pore, and the other with the polymers condensed along its central axis. The relative stability of these two phases depends on the interpolymer interactions. The existence the two phases suggests a mechanism in which marginal changes in these interactions, possibly induced by nuclear transport receptors, cause the pore to transform between open and closed configurations, which will influence transport through the pore.

  4. Phase diagram of supercooled water confined to hydrophilic nanopores

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  5. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Science.gov (United States)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  6. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pauline, S. Anne; Rajendran, N., E-mail: nrajendran@annauniv.edu

    2014-01-30

    Niobium oxide was synthesized by sol–gel methodology and a crystalline, nanoporous and adherent coating of Nb{sub 2}O{sub 5} was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb{sub 2}O{sub 5} coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb{sub 2}O{sub 5} coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb{sub 2}O{sub 5} coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  7. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Park, Daewon; Kim, Hoonbae [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Hyerim; Park, Heonyong [Department of Molecular Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • The surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts. • Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment using micro plasma discharge. - Abstract: Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature

  8. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    International Nuclear Information System (INIS)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-01-01

    Graphical abstract: - Highlights: • The surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts. • Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment using micro plasma discharge. - Abstract: Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature

  9. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Measurement and modification of first-wall surface composition in the Oak Ridge Tokamak (ORMAK)

    International Nuclear Information System (INIS)

    Clausing, R.E.; Emerson, L.C.; Heatherly, L.; Colchin, R.J.; Twichell, J.C.

    1975-01-01

    Impurities coming into the plasma from the walls of present-day toroidal plasma confinement devices modify plasma behavior substantially. Small fractions of high-Z ions in the plasma greatly decrease plasma temperatures and increase plasma energy losses. Impurities from the ''first-wall'' in ORMAK were studied. Auger electron spectroscopy, soft x-ray appearance potential spectroscopy, and other surface sensitive techniques were used to characterize the surface composition of the first wall and to develop methods to remove carbon and oxygen. Oxygen glow discharge cleaning has been shown, in the laboratory, to be an effective way of removing carbon from gold films (simulated ORMAK linear material) and the use of oxygen discharge cleaning in ORMAK has resulted in a decrease in plasma contamination, a 50 percent increase in plasma current and an accompanying increase in plasma temperature. In spite of these improvements the walls of ORMAK are far from clean. Substantial amounts of carbon, oxygen, iron and other elements remain. (auth)

  11. Direct observation of deformation of nafion surfaces induced by methanol treatment by using atomic force microscopy

    International Nuclear Information System (INIS)

    Umemura, Kazuo; Kuroda, Reiko; Gao Yanfeng; Nagai, Masayuki; Maeda, Yuta

    2008-01-01

    We successfully characterized the effect of methanol treatment on the nanoscopic structures of a nafion film, which is widely used in direct methanol fuel cells (DMFCs). Atomic force microscopy (AFM) was used to repetitively image a particular region of a nafion sample before and after methanol solutions were dropped onto the nafion film and dried in air. When the surface was treated with 20% methanol for 5 min, many nanopores appeared on the surface. The number of nanopores increased when the sample was treated twice or thrice. By repetitive AFM imaging of a particular region of the same sample, we found that the shapes of the nanopores were deformed by the repeated methanol treatment, although the size of the nanopores had not significantly changed. The creation of the nanopores was affected by the concentration of methanol. Our results directly visualized the effects of methanol treatment on the surface structures of a nafion film at nanoscale levels for the first time

  12. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

    International Nuclear Information System (INIS)

    Mao Mao; Ghosal, Sandip; Hu Guohui

    2013-01-01

    Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. The results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current–voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations. (paper)

  13. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    Science.gov (United States)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  14. Mapping of the seasonal dynamic properties of building walls in actual periodic conditions and effects produced by solar radiation incident on the outer and inner surfaces of the wall

    International Nuclear Information System (INIS)

    Mazzeo, D.; Oliveti, G.; Arcuri, N.

    2016-01-01

    Highlights: • Dynamic thermal behaviour of building walls subjected to actual periodic loadings. • Dynamic parameters of wall in terms of energy and of heat flux are defined. • Different solar absorption coefficients and orientations of wall are considered. • On the internal surface is present or absent a shortwave radiant field. • Seasonal thermal characteristics for different plant operating regime are provided. - Abstract: In this work, the dynamic characteristics of the external walls of air-conditioned buildings subject to the joint action of periodic non-sinusoidal external and internal loadings are determined. The dynamic parameters used are the energy decrement factor, which is evaluated by means of the fluctuating heat flux in a semi-period exiting and entering the wall, the decrement factor of the maximum peak and minimum peak of the heat flux in a period and the relative time lags. The fluctuating heat flux in the wall in steady periodic regime conditions is determined with an analytical model obtained by resolving the equivalent electrical circuit. The preceding parameters are used for a study of the influence of solar radiation on the dynamic characteristics of the walls in summer and winter air-conditioning. Solar radiation is considered as operating on the external surface and on the internal surface due to the presence in the indoor environments of a shortwave radiant field. The absorbed solar heat flux by the external surface varies, modifying the solar absorption coefficient and wall orientation. Indoors, we considered a continuous operating regime of the plant and a regime with nocturnal attenuation. The results obtained, relating to 1152 different boundary conditions, were used for the construction of maps of dynamic characteristics, different on variation of the plant functioning regime and of the shortwave radiant load on the internal surface. The maps show the dependence of the decrement factors and of the time lags on variation of

  15. Nanoporous carbon tunable resistor/transistor and methods of production thereof

    Science.gov (United States)

    Biener, Juergen; Baumann, Theodore F; Dasgupta, Subho; Hahn, Horst

    2014-04-22

    In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically. In any embodiment, the electrolyte solution saturating the nanoporous carbon active channel is adapted for altering an electrical resistance of the nanoporous carbon active channel based on an applied electrochemical potential.

  16. Water desalination with a single-layer MoS2 nanopore

    Science.gov (United States)

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-10-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ~70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.

  17. Fabrication of TiO2 Nanotanks Embedded in a Nanoporous Alumina Template

    Directory of Open Access Journals (Sweden)

    C. Massard

    2015-01-01

    Full Text Available The feasibility of surface nanopatterning with TiO2 nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2 gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM. The TiO2 nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM with selected area electron diffraction (SAED were used to investigate the TiO2 structure. The optical properties were studied using UV-Vis spectroscopy.

  18. Recent progress in molecular simulation of nanoporous graphene membranes for gas separation

    Science.gov (United States)

    Fatemi, S. Mahmood; Baniasadi, Aminreza; Moradi, Mahrokh

    2017-07-01

    If an ideal membrane for gas separation is to be obtained, the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have welldefined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. Graphene is made up of a hexagonal honeycomb lattice of carbon atoms with sp 2 hybridization state forming a one-atom-thick sheet of graphite. Following conversion of the honeycomb lattices into nanopores with a specific geometry and size, a nanoporous graphene membrane that offers high efficiency as a separation membrane because of the ultrafast molecular permeation rate as a result of its one-atom thickness is obtained. Applications of nanoporous graphene membranes for gas separation have been receiving remarkably increasing attention because nanoporous graphene membranes show promising results in this area. This review focuses on the recent advances in nanoporous graphene membranes for applications in gas separation, with a major emphasis on theoretical works. The attractive properties of nanoporous graphene membranes introduce make them appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions.

  19. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane

    Science.gov (United States)

    Hosseini, Mostafa; Azamat, Jafar; Erfan-Niya, Hamid

    2018-01-01

    Molecular dynamics simulations were performed to investigate the water desalination performance of nanoporous graphene oxide (NPGO) membranes. The simulated systems consist of a NPGO as a membrane with a functionalized pore in its center immersed in an aqueous ionic solution and a graphene sheet as a barrier. The considered NPGO membranes are involved four types of pore with different size and chemistry. The results indicated that the NPGO membrane has effective efficiency in salt rejection as well as high performance in water flux. For all types of pore with the radius size of 2.9-4.5 Å, the NPGO shows salt rejection of >89%. Functional groups on the surface and edge of pores have a great effect on water flux. To precisely understand the effect of functional groups on the surface of nanostructured membranes, nanoporous graphene was simulated under the same condition for comparison. Hydrophilic groups on the surface make the NPGO as an ultra-permeable membrane. As a result, the obtained water flux for NPGO was about 77% greater than graphene. Also, it was found that the water flux of NPGO is 2-5 orders of magnitude greater than other existing reverse osmosis membranes. Therefore, the investigated systems can be recommended as a model for the water desalination.

  20. Environmental Green Chemistry Applications of Nanoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J.; Garcia, A; Poon, P

    2010-01-01

    Influence of surface properties of nanoporous carbons on activity and selectivity during the photooxidation of 4-chlorophenol on UV-irradiated TiO{sub 2} was performed. Characterization by infrared spectroscopy, X-ray photoelectronic spectroscopy and X-ray absorption near edge structure spectroscopy confirm the presence of a contact interface between both solids and suggest the coordination of some functional organic groups of the carbon surface, mainly ethers and carboxylic acids, to metallic centre Ti{sup +4} in TiO{sub 2}. Changes in surface pH of carbons from basic to neutral or acid remarkably increase the production of 4-chlorocathecol by a factor of 22 on TiO{sub 2}-Carbon in comparison of TiO{sub 2} alone. A scheme of interaction between TiO{sub 2} and carbon is proposed to the increased photoactivity of TiO{sub 2} and a reaction mechanism for the different intermediate products detected is also proposed. Results showed that TiO{sub 2}-Carbon can be used as an alternative photocatalyst for environmental green chemistry and selective organic synthesis applications.

  1. Solid-state nanopores for scanning single molecules and mimicking biology

    NARCIS (Netherlands)

    Kowalczyk, S.W.

    2011-01-01

    Solid-state nanopores, nanometer-size holes in a thin synthetic membrane, are a versatile tool for the detection and manipulation of charged biomolecules. This thesis describes mostly experimental work on DNA translocation through solid-state nanopores, which we study at the single-molecule level.

  2. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  3. Subcontinuum mass transport of hydrocarbons in nanoporous media and long-time kinetics of recovery from unconventional reservoirs

    Science.gov (United States)

    Bocquet, Lyderic

    2015-11-01

    In this talk I will discuss the transport of hydrocarbons across nanoporous media and analyze how this transport impacts at larger scales the long-time kinetics of hydrocarbon recovery from unconventional reservoirs (the so-called shale gas). First I will establish, using molecular simulation and statistical mechanics, that the continuum description - the so-called Darcy law - fails to predict transport within a nanoscale organic matrix. The non-Darcy behavior arises from the strong adsorption of the alkanes in the nanoporous material and the breakdown of hydrodynamics at the nanoscale, which contradicts the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length, which can be described theoretically by a scaling law for the permeance. Then I will show that alkane recovery from such nanoporous reservoirs is dynamically retarded due to interfacial effects occuring at the material's interface. This occurs especially in the hydraulic fracking situation in which water is used to open fractures to reach the hydrocarbon reservoirs. Despite the pressure gradient used to trigger desorption, the alkanes remain trapped for long times until water desorbs from the external surface. The free energy barrier can be predicted in terms of an effective contact angle on the composite nanoporous surface. Using a statistical description of the alkane recovery, I will then demonstrate that this retarded dynamics leads to an overall slow - algebraic - decay of the hydrocarbon flux. Such a behavior is consistent with algebraic decays of shale gas flux from various wells reported in the literature. This work was performed in collaboration with B. Coasne, K. Falk, T. Lee, R. Pellenq and F. Ulm, at the UMI CNRS-MIT, Massachusetts Institute of Technology, Cambridge, USA.

  4. Ion transport in sub-5-nm graphene nanopores

    International Nuclear Information System (INIS)

    Suk, Myung E.; Aluru, N. R.

    2014-01-01

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors

  5. Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua; Zhao Qitao [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States); Guan Xiyun, E-mail: xguan@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2010-08-24

    Nanopore stochastic sensor works by monitoring the ionic current modulations induced by the passage of analytes of interest through a single pore, which can be obtained from a biological ion channel by self-assembly or artificially fabricated in a solid-state membrane. In this minireview, we overview the use of biological nanopores and artificial nanopores for the detection of terrorist agents including explosives, organophosphorus nerve agents, nitrogen mustards, organoarsenic compounds, toxins, and viruses. We also discuss the current challenge in the development of deployable nanopore sensors for real-world applications.

  6. Functionalized Nanoporous Track Etched {beta}-PVDF Membrane Electrodes for Lead (II) Determination by Square Wave Anodic Stripping Voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Bessbousse, H [Laboratoire des Solides Irradies, CEA-CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Nadhakumar, I [School of Chemistry, University of Southampton, University Road, Southampton S017 1BJ (United Kingdom); Decker, M; Clochard, M -C; Wade, T L [Laboratoire des Solides Irradies, CEA-CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Barsbay, M [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, 06800 Beytepe Ankara (Turkey)

    2012-09-15

    Track etched functionalized nanoporous {beta}-PVDF membrane electrodes, or functionalized membrane electrodes (FME), are thin-layer cells made from poly(acrylic acid) (PAA) functionalized nanoporous {beta}-poly(vinylidene fluoride) ({beta}-PVDF) membranes with thin Au films sputtered on each side as electrodes. The Au film is thin enough that the pores of the membranes are not completely covered. The PAA functionalization is specifically localised in the walls of the nanoporous {beta}-PVDF membrane by grafting. The PAA is a cation exchange polymer that adsorbs metal ions, such as Pb{sup 2+}, from aqueous solutions concentrating the ions into the membrane. After a time the FME is transferred to an electrochemical cell for analysis. A negative potential is applied to the Au film of the FME for a set time to reduce the adsorbed ions onto the Au film working electrode. The other metalized side of the FME functions as a counter electrode. Finally, square-wave anodic stripping voltammetry (SW-ASV) is performed on the FME to determine the metal ion concentrations in the original solution. The calibration curve of charge versus log concentration has a Temkin isotherm form. The FME membranes are 9 {mu}m thick and have 40 nm diameter pores with a density of 10{sup 10} pores/cm{sup 2}. This high pore density provides a large capacity for ion adsorption. Au ingress in the pores during sputtering forms a random array of nanoelectrodes. Like surface modified electrodes for adsorptive stripping voltammetry, the pre-concentration step for the FME is performed at open circuit. The zero current intercept of the calibration for Pb{sup 2+} is 0.13 ppb ({mu}g/L) and a detection limit of 0.050 ppb based on 3S/N from blank measurements. Voltammetry (CV) and chronoapmerometry (CA) were used to characterize the system. The apparent diffusion coefficient (D) for Pb{sup 2+} in the PAA functionalized pores was determined to be 2.44 x 10{sup -7} cm{sup 2}/s and the partition coefficient (p

  7. Detection of DNA hybridizations using solid-state nanopores

    International Nuclear Information System (INIS)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng

    2010-01-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  8. Detection of DNA hybridizations using solid-state nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng, E-mail: Xinsheng_Ling@brown.edu [Department of Physics, Brown University, Providence, RI 02912 (United States)

    2010-08-20

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  9. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  10. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    Science.gov (United States)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  11. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  12. Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers.

    Science.gov (United States)

    Yin, Jun; Yao, Xueping; Liou, Jiun-You; Sun, Wei; Sun, Ya-Sen; Wang, Yong

    2013-11-26

    Membranes with uniform, straight nanopores have important applications in diverse fields, but their application is limited by the lack of efficient producing methods with high controllability. In this work, we reported on an extremely simple and efficient strategy to produce such well-defined membranes. We demonstrated that neutral solvents were capable of annealing amphiphilic block copolymer (BCP) films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) with thicknesses up to 600 nm to the perpendicular orientation within 1 min. Annealing in neutral solvents was also effective to the perpendicular alignment of block copolymers with very high molecular weights, e.g., 362 000 Da. Remarkably, simply by immersing the annealed BCP films in hot ethanol followed by drying in air, the originally dense BCP films were nondestructively converted into porous membranes containing highly ordered, straight nanopores traversing the entire thickness of the membrane (up to 1.1 μm). Grazing incident small-angle X-ray spectroscopy confirmed the hexagonal ordering of the nanopores over large areas. We found that the overflow of P2VP chains from their reservoir P2VP cylinders and the deformation of the PS matrix in the swelling process contributed to the transformation of the solid P2VP cylinders to empty straight pores. The pore diameters can be tuned by either changing the swelling temperatures or depositing thin layers of metal oxides on the preformed membranes via atomic layer deposition with a subnanometer accuracy. To demonstrate the application of the obtained porous membranes, we used them as templates and produced centimeter-scale arrays of aligned nanotubes of metal oxides with finely tunable wall thicknesses.

  13. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage

    International Nuclear Information System (INIS)

    Rashidi, Ali Morad; Kazemi, Davood; Izadi, Nosrat; Pourkhalil, Mahnaz; Jorsaraei, Abbas; Lotfi, Roghayeh; Ganji, Enseyeh

    2016-01-01

    Nanoporous activated carbons, as adsorbent for CO 2 storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO 2 adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861- 2.873mmol·g -1 ). It was found that in order to improve the highest capacity of CO 2 adsorption for KOH-modified carbon (9.830-18.208mmol·g -1 ), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.

  14. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko, Matsumoto; Kazumasa, Yamamoto; Tomoyuki, Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues [1], nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption microcalorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micropore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size [2]. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity

  15. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  16. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    Science.gov (United States)

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  17. Ultrafiltration by gyroid nanoporous polymer membranes

    DEFF Research Database (Denmark)

    Li, Li; Szewczykowski, Piotr Przemyslaw; Clausen, Lydia D.

    2011-01-01

    the effect of membrane fouling on the flux decline and rejection profiles. Significant fouling occurred in the case of hydrophobic membranes in contact with water solutions, while in the presence of high concentration of ethanol in the filtration solution and in the case of hydrophilized membranes...... the fouling was reduced. The observed rejection of PEG was compared with theoretic predictions, as described by the Bungay–Brenner model. The model satisfactorily described the rejection profile of PEG up to 12kg/mol through hydrophobic membranes in the presence of excess ethanol. A significantly reduced......Gyroid nanoporous cross-linked 1,2-polybutadiene membranes with uniform pores were developed for ultrafiltration applications. The gyroid porosity has the advantage of isotropic percolation with no need for structure pre-alignment. The effects of solvent and surface photo...

  18. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography

    International Nuclear Information System (INIS)

    Woldering, Leon A; Tjerkstra, R Willem; Vos, Willem L; Jansen, Henri V; Setija, Irwan D

    2008-01-01

    We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF 6 , optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750 nm, pore diameters between 310 and 515 nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips

  19. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Wenji; Sun, Jing; Liu, Xin; Xu, Sihao; Xia, Guangqing; Yang, Dezheng

    2016-01-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously. (paper)

  20. Protein sequencing via nanopore based devices: a nanofluidics perspective

    Science.gov (United States)

    Chinappi, Mauro; Cecconi, Fabio

    2018-05-01

    Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.

  1. Characterization and H2-O2 reactivity of noble nano-metal tailored single wall nano-carbons

    International Nuclear Information System (INIS)

    K Kaneko; T Itoh; E Bekyarova; H Kanoh; S Utsumi; H Tanaka; M Yudasaka; S Iijima; S Iijima

    2005-01-01

    Full text of publication follows: Single wall carbon nano-tube (SWNT) and single wall carbon nano-horn (SWNH) have nano-spaces in their particles and the nano-spaces become open by oxidation. In particular, SWNH forms a unique colloidal structure which has micropores and meso-pores between the SWNH particles. Although non-treated SWNH colloids have quasi-one dimensional nano-pores [1], oxidized SWNH colloids have both of interstitial and internal nano-pores [2-5]. SWNH colloids show excellent supercritical methane storage ability [6], molecular sieving effect [7], and unique hydrogen adsorption characteristic [8]. Selective adsorptivity of SWNH colloids for H 2 and D 2 due to uncertainty principle of those molecules was shown [9-10]. As SWNH has no metallic impurities, we can study the effect of tailoring of metallic nano-particles on the surface activities of SWNH [11]. We tailored Pd or Pt nano-particles on SWNH and SWNH oxidized at 823 K (ox-SWNH) using poly[(2-oxo-pyrrolidine-1-yl)ethylene]. The oxidation of SWNH donates nano-scale windows to the single wall. The tailored metal amount was determined by TG analysis. TEM showed uniform dispersion of nano-metal particles of 2-3 nm in the diameter on SWNH. The nitrogen adsorption amount of SWNH oxidized decreases by tailoring, indicating that nano-particles are attached to the nano-scale windows. The electronic states of tailored metals were characterized by X-ray photoelectron spectroscopy. The surface activities of Pd tailored SWNH and ox-SWNH were examined for the reaction of hydrogen and oxygen near room temperature. The catalytic reactivities of Pd tailored SWNH and ox-SWNH were 4 times greater than that of Pd-dispersed activated carbon. The temperature dependence of the surface activity will be discussed with the relevance to the tube porosity. References [1] T. Ohba et al, J. Phys. Chem. In press. [2] S. Utsumi et al, J. Phys. Chem. In press. [3] C.- Min Yang, et al. Adv. Mater. In press. [4]C.M. Yang, J

  2. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  3. 8OCB and 8CB Liquid Crystals Confined in Nanoporous Alumina: Effect of Confinement on the Structure and Dynamics.

    Science.gov (United States)

    Selevou, Aristoula; Papamokos, George; Steinhart, Martin; Floudas, George

    2017-08-03

    The effect of oxygen substitution is studied in two homologous compounds of n-cyanobiphenyls with n = 8 in the bulk and under confinement within self-ordered nanoporous alumina (AAO). Oxygen substitution in 8OCB increases the dipole moment and stabilizes the crystalline, smectic, and nematic phases to higher temperatures relative to 8CB. Within their smectic- A (SmA) phase both 8CB and 8OCB behave as weak viscoelastic solids with low shear moduli reflecting the underlying supramolecular defect structure. Dielectric spectroscopy assisted by DFT calculations identified strong dipolar associations within the isotropic phases characterized by a Kirkwood-Fröhlich interaction parameter, g ∼ 0.36. Dielectric spectroscopy further identified a slow process (∼ kHz) of low dielectric strength. The proximity of this process to the rheology time scale suggests as common origin a cooperative relaxation of the defect structure. Confinement alters the phase diagram by stabilizing certain crystalline phases and by reducing the N-I transition temperature in agreement with surface tension effects. However, the N-I transition seems to retain its first order character. Surface treatment with n-decyltrichlorosilane results in destabilization of the SmA phase at the expense of the N phase. This is consistent with a picture of surface anchored LC molecules at the pore walls that stabilize the nematic phase.

  4. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    Science.gov (United States)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  5. CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors.

    Science.gov (United States)

    Kim, Jeonghun; Young, Christine; Lee, Jaewoo; Park, Min-Sik; Shahabuddin, Mohammed; Yamauchi, Yusuke; Kim, Jung Ho

    2016-10-27

    Carbon nanotubes (CNT) grown on nanoporous carbon (NPC), which yields coexisting amorphous and graphitic nanoarchitectures, have been prepared on a large scale from zeolitic imidazolate framework (ZIF) by introducing bimetallic ions (Co 2+ and Zn 2+ ). Interestingly, the hybrid Co/Zn-ZIF-derived NPC showed rich graphitic CNTs on the surface. This NPC was utilized for a coin-type supercapacitor cell with an aqueous electrolyte, which showed enhanced retention at high current density and good stability over 10 000 cycles.

  6. Decontamination efficiency of a sheet of vinyl wall paper as a surface material in radioisotope laboratory

    International Nuclear Information System (INIS)

    Furukawa, Kazuhiko; Funadera, Kanako

    1989-01-01

    It has long been desired to prevent surface materials from cracking in a radioisotope laboratory. We applied a sheet of nonflammable wall paper, vinyl cloth, as a surface material to cover concrete wall. It was sufficiently resistant to the reinforced concrete wall cracking. The efficiency of the decontamination of the vinyl cloth was compared with those of stainless steel, iron and painted plates. The contamination and decontamination indices were determined in these surface materials after contamination with [ 32 P]orthophosphate (pH 3, 7 and 11) for 0 to 48 h. Both of the indices of the vinyl cloth were higher than those of the other materials. Further, it was confirmed that the vinyl cloth was resistant to acid and alkaline conditions and radioisotopes could not be permeable. The wipe off efficiency was also investigated in these materials by use of several decontamination detergents. In any reagents tested, the wipe of efficiency of the vinyl cloth was more than 80%. Thus, the vinyl cloth could be used for the surface material and is one of good surface materials in a radioisotope laboratory. (author)

  7. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System.

    Science.gov (United States)

    Tsang, Ming-Kiu; Ye, WeiWei; Wang, Guojing; Li, Jingming; Yang, Mo; Hao, Jianhua

    2016-01-26

    Ebola outbreaks are currently of great concern, and therefore, development of effective diagnosis methods is urgently needed. The key for lethal virus detection is high sensitivity, since early-stage detection of virus may increase the probability of survival. Here, we propose a luminescence scheme of assay consisting of BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) conjugated with oligonucleotide probe and gold nanoparticles (AuNPs) linked with target Ebola virus oligonucleotide. As a proof of concept, a homogeneous assay was fabricated and tested, yielding a detection limit at picomolar level. The luminescence resonance energy transfer is ascribed to the spectral overlapping of upconversion luminescence and the absorption characteristics of AuNPs. Moreover, we anchored the UCNPs and AuNPs on a nanoporous alumina (NAAO) membrane to form a heterogeneous assay. Importantly, the detection limit was greatly improved, exhibiting a remarkable value at the femtomolar level. The enhancement is attributed to the increased light-matter interaction throughout the nanopore walls of the NAAO membrane. The specificity test suggested that the nanoprobes were specific to Ebola virus oligonucleotides. The strategy combining UCNPs, AuNPs, and NAAO membrane provides new insight into low-cost, rapid, and ultrasensitive detection of different diseases. Furthermore, we explored the feasibility of clinical application by using inactivated Ebola virus samples. The detection results showed great potential of our heterogeneous design for practical application.

  8. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.

    Science.gov (United States)

    McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek

    2018-02-16

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  9. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  10. Evaluation of Coating Removal and Aggressive Surface Removal Surface Technologies Applied to Concrete Walls, Brick Walls, and Concrete Ceilings

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Lagos, L.E.

    1997-01-01

    The purpose of this investigation was to test and evaluate innovative and commercially available technologies for the surface decontamination of walls and ceilings. This investigation supports the DOE's objectives of reducing risks to human health and the environment through its restoration projects at FEMP and MEMP. This project was performed at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), where one innovative and four commercially available decontamination technologies were evaluated under standard, non-nuclear testing conditions. The performance data generated by this project will assist DOE site managers in the selection of the safest, most efficient, and most cost-effective decontamination technologies to accomplish their remediation objectives

  11. A patch-clamp ASIC for nanopore-based DNA analysis.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj; Pedrotti, Kenneth D; Dunbar, William B

    2013-06-01

    In this paper, a fully integrated high-sensitivity patch-clamp system is proposed for single-molecule deoxyribonucleic acid (DNA) analysis using a nanopore sensor. This system is composed of two main blocks for amplification and compensation. The amplification block is composed of three stages: 1) a headstage, 2) a voltage-gain difference amplifier, and 3) a track-and-hold circuit, that amplify a minute ionic current variation sensed by the nanopore while the compensation block avoids the headstage saturation caused by the input parasitic capacitances during sensing. By employing design techniques novel for this application, such as an instrumentation--amplifier topology and a compensation switch, we minimize the deleterious effects of the input-offset voltage and the input parasitic capacitances while attaining hardware simplicity. This system is fabricated in a 0.35 μm 4M2P CMOS process and is demonstrated using an α-hemolysin protein nanopore for detection of individual molecules of single-stranded DNA that pass through the 1.5 nm-diameter pore. In future work, the refined system will functionalize single and multiple solid-state nanopores formed in integrated microfluidic devices for advanced DNA analysis, in scientific and diagnostic applications.

  12. The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness

    International Nuclear Information System (INIS)

    Martinez, Eduardo

    2012-01-01

    The domain wall dynamics along thin ferromagnetic strips with high perpendicular magnetocrystalline anisotropy driven by either magnetic fields or spin-polarized currents is theoretically analyzed by means of full micromagnetic simulations and a one-dimensional model, including both surface roughness and thermal effects. At finite temperature, the results show a field dependence of the domain wall velocity in good qualitative agreement with available experimental measurements, indicating a low field, low velocity creep regime, and a high field, linear regime separated by a smeared depinning region. Similar behaviors were also observed under applied currents. In the low current creep regime the velocity-current characteristic does not depend significantly on the non-adiabaticity. At high currents, where the domain wall velocity becomes insensitive to surface pinning, the domain wall shows a precessional behavior even when the non-adiabatic parameter is equal to the Gilbert damping. These analyses confirm the relevance of both thermal fluctuations and surface roughness for the domain wall dynamics, and that complete micromagnetic modeling and one-dimensional studies taking into account these effects are required to interpret the experimental measurements in order to get a better understanding of the origin, the role and the magnitude of the non-adiabaticity. (paper)

  13. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors.

    Science.gov (United States)

    Pak, Alexander J; Hwang, Gyeong S

    2016-12-21

    Electrochemical double layer capacitors, or supercapacitors, are high-power energy storage devices that consist of large surface area electrodes (filled with electrolyte) to accommodate ion packing in accordance with classical electric double layer (EDL) theory. Nanoporous carbons (NPCs) have recently emerged as a class of electrode materials with the potential to dramatically improve the capacitance of these devices by leveraging ion confinement. However, the molecular mechanisms underlying such enhancements are a clear departure from EDL theory and remain an open question. In this paper, we present the concept of ion reorganization kinetics during charge/discharge cycles, especially within highly confining subnanometer pores, which necessarily dictates the capacitance. Our molecular dynamics voltammetric simulations of ionic liquid immersed in NPC electrodes (of varying pore size distributions) demonstrate that the most efficient ion migration, and thereby largest capacitance, is facilitated by nonuniformity of shape (e.g., from cylindrical to slitlike) along nanopore channels. On the basis of this understanding, we propose that a new structural descriptor, coined as the pore shape factor, can provide a new avenue for materials optimization. These findings also present a framework to understand and evaluate ion migration kinetics within charged nanoporous materials.

  14. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    Science.gov (United States)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  15. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    Science.gov (United States)

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  16. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Moosavifard, Seyyed E; El-Kady, Maher F; Rahmanifar, Mohammad S; Kaner, Richard B; Mousavi, Mir F

    2015-03-04

    The increasing demand for energy has triggered tremendous research efforts for the development of lightweight and durable energy storage devices. Herein, we report a simple, yet effective, strategy for high-performance supercapacitors by building three-dimensional pseudocapacitive CuO frameworks with highly ordered and interconnected bimodal nanopores, nanosized walls (∼4 nm) and large specific surface area of 149 m(2) g(-1). This interesting electrode structure plays a key role in providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. This electrode demonstrates excellent electrochemical performance with a specific capacitance of 431 F g(-1) (1.51 F cm(-2)) at 3.5 mA cm(-2) and retains over 70% of this capacitance when operated at an ultrafast rate of 70 mA cm(-2). When this highly ordered CuO electrode is assembled in an asymmetric cell with an activated carbon electrode, the as-fabricated device demonstrates remarkable performance with an energy density of 19.7 W h kg(-1), power density of 7 kW kg(-1), and excellent cycle life. This work presents a new platform for high-performance asymmetric supercapacitors for the next generation of portable electronics and electric vehicles.

  17. Noise and its reduction in graphene based nanopore devices

    International Nuclear Information System (INIS)

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-01-01

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiN x membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices. (paper)

  18. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth.

    Science.gov (United States)

    Wang, Haoran; Wang, Xueju; Xia, Shuman; Chew, Huck Beng

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of LixSi electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si-Si bonds, while subsequent failure is still brittle-like with the breaking of Si-Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li-Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the LixSi alloys leads to significant strain recovery.

  19. BIOLOGICAL NANOPORES FOR BIOPOLYMER SENSING AND SEQUENCING BASED ON FRAC ACTINOPORIN

    NARCIS (Netherlands)

    Maglia, Giovanni; Wloka, Carsten; Mutter, Natalie Lisa; Soskine, Misha; Huang, Gang

    2018-01-01

    The invention relates generally to the field of nanopores and the use thereof in various applications, such as analysis of biopolymer s and macromolecules, typically by making electrical measurements during translocation through a nanopores. Provided is a system comprising a funnel- shaped

  20. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Kostoglou, Nikolaos, E-mail: nikolaos.kostoglou@stud.unileoben.ac.at [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Constantinides, Georgios [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3036 Lemesos (Cyprus); Charalambopoulou, Georgia; Steriotis, Theodore [National Center for Scientific Research Demokritos, Agia Paraskevi Attikis, 15310 Athens (Greece); Polychronopoulou, Kyriaki [Department of Mechanical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Li, Yuanqing; Liao, Kin [Department of Aerospace Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Ryzhkov, Vladislav [Nanotube Production Department, Fibrtec Incorporation, TX, 75551 Atlanta (United States); Mitterer, Christian [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Rebholz, Claus, E-mail: claus@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

    2015-12-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m{sup 2}/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H{sub 2}, CO{sub 2} and CH{sub 4} sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO{sub 2} (28–33 kJ/mol) and CH{sub 4} (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO{sub 2}/CH{sub 4} gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H{sub 2}, CO{sub 2} and CH{sub 4} adsorption up to 1 bar • CO{sub 2} over CH{sub 4} gas selectivity estimated between 45 and 95 at 273 K using the IAST model.

  1. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    International Nuclear Information System (INIS)

    Kostoglou, Nikolaos; Constantinides, Georgios; Charalambopoulou, Georgia; Steriotis, Theodore; Polychronopoulou, Kyriaki; Li, Yuanqing; Liao, Kin; Ryzhkov, Vladislav; Mitterer, Christian; Rebholz, Claus

    2015-01-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m"2/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H_2, CO_2 and CH_4 sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO_2 (28–33 kJ/mol) and CH_4 (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO_2/CH_4 gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H_2, CO_2 and CH_4 adsorption up to 1 bar • CO_2 over CH_4 gas selectivity estimated between 45 and 95 at 273 K using the IAST model

  2. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO{sub 2} storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Ali Morad; Kazemi, Davood; Izadi, Nosrat; Pourkhalil, Mahnaz; Jorsaraei, Abbas; Lotfi, Roghayeh [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Ganji, Enseyeh [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2016-02-15

    Nanoporous activated carbons, as adsorbent for CO{sub 2} storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO{sub 2} adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861- 2.873mmol·g{sup -1}). It was found that in order to improve the highest capacity of CO{sub 2} adsorption for KOH-modified carbon (9.830-18.208mmol·g{sup -1}), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.

  3. Synthesis and Characterization of Nanoporous Carbon Materials; The Effect of Surfactant Concentrations and Salts

    Directory of Open Access Journals (Sweden)

    Shokoofeh Geranmayeh

    2011-01-01

    Full Text Available Nanoporous carbon framework was synthesized using phenol and formaldehyde as carbon precursors and triblock copolymer (pluronic F127 as soft template via evaporation induced self-assembly. Hexagonal mesoporous carbon with specific surface area of 350 m2/g through optimizing the situation was obtained. The effects of different surfactant/phenol molar ratio and presence of salts on specific surface area, pore size and pore volume for all the prepared samples were studied by means of the Brunauer-Emmett-Teller (BET formalism, powder X-ray diffraction technique and FT-IR spectroscopy.

  4. Nanoporous ionic organic networks: from synthesis to materials applications

    OpenAIRE

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-01-01

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of specia...

  5. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    Science.gov (United States)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  6. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  7. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  8. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides.

    Science.gov (United States)

    Asandei, Alina; Rossini, Aldo E; Chinappi, Mauro; Park, Yoonkyung; Luchian, Tudor

    2017-12-19

    Nanopore probing of biological polymers has the potential to achieve single-molecule sequencing at low cost, high throughput, portability, and minimal sample preparation and apparatus. In this article, we explore the possibility of discrimination between neutral amino acid residues from the primary structure of 30 amino acids long, engineered peptides, through the analysis of single-molecule ionic current fluctuations accompanying their slowed-down translocation across the wild type α-hemolysin (α-HL) nanopore, and molecular dynamics simulations. We found that the transient presence inside the α-HL of alanine or tryptophan residues from the primary sequence of engineered peptides results in distinct features of the ionic current fluctuation pattern associated with the peptide reversibly blocking the nanopore. We propose that α-HL sensitivity to the molecular exclusion at the most constricted region mediates ionic current blockade events correlated with the volumes that are occluded by at least three alanine or tryptophan residues, and provides the specificity needed to discriminate between groups of neutral amino acids. Further, we find that the pattern of current fluctuations depends on the orientation of the threaded amino acid residues, suggestive of a conformational anisotropy of the ensemble of conformations of the peptide on the restricted nanopore region, related to its relative axial orientation inside the nanopore.

  9. Nanoporous zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghimpu, L.; Lupan, O.; Popescu, L.; Tiginyanu, I.M.

    2011-01-01

    In this paper we demonstrate an inexpensive approach for the fabrication of nanoporous zinc oxide films by using magnetron sputtering. Study of the structural properties proves the crystallographic perfection of porous nanostructures and the possibility of its controlling by adjusting the technological parameters in the growth process. The XRD pattern of nanoporous ZnO films exhibits high intensity of the peaks relative to the background signal which is indicative of the ZnO hexagonal phase and a good crystallinity of the samples grown by magnetron sputtering.

  10. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges

    KAUST Repository

    Kim, Wun-gwi

    2013-12-01

    Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.

  11. Evaluation of Coating Removal and Aggressive Surface Removal Surface Technologies Applied to Concrete Walls, Brick Walls, and Concrete Ceilings

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, L.E.; Ebadian, M.A.

    1997-11-01

    The purpose of this investigation was to test and evaluate innovative and commercially available technologies for the surface decontamination of walls and ceilings. This investigation supports the DOE's objectives of reducing risks to human health and the environment through its restoration projects at FEMP and MEMP. This project was performed at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), where one innovative and four commercially available decontamination technologies were evaluated under standard, non-nuclear testing conditions. The performance data generated by this project will assist DOE site managers in the selection of the safest, most efficient, and most cost-effective decontamination technologies to accomplish their remediation objectives.

  12. The radiation gas detectors with novel nanoporous converter for medical imaging applications

    Science.gov (United States)

    Zarei, H.; Saramad, S.

    2018-02-01

    For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.

  13. Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array

    Science.gov (United States)

    Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian

    2016-10-01

    Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.

  14. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  15. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  16. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    International Nuclear Information System (INIS)

    Wang, Haoran; Chew, Huck Beng; Wang, Xueju; Xia, Shuman

    2015-01-01

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li x Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li x Si alloys leads to significant strain recovery

  17. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wang, Xueju; Xia, Shuman [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  18. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  19. Interconnected V2O5 nanoporous network for high-performance supercapacitors.

    Science.gov (United States)

    Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G

    2012-09-26

    Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.

  20. Nanoporous Au: an unsupported pure gold catalyst?

    Energy Technology Data Exchange (ETDEWEB)

    Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M

    2008-09-04

    The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.

  1. Optimizing adsorption of blue pigment from wastewater by nano-porous modified Na-bentonite using spectrophotometry based on response surface method

    Science.gov (United States)

    Moradi, Neshat; Salem, Shiva; Salem, Amin

    2018-03-01

    This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.

  2. Surface segregation in binary alloy first wall candidate materials

    International Nuclear Information System (INIS)

    Gruen, D.M.; Krauss, A.R.; Mendelsohn, M.H.; Susman, S.; Argonne National Lab., IL

    1982-01-01

    We have been studying the conditions necessary to produce a self-sustaining stable lithium monolayer on a metal substrate as a means of creating a low-Z film which sputters primarily as secondary ions. It is expected that because of the toroidal field, secondary ions originating at the first wall will be returned and contribute little to the plasma impurity influx. Aluminum and copper have, because of their high thermal conductivity and low induced radioactivity, been proposed as first wall candidate materials. The mechanical properties of the pure metals are very poorly suited to structural applications and an alloy must be used to obtain adequate hardness and tensile strength. In the case of aluminum, mechanical properties suitable for aircraft manufacture are obtained by the addition of a few at% Li. In order to investigate alloys of a similar nature as candidate structural materials for fusion machines we have prepared samples of Li-doped aluminum using both a pyro-metallurgical and a vapor-diffusion technique. The sputtering properties and surface composition have been studied as a function of sample temperature and heating time, and ion beam mass. The erosion rate and secondary ion yield of both the sputtered Al and Li have been monitored by secondary ion mass spectroscopy and Auger analysis providing information on surface segregation, depth composition profiles, and diffusion rates. The surface composition ahd lithium depth profiles are compared with previously obtained computational results based on a regular solution model of segregation, while the partial sputtering yields of Al and Li are compared with results obtained with a modified version of the TRIM computer program. (orig.)

  3. Nonsymmetric gas transfer phenomena in nanoporous media

    International Nuclear Information System (INIS)

    Kurchatov, I.M.

    2011-01-01

    The regularities of nonsymmetric gas (nitrogen, helium, hydrogen, carbon dioxide) transfer in nanoporous materials are investigated. The effects of anisotropy and hysteresis of permeability in nanoporous media with pore gradient and porosity in objects of various nature are found out. The following objects are studied: polyethylene terephthalate track membranes with asymmetric pore form, commercial polyvinyl trimethylsilane gas-separation membranes with continuous distribution of pores over the membrane thickness and porous composite membranes (born nitride, silicon carbide, aluminium oxide) prepared by self-propagating high-temperature synthesis with abrupt change of pore dimensions over the thickness. The possible mechanisms of nonsymmetric gas transfer effects are under consideration [ru

  4. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    OpenAIRE

    Fan Chengxu; Sun Zhaoyang; Xu Lan

    2017-01-01

    A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  5. Coarsening by network restructuring in model nanoporous gold

    International Nuclear Information System (INIS)

    Kolluri, Kedarnath; Demkowicz, Michael J.

    2011-01-01

    Using atomistic modeling, we show that restructuring of the network of interconnected ligaments causes coarsening in a model of nanoporous gold. The restructuring arises from the collapse of some ligaments onto neighboring ones and is enabled by localized plasticity at ligaments and nodes. This mechanism may explain the occurrence of enclosed voids and reduction in volume in nanoporous metals during their synthesis. An expression is developed for the critical ligament radius below which coarsening by network restructuring may occur spontaneously, setting a lower limit to the ligament dimensions of nanofoams.

  6. Detecting a single molecule using a micropore-nanopore hybrid chip.

    Science.gov (United States)

    Liu, Lei; Zhu, Lizhong; Ni, Zhonghua; Chen, Yunfei

    2013-11-21

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing.

  7. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    International Nuclear Information System (INIS)

    Merzougui, Abdelkrim; Mekias, Hocine; Guechi, Fairouz

    2007-01-01

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number α and for various values of the inclination angle β between the horizontal bottom and the inclined wall

  8. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Abdelkrim [Departement de Mathematiques, Faculte des sciences, Universite Mohamed Boudiaf, M' sila, 28000 (Algeria); Mekias, Hocine [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria); Guechi, Fairouz [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria)

    2007-11-23

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number {alpha} and for various values of the inclination angle {beta} between the horizontal bottom and the inclined wall.

  9. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    Science.gov (United States)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  10. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  11. Computational Fluid Dynamics Modeling of Steam Condensation on Nuclear Containment Wall Surfaces Based on Semiempirical Generalized Correlations

    Directory of Open Access Journals (Sweden)

    Pavan K. Sharma

    2012-01-01

    Full Text Available In water-cooled nuclear power reactors, significant quantities of steam and hydrogen could be produced within the primary containment following the postulated design basis accidents (DBA or beyond design basis accidents (BDBA. For accurate calculation of the temperature/pressure rise and hydrogen transport calculation in nuclear reactor containment due to such scenarios, wall condensation heat transfer coefficient (HTC is used. In the present work, the adaptation of a commercial CFD code with the implementation of models for steam condensation on wall surfaces in presence of noncondensable gases is explained. Steam condensation has been modeled using the empirical average HTC, which was originally developed to be used for “lumped-parameter” (volume-averaged modeling of steam condensation in the presence of noncondensable gases. The present paper suggests a generalized HTC based on curve fitting of most of the reported semiempirical condensation models, which are valid for specific wall conditions. The present methodology has been validated against limited reported experimental data from the COPAIN experimental facility. This is the first step towards the CFD-based generalized analysis procedure for condensation modeling applicable for containment wall surfaces that is being evolved further for specific wall surfaces within the multicompartment containment atmosphere.

  12. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry.

    NARCIS (Netherlands)

    Soskine, Mikhael; Biesemans, Annemie; Moeyaert, Benjamien; Cheley, Stephen; Bayley, Hagan; Maglia, Giovanni

    Nanopores have been used in label-free single-molecule studies, including investigations of chemical reactions, nucleic acid analysis, and applications in sensing. Biological nanopores generally perform better than artificial nanopores as sensors, but they have disadvantages including a fixed

  13. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    National Research Council Canada - National Science Library

    Hsiao, Vincent K; Waldeisen, John R; Lloyd, Pamela F; Bunning, Timothy J; Huang, Tony J

    2007-01-01

    .... The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a functionalized pre-polymer syrup that facilitates the immobilization of biomolecules...

  14. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Ahmed M. [Chemical Engineering & Pilot Plant Department, National Research Centre, Dokki, Giza (Egypt); Shehata, Omnia S. [Physical Chemistry Department, National Research Centre, Dokki, Giza (Egypt); Heakal, Fakiha El-Taib, E-mail: fakihaheakal@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-12-30

    Highlights: • Three de-anodization methods were used during two-step fabrication of nanoporous AAO. • Electrolytic etching (EE), chemical etching with H{sub 3}PO{sub 4} (PE) or NaOH (HE) were adopted. • After the second anodizing step, HE film was the thinnest as compared to EE and HE. • Stability order of nanoporous AAO films in 0.5 M HCl solution was: PE > EE > HE. • For the colored films by electrodeposited Cu atoms, the order was: HE > EE > PE. - Abstract: Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering

  15. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia

    2015-05-07

    © 2015 American Chemical Society. In nanopore sensing experiments, the properties of molecules are probed by the variation of ionic currents flowing through the nanopore. In this context, the electronic properties and the single-layer thickness of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics methods with a bioinformatic structural analysis. To obtain a qualitative picture of the translocation process and to identify salient features we performed unsupervised structural clustering on translocation conformations. This allowed us to identify some specific and robust translocation intermediates, characterized by significantly different ionic current flows. We found that the ion current strictly anticorrelates with the amount of pore occupancy by thioredoxin residues, providing a putative explanation of the multilevel current scenario observed in recently published translocation experiments.

  16. Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores.

    Science.gov (United States)

    Freedman, Kevin J; Goyal, Gaurav; Ahn, Chi Won; Kim, Min Jun

    2017-05-10

    The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., R knockout ≈ R accumulation ). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.

  17. Monitoring tetracycline through a solid-state nanopore sensor

    Science.gov (United States)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  18. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    Directory of Open Access Journals (Sweden)

    Fan Chengxu

    2017-01-01

    Full Text Available A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  19. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    Science.gov (United States)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  20. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    Science.gov (United States)

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Analysis of the Interaction of Pulsed Laser with Nanoporous Activated Carbon Cloth

    Institute of Scientific and Technical Information of China (English)

    B.V. Kalucljerovic; M.S. Trtica; B.B. Radak; J.M. Stasic; S.S. Krstic Musovic; V.M. Dodevski

    2011-01-01

    Interaction of pulsed transversely excited atmospheric (TEA) CO2-1aser radiation at 10.6 μm with nanoporous activated carbon cloth was investigated. Activated carbon cloth of different adsorption characteristics was used. Activated carbon cloth modifications were initiated by laser pulse intensities from 0.5 to 28 MW/cm^2, depending on the cloth adsorption characteristics. CO2 laser radiation was effectively absorbed by the used activated carbon cloth and largely converted into thermal energy. The type of modification depended on laser power density, number of pulses, but mostly on material characteristics such as specific surface area. The higher the surface area of activated carbon cloth, the higher the damage threshold.

  2. Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide

    International Nuclear Information System (INIS)

    Yu Wenhui; Fei Guangtao; Chen Xiaomeng; Xue Fanghong; Xu Xijin

    2006-01-01

    Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration

  3. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography

    International Nuclear Information System (INIS)

    Janssen, Xander J A; Jonsson, Magnus P; Plesa, Calin; Soni, Gautam V; Dekker, Cees; Dekker, Nynke H

    2012-01-01

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafer’s top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 μm × 12 μm) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate. (paper)

  4. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  5. Transport behavior of water molecules through two-dimensional nanopores

    International Nuclear Information System (INIS)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-01-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules

  6. Inverse estimation for temperatures of outer surface and geometry of inner surface of furnace with two layer walls

    International Nuclear Information System (INIS)

    Chen, C.-K.; Su, C.-R.

    2008-01-01

    This study provides an inverse analysis to estimate the boundary thermal behavior of a furnace with two layer walls. The unknown temperature distribution of the outer surface and the geometry of the inner surface were estimated from the temperatures of a small number of measured points within the furnace wall. The present approach rearranged the matrix forms of the governing differential equations and then combined the reversed matrix method, the linear least squares error method and the concept of virtual area to determine the unknown boundary conditions of the furnace system. The dimensionless temperature data obtained from the direct problem were used to simulate the temperature measurements. The influence of temperature measurement errors upon the precision of the estimated results was also investigated. The advantage of this approach is that the unknown condition can be directly solved by only one calculation process without initially guessed temperatures, and the iteration process of the traditional method can be avoided in the analysis of the heat transfer. Therefore, the calculation in this work is more rapid and exact than the traditional method. The result showed that the estimation error of the geometry increased with increasing distance between measured points and inner surface and in preset error, and with decreasing number of measured points. However, the geometry of the furnace inner surface could be successfully estimated by only the temperatures of a small number of measured points within and near the outer surface under reasonable preset error

  7. Higher dimensional curved domain walls on Kähler surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Radjabaycolle, Flinn C. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Departement of Physics, Faculty of Mathematics and Natural Sciences, Cendrawasih University, Jl. Kampwolker Kampus Uncen Baru Waena-Jayapura 99351 (Indonesia); Wijaya, Rio N. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia)

    2017-03-15

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  8. Higher dimensional curved domain walls on Kähler surfaces

    International Nuclear Information System (INIS)

    Akbar, Fiki T.; Gunara, Bobby E.; Radjabaycolle, Flinn C.; Wijaya, Rio N.

    2017-01-01

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  9. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  10. The wall as witness-surface or, the Reichstag graffiti and paradoxes of writing over history

    Directory of Open Access Journals (Sweden)

    Ella Chmielewska

    2008-06-01

    Full Text Available Wall writing occupies a conflicted position in the urban space and in the public discourse as a political act and as an aesthetic phenomenon. Ever more present in the contemporary visual and conceptual vocabulary, it is increasingly deployed by the world of high art and politics, commerce and academia. Torn off the wall, taken as a photogenic empty sign, its potent meanings abstracted from its material surface, wall writing becomes a powerful rhetorical tool. Paris graffiti of‘68, NewYork subway art of the 70s and the pre-89 writing on the Berlin wall combine into an amalgam of aesthetic protest, graphically raw and resolutely awkward idiom that transforms an image of writing into a potent new text. The messiness of its lines, the untamed styles and the rebellious attitude towards the material surface all conspire to create the graffiti’s myth of freedom and unrestrained individual expression, further extended to associations with democratic ambitions. Supported by the popularity of hip-hop culture and the contemporary urban cool, graffiti becomes a handy implement to evoke the individual voice, endorse place identity or authenticity.

  11. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Moosavifard, Seyyed Ebrahim, E-mail: info_seyyed@yahoo.com [Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elyasi, Saeed [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Shahraki, Mohammad [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Nanoporous CuS nano-hollow spheres were synthesized by a facile method. • Nano-hollow spheres have a large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). • Such unique structures exhibit excellent electrochemical properties for high-performance SCs. - Abstract: Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). This interesting electrode structure plays a key role in providing more active sites for electrochemical reactions, short ion and electron diffusion pathways and facilitated ion transport. The CuS nano-hollow spheres electrode exhibits excellent electrochemical performance including a maximum specific capacitance of 948 F g{sup −1} at 1 A g{sup −1}, significant rate capability of 46% capacitance retention at a high current density of 50 A g{sup −1}, and outstanding long-term cycling stability at various current densities. This work not only demonstrates the promising potential of the CuS-NHS electrodes for application in high-performance supercapacitors, but also sheds a new light on the metal sulfides design philosophy.

  12. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.

    Science.gov (United States)

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon

  13. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  14. Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Cieślak, Grzegorz; Norek, Małgorzata; Karczewski, Krzysztof; Michalska-Domańska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jóźwik, Paweł; Bojar, Zbigniew

    2013-01-01

    Highlights: ► Anodic porous alumina was formed by Ni 3 Al intermetallic alloy anodization. ► The anodizations were conducted in 0.3 M citric acid. ► Nanopores geometry depends on anodizing voltage. ► No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni 3 Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni 3 Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 μm/h was found for the anodization at 0 °C and 2.0 V. The highest one – 2.29 μm/h – was noticed for 10.0 V and 30 °C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 °C) to 32.0 nm (12.0 V, 0 °C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 °C) to 177.9 nm (12.0 V, 30 °C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/μm 2 (2.0 V, 0 °C) to 94.9 pores/μm 2 (12.0 V, 0 °C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni 3 Al intermetallic alloy are depending on the operating conditions.

  15. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    Science.gov (United States)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  16. Capillary condensation and evaporation in alumina nanopores with controlled modulations.

    Science.gov (United States)

    Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit

    2010-07-20

    Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.

  17. Electrochemistry at the edge of a single graphene layer in a nanopore

    DEFF Research Database (Denmark)

    Banerjee, Sutanuka; Shim, Jeong; Rivera, J.

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and AlO dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique...

  18. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    Science.gov (United States)

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  20. Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2006-01-01

    Roč. 124, č. 6 (2006), s. 64712.1-64712.14 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR(CZ) 1ET400720507; GA AV ČR(CZ) 1ET400720409 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanopore * NO dimerization * reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  1. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Finite element analysis of mechanical stability of coarsened nanoporous gold

    International Nuclear Information System (INIS)

    Cho, Hoon-Hwe; Chen-Wiegart, Yu-chen Karen; Dunand, David C.

    2016-01-01

    The mechanical stability of nanoporous gold (np-Au) at various stages of thermal coarsening is studied via finite element analysis under volumetric compression using np-Au architectures imaged via X-ray nano-tomography. As the np-Au is coarsened thermally over ligament sizes ranging from 185 to 465 nm, the pore volume fraction is determinant for the mechanical stability of the coarsened np-Au, unlike the curvature and surface orientation of the ligaments. The computed Young's modulus and yield strength of the structures are compared with the Gibson–Ashby model. The geometry of the structures determines the locations where stress concentrations occur at the onset of yielding.

  3. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  4. DeepSimulator: a deep simulator for Nanopore sequencing

    KAUST Repository

    Li, Yu

    2017-12-23

    Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent years. To keep pace with the explosion of the downstream data analytical tools, a versatile Nanopore sequencing simulator is needed to complement the experimental data as well as to benchmark those newly developed tools. However, all the currently available simulators are based on simple statistics of the produced reads, which have difficulty in capturing the complex nature of the Nanopore sequencing procedure, the main task of which is the generation of raw electrical current signals. Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments performed across four species show that the signals generated by our context-dependent model are more similar to the experimentally obtained signals than the ones generated by the official context-independent pore model. In terms of the simulated reads, we provide a parameter interface to users so that they can obtain the reads with different accuracies ranging from 83% to 97%. The reads generated by the default parameter have almost the same properties as the real data. Two case studies demonstrate the application of DeepSimulator to benefit the development of tools in de novo assembly and in low coverage SNP detection. Availability: The software can be accessed freely at: https://github.com/lykaust15/DeepSimulator.

  5. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    Science.gov (United States)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-03-01

    Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.

  6. Nanoindentation and micro-compression testing of nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Epler, Eike; Volkert, Cynthia A. [Institut fuer Materialphysik, Georg-August-Universitaet Goettingen (Germany); Balk, T. John [Department of Chemical and Materials Engineering, University of Kentucky (United States)

    2009-07-01

    Recent studies on materials such as nanoporous Au have shown that the strength of open-cell foams can be increased at a fixed porosity by decreasing the foam length scale (ligament diameter and length). This effect is attributed to the difficulty of activating dislocations in sub-micron crystal volumes. If high strength nanoporous materials are to be used to advantage in technical applications, the details of the parameters determining their strength need to be understood. In this study, the mechanical response of nanoporous Au fabricated by electrochemical dissolution from a Au-Ag alloy, is investigated by indentation using a cube corner tip as well as by micro-compression testing of columns fabricated by focused ion beam machining. The tests reveal a significant time-dependence or creep behavior in the 30% relative density foam that is not observed in fully dense gold. The origins of this effect will be probed by varying the length scale of the foam. In addition, a large scatter in mechanical behavior, particularly in the elastic response, is observed from position to position and sample to sample, which is attributed to small variations in the open cell structure.

  7. Active sieving across driven nanopores for tunable selectivity

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lydéric

    2017-10-01

    Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.

  8. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  9. Tuneable graphene nanopores for single biomolecule detection.

    Science.gov (United States)

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  10. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.

    Science.gov (United States)

    Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M

    2014-09-23

    A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

  11. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  12. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O. [LLNL; (Sandia)

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  13. Nanoporous ionic organic networks: from synthesis to materials applications.

    Science.gov (United States)

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-11-21

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of special importance and possess extreme application profiles. Within these nanoporous ionic organic networks (NIONs), here with a pore size in the range from sub-1 nm to 100 nm, we observe a synergistic coupling of the electrostatic interaction of charges, the nanoconfinement within pores and the addressable functional units in soft matter resulting in a wide variety of functions and applications, above all catalysis, energy storage and conversion, as well as environment-related operations. This review aims to highlight the recent progress in this area, and seeks to raise original perspectives that will stimulate future advancements at both the fundamental and applied level.

  14. Sealing-free fast-response paraffin/nanoporous gold hybrid actuator

    Science.gov (United States)

    Ye, Xing-Long; Jin, Hai-Jun

    2017-09-01

    Paraffin-based actuators can deliver large actuation strokes and high actuation stress, but often suffer from a low response rate and leaking problems. Here, we report a new paraffin/metal hybrid actuator, which was fabricated by infiltrating nanoporous gold with paraffin. It exhibits a fast actuation rate owing to the high thermal conductivity of the inter-connected metal phase, and requires no external sealing because liquid paraffin can be well confined in nanoscale channels, due to the large capillarity. We found that in this hybrid actuator, the stress generated by actuation is negligibly small when the characteristic size of the nanoporous gold (L) is above ˜70 nm, and increases dramatically with a decreasing size when L paraffin wax—the paraffin in smaller pores can sustain larger tensile stress, and thus the contraction of paraffin during cooling can be translated into larger compression stress and strain energy in a metal framework, leading to a larger actuation stress and energy. We also demonstrate that complex actuation motions can be achieved by incorporating hierarchical-structured nanoporous metal with paraffin.

  15. Surface chemistry of first wall materials - From fundamental data to modeling

    International Nuclear Information System (INIS)

    Linsmeier, Ch.; Reinelt, M.; Schmid, K.

    2011-01-01

    The application of different materials at the first wall of fusion devices, like beryllium, carbon, and tungsten in the case of ITER, unavoidably leads to the formation of compounds. These compounds are created dynamically during operation and depend on the local parameters like surface temperature, incoming particle energies and species. In dedicated, well-defined laboratory experiments, using mainly X-ray photoelectron spectroscopy and Rutherford backscattering analysis for qualitative and quantitative chemical surface analysis, the parameter space in relevant element combinations are investigated. These studies lead to a deep understanding of the reaction mechanisms under the applied conditions and to a quantitative description of reaction and diffusion processes. These data can be parameterized and integrated into a modeling approach which combines dynamic surface chemistry with the modeling of the transport in the plasma. Two different approaches for surface reaction modeling are compared and benchmarked with experimental data.

  16. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.

    Science.gov (United States)

    Xu, Xiaolong; Li, Chuanping; Zhou, Ya; Jin, Yongdong

    2017-10-27

    Diameter is a major concern for nanopore based sensing. However, directly pulling glass capillary nanopore with diameter down to sub-10 nm is very difficult. So, post treatment is sometimes necessary. Herein, we demonstrate a facile and effective wet-chemical method to shrink the diameter of glass capillary nanopore from several tens of nanometers to sub-10 nm by disodium silicate hydrolysis. Its benefits for DNA translocation are investigated. The shrinking of glass capillary nanopore not only slows down DNA translocation, but also enhances DNA translocation signal and signal-to-noise ratio significantly (102.9 for 6.4 nm glass nanopore, superior than 15 for a 3 nm silicon nitride nanopore). It also affects DNA translocation behaviors, making the approach and glass capillary nanopore platform promising for DNA translocation studies.

  17. Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

    Directory of Open Access Journals (Sweden)

    Maede Shahiri Tabarestani

    2016-07-01

    Full Text Available In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521. The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, template and cross-linker, respectively. After removal of the template by the eluent from the MIPs, the leached nanoparticles of the MIPs had a good binding capacity as equal 830 mg/g. The polymer particles have been evaluated by field emission scan electron microscopy and Brunauer–Emmett–Teller  techniques. The excellent specific surface area in the molecularly imprinted polymers as equal to 690.301 m2/g comparatively to non-imprinted polymers (ca. 89.894 m2/g, confirms that the nanoporous MIPs were synthesized, successfully. The results indicated that the nanoporous MIPs can be used in solid phase extraction. This is a novel method for separation of the bioactive compounds from fungi secondary metabolites in biological control.

  18. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  19. Deformation behavior of nano-porous polycrystalline silver. Part II: Simulations

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Cugnoni, J.; Duarte, L.I.; Van Petegem, S.; Van Swygenhoven, H.

    2017-01-01

    Three-dimensional finite element simulations of nano-porous silver structures are performed to understand the correlation between the porous morphology and the mechanical behavior. The nanostructures have been obtained from ptychographic X-ray computed tomography. The simulations allow distinguishing between the interplay and role of the ligament size, the pore morphology and the porosity, and therefore provide a better comprehension of the experimental observations. We show that the proposed model has a predictive character for mechanical behavior of nano-porous silver.

  20. Water desalination with a single-layer MoS2 nanopore

    OpenAIRE

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60??2. Water flux is found to ...

  1. Where bio meets nano: The many uses for nanoporous aluminium oxide in biotechnology

    NARCIS (Netherlands)

    Ingham, C.J.; Maat, ter J.; Vos, de W.M.

    2012-01-01

    Porous aluminum oxide (PAO) is a ceramic formed by an anodization process of pure aluminum that enables the controllable assembly of exceptionally dense and regular nanopores in a planar membrane. As a consequence, PAO has a high porosity, nanopores with high aspect ratio, biocompatibility and the

  2. Biofouling-resilient nanoporous gold electrodes for DNA sensing.

    Science.gov (United States)

    Daggumati, Pallavi; Matharu, Zimple; Wang, Ling; Seker, Erkin

    2015-09-01

    Electrochemical nucleic acid sensors are promising tools for point-of-care diagnostic platforms with their facile integration with electronics and scalability. However, nucleic acid detection in complex biological fluids is challenging as biomolecules nonspecifically adsorb on the electrode surface and adversely affect the sensor performance by obscuring the transport of analytes and redox species to the electrode. We report that nanoporous gold (np-Au) electrodes, prepared by a microfabrication-compatible self-assembly process and functionalized with DNA probes, enabled detection of target DNA molecules (10-200 nM) in physiologically relevant complex media (bovine serum albumin and fetal bovine serum). In contrast, the sensor performance was compromised for planar gold electrodes in the same conditions. Hybridization efficiency decreased by 10% for np-Au with coarser pores revealing a pore-size dependence of sensor performance in biofouling conditions. This nanostructure-dependent functionality in complex media suggests that the pores with the optimal size and geometry act as sieves for blocking the biomolecules from inhibiting the surfaces within the porous volume while allowing the transport of nucleic acid analytes and redox molecules.

  3. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  4. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

    Science.gov (United States)

    Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.

    2013-01-01

    The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784

  5. Detecting and identifying small molecules in a nanopore flux capacitor

    International Nuclear Information System (INIS)

    Bearden, Samuel; Zhang, Guigen; McClure, Ethan

    2016-01-01

    A new method of molecular detection in a metallic-semiconductor nanopore was developed and evaluated with experimental and computational methods. Measurements were made of the charging potential of the electrical double layer (EDL) capacitance as charge-carrying small molecules translocated the nanopore. Signals in the charging potential were found to be correlated to the physical properties of analyte molecules. From the measured signals, we were able to distinguish molecules with different valence charge or similar valence charge but different size. The relative magnitude of the signals from different analytes was consistent over a wide range of experimental conditions, suggesting that the detected signals are likely due to single molecules. Computational modeling of the nanopore system indicated that the double layer potential signal may be described in terms of disruption of the EDL structure due to the size and charge of the analyte molecule, in agreement with Huckel and Debye’s analysis of the electrical atmosphere of electrolyte solutions. (paper)

  6. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  7. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.

    Science.gov (United States)

    Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao

    2017-12-01

    Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanoporous materials for reducing the over potential of creating hydrogen by water electrolysis

    Science.gov (United States)

    Anderson, Marc A.; Leonard, Kevin C.

    2016-06-14

    Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.

  9. A nanoporous MXene film enables flexible supercapacitors with high energy storage.

    Science.gov (United States)

    Fan, Zhimin; Wang, Youshan; Xie, Zhimin; Xu, Xueqing; Yuan, Yin; Cheng, Zhongjun; Liu, Yuyan

    2018-05-14

    MXene films are attractive for use in advanced supercapacitor electrodes on account of their ultrahigh density and pseudocapacitive charge storage mechanism in sulfuric acid. However, the self-restacking of MXene nanosheets severely affects their rate capability and mass loading. Herein, a free-standing and flexible modified nanoporous MXene film is fabricated by incorporating Fe(OH)3 nanoparticles with diameters of 3-5 nm into MXene films and then dissolving the Fe(OH)3 nanoparticles, followed by low calcination at 200 °C, resulting in highly interconnected nanopore channels that promote efficient ion transport without compromising ultrahigh density. As a result, the modified nanoporous MXene film presents an attractive volumetric capacitance (1142 F cm-3 at 0.5 A g-1) and good rate capability (828 F cm-3 at 20 A g-1). Furthermore, it still displays a high volumetric capacitance of 749 F cm-3 and good flexibility even at a high mass loading of 11.2 mg cm-2. Therefore, this flexible and free-standing nanoporous MXene film is a promising electrode material for flexible, portable and compact storage devices. This study provides an efficient material design for flexible energy storage devices possessing high volumetric capacitance and good rate capability even at a high mass loading.

  10. Origin of the electrophoretic force on DNA in solid-state nanopores

    Science.gov (United States)

    van Dorp, Stijn; Keyser, Ulrich F.; Dekker, Nynke H.; Dekker, Cees; Lemay, Serge G.

    2009-05-01

    Despite gel electrophoresis being one of the main workhorses of molecular biology, the physics of polyelectrolyte electrophoresis in a strongly confined environment remains poorly understood. Theory indicates that forces in electrophoresis result from interplay between ionic screening and hydrodynamics, but these ideas could so far be addressed only indirectly by experiments based on macroscopic porous gels. Here, we provide a first direct experimental test by measuring the electrophoretic force on a single DNA molecule threading through a solid-state nanopore as a function of pore size. The stall force gradually decreases on increasing the nanopore diameter from 6 to 90nm, inconsistent with expectations from simple electrostatics and strikingly demonstrating the influence of the hydrodynamic environment. We model this process by applying the coupled Poisson-Boltzmann and Stokes equations in the nanopore geometry and find good agreement with the experimental results.

  11. FABRICATION OF NANOPOROUS Ni VIA DEALLOYING OF ZINC-NICKEL COATINGS

    OpenAIRE

    Seda , Oturak

    2015-01-01

    Dealloying is a selective leaching of one component in a multicomponent alloy so as to produce a nanoporous structure. In this study, it was aimed to produce nanoporous Ni coating by selective leaching of Zn in a Zn-Ni alloy. To achieve this, first the Zn-Ni alloy was obtained by electrodeposition in a bath containing Zn and Ni salts. Then, dealloying was performed at different concentrations of NaOH solution. Dealloying led to crack formation in the coatings which thus prevented the formatio...

  12. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  13. Preparation and Hydrogen Absorption/Desorption of Nanoporous Palladium Thin Films

    Directory of Open Access Journals (Sweden)

    Wen-Chung Li

    2009-12-01

    Full Text Available Nanoporous Pd (np-Pd was prepared by co-sputtering Pd-Ni alloy films onto Si substrates, followed by chemical dealloying with sulfuric acid. X-ray diffractometry and chemical analysis were used to track the extent of dealloying. The np-Pd structure was changed from particle-like to sponge-like by diluting the sulfuric acid etchant. Using suitable precursor alloy composition and dealloying conditions, np-Pd films were prepared with uniform and open sponge-like structures, with interconnected ligaments and no cracks, yielding a large amount of surface area for reactions with hydrogen. Np-Pd films exhibited shorter response time for hydrogen absorption/desorption than dense Pd films, showing promise for hydrogen sensing.

  14. Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    International Nuclear Information System (INIS)

    Ganjoo, S; Azimirad, R; Akhavan, O; Moshfegh, A Z

    2009-01-01

    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 deg. C and then annealed in a temperature range of 200-500 deg. C. The average water contact angle of the silica films prepared with low water content and annealed at 300 deg. C measured about 5 deg. for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle greater than 60 deg. Atomic force microscopic analysis revealed that the silica films prepared with low water had a rough surface (∼30 nm), while the films prepared with high water had a smoother surface (∼2 nm). Using x-ray photoelectron spectroscopy, we have shown that with a decrease in the surface water on the film, its hydrophilicity increases logarithmically.

  15. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.

    Science.gov (United States)

    Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I

    2005-04-01

    This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.

  16. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  17. Optimization of multiplane ?PIV for wall shear stress and wall topography characterization

    NARCIS (Netherlands)

    Rossi, M.; Lindken, R.; Westerweel, J.

    2009-01-01

    Multiplane ?PIV can be utilized to determine the wall shear stress and wall topology from the measured flow over a structured surface. A theoretical model was developed to predict the measurement error for the surface topography and shear stress, based on a theoretical analysis of the precision in

  18. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  19. Argon-ion-induced formation of nanoporous GaSb layer: Microstructure, infrared luminescence, and vibrational properties

    Energy Technology Data Exchange (ETDEWEB)

    Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Bhubaneswar, Odisha 751 005 (India); Kanjilal, A. [Department of Physics, Shiv Nadar University, Uttar Pradesh 201 314 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Dhara, S. [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Das, T. D. [Department of Electronic Science, University of Calcutta, APC Road, Kolkata 700 009 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2014-07-21

    Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used in our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.

  20. Ultrasensitive nonenzymatic sensing of glucose on Ni(OH)2-coated nanoporous gold film with two pairs of electron mediators

    International Nuclear Information System (INIS)

    Guo, Man-man; Yin, Xiang-le; Zhou, Chao-hui; Xia, Yue; Huang, Wei; Li, Zelin

    2014-01-01

    Graphical abstract: - Highlights: • Ni(OH) 2 -coated nanoporous Au film was facilely prepared by electrochemical methods. • Incorporation of Ni(OH) 2 into/on nanoporous Au engendered mutual stabilization. • Ni(II)/Ni(III) and Au/Au(I) co-mediated electrocatalytic oxidation of glucose. • A 4 nm Ni(OH) 2 coating significantly improved electrocatalysis and sensing of NPGF. • The sensor was successfully applied to detect glucose in human blood serum. - Abstract: Fabrication of new advanced nonenzymatic electrochemical nano-sensors of glucose has recently attracted intensive attention. In this work, we designed a novel ultrasensitive nonenzymatic amperometric sensor for detection of glucose by incorporating two pairs of effective electron mediators, Ni(II)/Ni(III) and Au/Au(I), into a nanoporous structure, namely a nanoporous gold film (NPGF) coated with a thin layer of nickel hydroxide about 4 nm in thickness. The NPGF with high roughness was quickly prepared by anodic potential step, and the thin surface coating of Ni(OH) 2 was easily obtained by electrooxidizing the electrodeposited Ni coverlayer. The incorporation of thin Ni(OH) 2 coating into/on the NPGF led to mutual stabilization without changing the nanoporous structure. The Ni(OH) 2 /NPGF electrode fabricated totally by facile electrochemical methods at room temperature showed high electrocatalytic activity for the oxidation of glucose within a wide potential range (−0.5∼0.2 V) due to co-mediating of the two pairs of electron mediators including their coupling Ni(III) + Au = Ni(II) + Au(I). The electrode also demonstrated excellent performance in sensing glucose concentration with a wide linear range (2 μM∼7 mM), ultrasensitivity (3529 μA mM −1 cm −2 ), low detection limit (0.73 μM), good repeatability, and long-term stability (3 weeks), which was successfully applied to detect glucose in a human blood serum sample by standard addition method with satisfactory recovery. This work is