WorldWideScience

Sample records for nanopore sensor array

  1. Nanopore sensors for DNA analysis

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Venkatesan, B.M.; Shim, Jeong

    2012-01-01

    Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene-based, and functionali......Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene...

  2. Expanding the functionality and applications of nanopore sensors

    Science.gov (United States)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  3. Synthesis of ordered large-scale ZnO nanopore arrays

    International Nuclear Information System (INIS)

    Ding, G.Q.; Shen, W.Z.; Zheng, M.J.; Fan, D.H.

    2006-01-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates

  4. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    Science.gov (United States)

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  5. Nanopore sensors : From hybrid to abiotic systems

    NARCIS (Netherlands)

    Kocer, Armagan; Tauk, Lara; Dejardin, Philippe

    2012-01-01

    The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is

  6. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  7. Nanowire sensor, sensor array, and method for making the same

    Science.gov (United States)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  8. Optical characterization of nanoporous AAO sensor substrate

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  9. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  10. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  11. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography

    International Nuclear Information System (INIS)

    Woldering, Leon A; Tjerkstra, R Willem; Vos, Willem L; Jansen, Henri V; Setija, Irwan D

    2008-01-01

    We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF 6 , optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750 nm, pore diameters between 310 and 515 nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips

  12. Plasmonic devices and sensors built from ordered nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Kobayashi, Yoji (University of California, Berkeley); Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R. (University of California, Berkeley); Robertson, Ian M. (University of Illinois Urbana-Champaign, Urbana, IL); House, Stephen D. (University of Illinois Urbana-Champaign, Urbana, IL); Graham, Dennis D. (University of Illinois Urbana-Champaign, Urbana, IL); Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD); Chang, Noel N. (University of Illinois Urbana-Champaign, Urbana, IL); El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  13. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  14. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  15. InP nanopore arrays for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong

    2016-02-19

    We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.

  16. Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels

    Directory of Open Access Journals (Sweden)

    Sabine Crunaire

    2014-06-01

    Full Text Available An innovative and low-cost method is proposed for the detection and discrimination of indole-positive pathogen bacteria. The method allows the non-invasive detection of gaseous indole, released by bacteria, with nanoporous colorimetric sensors. The innovation comes from the use of nanoporous matrices doped with 4-(dimethylamino-cinnamaldehyde, which act as sponges to trap and concentrate the targeted analyte and turn from transparent to dark green, long before the colonies get visible with naked eyes. With such sensors, it was possible to discriminate E. coli from H. alvei, two indole-positive and negative bacteria after seven hours of incubation.

  17. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  18. A colorimetric sensor array for identification of toxic gases below permissible exposure limits†

    OpenAIRE

    Feng, Liang; Musto, Christopher J.; Kemling, Jonathan W.; Lim, Sung H.; Suslick, Kenneth S.

    2010-01-01

    A colorimetric sensor array has been developed for the rapid and sensitive detection of 20 toxic industrial chemicals (TICs) at their PELs (permissible exposure limits). The color changes in an array of chemically responsive nanoporous pigments provide facile identification of the TICs with an error rate below 0.7%.

  19. Monitoring tetracycline through a solid-state nanopore sensor

    Science.gov (United States)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  20. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    Science.gov (United States)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  1. Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua; Zhao Qitao [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States); Guan Xiyun, E-mail: xguan@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2010-08-24

    Nanopore stochastic sensor works by monitoring the ionic current modulations induced by the passage of analytes of interest through a single pore, which can be obtained from a biological ion channel by self-assembly or artificially fabricated in a solid-state membrane. In this minireview, we overview the use of biological nanopores and artificial nanopores for the detection of terrorist agents including explosives, organophosphorus nerve agents, nitrogen mustards, organoarsenic compounds, toxins, and viruses. We also discuss the current challenge in the development of deployable nanopore sensors for real-world applications.

  2. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    Science.gov (United States)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  3. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    Science.gov (United States)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  4. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  5. Tunable Impedance Spectroscopy Sensors via Selective Nanoporous Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Small, Leo J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Impedance spectroscopy was leveraged to directly detect the sorption of I 2 by selective adsorption into nanoporous metal organic frameworks (MOF). Films of three different types of MOF frameworks, respectively, were drop cast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 C. The MOF frameworks varied in topology from small pores (equivalent to I 2 diameter) to large pore frameworks. The combination of the chemistry of the framework and pore size dictated quantity and kinetics of I 2 adsorption. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. Independent of MOF framework characteristics, all resultant sensors showed high response to I 2 in air. As an example of sensor output, I 2 was readily detected at 25 C in air within 720 s of exposure, using an un-optimized sensor geometry with a small pored MOF. Further optimization of sensor geometry, decreasing MOF film thicknesses and maximizing sensor capacitance, will enable faster detection of trace I 2 .

  6. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  7. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  8. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  9. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  10. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    Science.gov (United States)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  11. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    Science.gov (United States)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  12. Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces

    International Nuclear Information System (INIS)

    Martín, Jaime; Martín-González, Marisol; Del Campo, Adolfo; Reinosa, Julián J; Fernández, José Francisco

    2012-01-01

    We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm 2 . The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm 2 . The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130–140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm 2 -scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array. (paper)

  13. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...

  14. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    National Research Council Canada - National Science Library

    Pishko, Michael V

    2006-01-01

    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  15. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    National Research Council Canada - National Science Library

    Pishko, Michael V

    2007-01-01

    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  16. A nanoporous alumina microelectrode array for functional cell–chip coupling

    International Nuclear Information System (INIS)

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-01-01

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. (paper)

  17. Fiber Optic Pressure Sensor Array, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array System for measuring air flow pressure at multiple points on the skin of aircrafts for Flight...

  18. Side-gated ultrathin-channel nanopore FET sensors

    International Nuclear Information System (INIS)

    Yanagi, Itaru; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi; Oura, Takeshi

    2016-01-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore. (paper)

  19. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  20. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Science.gov (United States)

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  1. Analyzing Responses of Chemical Sensor Arrays

    Science.gov (United States)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  2. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    Science.gov (United States)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  3. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers. Electronic supplementary information (ESI) available: Time dependent fluorescence intensity measurements, photoluminescence decay on flat and nanoporous arrays, fluorophore time traces and photoluminescence of AAO and DLC-AAO. See DOI: 10.1039/c4nr07351g

  4. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  5. A Hybrid Pressure and Vector Sensor Towed Array

    National Research Council Canada - National Science Library

    Huang, Dehua

    2008-01-01

    The invention as disclosed is of a combined acoustic pressure and acoustic vector sensor array, where multiple acoustic pressure sensors are integrated with an acoustic vector sensor in a towed array...

  6. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong, E-mail: liyong@pdsu.edu.cn [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Song, Xiao Yan [Department of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045 (China); Song, Yue Li; Ji, Peng Fei; Zhou, Feng Qun; Tian, Ming Li; Huang, Hong Chun [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Li, Xin Jian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2016-02-15

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic properties of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.

  7. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    International Nuclear Information System (INIS)

    Li, Yong; Song, Xiao Yan; Song, Yue Li; Ji, Peng Fei; Zhou, Feng Qun; Tian, Ming Li; Huang, Hong Chun; Li, Xin Jian

    2016-01-01

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic properties of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.

  8. Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array

    Science.gov (United States)

    Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian

    2016-10-01

    Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.

  9. Pore diameter control of anodic aluminum oxide with ordered array of nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Allen; Yang, Yong-Feng [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, 30013 (China); Hu, Chi-Chang [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 401 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Lin, Chi-Cheng [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2008-01-01

    Highly uniform, self-ordered anodic aluminum oxide (AAO) with an ordered nanoporous array can be effectively formed from industrially pure (99.5%) aluminum sheets through an anodizing program in a mixture solution of sulfuric and oxalic acids. The influences of anodizing variables, such as applied voltage, solution temperature, oxalic acid concentration, agitation rate, and sulfuric acid concentration, on the average pore diameter of AAO were systematically investigated using fractional factorial design (FFD). The applied voltage, and sulfuric acid concentration were found to be the key factors affecting the pore diameter of AAO films in the FFD study. The pore diameter of AAO is regularly increased from ca. 50 to 150 nm when the applied voltage and the concentration of sulfuric acid are gradually increased from 53 to 80 V and from 3.5 to 8 M, respectively. Fine tuning of the pore diameter for AAO films with an ordered, nanoporous, arrayed structure from industrially pure aluminum sheets can be achieved. (author)

  10. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    Science.gov (United States)

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  11. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  12. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  13. Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model

    NARCIS (Netherlands)

    Verhoeven, M.L.P.M.; van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Winnubst, Aloysius J.A.; Qureshi, H.F.; de Gruijl, T.D.; Scheper, R.J.; Lüttge, Regina

    2012-01-01

    Nanoporous microneedle arrays from Al2O3 were fabricated via a micromolding process using a PDMS mold generated via a double replication process from a SU-8/Si-master as a template. Hg-porosity measurements showed that the porosity obtained was a function of the temperature used for sintering,

  14. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  15. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    Science.gov (United States)

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  16. Development of flexible array tactile sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2010-01-01

    time data acquisition system scans all the cells and converts electrical resistance to tactile pressure maps. We validate that this information can be used to improve grasping and perform object recognition. Key words: piezoresistivity, tactile, sensor, pressure, robotics......In this paper we describe the development of an array tactile sensor for use in robotic grippers based on a flexible piezoresistive material. We start by comparing different cell structures in terms of output characteristics and we construct an array of cells in a row and columns layout. A real...

  17. Tests Of Array Of Flush Pressure Sensors

    Science.gov (United States)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  18. A Prototype Tactile Sensor Array.

    Science.gov (United States)

    1982-09-15

    Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial

  19. Advanced Sensor Arrays and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Ryter, John Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramaiyan, Kannan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brosha, Eric L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    Novel sensor packaging elements were designed, fabricated, and tested in order to facilitate the transition of electrochemical mixed-potential sensors toward commercialization. Of the two designs completed, the first is currently undergoing field trials, taking direct measurements within vehicle exhaust streams, while the second is undergoing preliminary laboratory testing. The sensors’ optimal operating conditions, sensitivity to hydrogen, and long-­term baseline stability were also investigated. The sensing capabilities of lanthanum chromite (La0.8Sr0.2CrO3) and indium-­doped tin oxide (ITO) working electrodes were compared, and the ITO devices were selected for pre-­commercial field trials testing at a hydrogen fuel cell vehicle fueling station in California. Previous data from that fueling station were also analyzed, and the causes of anomalous baseline drift were identified.

  20. Construction of a Piezoresistive Neural Sensor Array

    Science.gov (United States)

    Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.

    1996-01-01

    The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors

  1. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  2. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    Science.gov (United States)

    de Groot, Anne Marit; Platteel, Anouk C. M.; Kuijt, Nico; van Kooten, Peter J. S.; Vos, Pieter Jan; Sijts, Alice J. A. M.; van der Maaden, Koen

    2017-01-01

    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin’s physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs. PMID:29375544

  3. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid.

    Science.gov (United States)

    de Groot, Anne Marit; Platteel, Anouk C M; Kuijt, Nico; van Kooten, Peter J S; Vos, Pieter Jan; Sijts, Alice J A M; van der Maaden, Koen

    2017-01-01

    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin's physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro . It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs.

  4. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    Directory of Open Access Journals (Sweden)

    Anne Marit de Groot

    2017-12-01

    Full Text Available The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin’s physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs, representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT and tetanus toxoid (TT intradermally. First, the piercing ability of the ceramic (alumina npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID immunization with subunit vaccines, which opens possibilities for future ID vaccination designs.

  5. Transition edge sensor series array bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J, E-mail: joern.beyer@ptb.d [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)

    2010-10-15

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  6. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  7. Thermal physics of transition edge sensor arrays

    International Nuclear Information System (INIS)

    Hoevers, H.F.C.

    2006-01-01

    Thermal transport in transition edge sensor (TES)-based microcalorimeter arrays is reviewed. The fundamentals of thermal conductance in Si 3 N 4 membranes are discussed and the magnitude of the electron-phonon coupling and Kapitza coupling in practical devices is summarized. Next, the thermal transport in high-stopping power and low-heat capacity absorbers, required for arrays of TES microcalorimeters, is discussed in combination with a performance analysis of detectors with mushroom-absorbers. Finally, the phenomenology of unexplained excess noise, observed in both Mo- and Ti-based TESs, is briefly summarized and related with the coupling of the TES to the heat bath

  8. Versatile gradients of chemistry, bound ligands and nanoparticles on alumina nanopore arrays

    International Nuclear Information System (INIS)

    Michelmore, Andrew; Poh, Zihan; Goreham, Renee V; Short, Robert D; Vasilev, Krasimir; Mierczynska, Agnieszka; Losic, Dusan

    2011-01-01

    Nanoporous alumina (PA) arrays produced by self-ordering growth, using electrochemical anodization, have been extensively explored for potential applications based upon the unique thermal, mechanical and structural properties, and high surface-to-volume ratio of these materials. However, the potential applications and functionality of these materials may be further extended by molecular-level engineering of the surface of the pore rims. In this paper we present a method for the generation of chemical gradients on the surface of PA arrays based upon plasma co-polymerization of two monomers. We further extend these chemical gradients, which are also gradients of surface charge, to those of bound ligands and number density gradients of nanoparticles. The latter represent a highly exotic new class of materials, comprising aligned PA, capped by gold nanoparticles around the rim of the pores. Gradients of chemistry, ligands and nanoparticles generated by our method retain the porous structure of the substrate, which is important in applications that take advantage of the inherent properties of these materials. This method can be readily extended to other porous materials.

  9. Versatile gradients of chemistry, bound ligands and nanoparticles on alumina nanopore arrays

    Energy Technology Data Exchange (ETDEWEB)

    Michelmore, Andrew; Poh, Zihan; Goreham, Renee V; Short, Robert D; Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Adelaide (Australia); Mierczynska, Agnieszka; Losic, Dusan, E-mail: Krasimir.vasilev@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Adelaide (Australia)

    2011-10-14

    Nanoporous alumina (PA) arrays produced by self-ordering growth, using electrochemical anodization, have been extensively explored for potential applications based upon the unique thermal, mechanical and structural properties, and high surface-to-volume ratio of these materials. However, the potential applications and functionality of these materials may be further extended by molecular-level engineering of the surface of the pore rims. In this paper we present a method for the generation of chemical gradients on the surface of PA arrays based upon plasma co-polymerization of two monomers. We further extend these chemical gradients, which are also gradients of surface charge, to those of bound ligands and number density gradients of nanoparticles. The latter represent a highly exotic new class of materials, comprising aligned PA, capped by gold nanoparticles around the rim of the pores. Gradients of chemistry, ligands and nanoparticles generated by our method retain the porous structure of the substrate, which is important in applications that take advantage of the inherent properties of these materials. This method can be readily extended to other porous materials.

  10. Piezoresistive pressure sensor array for robotic skin

    Science.gov (United States)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  11. Optical networks for wideband sensor array

    Science.gov (United States)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  12. Paper-Based Active Tactile Sensor Array.

    Science.gov (United States)

    Zhong, Qize; Zhong, Junwen; Cheng, Xiaofeng; Yao, Xu; Wang, Bo; Li, Wenbo; Wu, Nan; Liu, Kang; Hu, Bin; Zhou, Jun

    2015-11-25

    A paper-based active tactile sensor -array (PATSA) with a dynamic sensitivity of 0.35 V N(-1) is demonstrated. The pixel position of the PATSA can be routed by analyzing the real-time recording voltages in the pressing process. The PATSA performance, which remains functional when removing partial areas, reveals that the device has a potential application to customized electronic skins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  14. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  15. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  16. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties.

    Science.gov (United States)

    Cupo, Andrew; Masih Das, Paul; Chien, Chen-Chi; Danda, Gopinath; Kharche, Neerav; Tristant, Damien; Drndić, Marija; Meunier, Vincent

    2017-07-25

    A tunable band gap in phosphorene extends its applicability in nanoelectronic and optoelectronic applications. Here, we propose to tune the band gap in phosphorene by patterning antidot lattices, which are periodic arrays of holes or nanopores etched in the material, and by exploiting quantum confinement in the corresponding nanoconstrictions. We fabricated antidot lattices with radii down to 13 nm in few-layer black phosphorus flakes protected by an oxide layer and observed suppression of the in-plane phonon modes relative to the unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects. Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-nanometer size regime, where quantum confinement is particularly important.

  17. Development of a Tactile Sensor Array

    DEFF Research Database (Denmark)

    Marian, Nicolae; Drimus, Alin; Bilberg, Arne

    2010-01-01

    Flexible grasping robots are needed for enabling automated, profitable and competitive production of small batch sizes including complex handling processes of often fragile objects. This development will create new conditions for value-adding activities in the production of the future world....... The paper describes the related research work we have developed for sensor design, exploration and control for a robot gripping system, in order to analyze normal forces applied on the tactile pixels for gripping force control and generate tactile images for gripping positioning and object recognition....... Section 1 gives an introduction of principles and technologies in tactile sensing for robot grippers. Section 2 presents the sensor cell (taxel) and array design and characterization. Section 3 introduces object recognition and shape analysis ideas showing a few preliminary examples, where geometrical...

  18. Development of a pH sensor using nanoporous nanostructures of NiO.

    Science.gov (United States)

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 ± 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.

  19. Colorimetric Sensor Array for White Wine Tasting

    Directory of Open Access Journals (Sweden)

    Soo Chung

    2015-07-01

    Full Text Available A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2 for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  20. Colorimetric Sensor Array for White Wine Tasting.

    Science.gov (United States)

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  1. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  2. Bearing estimation with acoustic vector-sensor arrays

    International Nuclear Information System (INIS)

    Hawkes, M.; Nehorai, A.

    1996-01-01

    We consider direction-of-arrival (DOA) estimation using arrays of acoustic vector sensors in free space, and derive expressions for the Cramacute er-Rao bound on the DOA parameters when there is a single source. The vector-sensor array is seen to have improved performance over the traditional scalar-sensor (pressure-sensor) array for two distinct reasons: its elements have an inherent directional sensitivity and the array makes a greater number of measurements. The improvement is greatest for small array apertures and low signal-to-noise ratios. Examination of the conventional beamforming and Capon DOA estimators shows that vector-sensor arrays can completely resolve the bearing, even with a linear array, and can remove the ambiguities associated with spatial undersampling. We also propose and analyze a diversely-oriented array of velocity sensors that possesses some of the advantages of the vector-sensor array without the increase in hardware and computation. In addition, in certain scenarios it can avoid problems with spatially correlated noise that the vector-sensor array may suffer. copyright 1996 American Institute of Physics

  3. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    Science.gov (United States)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  4. Photon counting arrays for AO wavefront sensors

    CERN Document Server

    Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva

    2005-01-01

    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...

  5. Human location estimation using thermopile array sensor

    Science.gov (United States)

    Parnin, S.; Rahman, M. M.

    2017-11-01

    Utilization of Thermopile sensor at an early stage of human detection is challenging as there are many things that produce thermal heat other than human such as electrical appliances and animals. Therefrom, an algorithm for early presence detection has been developed through the study of human body temperature behaviour with respect to the room temperature. The change in non-contact detected temperature of human varied according to body parts. In an indoor room, upper parts of human body change up to 3°C whereas lower part ranging from 0.58°C to 1.71°C. The average changes in temperature of human is used as a conditional set-point value in the program algorithm to detect human presence. The current position of human and its respective angle is gained when human is presence at certain pixels of Thermopile’s sensor array. Human position is estimated successfully as the developed sensory system is tested to the actuator of a stand fan.

  6. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    Directory of Open Access Journals (Sweden)

    Hai Xiao

    2006-08-01

    Full Text Available A fiber optic intrinsic Fabry-Perot interferometric (IFPI chemical sensor wasdeveloped by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolitesynthesized on the cleaved endface of a single mode fiber. The sensor operated bymonitoring the optical thickness changes of the zeolite thin film caused by the adsorption oforganic molecules into the zeolite channels. The optical thickness of the zeolite thin filmwas measured by white light interferometry. Using methanol, 2-propanol, and toluene as themodel chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolvedorganics in water with high sensitivity.

  7. A Dew Point Meter Comprising a Nanoporous Thin Film Alumina Humidity Sensor with a Linearizing Capacitance Measuring Electronics

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Ghara

    2008-02-01

    Full Text Available A novel trace moisture analyzer is presented comprising a capacitive nanoporous film of metal oxide sensor and electronics. The change in capacity of the sensor is due to absorption of water vapor by the pores. A simple capacitance measuring electronics is developed which can detect any change in capacitance and correlates to ambient humidity. The circuit can minimize the parasitic earth capacitance. The non linear response of the sensor is linearized with a micro-controller linearizing circuit. The experimental result shows a resolution of -4°C DP and accuracy within 2%.

  8. SERS activity of Au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar

    International Nuclear Information System (INIS)

    Jiang Weifen; Zhang Yanfeng; Wang Yusheng; Xu Lei; Li Xinjian

    2011-01-01

    A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure.

  9. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    Science.gov (United States)

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10-11 to 1 × 10-9 mol L-1 and 1 × 10-9 to 1.4 × 10-6 mol L-1 with a remarkably low detection limit of 1.8 × 10-11 mol L-1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples.

  10. Intelligent pressure measurement in multiple sensor arrays

    International Nuclear Information System (INIS)

    Matthews, C.A.

    1995-01-01

    Pressure data acquisition has typically consisted of a group of sensors scanned by an electronic or mechanical multiplexer. The data accuracy was dependent upon the temperature stability of the sensors. This paper describes a new method of pressure measurement that combines individual temperature compensated pressure sensors, a microprocessor, and an A/D converter in one module. Each sensor has its own temperature characteristics stored in a look-up table to minimize sensor thermal errors. The result is an intelligent pressure module that can output temperature compensated engineering units over an Ethernet interface. Calibration intervals can be dramatically extended depending upon system accuracy requirements and calibration techniques used

  11. Temperature-dependent photoluminescence and mechanism of CdS thin film grown on Si nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Li, Yan Tao [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); School of Material Science and Engineering, Henan University of Technology, Zhengzhou 454052 (China); Hu, Chu Xiong [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Li, Xin Jian, E-mail: lixj@zzu.edu.cn [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2015-09-15

    Highlights: • CdS/silicon nanoporous pillar array (CdS/Si-NPA) was prepared by a CBD method. • The PL spectrum of CdS/Si-NPA was measured at different temperatures, from 10 to 300 K. • The PL spectrum was composed of four emission bands, obeying different mechanisms. • The PL degradation with temperature was due to phonon-induced escape of carriers. - Abstract: Si-based cadmium sulfide (CdS) is a prospective semiconductor system in constructing optoelectronic nanodevices, and this makes the study on the factors which may affect its optical and electrical properties be of special importance. Here we report that CdS thin film was grown on Si nanoporous pillar array (Si-NPA) by a chemical bath deposition method, and the luminescent properties of CdS/Si-NPA as well as its mechanism were studied by measuring and analyzing its temperature-dependent photoluminescence (PL) spectrum. The low-temperature measurement disclosed that the PL spectrum of CdS/Si-NPA could be decomposed into four emission bands, a blue band, a green band, a red band and an infrared band. The blue band was due to the luminescence from Si-NPA substrate, and the others originate from the CdS thin film. With temperature increasing, the peak energy, PL intensity and peak profile shape for the PL bands from CdS evolves differently. Through theoretical and fitting analyses, the origins of the green, red and infrared band are attributed to the near band-edge emission, the radiative recombination from surface defects to Cd vacancies and those to S interstitials, respectively. The cause of PL degradation is due to the thermal quenching process, a phonon-induced electron escape but with different activation energies. These results might provide useful information for optimizing the preparing parameters to promote the performance of Si-based CdS optoelectronic devices.

  12. Improved chemical identification from sensor arrays using intelligent algorithms

    Science.gov (United States)

    Roppel, Thaddeus A.; Wilson, Denise M.

    2001-02-01

    Intelligent signal processing algorithms are shown to improve identification rates significantly in chemical sensor arrays. This paper focuses on the use of independently derived sensor status information to modify the processing of sensor array data by using a fast, easily-implemented "best-match" approach to filling in missing sensor data. Most fault conditions of interest (e.g., stuck high, stuck low, sudden jumps, excess noise, etc.) can be detected relatively simply by adjunct data processing, or by on-board circuitry. The objective then is to devise, implement, and test methods for using this information to improve the identification rates in the presence of faulted sensors. In one typical example studied, utilizing separately derived, a-priori knowledge about the health of the sensors in the array improved the chemical identification rate by an artificial neural network from below 10 percent correct to over 99 percent correct. While this study focuses experimentally on chemical sensor arrays, the results are readily extensible to other types of sensor platforms.

  13. Biomimetic Hair Sensor Arrays: From Inspiration To Implementation

    NARCIS (Netherlands)

    Jaganatharaja, R.K.; Bruinink, C.M.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2010-01-01

    In this work, we report on the successful implementation of highly sensitive artificial hair-based flow-sensor arrays for sensing low-frequency air flows. Artificial hair sensors are bio-inspired from crickets’ cercal filiform hairs, one of nature’s best in sensing small air flows. The presented

  14. Learning from Crickets: Artificial Hair-Sensor Array Developments

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2010-01-01

    We have successfully developed biomimetic flowsensitive hair-sensor arrays taking inspiration from mechanosensory hairs of crickets. Our current generation of sensors achieves sub mm/s threshold air-flow sensitivity for single hairs operating in a bandwidth of a few hundred Hz and is the result of a

  15. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  16. Optimization of modal filters based on arrays of piezoelectric sensors

    International Nuclear Information System (INIS)

    Pagani, Carlos C Jr; Trindade, Marcelo A

    2009-01-01

    Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25–50%

  17. Microfabricated Multianalyte Sensor Arrays for Metabolite Monitoring

    National Research Council Canada - National Science Library

    Pishko, Michael V; Mugweru, Amos

    2005-01-01

    .... In this work we have taken advantage of silicon micro-fabrication technologies to develop implantable redundant microsensor arrays with glucose oxidase molecules immobilized in photopolymerized...

  18. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    Science.gov (United States)

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-05-23

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.

  19. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    Science.gov (United States)

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  20. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    OpenAIRE

    Chen, Po Chun; Hsieh, Sheng Jen; Chen, Chien Chon; Zou, Jun

    2013-01-01

    We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless inj...

  1. Detecting single-abasic residues within a DNA strand immobilized in a biological nanopore using an integrated CMOS sensor.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj D; Pedrotti, Ken; Dunbar, William B

    2013-02-01

    In this paper, we demonstrate the application of a novel current-measuring sensor (CMS) customized for nanopore applications. The low-noise CMS is fabricated in a 0.35μm CMOS process and is implemented in experiments involving DNA captured in an α-hemolysin (α-HL) nanopore. Specifically, the CMS is used to build a current amplitude map as a function of varying positions of a single-abasic residue within a homopolymer cytosine single-stranded DNA (ssDNA) that is captured and held in the pore. Each ssDNA is immobilized using a biotin-streptavidin linkage. Five different DNA templates are measured and compared: one all-cytosine ssDNA, and four with a single-abasic residue substitution that resides in or near the ~1.5nm aperture of the α-HL channel when the strand is immobilized. The CMOS CMS is shown to resolves the ~5Å displacements of the abasic residue within the varying templates. The demonstration represents an advance in application-specific circuitry that is optimized for small-footprint nanopore applications, including genomic sequencing.

  2. Biomimetic micromechanical adaptive flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Floris, J.; Dijkstra, Marcel; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities

  3. Cricket inspired flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Casas, J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on mechanoreceptive sensory hairs of crickets. These filiform hairs are highly perceptive to lowfrequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of

  4. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography

    International Nuclear Information System (INIS)

    Janssen, Xander J A; Jonsson, Magnus P; Plesa, Calin; Soni, Gautam V; Dekker, Cees; Dekker, Nynke H

    2012-01-01

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafer’s top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 μm × 12 μm) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate. (paper)

  5. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  6. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors

    Science.gov (United States)

    Jang, Yoon Hee; Chung, Kyungwha; Quan, Li Na; Špačková, Barbora; Šípová, Hana; Moon, Seyoung; Cho, Won Joon; Shin, Hae-Young; Jang, Yu Jin; Lee, Ji-Eun; Kochuveedu, Saji Thomas; Yoon, Min Ji; Kim, Jihyeon; Yoon, Seokhyun; Kim, Jin Kon; Kim, Donghyun; Homola, Jiří; Kim, Dong Ha

    2013-11-01

    Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated.Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated. Electronic supplementary information (ESI) available: TEM image and UV-vis absorption spectrum of citrate-capped Au NPs, AFM images of Au NC arrays on the PS-b-P4VP (41k-24k) template, ImageJ-analyzed results of PS-b-P4VP (41k-24k)-templated Au NC arrays, calculated %-surface coverage values, SEM images of Au NC arrays on the PS-b-P2VP (172k-42k

  7. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination.

    Science.gov (United States)

    Galpothdeniya, Waduge Indika S; Regmi, Bishnu P; McCarter, Kevin S; de Rooy, Sergio L; Siraj, Noureen; Warner, Isiah M

    2015-04-21

    There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

  8. Biomimetic micromechanical adaptive flow-sensor arrays

    Science.gov (United States)

    Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco

    2007-05-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.

  9. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  10. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    International Nuclear Information System (INIS)

    Chen, P.Ch.; Zou, J.; Hsieh, Sh.J.; Chen, Ch.Ch.

    2013-01-01

    We proposed fabricating an aluminum micro needle array with a nano channel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The micro needle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nano channel template. Therefore, the micro needle array can potentially be used in many technology applications. This 3D micro needle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the micro needle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the micro needle array can further be used on many detecting, storing, or drug delivering applications.

  11. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  12. Haussdorff and hellinger for colorimetric sensor array classification

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Jensen, Bjørn Sand; Schmidt, Mikkel Nørgaard

    2012-01-01

    Development of sensors and systems for detection of chemical compounds is an important challenge with applications in areas such as anti-terrorism, demining, and environmental monitoring. A newly developed colorimetric sensor array is able to detect explosives and volatile organic compounds......; however, each sensor reading consists of hundreds of pixel values, and methods for combining these readings from multiple sensors must be developed to make a classification system. In this work we examine two distance based classification methods, K-Nearest Neighbor (KNN) and Gaussian process (GP......) classification, which both rely on a suitable distance metric. We evaluate a range of different distance measures and propose a method for sensor fusion in the GP classifier. Our results indicate that the best choice of distance measure depends on the sensor and the chemical of interest....

  13. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Rosamaria Capuano

    2015-04-01

    Full Text Available Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays.

  14. Identification of catecholamine neurotransmitters using fluorescence sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Forough [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Hormozi-Nezhad, M. Reza, E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahmoudi, Morteza, E-mail: mahmoudi@stanford.edu [Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551 (Iran, Islamic Republic of); Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101 (United States)

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and L-DOPA) and their mixtures in the concentration range of 0.25–30 μmol L{sup −1}. Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. - Highlights: • We have proposed a fluorescence sensor array to detect catecholamine neurotransmitters. • Visual differentiation of catecholamines is provided by fluorescence array fingerprints. • Discrimination of catecholamines from each other, and from their mixture is obtained on a PCA plot. • Proposed sensor array can be used for detection of catecholamines in urine samples.

  15. Scalable fabric tactile sensor arrays for soft bodies

    Science.gov (United States)

    Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.

    2018-06-01

    Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.

  16. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays

    OpenAIRE

    Maaden, van der, Koen; Lüttge, R Regina; Vos, PJW; Bouwstra, Joke A; Kersten, Gideon FA; Ploemen, IHJ Ingmar

    2015-01-01

    In the literature, several types of microneedles have been extensively described. However, porous microneedle arrays only received minimal attention. Hence, only little is known about drug delivery via these microneedles. However, porous microneedle arrays may have potential for future microneedle-based drug and vaccine delivery and could be a valuable addition to the other microneedle-based drug delivery approaches. To gain more insight into porous microneedle technologies, the scientific an...

  17. Conductive polymer sensor arrays for smart orthopaedic implants

    Science.gov (United States)

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.

    2017-04-01

    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  18. Integrated sensor array for on-line monitoring micro bioreactors

    NARCIS (Netherlands)

    Krommenhoek, E.E.

    2007-01-01

    The “Fed��?batch on a chip��?��?project, which was carried out in close cooperation with the Technical University of Delft, aims to miniaturize and parallelize micro bioreactors suitable for on-line screening of micro-organisms. This thesis describes an electrochemical sensor array which has been

  19. Fabrication and characterization of nano-gas sensor arrays

    International Nuclear Information System (INIS)

    Hassan, H. S.; Kashyout, A. B.; Morsi, I.; Nasser, A. A. A.; Raafat, A.

    2015-01-01

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O 2 , H 2 and CO 2 gases as a function of temperature

  20. Fabrication and characterization of nano-gas sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, H. S., E-mail: hassan.shokry@gmail.com; Kashyout, A. B., E-mail: hady8@yahoo.com [Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Researches and technological applications, New Borg El-Arab City, Alexandria (Egypt); Morsi, I., E-mail: drimanmorsi@yahoo.com; Nasser, A. A. A., E-mail: menem-1954@yahoo.com; Raafat, A., E-mail: abrs-218@yahoo.com [Arab Academy for Science and Technology, and Maritime Transport, Alexandria, 21936 (Egypt)

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.

  1. Position sensor for linear synchronous motors employing halbach arrays

    Science.gov (United States)

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  2. Developing the ultimate biomimetic flow-sensor array

    NARCIS (Netherlands)

    Bruinink, C.M.; Jaganatharaja, R.K.; de Boer, Meint J.; Berenschot, Johan W.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2009-01-01

    This contribution reports on the major developments and achievements in our group on fabricating highly sensitive biomimetic flow-sensor arrays. The mechanoreceptive sensory hairs of crickets are taken as a model system for their ability to perceive flow signals at thermal noise levels and,

  3. Contact CMOS imaging of gaseous oxygen sensor array.

    Science.gov (United States)

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O 2 ) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O 2 -sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp) 3 ] 2+ ) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  4. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays.

    Science.gov (United States)

    van der Maaden, Koen; Luttge, Regina; Vos, Pieter Jan; Bouwstra, Joke; Kersten, Gideon; Ploemen, Ivo

    2015-08-01

    In the literature, several types of microneedles have been extensively described. However, porous microneedle arrays only received minimal attention. Hence, only little is known about drug delivery via these microneedles. However, porous microneedle arrays may have potential for future microneedle-based drug and vaccine delivery and could be a valuable addition to the other microneedle-based drug delivery approaches. To gain more insight into porous microneedle technologies, the scientific and patent literature is reviewed, and we focus on the possibilities and constraints of porous microneedle technologies for dermal drug delivery. Furthermore, we show preliminary data with commercially available porous microneedles and describe future directions in this field of research.

  5. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  6. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer

    Science.gov (United States)

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, Nosoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-01

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer

  7. Proposed biomimetic molecular sensor array for astrobiology applications

    Science.gov (United States)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  8. Numerical simulations of odorant detection by biologically inspired sensor arrays

    International Nuclear Information System (INIS)

    Schuech, R; Stacey, M T; Barad, M F; Koehl, M A R

    2012-01-01

    The antennules of many marine crustaceans enable them to rapidly locate sources of odorant in turbulent environmental flows and may provide biological inspiration for engineered plume sampling systems. A substantial gap in knowledge concerns how the physical interaction between a sensing device and the chemical filaments forming a turbulent plume affects odorant detection and filters the information content of the plume. We modeled biological arrays of chemosensory hairs as infinite arrays of odorant flux-detecting cylinders and simulated the fluid flow around and odorant flux into the hair-like sensors as they intercepted a single odorant filament. As array geometry and sampling kinematics were varied, we quantified distortion of the flux time series relative to the spatial shape of the original odorant filament as well as flux metrics that may be important to both organisms and engineered systems attempting to measure plume structure and/or identify chemical composition. The most important predictor of signal distortion is the ratio of sensor diameter to odorant filament width. Achieving high peak properties (e.g. sharpness) of the flux time series and maximizing the total number of odorant molecules detected appear to be mutually exclusive design goals. Sensor arrays inspired specifically by the spiny lobster Panulirus argus and mantis shrimp Gonodactylaceus falcatus introduce little signal distortion but these species' neural systems may not be able to resolve plume structure at the level of individual filaments via temporal properties of the odorant flux. Current chemical sensors are similarly constrained. Our results suggest either that the spatial distribution of flux across the aesthetasc array is utilized by P. argus and G. falcatus, or that such high spatiotemporal resolution is unnecessary for effective plume tracking.

  9. A thermal plasmonic sensor platform: resistive heating of nanohole arrays.

    Science.gov (United States)

    Virk, Mudassar; Xiong, Kunli; Svedendahl, Mikael; Käll, Mikael; Dahlin, Andreas B

    2014-06-11

    We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift.

  10. A Method to Estimate Local Towed Array Angles Using Flush Mounted Hot Film Wall Shear Sensors

    National Research Council Canada - National Science Library

    Keith, William L; Cipolla, Kimberly M

    2008-01-01

    A towed array is provided with hot-film sensors and anemometer circuitry to calculate the angle of inclination of the towed array in real time during deployment of the towed array in a sea water environment...

  11. Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Andrea Trucco

    2015-06-01

    Full Text Available For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed. In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches.

  12. Electro-chemical sensors, sensor arrays and circuits

    Science.gov (United States)

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  13. An Artificial Nose Based on Microcantilever Array Sensors

    International Nuclear Information System (INIS)

    Lang, H P; Ramseyer, J P; Grange, W; Braun, T; Schmid, D; Hunziker, P; Jung, C; Hegner, M; Gerber, C

    2007-01-01

    We used microfabricated cantilever array sensors for an artificial nose setup. Each cantilever is coated on its top surface with a polymer layer. Volatile gaseous analytes are detected by tracking the diffusion process of the molecules into the polymer layers, resulting in swelling of the polymer layers and therewith bending of the cantilevers. From the bending pattern of all cantilevers in the array, a characteristic 'fingerprint' of the analyte is obtained, which is evaluated using principal component analysis. In a flow of dry nitrogen gas, the bending of the cantilevers is reverted to its initial state before exposure to the analyte, which allows reversible and reproducible operation of the sensor. We show examples of detection of solvents, perfume essences and beverage flavors. In a medical application, the setup provides indication of presence of diseases in patient's breath samples

  14. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  15. An Artificial Nose Based on Microcantilever Array Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lang, H P [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ramseyer, J P [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Grange, W [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Braun, T [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Schmid, D [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Hunziker, P [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Jung, C [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Hegner, M [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Gerber, C [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2007-03-15

    We used microfabricated cantilever array sensors for an artificial nose setup. Each cantilever is coated on its top surface with a polymer layer. Volatile gaseous analytes are detected by tracking the diffusion process of the molecules into the polymer layers, resulting in swelling of the polymer layers and therewith bending of the cantilevers. From the bending pattern of all cantilevers in the array, a characteristic 'fingerprint' of the analyte is obtained, which is evaluated using principal component analysis. In a flow of dry nitrogen gas, the bending of the cantilevers is reverted to its initial state before exposure to the analyte, which allows reversible and reproducible operation of the sensor. We show examples of detection of solvents, perfume essences and beverage flavors. In a medical application, the setup provides indication of presence of diseases in patient's breath samples.

  16. Ferromagnetic resonance investigation in permalloy magnetic antidot arrays on alumina nanoporous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Suárez, R.L., E-mail: rrodriguez@fis.puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Palma, J.L.; Burgos, E.O. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Michea, S. [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J.; Denardin, J.C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Aliaga, C. [Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago (Chile)

    2014-01-15

    The magnetic properties of Ni{sub 80}Fe{sub 20} antidot arrays with hole diameters of 18 and 70 nm fabricated by a template-assisted method were investigated using the ferromagnetic resonance technique. Tuning the antidot arrays by changing the hole diameter enables control on the angular dependence of the ferromagnetic resonance field. The scanning electron microscope images reveal a quite regular hexagonal arrangement of the pores, however the angular dependence of the resonance field do not exhibit the six-fold symmetry expected for this symmetry. Micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our real system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects the ferromagnetic resonance field symmetry. - Highlights: • We use the FMR technique to investigate the magnetic properties of Py antidots. • We studied the effect of pore diameter on FMR angular measurement. • FMR field does not exhibit the six-fold symmetry. • For all angular positions there are two resonance modes always present. • Micromagnetic simulations agree with the experimental results with defects.

  17. Application of a sensor array based on capillary-attached conductive gas sensors for odor identification

    International Nuclear Information System (INIS)

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambali, Zarida

    2010-01-01

    An electronic nose based on an array of capillary-attached conductive gas sensors was fabricated. The identification ability of the developed structure was investigated by employing different categories of simple and complex odor databases. Feature data sets were generated from the dynamic and steady state responses of the sensor array to the applied odor databases. Combinations of different feature extraction and classification methods were used to detect target gases. Validation of each technique was evaluated. Achievements of the study proved high classification rates of the fabricated e-nose in odor identification. It was indicated that gas identification is possible by applying the early selected portion of transient responses of the developed sensor array. The ability of the mentioned structure in analyzing gas mixtures was also investigated. The results presented high accuracy in the classification of gas mixtures

  18. Cantilever arrayed blood pressure sensor for arterial applanation tonometry.

    Science.gov (United States)

    Lee, Byeungleul; Jeong, Jinwoo; Kim, Jinseok; Kim, Bonghwan; Chun, Kukjin

    2014-03-01

    The authors developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the non-invasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in the resistance of the piezoresistor on a 5-microm-thick-arrayed perforated membrane and 20-microm-thick metal pads. The length and the width of the unit membrane are 210 and 310 microm, respectively. The width of the insensible zone between the adjacent units is only 10 microm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the polydimethylsiloxane package transfers the forces appropriately. The measured sensitivity was about 4.5%/N. The maximum measurement range and the resolution of the fabricated blood pressure sensor were greater than 900 mmHg (= 120 kPa) and less than 1 mmHg (= 133.3 Pa), respectively.

  19. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    International Nuclear Information System (INIS)

    Zhang Zhuomin; Wang Qingtang; Li Gongke

    2012-01-01

    Highlights: ► Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. ► NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. ► NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7–4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography–mass spectrometry (GC–MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient analytical method for the potential study of trace and small molecular

  20. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhuomin [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang Qingtang [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002 (China); Li Gongke, E-mail: cesgkl@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2012-05-21

    Highlights: Black-Right-Pointing-Pointer Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. Black-Right-Pointing-Pointer NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. Black-Right-Pointing-Pointer NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7-4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography-mass spectrometry (GC-MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient

  1. Identification of catecholamine neurotransmitters using fluorescence sensor array.

    Science.gov (United States)

    Ghasemi, Forough; Hormozi-Nezhad, M Reza; Mahmoudi, Morteza

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and l-DOPA) and their mixtures in the concentration range of 0.25-30 μmol L(-1). Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  3. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    NARCIS (Netherlands)

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  4. Low SWaP multispectral sensors using dichroic filter arrays

    Science.gov (United States)

    Dougherty, John; Varghese, Ron

    2015-06-01

    The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.

  5. Locating sources within a dense sensor array using graph clustering

    Science.gov (United States)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  6. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, Joel [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    2017-05-17

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced to the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.

  7. Feasibility study of patient motion monitoring using tactile array sensor

    International Nuclear Information System (INIS)

    Kim, Tae Ho; Kang, Seong Hee; Kim, Dong Su; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk; Kim, Si Yong

    2014-01-01

    The aim of this study is to evaluate patient pretreatment set-up error and intra-fraction motion using the tactile array sensors (Pressure Profile Systems Inc, Los Angeles, CA) which could measure distributed pressure profiles along the contacting surface and to check a feasibility of the sensor (tactile array sensor) in the patient motion monitoring. Laser alignment and optical camera based monitoring system are very useful for reduce patient set-up error but these systems could not monitor the blind area like patient's back position. Actually after patient alignment using laser or optical monitoring system, it was assumed that there is no error in the patient's back position (pressure profile distribution). But if an error occurs in the patient's back position, it will affect the radiation therapy accuracy. In spite of optical motion monitoring or using the immobilization tool, distributed pressure profiles of patient's back position was changed during inter and intra-fraction. For more accurate patient set-up, blind area (patient's back) monitoring was necessary. We expect that the proposed method will be very useful for make up for the weakness of optical monitoring method

  8. Feasibility study of patient motion monitoring using tactile array sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kang, Seong Hee; Kim, Dong Su; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, the Catholic University of Korea, Seoul (Korea, Republic of); Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2014-11-15

    The aim of this study is to evaluate patient pretreatment set-up error and intra-fraction motion using the tactile array sensors (Pressure Profile Systems Inc, Los Angeles, CA) which could measure distributed pressure profiles along the contacting surface and to check a feasibility of the sensor (tactile array sensor) in the patient motion monitoring. Laser alignment and optical camera based monitoring system are very useful for reduce patient set-up error but these systems could not monitor the blind area like patient's back position. Actually after patient alignment using laser or optical monitoring system, it was assumed that there is no error in the patient's back position (pressure profile distribution). But if an error occurs in the patient's back position, it will affect the radiation therapy accuracy. In spite of optical motion monitoring or using the immobilization tool, distributed pressure profiles of patient's back position was changed during inter and intra-fraction. For more accurate patient set-up, blind area (patient's back) monitoring was necessary. We expect that the proposed method will be very useful for make up for the weakness of optical monitoring method.

  9. Low power gas sensor array on flexible acetate substrate

    Science.gov (United States)

    Benedict, Samatha; Basu, Palash Kumar; Bhat, Navakanta

    2017-07-01

    In this paper, we present a novel approach of fabricating a low-cost and low power gas sensor array on flexible acetate sheets for sensing CO, SO2, H2 and NO2 gases. The array has four sensor elements with an integrated microheater which can be individually controlled enabling the monitoring of four gases. The thermal properties of the microheater characterized by IR imaging are presented. The microheater with an active area of 15 µm  ×  5 µm reaches a temperature of 300 °C, consuming 2 mW power, the lowest reported on flexible substrates. A sensing electrode is patterned on top of the microheater, and a nanogap (100 nm) is created by an electromigration process. This nanogap is bridged by four sensing materials doped with platinum, deposited using a solution dispensing technique. The sensing material characterization is completed using energy dispersive x-ray analysis. The sensing characteristics of ZnO for CO, V2O5 for SO2, SnO2 for H2 and WO3 for NO2 gases are studied at different microheater voltages. The sensing characteristics of ZnO at different bending angles is also studied, which shows that the microheater and the sensing material are intact without any breaking upto a bending angle of 20°. The ZnO CO sensor shows sensitivity of 146.2% at 1 ppm with good selectivity.

  10. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays

    Science.gov (United States)

    Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng

    2017-10-01

    Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.

  11. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays.

    Science.gov (United States)

    Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng

    2017-10-20

    Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.

  12. A sensor array system for monitoring moisture dynamics inunsaturated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salve, R.; Cook, P.J.

    2007-05-15

    To facilitate investigations of moisture dynamics inunsaturated soil, we have developed a technique to qualitatively monitorpatterns of saturation changes. Field results suggest that this device,the sensor array system (SAS), is suitable for determining changes inrelative wetness along vertical soil profiles. The performance of theseprobes was compared with that of the time domain reflectometry (TDR)technique under controlled and field conditions. Measurements from bothtechniques suggest that by obtaining data at high spatial and temporalresolution, the SAS technique was effective in determining patterns ofsaturation changes along a soil profile. In addition, hardware used inthe SAS technique was significantly cheaper than the TDR system, and thesensor arrays were much easier to install along a soilprofile.

  13. Antenna-coupled bolometer arrays using transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J. [Department of Physics, University of California, Berkeley, California 94720 (United States)]. E-mail: mmyers@cosmology.berkeley.edu; Ade, Peter [School of Physics and Astronomy, Cardiff University, Cardiff, Wales (United Kingdom); Arnold, Kam [Department of Physics, University of California, Berkeley, California 94720 (United States); Engargiola, Greg [Department of Astronomy, University of California, Berkeley, California 94720 (United States); Holzapfel, Bill [Department of Physics, University of California, Berkeley, California 94720 (United States); Lee, Adrian T. [Department of Physics, University of California, Berkeley, California 94720 (United States); O' Brient, Roger [Department of Physics, University of California, Berkeley, California 94720 (United States); Richards, Paul L. [Department of Physics, University of California, Berkeley, California 94720 (United States); Smith, Andy [Northrop Grumman, Redondo Beach, California 90278 (United States); Spieler, Helmuth [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tran, Huan T. [Department of Physics, University of California, Berkeley, California 94720 (United States)

    2006-04-15

    We are developing antenna-coupled Transition-Edge Sensor (TES) bolometer arrays for use in measurements of the CMB polarization. TES bolometers have many well-known advantages over conventional bolometers, such as increased speed, linearity, and the existence of readout multiplexers. Antenna-coupled bolometers use an on-chip planar antenna to couple light into the bolometer. The antenna directivity and polarization sensitivity, along with the potential for on-chip band defining filters and channelizing circuits, allow a significant increase in focal plane integration. This eliminates the bulky horns, quasioptical filters, dichroics, and polarizers which might otherwise be needed in a conventional bolometric system. This simplification will ease the construction of receivers with larger numbers of pixels. We report on the fabrication and optical testing of single antenna-coupled bolometer pixels with integrated band defining filters. We will also discuss current progress on fabrication of a bolometer array based on this design.

  14. Nanowire sensors and arrays for chemical/biomolecule detection

    Science.gov (United States)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  15. Polar exponential sensor arrays unify iconic and Hough space representation

    Science.gov (United States)

    Weiman, Carl F. R.

    1990-01-01

    The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.

  16. Broadband image sensor array based on graphene-CMOS integration

    Science.gov (United States)

    Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank

    2017-06-01

    Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.

  17. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    Energy Technology Data Exchange (ETDEWEB)

    Arrowood, Lloyd F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2018-03-15

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusion strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.

  18. An approach to fabricating chemical sensors based on ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Park, Jae Young; Song, Dong Eon; Kim, Sang Sub

    2008-01-01

    Vertically and laterally aligned ZnO nanorod arrays were synthesized on Pt-coated Si substrates by catalyst-free metal organic chemical vapor deposition. An approach to fabricating chemical sensors based on the nanorod arrays using a coating-and-etching process with a photo-resist is reported. Tests of the devices as oxygen gas sensors have been performed. Our results demonstrate that the approach holds promise for the realization of sensitive and reliable nanorod array chemical sensors

  19. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    Science.gov (United States)

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  20. SQUID readout multiplexers for transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: atl@physics.berkeley.edu

    2006-04-15

    Two classes of SQUID multiplexer are being developed for large arrays of cryogenic sensors, distinguished by their operation in either the time domain or frequency domain. Several systems optimized for use with Transition-Edge Sensors (TES) are reaching a high level of maturity, and will be deployed on funded astrophysics experiments in the next several years. A useful technical figure of merit is the product of the number of detectors multplexed multipled by the bandwidth of the detectors, which can be termed the 'total signal bandwidth' of a multiplexer system. This figure of merit is comparable within a factor of two for the mature systems. Several new concepts for increasing the total bandwidth are being developed in the broad class of frequency domain multiplexers. Another notable area of progress is in the level of integration of muliplexer and detector array. The time domain system for SCUBA-II is a sophisticated bump-bonded sandwich structure, and the Jena/MPI group is integrating detectors and a time domain multiplexer on one substrate. Finally, the Kinetic Inductance Detectors (KID)/HEMT (non-SQUID) detector/multiplexer system, will be discussed briefly.

  1. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  2. Nanoporous thermosetting polymers.

    Science.gov (United States)

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  3. Evaluation of Crack and Corrosion Detection Sensitivity Using Piezoelectric Sensor Arrays (Preprint)

    National Research Council Canada - National Science Library

    Blackshire, James L; Martin, Steve; Cooney, Adam

    2006-01-01

    .... In this research effort, a systematic evaluation of the detection sensitivity levels of surface-bonded piezoelectric sensor arrays has been undertaken using experimental studies and analytic modeling...

  4. Catchment Integration of Sensor Array Observations to Understand Hydrologic Connectivity

    Science.gov (United States)

    Redfern, S.; Livneh, B.; Molotch, N. P.; Suding, K.; Neff, J. C.; Hinckley, E. L. S.

    2017-12-01

    Hydrologic connectivity and the land surface water balance are likely to be impacted by climate change in the coming years. Although recent work has started to demonstrate that climate modulates connectivity, we still lack knowledge of how local ecology will respond to environmental and atmospheric changes and subsequently interact with connectivity. The overarching goal of this research is to address and forecast how climate change will affect hydrologic connectivity in an alpine environment, through the use of near-surface observations (temperature, humidity, soil moisture, snow depth) from a new 16-sensor array (plus 5 precipitation gauges), together with a distributed hydrologic model, over a small catchment on Colorado's Niwot Ridge (above 3000m). Model simulations will be constrained to distributed sensor measurements taken in the study area and calibrated with streamflow. Periods of wetting and dry-down will be analyzed to identify signatures of connectivity across the landscape, its seasonal signals and its sensitivity to land cover. Further work will aim to develop future hydrologic projections, compare model output with related observations, conduct multi-physics experiments, and continue to expand the existing sensor network.

  5. A NOVEL BCG SENSOR-ARRAY FOR UNOBTRUSIVE CARDIAC MONITORING

    Directory of Open Access Journals (Sweden)

    Anna Böhm

    2013-12-01

    Full Text Available Unobtrusive heart rate monitoring is a popular research topic in biomedical engineering. The reason is that convential methods, e.g. the clinical gold standard electrocardiography, require conductive contact to the human body. Other methods such as ballistocardiography try to record these vital signs without electrodes that are attached to the body. So far, these systems cannot replace routine procedures. Most systems have some drawbacks that cannot be compensated, such as aging of the sensor materials or movement artifacts. In addition, the signal form differs greatly from an ECG, which is an electrical signal. The ballistocardiogram has a mechanical source, which makes it harder to evaluate. We have developed a new sensor array made of near-IR-LEDs to record BCGs. IR-sensors do not age in relevant time scales. Analog filtering was neccesary, because the signal amplitude was very small. The digitized data was then processed by various algorithms to extract beat-to-beat or breath-to-breath intervals. The redundancy of multiple BCG channels was used to provide a robust estimation of beat-to-beat intervals and heart rate. We installed the system beneath a mattress topper of a hospital bed, but any other bed would have been sufficient. The validation of this measurement system shows that it is well suited for BCG recordings. The use of multiple channels has proven to be superior to relying on a single BCG channel.

  6. Electrochemical sensor for bisphenol A based on a nanoporous polymerized ionic liquid interface

    International Nuclear Information System (INIS)

    Ma, Ming; Tu, Xiaojing; Zhan, Guoqing; Li, Chunya; Zhang, Shenghui

    2014-01-01

    The ionic liquid 1-butyl -3-[3-(N-pyrrole)-propyl]imidazolium tetrafluoroborate was employed to fabricate a glassy carbon electrode (GCE) modified with a porous film of a polymerized ionic liquid. The resulting film electrode was treated with sodium dodecyl sulfonate solution to exchange the terafluoroborate anions by dodecyl sulfonate groups. This was confirmed by X-ray photoelectron spectroscopy. The morphology of the modified GCE was characterized by scanning electron microscopy and revealed a nanoporous surface. The electrochemical properties of this film electrode were studied by electrochemical impedance spectroscopy using the hexacyanoferrate(II/III) system as an electroactive probe. The response to bisphenol A was investigated by voltammetry. Compared to the unmodified GCE, the oxidation potential is positively shifted, and the oxidation peak current is strongly increased. Experimental conditions were optimized and resulted in an oxidation peak current that is linearly related to concentration of bisphenol A in the 10 nM to ∼ 10 μM range. The detection limit is 8.0 nM (at S/N = 3). The electrode was successfully applied to the determination of bisphenol A in leachates of plastic drinking bottles, and its accuracy was verified by independent assays via HPLC. (author)

  7. Biogeochemical sensor performance in the SOCCOM profiling float array

    Science.gov (United States)

    Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.Plain Language SummaryThe ocean science community must move toward greater use of autonomous platforms and sensors if we are to extend our knowledge of the effects of climate driven change within the ocean. Essential to this shift in observing strategies is an understanding of the performance that can be obtained from biogeochemical sensors on platforms deployed for years and the

  8. Modeling of a new 2D Acceleration Sensor Array using SystemC-AMS

    International Nuclear Information System (INIS)

    Markert, Erik; Dienel, Marco; Herrmann, Goeran; Mueller, Dietmar; Heinkel, Ulrich

    2006-01-01

    This paper presents an approach for modeling and simulation of a new 2D acceleration sensor array using SystemC-AMS. The sensor array consists of six single acceleration sensors with different detection axes. These single sensors comprise of four capacitive segments and one mass segment, aligned in a semicircle. The redundant sensor information is used for offset correction. Modeling of the single sensors is achieved using sensor structure simplification into 11 points and analytic equations for capacity changes, currents and torques. This model was expanded by a PWM feedback circuit to keep the sensor displacement in a linear region. In this paper the single sensor model is duplicated considering different positions of the seismic mass resulting in different detection axes for the single sensors. The measured accelerations of the sensors are merged with different weights depending on the orientation. This also reduces calculation effort

  9. Multichannel DC SQUID sensor array for biomagnetic applications

    International Nuclear Information System (INIS)

    Hoenig, H.E.; Daalmans, G.M.; Bar, L.; Bommel, F.; Paulus, A.; Uhl, D.; Weisse, H.J.; Schneider, S.; Seifert, H.; Reichenberger, H.; Abraham-Fuchs, K.

    1991-01-01

    This paper reports on a biomagnetic multichannel system for medical diagnosis of brain and heart KRENIKON has been developed. 37 axial 2st order gradiometers - manufactured as flexible superconducting printed circuits - are arranged in a circular flat array of 19 cm diameter. Additionally, 3 orthogonal magnetometers are provided. The DC SQUIDs are fabricated in all-Nb technology, ten on a chip. The sensor system is operated in a shielded room with two layers of soft magnetic material and one layer of Al. The every day noise level is 10 fT/Hz 1/2 at frequencies above 10 Hz. Within 2 years of operation in a normal urban surrounding, useful clinical applications have been demonstrated (e.g. for epilepsy and heart arrhythmias)

  10. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  11. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Science.gov (United States)

    2012-08-29

    ... DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice of decision... to employ up to four Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar...

  12. Hybrid CMOS-Graphene Sensor Array for Subsecond Dopamine Detection.

    Science.gov (United States)

    Nasri, Bayan; Wu, Ting; Alharbi, Abdullah; You, Kae-Dyi; Gupta, Mayank; Sebastian, Sunit P; Kiani, Roozbeh; Shahrjerdi, Davood

    2017-12-01

    We introduce a hybrid CMOS-graphene sensor array for subsecond measurement of dopamine via fast-scan cyclic voltammetry (FSCV). The prototype chip has four independent CMOS readout channels, fabricated in a 65-nm process. Using planar multilayer graphene as biologically compatible sensing material enables integration of miniaturized sensing electrodes directly above the readout channels. Taking advantage of the chemical specificity of FSCV, we introduce a region of interest technique, which subtracts a large portion of the background current using a programmable low-noise constant current at about the redox potentials. We demonstrate the utility of this feature for enhancing the sensitivity by measuring the sensor response to a known dopamine concentration in vitro at three different scan rates. This strategy further allows us to significantly reduce the dynamic range requirements of the analog-to-digital converter (ADC) without compromising the measurement accuracy. We show that an integrating dual-slope ADC is adequate for digitizing the background-subtracted current. The ADC operates at a sampling frequency of 5-10 kHz and has an effective resolution of about 60 pA, which corresponds to a theoretical dopamine detection limit of about 6 nM. Our hybrid sensing platform offers an effective solution for implementing next-generation FSCV devices that can enable precise recording of dopamine signaling in vivo on a large scale.

  13. Feature extraction using distribution representation for colorimetric sensor arrays used as explosives detectors

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Raich, Raviv; Kostesha, Natalie

    2012-01-01

    is required. We present a new approach of extracting features from a colorimetric sensor array based on a color distribution representation. For each sensor in the array, we construct a K-nearest neighbor classifier based on the Hellinger distances between color distribution of a test compound and the color......We present a colorimetric sensor array which is able to detect explosives such as DNT, TNT, HMX, RDX and TATP and identifying volatile organic compounds in the presence of water vapor in air. To analyze colorimetric sensors with statistical methods, a suitable representation of sensory readings...

  14. Transition-edge sensor imaging arrays for astrophysics applications

    Science.gov (United States)

    Burney, Jennifer Anne

    Many interesting objects in our universe currently elude observation in the optical band: they are too faint or they vary rapidly and thus any structure in their radiation is lost over the period of an exposure. Conventional photon detectors cannot simultaneously provide energy resolution and time-stamping of individual photons at fast rates. Superconducting detectors have recently made the possibility of simultaneous photon counting, imaging, and energy resolution a reality. Our research group has pioneered the use of one such detector, the Transition-Edge Sensor (TES). TES physics is simple and elegant. A thin superconducting film, biased at its critical temperature, can act as a particle detector: an incident particle deposits energy and drives the film into its superconducting-normal transition. By inductively coupling the detector to a SQUID amplifier circuit, this resistance change can be read out as a current pulse, and its energy deduced by integrating over the pulse. TESs can be used to accurately time-stamp (to 0.1 [mu]s) and energy-resolve (0.15 eV at 1.6 eV) near-IR/visible/near-UV photons at rates of 30~kHz. The first astronomical observations using fiber-coupled detectors were made at the Stanford Student Observatory 0.6~m telescope in 1999. Further observations of the Crab Pulsar from the 107" telescope at the University of Texas McDonald Observatory showed rapid phase variations over the near-IR/visible/near-UV band. These preliminary observations provided a glimpse into a new realm of observations of pulsars, binary systems, and accreting black holes promised by TES arrays. This thesis describes the development, characterization, and preliminary use of the first camera system based on Transition-Edge Sensors. While single-device operation is relatively well-understood, the operation of a full imaging array poses significant challenges. This thesis addresses all aspects related to the creation and characterization of this cryogenic imaging

  15. Chemical Vapor Identification by Plasma Treated Thick Film Tin Oxide Gas Sensor Array and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2011-02-01

    Full Text Available Present study deals the class recognition potential of a four element plasma treated thick film tin oxide gas sensor array exposed with volatile organic compounds (VOCs. Methanol, Ethanol and Acetone are selected as target VOCs and exposed on sensor array at different concentration in range from 100-1000 ppm. Sensor array consist of four tin oxide sensors doped with 1-4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for 5-10 minute durations. Sensor signal is analyzed by principal component analysis (PCA for visual classification of VOCs. Further output of PCA is used as input for classification of VOCs by four pattern classification techniques as: linear discriminant analysis (LDA, k-nearest neighbor (KNN, back propagation neural network (BPNN and support vector machine (SVM. All the four classifier results 100 % correct classification rate of VOCs by response analysis of sensor array treated with plasma for 5 minute.

  16. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    Science.gov (United States)

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  17. Development of a Tonometric Sensor with a Decoupled Circular Array for Precisely Measuring Radial Artery Pulse

    OpenAIRE

    Jun, Min-Ho; Kim, Young-Min; Bae, Jang-Han; Jung, Chang Jin; Cho, Jung-Hee; Jeon, Young Ju

    2016-01-01

    The radial artery pulse is one of the major diagnostic indices used clinically in both Eastern and Western medicine. One of the prominent methods for measuring the radial artery pulse is the piezoresistive sensor array. Independence among channels and an appropriate sensor arrangement are important for effectively assessing the spatial-temporal information of the pulse. This study developed a circular-type seven-channel piezoresistive sensor array using face-down bonding (FDB) as one of the s...

  18. Design of a Large-scale Three-dimensional Flexible Arrayed Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Junxiang Ding

    2011-01-01

    Full Text Available This paper proposes a new type of large-scale three-dimensional flexible arrayed tactile sensor based on conductive rubber. It can be used to detect three-dimensional force information on the continuous surface of the sensor, which realizes a true skin type tactile sensor. The widely used method of liquid rubber injection molding (LIMS method is used for "the overall injection molding" sample preparation. The structure details of staggered nodes and a new decoupling algorithm of force analysis are given. Simulation results show that the sensor based on this structure can achieve flexible measurement of large-scale 3-D tactile sensor arrays.

  19. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  20. Active pixel sensor array as a detector for electron microscopy.

    Science.gov (United States)

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  1. Sensitivity and Resolution Improvement in RGBW Color Filter Array Sensor

    Directory of Open Access Journals (Sweden)

    Seunghoon Jee

    2018-05-01

    Full Text Available Recently, several red-green-blue-white (RGBW color filter arrays (CFAs, which include highly sensitive W pixels, have been proposed. However, RGBW CFA patterns suffer from spatial resolution degradation owing to the sensor composition having more color components than the Bayer CFA pattern. RGBW CFA demosaicing methods reconstruct resolution using the correlation between white (W pixels and pixels of other colors, which does not improve the red-green-blue (RGB channel sensitivity to the W channel level. In this paper, we thus propose a demosaiced image post-processing method to improve the RGBW CFA sensitivity and resolution. The proposed method decomposes texture components containing image noise and resolution information. The RGB channel sensitivity and resolution are improved through updating the W channel texture component with those of RGB channels. For this process, a cross multilateral filter (CMF is proposed. It decomposes the smoothness component from the texture component using color difference information and distinguishes color components through that information. Moreover, it decomposes texture components, luminance noise, color noise, and color aliasing artifacts from the demosaiced images. Finally, by updating the texture of the RGB channels with the W channel texture components, the proposed algorithm improves the sensitivity and resolution. Results show that the proposed method is effective, while maintaining W pixel resolution characteristics and improving sensitivity from the signal-to-noise ratio value by approximately 4.5 dB.

  2. Exploiting Cross-sensitivity by Bayesian Decoding of Mixed Potential Sensor Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kreller, Cortney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-02

    LANL mixed-potential electrochemical sensor (MPES) device arrays were coupled with advanced Bayesian inference treatment of the physical model of relevant sensor-analyte interactions. We demonstrated that our approach could be used to uniquely discriminate the composition of ternary gas sensors with three discreet MPES sensors with an average error of less than 2%. We also observed that the MPES exhibited excellent stability over a year of operation at elevated temperatures in the presence of test gases.

  3. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    Science.gov (United States)

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  4. Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays

    Science.gov (United States)

    Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.

    2018-04-01

    Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.

  5. Planar location of the simulative acoustic source based on fiber optic sensor array

    Science.gov (United States)

    Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin

    2010-06-01

    A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.

  6. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  7. Probabilistic Neural Networks for Chemical Sensor Array Pattern Recognition: Comparison Studies, Improvements and Automated Outlier Rejection

    National Research Council Canada - National Science Library

    Shaffer, Ronald E

    1998-01-01

    For application to chemical sensor arrays, the ideal pattern recognition is accurate, fast, simple to train, robust to outliers, has low memory requirements, and has the ability to produce a measure...

  8. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    Directory of Open Access Journals (Sweden)

    Panida Lorwongtragool

    2014-10-01

    Full Text Available A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities.

  9. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  10. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  11. Innovative Self-Powered and Self-Contained Sensor Array for Separation Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a self-contained, self-powered, robust flight test sensor array for the determination of separation. The proposed system uses off the...

  12. Robust, Self-Contained and Bio-Inspired Shear Sensor Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a robust, bio-inspired, and self-contained sensor array for the measurement of shear stress. The proposed system uses commercially...

  13. Development of a Tonometric Sensor with a Decoupled Circular Array for Precisely Measuring Radial Artery Pulse

    Directory of Open Access Journals (Sweden)

    Min-Ho Jun

    2016-05-01

    Full Text Available The radial artery pulse is one of the major diagnostic indices used clinically in both Eastern and Western medicine. One of the prominent methods for measuring the radial artery pulse is the piezoresistive sensor array. Independence among channels and an appropriate sensor arrangement are important for effectively assessing the spatial-temporal information of the pulse. This study developed a circular-type seven-channel piezoresistive sensor array using face-down bonding (FDB as one of the sensor combination methods. The three-layered housing structure that included independent pressure sensor units using the FDB method not only enabled elimination of the crosstalk among channels, but also allowed various array patterns to be created for effective pulse measurement. The sensors were arranged in a circular-type arrangement such that they could estimate the direction of the radial artery and precisely measure the pulse wave. The performance of the fabricated sensor array was validated by evaluating the sensor sensitivity per channel, and the possibility of estimating the blood vessel direction was demonstrated through a radial artery pulse simulator. We expect the proposed sensor to allow accurate extraction of the pulse indices for pulse diagnosis.

  14. Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin.

    Science.gov (United States)

    Hong, Soo Yeong; Lee, Yong Hui; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Yun, Junyeong; You, Ilhwan; Zi, Goangseup; Ha, Jeong Sook

    2016-02-03

    A stretchable polyaniline nanofiber temperature sensor array with an active matrix consisting of single-walled carbon nanotube thin-film transistors is demonstrated. The integrated temperature sensor array gives mechanical stability under biaxial stretching of 30%, and the resultant spatial temperature mapping does not show any mechanical or electrical degradation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. MEMS Sensor Arrays for Cryogenic Propellant Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — KWJ offers this proposal for a low-power, practical and versatile MEMS sensor platform for NASA applications. The proposed nano-sensor platform is ultra-low power...

  16. Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Jung, Ae Ryang; Kim, Richard Y; Kim, Hyung Woo; Shrestha, Kshitiz Raj; Jeon, Seung Hwan; Cha, Kyoung Je; Park, Yong Hyun; Kim, Dong Sung; Lee, Ji Youl

    2015-07-01

    Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.

  17. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    Vacher, F.

    2007-06-01

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  18. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    Science.gov (United States)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  19. The Use of Calixarene Thin Films in the Sensor Array for VOCs Detection and Olfactory Navigation

    Directory of Open Access Journals (Sweden)

    Alan F. Holloway

    2010-02-01

    Full Text Available This work is dedicated to the development of a sensor array for detection of volatile organic chemicals (VOCs in pre-explosive concentrations as well as for olfactory robotic navigation in the frame of two EU projects. A QCM (quartz crystal microbalance sensor array was built utilising quartz crystals spun-coated with thin films of different amphiphilic calixarene molecules to provide a base for pattern recognition of different volatile organic chemicals (VOCs. Commercial Metal-oxide semiconductor (MOS sensors were also used in the same array for the benefit of comparison. The sensor array was tested with a range of organic vapours, such as hydrocarbons, alcohols, ketones, aromatics, etc, in concentrations below LEL and up to UEL (standing for lower and upper explosion limit, respectively; the sensor array proved to be capable of identification and concentration evaluation of a range of VOCs. Comparison of QCM and MOS sensors responses to VOCs in the LEL-UEL range showed the advantage of the former. In addition, the sensor array was tested on the vapours of camphor from cinnamon oil in order to prove the concept of using the "scent marks" for robotic navigation. The results showed that the response signature of QCM coated with calixarenes to camphor is very much different from those of any other VOCs used. Adsorption and de-sorption rates of camphor are also much slower comparing to VOCs due to a high viscosity of the compound. Our experiments demonstrated the suitability of calixarene sensor array for the task and justified the use of camphor as a "scent mark" for olfactory navigation.

  20. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  1. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    Science.gov (United States)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  2. Localizing on-scalp MEG sensors using an array of magnetic dipole coils.

    Science.gov (United States)

    Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert

    2018-01-01

    Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.

  3. Optical sensor array platform based on polymer electronic devices

    NARCIS (Netherlands)

    Koetse, M.M.; Rensing, P.A.; Sharpe, R.B.A.; Heck, G.T. van; Allard, B.A.M.; Meulendijks, N.N.M.M.; Kruijt, P.G.M.; Tijdink, M.W.W.J.; Zwart, R.M. de; Houben, R.J.; Enting, E.; Veen, S.J.J.F. van; Schoo, H.F.M.

    2007-01-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be

  4. High performance flexible pH sensor based on polyaniline nanopillar array electrode.

    Science.gov (United States)

    Yoon, Jo Hee; Hong, Seok Bok; Yun, Seok-Oh; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill

    2017-03-15

    Flexible pH sensor technologies have attracted a great deal of attention in many applications, such as, wearable health care devices and monitors for chemical and biological processes. Here, we fabricated flexible and thin pH sensors using a two electrode configuration comprised of a polyaniline nanopillar (PAN) array working electrode and an Ag/AgCl reference electrode. In order to provide nanostructure, soft lithography using a polymeric blend was employed to create a flexible nanopillar backbone film. Polyaniline-sensing materials were deposited on a patterned-nanopillar array by electrochemical deposition. The pH sensors produced exhibited a near-Nernstian response (∼60.3mV/pH), which was maintained in a bent state. In addition, pH sensors showed other excellent sensor performances in terms of response time, reversibility, repeatability, selectivity, and stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    Science.gov (United States)

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  6. Spherical porphyrin sensor array based on encoded colloidal crystal beads for VOC vapor detection.

    Science.gov (United States)

    Xu, Hua; Cao, Kai-Di; Ding, Hai-Bo; Zhong, Qi-Feng; Gu, Hong-Cheng; Xie, Zhuo-Ying; Zhao, Yuan-Jin; Gu, Zhong-Ze

    2012-12-01

    A spherical porphyrin sensor array using colloidal crystal beads (CCBs) as the encoding microcarriers has been developed for VOC vapor detection. Six different porphyrins were coated onto the CCBs with distinctive encoded reflection peaks via physical adsorption and the sensor array was fabricated by placing the prepared porphyrin-modified CCBs together. The change in fluorescence color of the porphyrin-modified CCBs array serves as the detection signal for discriminating between different VOC vapors and the reflection peak of the CCBs serves as the encoding signal to distinguish between different sensors. It was demonstrated that the VOC vapors detection using the prepared sensor array showed excellent discrimination: not only could the compounds from the different chemical classes be easily differentiated (e.g., alcohol vs acids vs ketones) but similar compounds from the same chemical family (e.g., methanol vs ethanol) and the same compound with different concentration ((e.g., Sat. ethanol vs 60 ppm ethanol vs 10 ppm ethanol) could also be distinguished. The detection reproducibility and the humidity effect were also investigated. The present spherical sensor array, with its simple preparation, rapid response, high sensitivity, reproducibility, and humidity insensitivity, and especially with stable and high-throughput encoding, is promising for real applications in artificial olfactory systems.

  7. A modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array

    International Nuclear Information System (INIS)

    Liang, Guanhao; Wang, Yancheng; Mei, Deqing; Xi, Kailun; Chen, Zichen

    2015-01-01

    This paper presents a modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array, which utilizes solid polydimethylsiloxane (PDMS) film as the dielectric layer. To predict the deformation of the sensing unit and capacitance changes, each sensing unit is simplified into a three-layer plate structure and divided into central, edge and corner regions. The plate structure and the three regions are studied by the general and modified models, respectively. For experimental validation, the capacitive tactile sensor array with 8  ×  8 (= 64) sensing units is fabricated. Experiments are conducted by measuring the capacitance changes versus applied external forces and compared with the general and modified models’ predictions. For the developed tactile sensor array, the sensitivity predicted by the modified analytical model is 1.25%/N, only 0.8% discrepancy from the experimental measurement. Results demonstrate that the modified analytical model can accurately predict the sensing performance of the sensor array and could be utilized for model-based optimal capacitive tactile sensor array design. (paper)

  8. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    Science.gov (United States)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  9. Effect of boron-doping on the luminescent and electrical properties of a CdS/Si heterostructure based on Si nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Xiao Bo [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000 (China); Cai, Xiao Jun [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Li, Xin Jian, E-mail: lixj@zzu.edu.cn [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2015-05-25

    Highlights: • B-doped CdS/Si-NPA heterostructure was prepared by a CBD method. • B-doping does not affect the crystal structure and surface morphology of CdS/Si-NPA. • The optical/electrical properties of CdS/Si-NPA could be tuned by changing [B]/[Cd] ratio. • CdS/Si-NPA with optimal physical properties could be prepared with [B]/[Cd] = 0.01. • The method may find applications in preparing CdS/Si-NPA devices with high device performances. - Abstract: Using silicon nanoporous pillar array (Si-NPA) as substrates and boric acid as dopant source, a series of CdS/Si nanoheterostructures were prepared by growing B-doped CdS thin films on Si-NPA via a chemical bath deposition (CBD) method. The structural, optical and electrical properties of CdS/Si-NPA were studied as a function of the [B]/[Cd] ratio of the initial CBD solutions. Our results disclosed that B concentration could be tuned effectively through changing the ratio of [B]/[Cd], which would bring large variation on the optical and electrical properties of CdS/Si-NPA without affecting its crystal structure and surface morphology. The samples with optimal optical and electrical properties were prepared with [B]/[Cd] = 0.01, in which the physical properties of relatively strong light absorption, small electrical resistivity, low turn-on voltage, small leakage current density and high breakdown voltage could be obtained. These results indicated that B-doping might be an effective path for promoting the performance of the optoelectronic devices based on CdS/Si-NPA.

  10. Highly Sensitive Multi-Channel IDC Sensor Array for Low Concentration Taste Detection

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2015-06-01

    Full Text Available In this study, we designed and developed an interdigitated capacitor (IDC-based taste sensor array to detect different taste substances. The designed taste sensing array has four IDC sensing elements. The four IDC taste sensing elements of the array are fabricated by incorporating four different types of lipids into the polymer, dioctyl phenylphosphonate (DOPP and tetrahydrofuran (THF to make the respective dielectric materials that are individually placed onto an interdigitated electrode (IDE via spin coating. When the dielectric material of an IDC sensing element comes into contact with a taste substance, its dielectric properties change with the capacitance of the IDC sensing element; this, in turn, changes the voltage across the IDC, as well as the output voltage of each channel of the system. In order to assess the effectiveness of the sensing system, four taste substances, namely sourness (HCl, saltiness (NaCl, sweetness (glucose and bitterness (quinine-HCl, were tested. The IDC taste sensor array had rapid response and recovery times of about 12.9 s and 13.39 s, respectively, with highly stable response properties. The response property of the proposed IDC taste sensor array was linear, and its correlation coefficient R2 was about 0.9958 over the dynamic range of the taste sensor array as the taste substance concentration was varied from 1 μM to 1 M. The proposed IDC taste sensor array has several other advantages, such as real-time monitoring capabilities, high sensitivity 45.78 mV/decade, good reproducibility with a standard deviation of about 0.029 and compactness, and the circuitry is based on readily available and inexpensive electronic components. The proposed IDC taste sensor array was compared with the potentiometric taste sensor with respect to sensitivity, dynamic range width, linearity and response time. We found that the proposed IDC sensor array has better performance. Finally, principal component analysis (PCA was applied

  11. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection

    Science.gov (United States)

    Hao, Jianzhong; Dong, Bo; Varghese, Paulose; Phua, Jiliang; Foo, Siang Fook

    2012-01-01

    In this paper, an armored-cable-based optical fiber Bragg grating (FBG) sensor array, for perimeter fence intrusion detection, is demonstrated and some of the field trial results are reported. The field trial was conducted at a critical local installation in Singapore in December 2010. The sensor array was put through a series of both simulated and live intrusion scenarios to test the stability and suitability of operation in the local environmental conditions and to determine its capabilities in detecting and reporting these intrusions accurately to the control station. Such a sensor array can provide perimeter intrusion detection with fine granularity and preset pin-pointing accuracy. The various types of intrusions included aided or unaided climbs, tampering and cutting of the fence, etc. The unique sensor packaging structure provides high sensitivity, crush resistance and protection against rodents. It is also capable of resolving nuisance events such as rain, birds sitting on the fence or seismic vibrations. These sensors are extremely sensitive with a response time of a few seconds. They can be customized for a desired spatial resolution and pre-determined sensitivity. Furthermore, it is easy to cascade a series of such sensors to monitor and detect intrusion events over a long stretch of fence line. Such sensors can be applied to real-time intrusion detection for perimeter security, pipeline security and communications link security.

  12. Massive Sensor Array Fault Tolerance: Tolerance Mechanism and Fault Injection for Validation

    Directory of Open Access Journals (Sweden)

    Dugan Um

    2010-01-01

    Full Text Available As today's machines become increasingly complex in order to handle intricate tasks, the number of sensors must increase for intelligent operations. Given the large number of sensors, detecting, isolating, and then tolerating faulty sensors is especially important. In this paper, we propose fault tolerance architecture suitable for a massive sensor array often found in highly advanced systems such as autonomous robots. One example is the sensitive skin, a type of massive sensor array. The objective of the sensitive skin is autonomous guidance of machines in unknown environments, requiring elongated operations in a remote site. The entirety of such a system needs to be able to work remotely without human attendance for an extended period of time. To that end, we propose a fault-tolerant architecture whereby component and analytical redundancies are integrated cohesively for effective failure tolerance of a massive array type sensor or sensor system. In addition, we discuss the evaluation results of the proposed tolerance scheme by means of fault injection and validation analysis as a measure of system reliability and performance.

  13. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)

    Science.gov (United States)

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-04-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.

  14. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Marcello Mascini

    2018-04-01

    Full Text Available In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.

  15. Multi-colorimetric sensor array for detection of explosives in gas and liquid phase

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C.

    2011-01-01

    In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives. The tec......In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives...... to the analytes creates a color difference map which gives a unique fingerprint for each explosive and VOCs. Such sensing technology can be used for screening relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas and liquid phases....... This sensor array is inexpensive, and can potentially be produced as single use disposable....

  16. Passive Detection of Narrowband Sources Using a Sensor Array

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H; Candy, J V; Guidry, B L

    2007-10-24

    In this report we derive a model for a highly scattering medium, implemented as a set of MATLAB functions. This model is used to analyze an approach for using time-reversal to enhance the detection of a single frequency source in a highly scattering medium. The basic approach is to apply the singular value decomposition to the multistatic response matrix for a time-reversal array system. We then use the array in a purely passive mode, measuring the response to the presence of a source. The measured response is projected onto the singular vectors, creating a time-reversal pseudo-spectrum. We can then apply standard detection techniques to the pseudo-spectrum to determine the presence of a source. If the source is close to a particular scatterer in the medium, then we would expect an enhancement of the inner product between the array response to the source with the singular vector associated with that scatterer. In this note we begin by deriving the Foldy-Lax model of a highly scattering medium, calculate both the field emitted by the source and the multistatic response matrix of a time-reversal array system in the medium, then describe the initial analysis approach.

  17. Development and validation of a colorimetric sensor array for fish spoilage monitoring

    DEFF Research Database (Denmark)

    Morsy, Mohamed K.; Zor, Kinga; Kostesha, Natalie

    2016-01-01

    their color changes in response to compounds present in fresh products (hexanal, 1-octane-3-ol) used as negative controls. The colorimetric sensor array was used to follow fish spoilage over time at room temperature for up to 24 h as well as at 4 °C for 9 days. Additionally, fish decay was monitored using......Given the need for non-destructive methods and sensors for food spoilage monitoring, we have evaluated sixteen chemo-sensitive compounds incorporated in an array for colorimetric detection of typical spoilage compounds (trimethylamine, dimethylamine, cadaverine, putrescine) and characterized...

  18. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    Science.gov (United States)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  19. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    International Nuclear Information System (INIS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-01-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces. (paper)

  20. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  1. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Asadnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M S

    2012-01-01

    In order to perform underwater surveillance, autonomous underwater vehicles (AUVs) require flexible, light-weight, reliable and robust sensing systems that are capable of flow sensing and detecting underwater objects. Underwater animals like fish perform a similar task using an efficient and ubiquitous sensory system called a lateral-line constituting of an array of pressure-gradient sensors. We demonstrate here the development of arrays of polymer microelectromechanical systems (MEMS) pressure sensors which are flexible and can be readily mounted on curved surfaces of AUV bodies. An array of ten sensors with a footprint of 60 (L) mm × 25 (W) mm × 0.4 (H) mm is fabricated using liquid crystal polymer (LCP) as the sensing membrane material. The flow sensing and object detection capabilities of the array are illustrated with proof-of-concept experiments conducted in a water tunnel. The sensors demonstrate a pressure sensitivity of 14.3 μV Pa −1 . A high resolution of 25 mm s −1 is achieved in water flow sensing. The sensors can passively sense underwater objects by transducing the pressure variations generated underwater by the movement of objects. The experimental results demonstrate the array’s ability to detect the velocity of underwater objects towed past by with high accuracy, and an average error of only 2.5%. (paper)

  2. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    Directory of Open Access Journals (Sweden)

    Ruifang Xie

    2015-12-01

    Full Text Available The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM, the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  3. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  4. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  5. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  6. A Statistical Model and Computer program for Preliminary Calculations Related to the Scaling of Sensor Arrays; TOPICAL

    International Nuclear Information System (INIS)

    Max Morris

    2001-01-01

    Recent advances in sensor technology and engineering have made it possible to assemble many related sensors in a common array, often of small physical size. Sensor arrays may report an entire vector of measured values in each data collection cycle, typically one value per sensor per sampling time. The larger quantities of data provided by larger arrays certainly contain more information, however in some cases experience suggests that dramatic increases in array size do not always lead to corresponding improvements in the practical value of the data. The work leading to this report was motivated by the need to develop computational planning tools to approximate the relative effectiveness of arrays of different size (or scale) in a wide variety of contexts. The basis of the work is a statistical model of a generic sensor array. It includes features representing measurement error, both common to all sensors and independent from sensor to sensor, and the stochastic relationships between the quantities to be measured by the sensors. The model can be used to assess the effectiveness of hypothetical arrays in classifying objects or events from two classes. A computer program is presented for evaluating the misclassification rates which can be expected when arrays are calibrated using a given number of training samples, or the number of training samples required to attain a given level of classification accuracy. The program is also available via email from the first author for a limited time

  7. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    International Nuclear Information System (INIS)

    Dusek, J; Triantafyllou, M S; Kottapalli, A G P; Asadnia, M; Miao, J; Woo, M E; Lang, J H

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics. (paper)

  8. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    Science.gov (United States)

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  9. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array

    International Nuclear Information System (INIS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Hammond, Mark H.; Tillett, Duane; Streckert, Holger H.

    2007-01-01

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO 2 , H 2 S, and CS 2 in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO 2 , H 2 S, and CS 2 , respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO 2 , H 2 S, and CS 2 , respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  10. Development of multianalyte sensor arrays for continuous monitoring of pollutants

    International Nuclear Information System (INIS)

    Healey, B.G.; Chadha, S.; Walt, D.R.

    1995-01-01

    Industrial development has led to the release of numerous hazardous materials into the environment, posing a potential threat to surrounding waters. Environmental analysis of sites contaminated by several chemicals calls for continuous monitoring of multiple analytes. Monitoring can be achieved by using imaging bundles (300--400microm in diameter), containing several thousand individual optical fibers for the fabrication of sensors. Multiple sensor sites are created at the distal end of the fiber by immobilizing different analyte specific fluorescent dyes. By coupling these imaging fibers to a charge coupled device (CCD), one has the ability to spatially and spectrally discriminate the multiple sensing sites simultaneously and hence monitor analyte concentrations. Prior to immobilization of the dye the distal end of the fiber is functionalized to permit covalent attachment of the polymer matrix. Discrete regions of the fiber bundle are successively illuminated through the proximal end so as to photo-polymerize the polymer matrix containing the fluorescent dyes. Current studies focus on the development of a multi-analyte sensor for monitoring Al +3 , pH, hydrocarbons and uranyl ion. For the monitoring of Al +3 , a variety of indicators are being evaluated for their applicability to sensor design. Lumogallion immobilized in poly HEMA shows considerable sensitivity and dynamic range. The fluorescent indicator eosin has been identified as the indicator for monitoring pH in the range 2.0--4.5. The indicator can be immobilized in an analogous fashion to fluoresce in 3 (pH 4.5--8.0). Hydrocarbon sensors have been fabricated from different photo-polymers that show response to several hydrocarbons using Nile Red as the indicator

  11. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    Science.gov (United States)

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  12. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    Science.gov (United States)

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  13. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    Science.gov (United States)

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  14. Mountainous Ecosystem Sensor Array (MESA): a mesh sensor network for climate change research in remote mountainous environments

    Science.gov (United States)

    Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.

    2013-12-01

    Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.

  15. Piezoresistive silicon thin film sensor array for biomedical applications

    International Nuclear Information System (INIS)

    Alpuim, P.; Correia, V.; Marins, E.S.; Rocha, J.G.; Trindade, I.G.; Lanceros-Mendez, S.

    2011-01-01

    N-type hydrogenated nanocrystalline silicon thin film piezoresistors, with gauge factor - 28, were deposited on rugged and flexible polyimide foils by Hot-wire chemical vapor deposition using a tantalum filament heated to 1750 o C. The piezoresistive response under cyclic quasi-static and dynamical (up to 100 Hz) load conditions is reported. Test structures, consisting of microresistors having lateral dimensions in the range from 50 to 100 μm and thickness of 120 nm were defined in an array by reactive ion etching. Metallic pads, forming ohmic contacts to the sensing elements, were defined by a lift-off process. A readout circuit for the array consisting in a mutiplexer on each row and column of the matrix is proposed. The digital data will be processed, interpreted and stored internally by an ultra low-power micro controller, also responsible for the communication of two-way wireless data, e.g. from inside to outside the human body.

  16. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening.

    Science.gov (United States)

    Zhong, Xianhua; Li, Dan; Du, Wei; Yan, Mengqiu; Wang, You; Huo, Danqun; Hou, Changjun

    2018-06-01

    Volatile organic compounds (VOCs) in breath can be used as biomarkers to identify early stages of lung cancer. Herein, we report a disposable colorimetric array that has been constructed from diverse chemo-responsive colorants. Distinguishable difference maps were plotted within 4 min for specifically targeted VOCs. Through the consideration of various chemical interactions with VOCs, the arrays successfully discriminate between 20 different volatile organic compounds in breath that are related to lung cancer. VOCs were identified either with the visualized difference maps or through pattern recognition with an accuracy of at least 90%. No uncertainties or errors were observed in the hierarchical cluster analysis (HCA). Finally, good reproducibility and stability of the array was achieved against changes in humidity. Generally, this work provides fundamental support for construction of simple and rapid VOC sensors. More importantly, this approach provides a hypothesis-free array method for breath testing via VOC profiling. Therefore, this small, rapid, non-invasive, inexpensive, and visualized sensor array is a powerful and promising tool for early screening of lung cancer. Graphical abstract A disposable colorimetric array has been developed with broadly chemo-responsive dyes to incorporate various chemical interactions, through which the arrays successfully discriminate 20 VOCs that are related to lung cancer via difference maps alone or chemometrics within 4 min. The hydrophobic porous matrix provides good stability against changes in humidity.

  17. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei; Dong, Xiao [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); He, Xuan; Liu, Xueyong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China)

    2017-03-15

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  18. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    International Nuclear Information System (INIS)

    Lu, Wei; Dong, Xiao; Qiu, Lili; Yan, Zequn; Meng, Zihui; Xue, Min; He, Xuan; Liu, Xueyong

    2017-01-01

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  19. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    Science.gov (United States)

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  20. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2018-02-01

    Full Text Available To meet the radiosonde requirement of high sensitivity and linearity, this study designs and implements a monolithically integrated array-type piezoresistive intelligent pressure sensor system which is made up of two groups of four pressure sensors with the pressure range of 0–50 kPa and 0–100 kPa respectively. First, theoretical models and ANSYS (version 14.5, Canonsburg, PA, USA finite element method (FEM are adopted to optimize the parameters of array sensor structure. Combing with FEM stress distribution results, the size and material characteristics of the array-type sensor are determined according to the analysis of the sensitivity and the ratio of signal to noise (SNR. Based on the optimized parameters, the manufacture and packaging of array-type sensor chips are then realized by using the standard complementary metal-oxide-semiconductor (CMOS and microelectromechanical system (MEMS process. Furthermore, an intelligent acquisition and processing system for pressure and temperature signals is achieved. The S3C2440A microprocessor (Samsung, Seoul, Korea is regarded as the core part which can be applied to collect and process data. In particular, digital signal storage, display and transmission are realized by the application of a graphical user interface (GUI written in QT/E. Besides, for the sake of compensating the temperature drift and nonlinear error, the data fusion technique is proposed based on a wavelet neural network improved by genetic algorithm (GA-WNN for average measuring signal. The GA-WNN model is implemented in hardware by using a S3C2440A microprocessor. Finally, the results of calibration and test experiments achieved with the temperature ranges from −20 to 20 °C show that: (1 the nonlinear error and the sensitivity of the array-type pressure sensor are 8330 × 10−4 and 0.052 mV/V/kPa in the range of 0–50 kPa, respectively; (2 the nonlinear error and the sensitivity are 8129 × 10−4 and 0.020 mV/V/kPa in the

  1. Equivalent thermal history reconstruction from a partially crystallized glass-ceramic sensor array

    Science.gov (United States)

    Heeg, Bauke

    2015-11-01

    The basic concept of a thermal history sensor is that it records the accumulated exposure to some unknown, typically varying temperature profile for a certain amount of time. Such a sensor is considered to be capable of measuring the duration of several (N) temperature intervals. For this purpose, the sensor deploys multiple (M) sensing elements, each with different temperature sensitivity. At the end of some thermal exposure for a known period of time, the sensor array is read-out and an estimate is made of the set of N durations of the different temperature ranges. A potential implementation of such a sensor was pioneered by Fair et al. [Sens. Actuators, A 141, 245 (2008)], based on glass-ceramic materials with different temperature-dependent crystallization dynamics. In their work, it was demonstrated that an array of sensor elements can be made sensitive to slight differences in temperature history. Further, a forward crystallization model was used to simulate the variations in sensor array response to differences in the temperature history. The current paper focusses on the inverse aspect of temperature history reconstruction from a hypothetical sensor array output. The goal of such a reconstruction is to find an equivalent thermal history that is the closest representation of the true thermal history, i.e., the durations of a set of temperature intervals that result in a set of fractional crystallization values which is closest to the one resulting from the true thermal history. One particular useful simplification in both the sensor model as well as in its practical implementation is the omission of nucleation effects. In that case, least squares models can be used to approximate the sensor response and make reconstruction estimates. Even with this simplification, sensor noise can have a destabilizing effect on possible reconstruction solutions, which is evaluated using simulations. Both regularization and non-negativity constrained least squares

  2. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    Science.gov (United States)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  3. Synthesis and characterization of ruthenium-decorated nanoporous platinum materials

    International Nuclear Information System (INIS)

    Peng Xinsheng; Koczkur, Kallum; Chen, Aicheng

    2007-01-01

    We report on the synthesis of novel three-dimensional nanoporous Pt-Ru bimetallic networks by decorating nanoporous Pt networks with Ru using a hydrothermally assisted precipitating process. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) were used to characterize the morphology and the composition of the nanoporous Pt-Ru networks formed. X-ray diffraction analysis confirmed that, after protected annealing treatment, Pt-Ru bimetallic material was formed. The electrocatalytic activity of the synthesized nanoporous Pt-Ru networks was characterized using electrochemical oxidation of methanol as a probe. The electrocatalytic activity of the nanoporous Pt networks significantly increases with the increments of decorated Ru and reaches the highest value with 41% of Ru. The peak current of methanol oxidation on the nanoporous Pt-Ru(41%) bimetallic networks is over 180% higher than that on the nanoporous Pt networks without Ru decoration. This is very desirable for fuel cell development and electrochemical sensor design

  4. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

    Science.gov (United States)

    Penza, M; Rossi, R; Alvisi, M; Serra, E

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array

  5. Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking

    Directory of Open Access Journals (Sweden)

    Constantine G. Kakoyiannis

    2010-01-01

    Full Text Available Wireless sensors emerged as narrowband, resource-constrained devices to provide monitoring services over a wide life span. Future applications of sensor networks are multimedia-driven and include sensor mobility. Thus, sensors must combine small size, large bandwidth, and diversity capabilities. Compact arrays, offering transmit/receive diversity, suffer from strong mutual coupling (MC, which causes lower antenna efficiency, loss of bandwidth, and signal correlation. An efficient technique to reduce coupling in compact arrays is described herein: a defect was inserted in the ground plane (GNDP area between each pair of elements. The defect disturbed the GNDP currents and offered multidecibel coupling suppression, bandwidth recovery, and reduction of in-band correlation. Minimal pattern distortion was estimated. Computational results were supported by measurements. The bandwidth of unloaded arrays degraded gracefully from 38% to 28% with decreasing interelement distance (0.25 to 0.10. Defect-loaded arrays exhibited active impedance bandwidths 37–45%, respectively. Measured coupling was reduced by 15–20 dB.

  6. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Directory of Open Access Journals (Sweden)

    Hsien-Chin Wei

    2017-02-01

    Full Text Available Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA platform. An adjustable microampere constant-current (AMCC source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  7. Sensor and method for measuring the areal density of magnetic nanoparticles on a micro-array

    NARCIS (Netherlands)

    2003-01-01

    The present invention relates to a method and a device for magnetic detection of binding of biological molecules on a biochip. A magnetoresistive sensor device for measuring an areal density of magnetic nanoparticles on a micro-array, the magnetic nanoparticles (15) being directly or indirectly

  8. Active Sensor for Microwave Tissue Imaging with Bias-Switched Arrays.

    Science.gov (United States)

    Foroutan, Farzad; Nikolova, Natalia K

    2018-05-06

    A prototype of a bias-switched active sensor was developed and measured to establish the achievable dynamic range in a new generation of active arrays for microwave tissue imaging. The sensor integrates a printed slot antenna, a low-noise amplifier (LNA) and an active mixer in a single unit, which is sufficiently small to enable inter-sensor separation distance as small as 12 mm. The sensor’s input covers the bandwidth from 3 GHz to 7.5 GHz. Its output intermediate frequency (IF) is 30 MHz. The sensor is controlled by a simple bias-switching circuit, which switches ON and OFF the bias of the LNA and the mixer simultaneously. It was demonstrated experimentally that the dynamic range of the sensor, as determined by its ON and OFF states, is 109 dB and 118 dB at resolution bandwidths of 1 kHz and 100 Hz, respectively.

  9. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  10. Enzyme sensor array for the determination of biogenic amines in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Jana [University of Greifswald, Institute for Chemistry and Biochemistry (Germany); Wittmann, Christine [Fachhochschule Neubrandenburg, Department of Technology (Germany)

    2002-01-01

    An enzyme sensor array for the simultaneous determination of the three biogenic amines (histamine, tyramine and putrescine) by pattern recognition using an artificial neural network and its application to different food samples is described. A combination of a monoamine oxidase, a tyramine oxidase and a diamine oxidase (with specific activities sufficient for rapid detection) are immobilised each on a separate screen-printed thick-film electrode via transglutaminase and glutaraldehyde to compare these cross-linking reagents with regard to their suitability. To calculate the amount of a specific biogenic amine, the raw data from multichannel software were transferred to a neural network. The sensor array takes 20 min to complete (excluding statistical data analysis) with only one extraction and subsequent neutralisation step required prior to sensor measurement. The lower detection limits with the enzyme sensor were 10 mg/kg for histamine and tyramine, and 5 mg/kg for putrescine with a linear range up to 200 mg/kg for histamine and tyramine and 100 mg/kg for putrescine. The application area of the enzyme sensor array was tested from fish to meat products, sauerkraut, beer, dairy products, wine and further fermented foods and compared with the data of conventional LC analyses (mean correlation coefficient: 0.854). (orig.)

  11. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor

    International Nuclear Information System (INIS)

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-01-01

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  12. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor.

    Science.gov (United States)

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-02-18

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  13. Multi-colorimetric sensor array for detection of illegal materials

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Boisen, Anja; Jakobsen, Mogens Havsteen

    2012-01-01

    The detection of low pressure illegal compounds is an important analytical problem which requires reliable, selective and sensitive detection methods which provide the highest level of confidence in the result. Therefore, to contribute in the successful development of the recognition technology...... and signal processing enhancements to sensing methods, recognition ability, data acquisition time and data processing algorithms are necessary. In this research we work towards the development of a rapid, easy in use, highly sensitive, specific (minimal false positives) sensor based on a colorimetric sensing...

  14. Towards sensor array materials: can failure be delayed?

    Science.gov (United States)

    Mekid, Samir; Saheb, Nouari; Khan, Shafique M. A.; Qureshi, Khurram K.

    2015-06-01

    Further to prior development in enhancing structural health using smart materials, an innovative class of materials characterized by the ability to feel senses like humans, i.e. ‘nervous materials’, is discussed. Designed at all scales, these materials will enhance personnel and public safety, and secure greater reliability of products. Materials may fail suddenly, but any system wishes that failure is known in good time and delayed until safe conditions are reached. Nervous materials are expected to be the solution to this statement. This new class of materials is based on the novel concept of materials capable of feeling multiple structural and external stimuli, e.g. stress, force, pressure and temperature, while feeding information back to a controller for appropriate real-time action. The strain-stress state is developed in real time with the identified and characterized source of stimulus, with optimized time response to retrieve initial specified conditions, e.g. shape and strength. Sensors are volumetrically embedded and distributed, emulating the human nervous system. Immediate applications are in aircraft, cars, nuclear energy and robotics. Such materials will reduce maintenance costs, detect initial failures and delay them with self-healing. This article reviews the common aspects and challenges surrounding this new class of materials with types of sensors to be embedded seamlessly or inherently, including appropriate embedding manufacturing techniques with modeling and simulation methods.

  15. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  16. Electronic tongue - an array of non-specific chemical sensors - for analysis of radioactive solutions

    International Nuclear Information System (INIS)

    Legin, A.; Rudnitskaya, A.; Babain, V.

    2006-01-01

    Multisensor systems, combining chemical sensor arrays with multivariate data processing engines (electronic tongue) rapidly and successfully developing in the last years are capable of simultaneous quantitative analysis of several species, e.g. metals, in complex real solutions. The expansion of the metals (metal ions) and species to be detected in radioactive waste requires permanent enhancement of sensing materials and sensors, with seriously different properties from those known earlier. A prospective direction of R and D of novel sensing materials is exploitation of radiochemical extraction systems and application of extraction substances as active components of new sensors. The sensors based on bidentate phosphorous organic compounds and their combinations with chlorinated cobalt dicarbollide displayed high sensitivity and selectivity to rare-earth metal ions La 3+ , Pr 3+ , Nd 3+ , Eu 3+ . The results indicated good promise for the development of novel analytical tools for detection of multivalent metal cations in different media, particularly in corrosive solutions such as radioactive wastes and solutions derived from spent nuclear fuel. The sensors and sensor arrays made on their basis can play an important role in the development of 'electronic tongue' systems for rapid analytical determinations of different components in complex radioactive solutions

  17. Hazardous industrial gases identified using a novel polymer/MWNT composite resistance sensor array

    International Nuclear Information System (INIS)

    Yuana, C.L.; Chang, C.P.; Song, Y.

    2011-01-01

    Highlights: → In this work, a silicon wafer microelectrode substrate for a resistance sensor was fabricated using the semiconductor manufacturing process. → This work developed polymer-functionalized MWNT sensor plat forms for the detection of vapors from chemical agents at different temperatures. → Applied PCA to determine the performance of as-fabricated films for exposure to three chemical agents. - Abstract: Hazardous industrial chemical gases pose a significant threat to the environment and human life. Therefore, there is an urgent need to develop a reliable sensor for identifying these hazardous gases. In this work, a silicon wafer microelectrode substrate for a resistance sensor was fabricated using the semiconductor manufacturing process. Conductive carbon nanotubes were then mixed with six different polymers with different chemical adsorption properties to produce a composite thin film for the fabrication of a chemical sensor array. This array was then utilized to identify three hazardous gases at different temperatures. Experimental results for six polymers for chemical gases, such as tetrahydrofuran (THF), chloroform (CHCl 3 ) and methanol (MeOH) at different temperatures, indicate that the variation in sensitivity resistance increased when the sensing temperature increased. The poly(ethylene adipate)/MWNT sensing film had high sensitivity, excellent selectivity, and good reproducibility in detecting all chemical agent vapors. Additionally, this study utilized a bar chart and statistical methods in principal component analysis to identify gases with the polymer/MWNT sensor.

  18. Artificial Roughness Encoding with a Bio-inspired MEMS-based Tactile Sensor Array

    Directory of Open Access Journals (Sweden)

    Calogero Maria Oddo

    2009-04-01

    Full Text Available A compliant 2x2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad.

  19. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays.

    Science.gov (United States)

    Mohan, A M Vinu; Windmiller, Joshua Ray; Mishra, Rupesh K; Wang, Joseph

    2017-05-15

    The present work describes an attractive skin-worn microneedle sensing device for the minimally invasive electrochemical monitoring of subcutaneous alcohol. The device consists of an assembly of pyramidal microneedle structures integrated with Pt and Ag wires, each with a microcavity opening. The microneedle aperture was modified by electropolymerizing o-phenylene diamine onto the Pt wire microtransducer, followed by the immobilization of alcohol oxidase (AOx) in an intermediate chitosan layer, along with an outer Nafion layer. The resulting microneedle-based enzyme electrode displays an interference-free ethanol detection in artificial interstitial fluid without compromising its sensitivity, stability and response time. The skin penetration ability and the efficaciousness of the biosensor performance towards subcutaneous alcohol monitoring was substantiated by the ex vivo mice skin model analysis. Our results reveal that the new microneedle sensor holds considerable promise for continuous non-invasive alcohol monitoring in real-life situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)

    Science.gov (United States)

    2015-07-01

    Phase I thermodynamic sensors (barometers, thermometers, hygrometers, and pyranometers ). This report documents the results of a detailed calibration...barometer, thermometer, hydrometer, pyranometer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER...60 (02 Mar); the logger associated with each non-standard RH sensor is demonstrated in the legend ...............21 Fig. 16 Pyranometers percent

  1. Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study.

    Science.gov (United States)

    Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira

    2016-04-20

    The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.

  2. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  3. Fabrication and optimization of a conducting polymer sensor array using stored grain model volatiles.

    Science.gov (United States)

    Hossain, Md Eftekhar; Rahman, G M Aminur; Freund, Michael S; Jayas, Digvir S; White, Noel D G; Shafai, Cyrus; Thomson, Douglas J

    2012-03-21

    During storage, grain can experience significant degradation in quality due to a variety of physical, chemical, and biological interactions. Most commonly, these losses are associated with insects or fungi. Continuous monitoring and an ability to differentiate between sources of spoilage are critical for rapid and effective intervention to minimize deterioration or losses. Therefore, there is a keen interest in developing a straightforward, cost-effective, and efficient method for monitoring of stored grain. Sensor arrays are currently used for classifying liquors, perfumes, and the quality of food products by mimicking the mammalian olfactory system. The use of this technology for monitoring of stored grain and identification of the source of spoilage is a new application, which has the potential for broad impact. The main focus of the work described herein is on the fabrication and optimization of a carbon black (CB) polymer sensor array to monitor stored grain model volatiles associated with insect secretions (benzene derivatives) and fungi (aliphatic hydrocarbon derivatives). Various methods of statistical analysis (RSD, PCA, LDA, t test) were used to select polymers for the array that were optimum for distinguishing between important compound classes (quinones, alcohols) and to minimize the sensitivity for other parameters such as humidity. The performance of the developed sensor array was satisfactory to demonstrate identification and separation of stored grain model volatiles at ambient conditions.

  4. Microchamber arrays with an integrated long luminescence lifetime pH sensor.

    Science.gov (United States)

    Poehler, Elisabeth; Pfeiffer, Simon A; Herm, Marc; Gaebler, Michael; Busse, Benedikt; Nagl, Stefan

    2016-04-01

    A pH probe with a microsecond luminescence lifetime was obtained via covalent coupling of 6-carboxynaphthofluorescein (CNF) moieties to ruthenium-tris-(1,10-phenanthroline)(2+). The probe was covalently attached to amino-modified poly-(2-hydroxyethyl)methacrylate (pHEMA) and showed a pH-dependent FRET with luminescence lifetimes of 681 to 1260 ns and a working range from ca. pH 6.5 to 9.0 with a pKa of 7.79 ± 0.14. The pH sensor matrix was integrated via spin coating as ca. 1- to 2-μm-thick layer into "CytoCapture" cell culture dishes of 6 mm in diameter. These contained a microcavity array of square-shaped regions of 40 μm length and width and 15 μm depth that was homogeneously coated with the pH sensor matrix. The sensor layer showed fast response times in both directions. A microscopic setup was developed that enabled imaging of the pH inside the microchamber arrays over many hours. As a proof of principle, we monitored the pH of Escherichia coli cell cultures grown in the microchamber arrays. The integrated sensor matrix allowed pH monitoring spatially resolved in every microchamber, and the differences in cell growth between individual chambers could be resolved and quantified.

  5. Application of Gas Sensor Arrays in Assessment of Wastewater Purification Effects

    Directory of Open Access Journals (Sweden)

    Łukasz Guz

    2014-12-01

    Full Text Available A gas sensor array consisting of eight metal oxide semiconductor (MOS type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR. A comparison of the gas sensor array (electronic nose response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose—gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I chemical oxygen demand (COD (r = 0.988; (II total suspended solids (TSS (r = 0.938; (III turbidity (r = 0.940; (IV pH (r = 0.554; (V nitrogen compounds: N-NO3 (r = 0.958, N-NO2 (r = 0.869 and N-NH3 (r = 0.978; (VI and volatile organic compounds (VOC (r = 0.987. Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  6. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  7. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    Science.gov (United States)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  8. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  9. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    Science.gov (United States)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  10. A Study on Group Key Agreement in Sensor Network Environments Using Two-Dimensional Arrays

    Science.gov (United States)

    Jang, Seung-Jae; Lee, Young-Gu; Lee, Kwang-Hyung; Kim, Tai-Hoon; Jun, Moon-Seog

    2011-01-01

    These days, with the emergence of the concept of ubiquitous computing, sensor networks that collect, analyze and process all the information through the sensors have become of huge interest. However, sensor network technology fundamentally has wireless communication infrastructure as its foundation and thus has security weakness and limitations such as low computing capacity, power supply limitations and price. In this paper, and considering the characteristics of the sensor network environment, we propose a group key agreement method using a keyset pre-distribution of two-dimension arrays that should minimize the exposure of key and personal information. The key collision problems are resolved by utilizing a polygonal shape’s center of gravity. The method shows that calculating a polygonal shape’s center of gravity only requires a very small amount of calculations from the users. The simple calculation not only increases the group key generation efficiency, but also enhances the sense of security by protecting information between nodes. PMID:22164072

  11. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    Science.gov (United States)

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-10-27

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  12. BRDF-dependent accuracy of array-projection-based 3D sensors.

    Science.gov (United States)

    Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther

    2017-03-10

    In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.

  13. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  14. Retina-like sensor based on a lens array with a large field of view.

    Science.gov (United States)

    Fan, Fan; Hao, Qun; Cheng, Xuemin

    2015-12-20

    This paper puts forward a retina-like sensor based on a lens array, which can be used in conventional optical systems. This sensor achieves log-polar mapping by dividing the imaging optical system's image plane using a lens array. In this paper the mathematical model has been set up with the relative structural parameters. Also, the simulation experiments and parameter analysis have been discussed to verify the reliability of this system. From the experiment results, it can be seen that this sensor realized the log-polar mapping with the transformed image output. Each lens corresponded to a circular region in the image plane with no crossover between different fields of view of adjacent lenses. When the number of rings changed, the relative error did not significantly change, and this error could be reduced to 1% when the number of lenses in each ring was increased. The work widely enlarged the application of this kind of sensor, which will lay a theoretical foundation for retina-like sensors.

  15. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor......In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  16. High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    Science.gov (United States)

    Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.

    2013-09-01

    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.

  17. Comparison of pH Data Measured with a pH Sensor Array Using Different Data Fusion Methods

    OpenAIRE

    Yi-Hung Liao; Jung-Chuan Chou

    2012-01-01

    This paper introduces different data fusion methods which are used for an electrochemical measurement using a sensor array. In this study, we used ruthenium dioxide sensing membrane pH electrodes to form a sensor array. The sensor array was used for detecting the pH values of grape wine, generic cola drink and bottled base water. The measured pH data were used for data fusion methods to increase the reliability of the measured results, and we also compared the fusion results with other differ...

  18. Comparison of pH Data Measured with a pH Sensor Array Using Different Data Fusion Methods

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liao

    2012-09-01

    Full Text Available This paper introduces different data fusion methods which are used for an electrochemical measurement using a sensor array. In this study, we used ruthenium dioxide sensing membrane pH electrodes to form a sensor array. The sensor array was used for detecting the pH values of grape wine, generic cola drink and bottled base water. The measured pH data were used for data fusion methods to increase the reliability of the measured results, and we also compared the fusion results with other different data fusion methods.

  19. Development and characterization of electrochemical cantilever sensor for bio/chemical sensing applications

    DEFF Research Database (Denmark)

    Quan, Xueling; Fischer, Lee MacKenzie; Boisen, Anja

    2011-01-01

    We report the improvements made to our previously developed electrochemical cantilever (EC) sensor, where nanoporous gold material is employed as working electrodes in microcantilever arrays, while combined counter-reference electrodes are integrated on the chip. For a surface stress change of 1m...

  20. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping; Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO{sub 2} nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. - Highlights: • Vertical graphene sheets were prepared with Ti as the catalyst via a CVD method. • TiO{sub 2} nanotubes were key transition layers in the formation of the TiC nanorods. • Vertical growth mechanism of graphene products was discussed. • Biomolecules were detected to be a chemical sensor. • Response mechanism for analytes at the graphene/TiC nanorod array was discussed.

  1. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application

    International Nuclear Information System (INIS)

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-01-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. - Highlights: • Vertical graphene sheets were prepared with Ti as the catalyst via a CVD method. • TiO 2 nanotubes were key transition layers in the formation of the TiC nanorods. • Vertical growth mechanism of graphene products was discussed. • Biomolecules were detected to be a chemical sensor. • Response mechanism for analytes at the graphene/TiC nanorod array was discussed.

  2. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    International Nuclear Information System (INIS)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan; Yang, Xinsheng; Zhao, Yong

    2015-01-01

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  3. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, Xinsheng, E-mail: xsyang@swjtu.edu.cn [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Zhao, Yong [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney 2052, NSW (Australia)

    2015-12-15

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  4. Synthesis of Gold Nanoparticles to Capture Lifelike Proteins: Application on the Multichannel Sensor Array Design

    Directory of Open Access Journals (Sweden)

    Yumin Leng

    2018-01-01

    Full Text Available The chemical elements of proteins are similar to that of DNA (e.g., C, H, O, and N, and DNA shows different knotted architectures. So we imagine that proteins may show a wealth of highly complex structures, especially when proteins interact with each other. The imagination was proved by synthesizing gold nanoparticles (GNPs to capture the lifelike protein structures. The optical responses (i.e., color of as-prepared GNPs are found to be characteristic to a given protein (or heavy metal ion. Based on the “three colors” principle of Thomas Young, we extracted the red, green, and blue (RGB alterations of as-synthesized GNPs to fabricate multichannel sensor arrays for proteins (or heavy metal ions discrimination. The designed multichannel sensor arrays demonstrate possibilities in semiquantitative analysis of multiple analytes (e.g., proteins and heavy metal ions. This work is believed to open new opportunities for GNPs-based label-free sensing.

  5. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Identification of accelerants, fuels and post-combustion residues using a colorimetric sensor array.

    Science.gov (United States)

    Li, Zheng; Jang, Minseok; Askim, Jon R; Suslick, Kenneth S

    2015-09-07

    A linear (1 × 36) colorimetric sensor array has been integrated with a pre-oxidation technique for detection and identification of a variety of fuels and post-combustion residues. The pre-oxidation method permits the conversion of fuel vapor into more detectable species and therefore greatly enhances the sensitivity of the sensor array. The pre-oxidation technique used a packed tube of chromic acid on an oxide support and was optimized in terms of the support and concentration. Excellent batch to batch reproducibility was observed for preparation and use of the disposable pre-oxidation tubes. Twenty automotive fuels including gasolines and diesel from five gasoline retailers were individually identifiable with no confusions or misclassifications in quintuplicate trials. Limits of detection were at sub-ppm concentrations for gasoline and diesel fuels. In addition, burning tests were performed on commonly used fire accelerants, and clear differentiation was achieved among both the fuels themselves and their volatile residues after burning.

  7. Robust site security using smart seismic array technology and multi-sensor data fusion

    Science.gov (United States)

    Hellickson, Dean; Richards, Paul; Reynolds, Zane; Keener, Joshua

    2010-04-01

    Traditional site security systems are susceptible to high individual sensor nuisance alarm rates that reduce the overall system effectiveness. Visual assessment of intrusions can be intensive and manually difficult as cameras are slewed by the system to non intrusion areas or as operators respond to nuisance alarms. Very little system intrusion performance data are available other than discrete sensor alarm indications that provide no real value. This paper discusses the system architecture, integration and display of a multi-sensor data fused system for wide area surveillance, local site intrusion detection and intrusion classification. The incorporation of a novel seismic array of smart sensors using FK Beamforming processing that greatly enhances the overall system detection and classification performance of the system is discussed. Recent test data demonstrates the performance of the seismic array within several different installations and its ability to classify and track moving targets at significant standoff distances with exceptional immunity to background clutter and noise. Multi-sensor data fusion is applied across a suite of complimentary sensors eliminating almost all nuisance alarms while integrating within a geographical information system to feed a visual-fusion display of the area being secured. Real-time sensor detection and intrusion classification data is presented within a visual-fusion display providing greatly enhanced situational awareness, system performance information and real-time assessment of intrusions and situations of interest with limited security operator involvement. This approach scales from a small local perimeter to very large geographical area and can be used across multiple sites controlled at a single command and control station.

  8. MISSION-ORIENTED SENSOR ARRAYS AND UAVs – A CASE STUDY ON ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    N. M. Figueira

    2015-08-01

    Full Text Available This paper presents a new concept of UAV mission design in geomatics, applied to the generation of thematic maps for a multitude of civilian and military applications. We discuss the architecture of Mission-Oriented Sensors Arrays (MOSA, proposed in Figueira et Al. (2013, aimed at splitting and decoupling the mission-oriented part of the system (non safety-critical hardware and software from the aircraft control systems (safety-critical. As a case study, we present an environmental monitoring application for the automatic generation of thematic maps to track gunshot activity in conservation areas. The MOSA modeled for this application integrates information from a thermal camera and an on-the-ground microphone array. The use of microphone arrays technology is of particular interest in this paper. These arrays allow estimation of the direction-of-arrival (DOA of the incoming sound waves. Information about events of interest is obtained by the fusion of the data provided by the microphone array, captured by the UAV, fused with information from the termal image processing. Preliminary results show the feasibility of the on-the-ground sound processing array and the simulation of the main processing module, to be embedded into an UAV in a future work. The main contributions of this paper are the proposed MOSA system, including concepts, models and architecture.

  9. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array.

    Science.gov (United States)

    Choong, Chwee-Lin; Shim, Mun-Bo; Lee, Byoung-Sun; Jeon, Sanghun; Ko, Dong-Su; Kang, Tae-Hyung; Bae, Jihyun; Lee, Sung Hoon; Byun, Kyung-Eun; Im, Jungkyun; Jeong, Yong Jin; Park, Chan Eon; Park, Jong-Jin; Chung, U-In

    2014-06-04

    A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of RF-spittered self-polarized PZT thin films for sensors arrays

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Lin, W. M.; Koehler, R.; Sandner, T.; Gerlach, G.; Krawietz, R.; Pompe, W.; Deineka, Alexander; Jastrabík, Lubomír

    2002-01-01

    Roč. 66, - (2002), s. 473-478 ISSN 0042-207X R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : self-polarized PZT * polarization and refractive index profiles * IR sensor array Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.723, year: 2002

  11. Investigation and Characterization of Acoustic Emissions of Tornadoes Using Arrays of Infrasound Sensors

    Science.gov (United States)

    Frazier, W. G.; Talmadge, C. L.; Waxler, R.; Knupp, K. R.; Goudeau, B.; Hetzer, C. H.

    2017-12-01

    Working in co-ordination with the NOAA Vortex Southeast (Vortex SE) research program, 9 infrasound sensor arrays were deployed at fixed sites across North Alabama, South-central Tennessee, and Northwest Georgia during March and April of 2017, to investigate the emission and characterization of infrasonic acoustic energy from tornadoes and related phenomena. Each array consisted of seven broadband acoustic sensors with calibrated frequency response from 0.02 Hz to 200 Hz. The arrays were configured in a pattern such that accurate bearings to acoustic sources could be obtained over a broad range of frequencies (nominally from 1 Hz to 100 Hz). Data were collected synchronously at a rate of 1000 samples per second. On 22 April 2017 a line of strong storms passed directly through the area being monitored producing at least three verified tornadoes. Two of these were rated at EF0 and the other an EF1. Subsequent processing of the data from several of the arrays revealed acoustic emissions from the tornadic storms ranging in frequencies below 1 Hz to frequencies greater than 10 Hz. Accurate bearings to the storms have been calculated from distances greater than 60 km. Preliminary analysis has revealed that continuous emissions occurred prior to the estimated touchdown times, while the storms were on the ground, and for short periods after the tornadoes lifted; however, the strongest emissions appeared to occur while the storms were on the ground. One of the storms passed near two arrays simultaneously, and therefore accurate an accurate track of the storm as it moved has been obtained only using the infrasound measurements. Initial results from the analysis of the infrasound data will be presented. Under Vortex SE meteorological data was collected on a large suite of sensors. Correlations between the infrasound data and the meteorological data will be investigated and discussed.

  12. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2012-08-01

    Full Text Available Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  13. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  14. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors

    Directory of Open Access Journals (Sweden)

    Kaiming Nie

    2016-01-01

    Full Text Available This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM. The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs are used to quantize the time of photons’ arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor’s resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip’s output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5–20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes.

  15. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jingli Yang

    2016-12-01

    Full Text Available The k-nearest neighbour (kNN rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitoring processes with a large volume of variables and training samples and may be impossible for real-time monitoring. To address this problem, a novel clustering-kNN rule is presented. The landmark-based spectral clustering (LSC algorithm, which has low computational complexity, is employed to divide the entire training sample set into several clusters. Further, the kNN rule is only conducted in the cluster that is nearest to the test sample; thus, the efficiency of the fault detection methods can be enhanced by reducing the number of training samples involved in the detection process of each test sample. The performance of the proposed clustering-kNN rule is fully verified in numerical simulations with both linear and non-linear models and a real gas sensor array experimental system with different kinds of faults. The results of simulations and experiments demonstrate that the clustering-kNN rule can greatly enhance both the accuracy and efficiency of fault detection methods and provide an excellent solution to reliable and real-time monitoring of gas sensor arrays.

  16. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jian-Feng Wu

    2016-12-01

    Full Text Available With one operational amplifier (op-amp in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements’ bypass currents, which were injected into array’s non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT’s measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  17. Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array

    Science.gov (United States)

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-01-01

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490

  18. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays

    Science.gov (United States)

    Yang, Jingli; Sun, Zhen; Chen, Yinsheng

    2016-01-01

    The k-nearest neighbour (kNN) rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitoring processes with a large volume of variables and training samples and may be impossible for real-time monitoring. To address this problem, a novel clustering-kNN rule is presented. The landmark-based spectral clustering (LSC) algorithm, which has low computational complexity, is employed to divide the entire training sample set into several clusters. Further, the kNN rule is only conducted in the cluster that is nearest to the test sample; thus, the efficiency of the fault detection methods can be enhanced by reducing the number of training samples involved in the detection process of each test sample. The performance of the proposed clustering-kNN rule is fully verified in numerical simulations with both linear and non-linear models and a real gas sensor array experimental system with different kinds of faults. The results of simulations and experiments demonstrate that the clustering-kNN rule can greatly enhance both the accuracy and efficiency of fault detection methods and provide an excellent solution to reliable and real-time monitoring of gas sensor arrays. PMID:27929412

  19. Micro-Drilling of Polymer Tubular Ultramicroelectrode Arrays for Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Niels B. Larsen

    2013-05-01

    Full Text Available We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene (PEDOT, a conductive polymer. Arrays of Ø 100 µm tubular electrodes each having a height of 0.37 ± 0.06 µm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM.

  20. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  1. High-Speed Tactile Sensing for Array-Type Tactile Sensor and Object Manipulation Based on Tactile Information

    Directory of Open Access Journals (Sweden)

    Wataru Fukui

    2011-01-01

    Full Text Available We have developed a universal robot hand with tactile and other sensors. An array-type tactile sensor is crucial for dexterous manipulation of objects using a robotic hand, since this sensor can measure the pressure distribution on finger pads. The sensor has a very high resolution, and the shape of a grasped object can be classified by using this sensor. The more the number of measurement points provided, the higher the accuracy of the classification, but with a corresponding lengthening of the measurement cycle. In this paper, the problem of slow response time is resolved by using software for an array-type tactile sensor with high resolution that emulates the human sensor system. The validity of the proposed method is demonstrated through experiments.

  2. Pairwise graphical models for structural health monitoring with dense sensor arrays

    Science.gov (United States)

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  3. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    Science.gov (United States)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  4. Assessment of Embedded Conjugated Polymer Sensor Arrays for Potential Load Transmission Measurement in Orthopaedic Implants

    Directory of Open Access Journals (Sweden)

    Carolina Micolini

    2017-11-01

    Full Text Available Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing.

  5. Tactile Sensor Array with Fiber Bragg Gratings in Quasi-Distributed Sensing

    Directory of Open Access Journals (Sweden)

    Marcelo A. Pedroso

    2018-01-01

    Full Text Available This work describes the development of a quasi-distributed real-time tactile sensing system with a reduced number of fiber Bragg grating-based sensors and reports its use with a reconstruction method based on differential evolution. The sensing system is comprised of six fiber Bragg gratings encapsulated in silicone elastomer to form a tactile sensor array with total dimensions of 60 × 80 mm, divided into eight sensing cells with dimensions of 20 × 30 mm. Forces applied at the central position of the sensor array resulted in linear response curves for the gratings, highlighting their coupled responses and allowing the application of compressive sensing. The reduced number of sensors regarding the number of sensing cells results in an undetermined inverse problem, solved with a compressive sensing algorithm with the aid of differential evolution method. The system is capable of identifying and quantifying up to four different loads at four different cells with relative errors lower than 10.5% and signal-to-noise ratio better than 12 dB.

  6. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.

    Science.gov (United States)

    Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming

    2017-07-01

    To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  7. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    Science.gov (United States)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  8. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    Science.gov (United States)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  9. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor

    Directory of Open Access Journals (Sweden)

    Huayu Zhang

    2017-07-01

    Full Text Available To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor, magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  10. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Repasky, Kevin [Montana State Univ., Bozeman, MT (United States)

    2014-02-01

    A fiber sensor array for sub-surface CO2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO2 absorption features where a transmission measurement is made allowing the CO2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO2/day began on July 10, 2012. The elevated subsurface CO2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project

  11. A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array.

    Science.gov (United States)

    Ren, Xiaochen; Pei, Ke; Peng, Boyu; Zhang, Zhichao; Wang, Zongrong; Wang, Xinyu; Chan, Paddy K L

    2016-06-01

    An organic flexible temperature-sensor array exhibits great potential in health monitoring and other biomedical applications. The actively addressed 16 × 16 temperature sensor array reaches 100% yield rate and provides 2D temperature information of the objects placed in contact, even if the object has an irregular shape. The current device allows defect predictions of electronic devices, remote sensing of harsh environments, and e-skin applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).

    Science.gov (United States)

    Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F

    2010-03-19

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm

  13. Design Concept of Array ECT Sensor for Steam Generator Tubing Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Tae Hun; Yoo, Hyun Ju [Korea Hydro and Nuclear Power Co. Ltd. CRI, Daejeon (Korea, Republic of)

    2015-05-15

    The eddy current testing, which is one of the nondestructive examination methods, is widely used for the inspection of heat exchangers including steam generator tubing in the nuclear power plant. It uses electromagnetic induction to detect flaws in conductive materials. Two types of eddy current probes are conventionally used for the inspection of steam generator tubing according to the main purpose. One is the bobbin probe technology and the other is the rotating probe. During the inspection, they have restrictions for the flaw detection or the inspection speed. An array probe can be alternative to the bobbin and rotating probes. The design concept of array coils with high sensitivity is described in this paper. It is expected that the eddy current testing using this type of array sensors may provide high detectability and resolution for flaws in steam generator tubing. Eddy current technology has some barriers for the inspection of steam generator tubing in the nuclear power plant. Bobbin probes offer poor circumferential crack detection and rotating probes are time and money consuming due to the mechanical rotation. Array probe inspection technique can replace bobbin and rotating probe techniques due to its sensitivity for flaw detection and inspection speed. In general, circular-shaped coils are considered in an array eddy current probe.

  14. Urinary Colorimetric Sensor Array and Algorithm to Distinguish Kawasaki Disease from Other Febrile Illnesses.

    Directory of Open Access Journals (Sweden)

    Zhen Li

    Full Text Available Kawasaki disease (KD is an acute pediatric vasculitis of infants and young children with unknown etiology and no specific laboratory-based test to identify. A specific molecular diagnostic test is urgently needed to support the clinical decision of proper medical intervention, preventing subsequent complications of coronary artery aneurysms. We used a simple and low-cost colorimetric sensor array to address the lack of a specific diagnostic test to differentiate KD from febrile control (FC patients with similar rash/fever illnesses.Demographic and clinical data were prospectively collected for subjects with KD and FCs under standard protocol. After screening using a genetic algorithm, eleven compounds including metalloporphyrins, pH indicators, redox indicators and solvatochromic dye categories, were selected from our chromatic compound library (n = 190 to construct a colorimetric sensor array for diagnosing KD. Quantitative color difference analysis led to a decision-tree-based KD diagnostic algorithm.This KD sensing array allowed the identification of 94% of KD subjects (receiver operating characteristic [ROC] area under the curve [AUC] 0.981 in the training set (33 KD, 33 FC and 94% of KD subjects (ROC AUC: 0.873 in the testing set (16 KD, 17 FC. Color difference maps reconstructed from the digital images of the sensing compounds demonstrated distinctive patterns differentiating KD from FC patients.The colorimetric sensor array, composed of common used chemical compounds, is an easily accessible, low-cost method to realize the discrimination of subjects with KD from other febrile illness.

  15. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  16. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  17. Low-Cost Ultrasonic Distance Sensor Arrays with Networked Error Correction

    Directory of Open Access Journals (Sweden)

    Tianzhou Chen

    2013-09-01

    Full Text Available Distance has been one of the basic factors in manufacturing and control fields, and ultrasonic distance sensors have been widely used as a low-cost measuring tool. However, the propagation of ultrasonic waves is greatly affected by environmental factors such as temperature, humidity and atmospheric pressure. In order to solve the problem of inaccurate measurement, which is significant within industry, this paper presents a novel ultrasonic distance sensor model using networked error correction (NEC trained on experimental data. This is more accurate than other existing approaches because it uses information from indirect association with neighboring sensors, which has not been considered before. The NEC technique, focusing on optimization of the relationship of the topological structure of sensor arrays, is implemented for the compensation of erroneous measurements caused by the environment. We apply the maximum likelihood method to determine the optimal fusion data set and use a neighbor discovery algorithm to identify neighbor nodes at the top speed. Furthermore, we adopt the NEC optimization algorithm, which takes full advantage of the correlation coefficients for neighbor sensors. The experimental results demonstrate that the ranging errors of the NEC system are within 2.20%; furthermore, the mean absolute percentage error is reduced to 0.01% after three iterations of this method, which means that the proposed method performs extremely well. The optimized method of distance measurement we propose, with the capability of NEC, would bring a significant advantage for intelligent industrial automation.

  18. Array-type sensor to determine corrosive conditions in high temperature water under gamma rays irradiation

    International Nuclear Information System (INIS)

    Satoh, T.; Tsukada, T.; Uchida, S.; Katoh, C.

    2010-01-01

    One of the problems to determine electrochemical corrosion potential (ECP) in high temperature water under irradiation is to apply long-lived and reliable reference electrodes. In order to avoid troubles due to the reference electrode, a new concept to determine ECP without the reference electrode has been proposed. Several metal plates are applied as working electrodes and at the same time as the reference electrodes. Potential of the metal plates with stable oxide films on their surfaces show stable values in high temperature water. As a result of the combination of their potential values, ECP of each metal can be determined without any specific reference electrode. Array-type sensors consisting of several metal plates, e.g., Fe, Ni, Cr, Zr, Pt, Pd, Re, Ir, with well developed oxide films on their surface were prepared for ECP measurement in high temperature water under neutron/gamma ray irradiations. In order to confirm the feasibility of this concept, responses of the redox potentials of the pure metals to changes in the simulated BWR reactor water conditions were measured and the ECP was determined by the differences in potentials between a couple of metal plates. Major conclusions of the study are as follows: 1) The redox potentials of the Fe, Pt, Zr, Ir, Pd, and Re electrodes showed the different dependences on the changes in O 2 and H 2 O 2 concentrations. The redox potentials of the electrodes increased as the oxidant concentrations increased except for Zr electrode. The potential of the Zr electrode was kept the very low potential at the wide range of O 2 and H 2 O 2 concentrations differed form the other electrodes. 2) It was estimated that the redox potential of highly soluble metal may be increased, while that of low soluble metal may be decreased by an oxide film. The stable oxide film would cause the stable potential response of the electrode with oxide film. 3) The relationship between the oxidant concentrations and the redox potentials of the

  19. Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology

    Science.gov (United States)

    Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.

    2014-08-01

    The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.

  20. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  1. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We construc......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...... characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e...

  2. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

    Science.gov (United States)

    Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2015-10-27

    We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.

  3. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  4. DNA-Catalytically Active Gold Nanoparticle Conjugates-Based Colorimetric Multidimensional Sensor Array for Protein Discrimination.

    Science.gov (United States)

    Wei, Xiangcong; Chen, Zhengbo; Tan, Lulu; Lou, Tianhong; Zhao, Yan

    2017-01-03

    A series of single-strand oligonucleotides functionalized catalytically active gold nanoparticle (AuNPs) as nonspecific receptors have been designed to build a protein sensing array. We take advantage of the correlation between the catalytic activity and the exposed surface area of AuNPs, i.e., DNA-proteins interactions mask the surface area of AuNPs, leading to poor catalytic performance of AuNPs. As the number of DNA-bound proteins increases, the surfaces of AuNPs become more masked; thus, the time of 4- nitrophenol/NaBH 4 reaction for color change (yellow → colorless) of the solution increases. Taking advantage of three nonspecific SH-labeled DNA sequences (A15, C15, and T15) as array sensing elements and the color-change time (CCT) of the solution as signal readout, colorimetric response patterns can be obtained on the array and identified via linear discriminant analysis (LDA). Eleven proteins have been completely distinguished with 100% accuracy with the naked eye at the 30 nM level. Remarkably, two similar proteins (bovine serum albumin and human serum albumin), two different proteins (bovine serum albumin and concanavalin) at the same concentration, and the mixtures of the two proteins with different molar ratios have been discriminated with 100%. The practicability of this sensor array is further validated by high accuracy (100%) identification of 11 proteins in human serum samples.

  5. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors

    Directory of Open Access Journals (Sweden)

    Francesc Torres

    2016-10-01

    Full Text Available Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm.

  6. General Voltage Feedback Circuit Model in the Two-Dimensional Networked Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    JianFeng Wu

    2015-01-01

    Full Text Available To analyze the feature of the two-dimensional networked resistive sensor array, we firstly proposed a general model of voltage feedback circuits (VFCs such as the voltage feedback non-scanned-electrode circuit, the voltage feedback non-scanned-sampling-electrode circuit, and the voltage feedback non-scanned-sampling-electrode circuit. By analyzing the general model, we then gave a general mathematical expression of the effective equivalent resistor of the element being tested in VFCs. Finally, we evaluated the features of VFCs with simulation and test experiment. The results show that the expression is applicable to analyze the VFCs’ performance of parameters such as the multiplexers’ switch resistors, the nonscanned elements, and array size.

  7. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  8. Feasibility study of patient motion monitoring by using tactile array sensors

    Science.gov (United States)

    Kim, Tae-Ho; Kang, Seong-Hee; Kim, Dong-Su; Cho, Min-Seok; Kim, Kyeong-Hyeon; Suh, Tae-Suk; Kim, Siyong

    2015-07-01

    An ideal alignment method based on the external anatomical surface of the patient should consider the entire region of interest. However, optical-camera-based systems cannot blindly monitor such areas as the patient's back, for example. Furthermore, collecting enough information to correct the associated deformation error is impossible. The study aim is to propose a new patient alignment method using tactile array sensors that can measure the distributed pressure profiles along the contact surface. The TactArray system includes one sensor, a signal-conditioning device (USB drive/interface electronics, power supply, and cables), and a PC. The tactile array sensor was placed between the patient's back and the treatment couch, and the deformations at different location on the patient's back were evaluated. Three healthy male volunteers were enrolled in this study, and pressure profile distributions (PPDs) were obtained with and without immobilization. After the initial pretreatment setup using the laser alignment system, the PPD of the patient's back was acquired. The results were obtained at four different times and included a reference PPD dataset. The contact area and the center-of-pressure value were also acquired based on the PPD data for a more elaborate quantitative data analysis. To evaluate the clinical feasibility of using the proposed alignment method for reducing the deformation error, we implemented a real-time self-correction procedure. Despite the initial alignment, we confirmed that PPD variations existed in both cases of the volunteer studies (with and without the use of the immobilization tool). Additionally, we confirmed that the contact area and the center of pressure varied in both cases, and those variations were observed in all three volunteers. With the proposed alignment method and the real-time selfcorrection procedure, the deformation error was significantly reduced. The proposed alignment method can be used to account for the limitation of

  9. Rational Design of QCM-D Virtual Sensor Arrays Based on Film Thickness, Viscoelasticity, and Harmonics for Vapor Discrimination.

    Science.gov (United States)

    Speller, Nicholas C; Siraj, Noureen; Regmi, Bishnu P; Marzoughi, Hassan; Neal, Courtney; Warner, Isiah M

    2015-01-01

    Herein, we demonstrate an alternative strategy for creating QCM-based sensor arrays by use of a single sensor to provide multiple responses per analyte. The sensor, which simulates a virtual sensor array (VSA), was developed by depositing a thin film of ionic liquid, either 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-methylimidazolium thiocyanate ([OMIm][SCN]), onto the surface of a QCM-D transducer. The sensor was exposed to 18 different organic vapors (alcohols, hydrocarbons, chlorohydrocarbons, nitriles) belonging to the same or different homologous series. The resulting frequency shifts (Δf) were measured at multiple harmonics and evaluated using principal component analysis (PCA) and discriminant analysis (DA) which revealed that analytes can be classified with extremely high accuracy. In almost all cases, the accuracy for identification of a member of the same class, that is, intraclass discrimination, was 100% as determined by use of quadratic discriminant analysis (QDA). Impressively, some VSAs allowed classification of all 18 analytes tested with nearly 100% accuracy. Such results underscore the importance of utilizing lesser exploited properties that influence signal transduction. Overall, these results demonstrate excellent potential of the virtual sensor array strategy for detection and discrimination of vapor phase analytes utilizing the QCM. To the best of our knowledge, this is the first report on QCM VSAs, as well as an experimental sensor array, that is based primarily on viscoelasticity, film thickness, and harmonics.

  10. Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test

    Science.gov (United States)

    Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.

    2017-11-01

    Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical

  11. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.

    Science.gov (United States)

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Williams, Pat; Holmes, Andrea E

    2017-03-04

    There is a significant demand for devices that can rapidly detect chemical-biological-explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances.

  12. Zero-crossing detection algorithm for arrays of optical spatial filtering velocimetry sensors

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Pedersen, Finn; Hanson, Steen Grüner

    2008-01-01

    This paper presents a zero-crossing detection algorithm for arrays of compact low-cost optical sensors based on spatial filtering for measuring fluctuations in angular velocity of rotating solid structures. The algorithm is applicable for signals with moderate signal-to-noise ratios, and delivers...... repeating the same measurement error for each revolution of the target, and to gain high performance measurement of angular velocity. The traditional zero-crossing detection is extended by 1) inserting an appropriate band-pass filter before the zero-crossing detection, 2) measuring time periods between zero...

  13. DOA estimation for conformal vector-sensor array using geometric algebra

    Science.gov (United States)

    Meng, Tianzhen; Wu, Minjie; Yuan, Naichang

    2017-12-01

    In this paper, the problem of direction of arrival (DOA) estimation is considered in the case of multiple polarized signals impinging on the conformal electromagnetic vector-sensor array (CVA). We focus on modeling the manifold holistically by a new mathematical tool called geometric algebra. Compared with existing methods, the presented one has two main advantages. Firstly, it acquires higher resolution by preserving the orthogonality of the signal components. Secondly, it avoids the cumbersome matrix operations while performing the coordinate transformations, and therefore, has a much lower computational complexity. Simulation results are provided to demonstrate the effectiveness of the proposed algorithm.

  14. Frequency-domain readout multiplexing of transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lanting, T.M. [Physics Department, University of California, Berkeley, CA 94720 (United States)]. E-mail: tlanting@berkeley.edu; Arnold, K. [Physics Department, University of California, Berkeley, CA 94720 (United States); Cho, Hsiao-Mei [Physics Department, University of California, Berkeley, CA 94720 (United States); Clarke, John [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Dobbs, Matt [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Holzapfel, William [Physics Department, University of California, Berkeley, CA 94720 (United States); Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lueker, M. [Physics Department, University of California, Berkeley, CA 94720 (United States); Richards, P.L. [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Smith, A.D. [Northrop-Grumman, Redondo Beach, CA 94278 (United States); Spieler, H.G. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-04-15

    We have demonstrated frequency-domain readout multiplexing of eight channels for superconducting transition-edge sensor bolometer arrays. The multiplexed readout noise is 6.5 pA/{radical}Hz, well below the bolometer dark noise of 15-20 pA/{radical}Hz. We measure an upper limit on crosstalk of 0.004 between channels adjacent in frequency which meets our design requirement of 0.01. We have observed vibration insensitivity in our frequency-domain multiplexed transition-edge sensors, making this system very attractive for telescope and satellite observations. We also discuss extensions to our multiplexed readout. In particular, we are developing a SQUID flux-locked loop that is entirely cold and collaborating on digital multiplexer technology in order to scale up the number of multiplexed channels.

  15. Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting

    Science.gov (United States)

    Tang, Xin; Chen, Zhongsheng; Li, Yue; Yang, Yongmin

    2018-05-01

    When faults happen at gas path components of gas turbines, some sparsely-distributed and charged debris will be generated and released into the exhaust gas. The debris is called abnormal debris. Electrostatic sensors can detect the debris online and further indicate the faults. It is generally considered that, under a specific working condition, a more serious fault generates more and larger debris, and a piece of larger debris carries more charge. Therefore, the amount and charge of the abnormal debris are important indicators of the fault severity. However, because an electrostatic sensor can only detect the superposed effect on the electrostatic field of all the debris, it can hardly identify the amount and position of the debris. Moreover, because signals of electrostatic sensors depend on not only charge but also position of debris, and the position information is difficult to acquire, measuring debris charge accurately using the electrostatic detecting method is still a technical difficulty. To solve these problems, a hemisphere-shaped electrostatic sensors' circular array (HSESCA) is used, and an array signal processing method based on compressive sensing (CS) is proposed in this paper. To research in a theoretical framework of CS, the measurement model of the HSESCA is discretized into a sparse representation form by meshing. In this way, the amount and charge of the abnormal debris are described as a sparse vector. It is further reconstructed by constraining l1-norm when solving an underdetermined equation. In addition, a pre-processing method based on singular value decomposition and a result calibration method based on weighted-centroid algorithm are applied to ensure the accuracy of the reconstruction. The proposed method is validated by both numerical simulations and experiments. Reconstruction errors, characteristics of the results and some related factors are discussed.

  16. A Study on Group Key Agreement in Sensor Network Environments Using Two-Dimensional Arrays

    Directory of Open Access Journals (Sweden)

    Moon-Seog Jun

    2011-08-01

    Full Text Available These days, with the emergence of the concept of ubiquitous computing, sensor networks that collect, analyze and process all the information through the sensors have become of huge interest. However, sensor network technology fundamentally has wireless communication infrastructure as its foundation and thus has security weakness and limitations such as low computing capacity, power supply limitations and price. In this paper, and considering the characteristics of the sensor network environment, we propose a group key agreement method using a keyset pre-distribution of two-dimension arrays that should minimize the exposure of key and personal information. The key collision problems are resolved by utilizing a polygonal shape’s center of gravity. The method shows that calculating a polygonal shape’s center of gravity only requires a very small amount of calculations from the users. The simple calculation not only increases the group key generation efficiency, but also enhances the sense of security by protecting information between nodes.

  17. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    Science.gov (United States)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  18. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry.

    NARCIS (Netherlands)

    Soskine, Mikhael; Biesemans, Annemie; Moeyaert, Benjamien; Cheley, Stephen; Bayley, Hagan; Maglia, Giovanni

    Nanopores have been used in label-free single-molecule studies, including investigations of chemical reactions, nucleic acid analysis, and applications in sensing. Biological nanopores generally perform better than artificial nanopores as sensors, but they have disadvantages including a fixed

  19. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.

    Science.gov (United States)

    Paydar, Omeed H; Wottawa, Christopher R; Fan, Richard E; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O; Candler, Rob N

    2012-01-01

    Although surgical robotic systems provide several advantages over conventional minimally invasive techniques, they are limited by a lack of tactile feedback. Recent research efforts have successfully integrated tactile feedback components onto surgical robotic systems, and have shown significant improvement to surgical control during in vitro experiments. The primary barrier to the adoption of tactile feedback in clinical use is the unavailability of suitable force sensing technologies. This paper describes the design and fabrication of a thin-film capacitive force sensor array that is intended for integration with tactile feedback systems. This capacitive force sensing technology could provide precise, high-sensitivity, real-time responses to both static and dynamic loads. Capacitive force sensors were designed to operate with optimal sensitivity and dynamic range in the range of forces typical in minimally invasive surgery (0-40 N). Initial results validate the fabrication of these capacitive force-sensing arrays. We report 16.3 pF and 146 pF for 1-mm(2) and 9-mm(2) capacitive areas, respectively, whose values are within 3% of theoretical predictions.

  20. A gas sensor array for the simultaneous detection of multiple VOCs.

    Science.gov (United States)

    Zhang, Yumin; Zhao, Jianhong; Du, Tengfei; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-05-16

    Air quality around the globe is declining and public health is seriously threatened by indoor air pollution. Typically, indoor air pollutants are composed of a series of volatile organic compounds (VOCs) that are generally harmful to the human body, especially VOCs with low molecular weights (less than 100 Da). Moreover, in some situations, more than one type of VOC is present; thus, a device that can detect one or more VOCs simultaneously would be most beneficial. Here, we synthesized a sensor array with 4 units to detect 4 VOCs: acetone (unit 1), benzene (unit 2), methanol (unit 3) and formaldehyde (unit 4) simultaneously. All units were simultaneously exposed to 2.5 ppm of all four VOCs. The sensitivity of unit 1 was 14.67 for acetone and less than 2.54 for the other VOCs. The sensitivities of units 2, 3 and 4 to benzene, methanol and formaldehyde were 2 18.64, 20.98 and 17.26, respectively, and less than 4.01 for the other VOCs. These results indicated that the sensor array exhibited good selectivity and could be used for the real-time monitoring of indoor air quality. Thus, this device will be useful in situations requiring the simultaneous detection of multiple VOCs.

  1. ALAT PENDETEKSI KEBOCORAN GAS BERACUN CO PADA MOBIL DENGAN ARRAY SENSOR MENGGUNAKAN FUZZY CONTROLLER

    Directory of Open Access Journals (Sweden)

    Slamet Widodo

    2016-03-01

    Full Text Available Perkembangan teknologi otomotif sekarang ini semakin pesat yaitu dengan fasilitas accessories mobil yang semakin lengkap. Namun berbagai fasilitas yang terdapat dalam mobil tanpa disadari menyimpan ancaman bahaya bagi pengguna mobil salah satunya ketika system pada AC (Air Conditioner terjadi kebocoran maka gas CO (karbon monoksida akan memenuhi ruang mobil yang tertutup. Gas CO ini sangat berbahaya karena gas ini tidak berwarna, tidak berbau, dan tidak berasa sehingga sulit untuk dideteksi yang dapat menyebabkan orang yang ada didalam mobil menjadi mati lemas tanpa disadari karena menghirup gas CO yang bocor. Dengan fenomena tersebut dibutuhkan sebuah alat yang dapat mendeteksi dan mengontrol kebocoran gas CO untuk memberikan rasa aman kepada pengguna mobil. Alat ini menggunakan kendali logika fuzzy sebagai proses pengambilan keputusan sebagai hasil nilai dari inferensi kerja array sensor. Pengendali utama pada sistem menggunakan mikrokontroller ATmega32. Ketika array sensor yaitu TGS2442 dan TGS2600 mendeteksi kadar gas CO >29,0 ppm berarti dalam status bahaya sehingga buzzer akan aktif diikuti motor DC yang menggerakkan kaca mobil agar terbuka. Berdasarkan lima kali pengujian yang dilakukan didapatkanlah rata-rata selisih error output gas sebesar 0.29 ppm disaat kondisi aman dan 3.87 ppm disaat kondisi bahaya.

  2. Infrared Range Sensor Array for 3D Sensing in Robotic Applications

    Directory of Open Access Journals (Sweden)

    Yongtae Do

    2013-04-01

    Full Text Available This paper presents the design and testing of multiple infrared range detectors arranged in a two-dimensional (2D array. The proposed system can collect the sparse three-dimensional (3D data of objects and surroundings for robotics applications. Three kinds of tasks are considered using the system: detecting obstacles that lie ahead of a mobile robot, sensing the ground profile for the safe navigation of a mobile robot, and sensing the shape and position of an object on a conveyor belt for pickup by a robot manipulator. The developed system is potentially a simple alternative to high-resolution (and expensive 3D sensing systems, such as stereo cameras or laser scanners. In addition, the system can provide shape information about target objects and surroundings that cannot be obtained using simple ultrasonic sensors. Laboratory prototypes of the system were built with nine infrared range sensors arranged in a 3×3 array and test results confirmed the validity of system.

  3. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin; Dorfman, Adam; Hahm, Jong-in [Department of Chemical Engineering, Pennsylvania State University, 160 Fenske Laboratory, University Park, PA 16802 (United States)

    2006-06-28

    We report that engineered nanoscale zinc oxide structures can be effectively used for the identification of the biothreat agent, Bacillus anthracis by successfully discriminating its DNA sequence from other genetically related species. We explore both covalent and non-covalent linking schemes in order to couple probe DNA strands to the zinc oxide nanostructures. Hybridization reactions are performed with various concentrations of target DNA strands whose sequence is unique to Bacillus anthracis. The use of zinc oxide nanomaterials greatly enhances the fluorescence signal collected after carrying out duplex formation reaction. Specifically, the covalent strategy allows detection of the target species at sample concentrations at a level as low as a few femtomolar as compared to the detection sensitivity in the tens of nanomolar range when using the non-covalent scheme. The presence of the underlying zinc oxide nanomaterials is critical in achieving increased fluorescence detection of hybridized DNA and, therefore, accomplishing rapid and extremely sensitive identification of the biothreat agent. We also demonstrate the easy integration potential of nanoscale zinc oxide into high density arrays by using various types of zinc oxide sensor prototypes in the DNA sequence detection. When combined with conventional automatic sample handling apparatus and computerized fluorescence detection equipment, our approach can greatly promote the use of zinc oxide nanomaterials as signal enhancing platforms for rapid, multiplexed, high-throughput, highly sensitive, DNA sensor arrays.

  4. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays

    International Nuclear Information System (INIS)

    Kumar, Nitin; Dorfman, Adam; Hahm, Jong-in

    2006-01-01

    We report that engineered nanoscale zinc oxide structures can be effectively used for the identification of the biothreat agent, Bacillus anthracis by successfully discriminating its DNA sequence from other genetically related species. We explore both covalent and non-covalent linking schemes in order to couple probe DNA strands to the zinc oxide nanostructures. Hybridization reactions are performed with various concentrations of target DNA strands whose sequence is unique to Bacillus anthracis. The use of zinc oxide nanomaterials greatly enhances the fluorescence signal collected after carrying out duplex formation reaction. Specifically, the covalent strategy allows detection of the target species at sample concentrations at a level as low as a few femtomolar as compared to the detection sensitivity in the tens of nanomolar range when using the non-covalent scheme. The presence of the underlying zinc oxide nanomaterials is critical in achieving increased fluorescence detection of hybridized DNA and, therefore, accomplishing rapid and extremely sensitive identification of the biothreat agent. We also demonstrate the easy integration potential of nanoscale zinc oxide into high density arrays by using various types of zinc oxide sensor prototypes in the DNA sequence detection. When combined with conventional automatic sample handling apparatus and computerized fluorescence detection equipment, our approach can greatly promote the use of zinc oxide nanomaterials as signal enhancing platforms for rapid, multiplexed, high-throughput, highly sensitive, DNA sensor arrays

  5. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  6. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  7. Proceedings of the Adaptive Sensor Array Processing Workshop (12th) Held in Lexington, MA on 16-18 March 2004 (CD-ROM)

    National Research Council Canada - National Science Library

    James, F

    2004-01-01

    ...: The twelfth annual workshop on Adaptive Sensor Array Processing presented a diverse agenda featuring new work on adaptive methods for communications, radar and sonar, algorithmic challenges posed...

  8. Gradient and alternating diameter nanopore templates by focused ion beam guided anodization

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2010-01-01

    Ordered arrays of anodic alumina nanopores with uniform pore diameters have been fabricated by self-organized anodization of aluminum. However, gradient or alternating diameter nanopore arrays with designed interpore distances have not been possible. In this study, focused ion beam lithography is used to fabricate hexagonally arranged concaves with different diameters in designed arrangements on aluminum surfaces. The patterns are then used to guide the further growth of alumina nanopores in the subsequent oxalic acid anodization. Gradient and alternating nanopore arrangements have been attained by FIB patterning guided oxalic acid anodization. The fundamental understanding of the process is discussed.

  9. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    Science.gov (United States)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  10. Towards Development of Microcalorimeter Arrays of Mo/Au Transition-Edge Sensors with Bismuth Absorbers

    Science.gov (United States)

    Tralshawala, Nilesh; Brekosky, Regis; Figueroa-Feliciano, Enectali; Li, Mary; Stahle, Carl; Stahle, Caroline

    2000-01-01

    We report on our progress towards the development of arrays of X-ray microcalorimeters as candidates for the high resolution x-ray spectrometer on the Constellation-X mission. The microcalorimeter arrays (30 x 30) with appropriate pixel sizes (0.25 mm. x 0.25 mm) and high packing fractions (greater than 96%) are being developed. Each individual pixel has a 10 micron thick Bi X-ray absorber that is shaped like a mushroom to increase the packing fraction, and a Mo/Au proximity effect superconducting transition edge sensor (TES). These are deposited on a 0.25 or 0.5 micron thick silicon nitride membrane with slits to provide a controllable weak thermal link to the sink temperature. Studies are underway to model, test and optimize the TES pixel uniformity, critical current, heat capacity and the membrane thermal conductance in the array structure. Fabrication issues and procedures, and results of our efforts based on these optimizations will be provided.

  11. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    Science.gov (United States)

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  12. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    Science.gov (United States)

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evolution of miniature detectors and focal plane arrays for infrared sensors

    Science.gov (United States)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  14. Real-time odor discrimination using a bioelectronic sensor array based on the insect electroantennogram

    International Nuclear Information System (INIS)

    Myrick, A J; Hetling, J R; Park, K-C; Baker, T C

    2008-01-01

    Current trends in artificial nose research are strongly influenced by knowledge of biological olfactory systems. Insects have evolved over millions of years to detect and maneuver toward a food source or mate, or away from predators. The insect olfactory system is able to identify volatiles on a time scale that matches their ability to maneuver. Here, biological olfactory sense organs, insect antennae, have been exploited in a hybrid-device biosensor, demonstrating the ability to identify individual strands of odor in a plume passing over the sensor on a sub-second time scale. A portable system was designed to utilize the electrophysiological responses recorded from a sensor array composed of male or female antennae from four or eight different species of insects (a multi-channel electroantennogram, EAG). A computational analysis strategy that allows discrimination between odors in real time is described in detail. Following a training period, both semi-parametric and k-nearest neighbor (k-NN) classifiers with the ability to discard ambiguous responses are applied toward the classification of up to eight odors. EAG responses to individual strands in an odor plume are classified or discarded as ambiguous with a delay (sensor response to classification report) on the order of 1 s. The dependence of classification error rate on several parameters is described. Finally, the performance of the approach is compared to that of a minimal conditional risk classifier

  15. An Optical Wavefront Sensor Based on a Double Layer Microlens Array

    Directory of Open Access Journals (Sweden)

    Hsiang-Chun Wei

    2011-10-01

    Full Text Available In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin, the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.

  16. Response Optimization of a Chemical Gas Sensor Array using Temperature Modulation

    Directory of Open Access Journals (Sweden)

    Cristhian Durán

    2018-04-01

    Full Text Available This paper consists of the design and implementation of a simple conditioning circuit to optimize the electronic nose performance, where a temperature modulation method was applied to the heating resistor to study the sensor’s response and confirm whether they are able to make the discrimination when exposed to different volatile organic compounds (VOC’s. This study was based on determining the efficiency of the gas sensors with the aim to perform an electronic nose, improving the sensitivity, selectivity and repeatability of the measuring system, selecting the type of modulation (e.g., pulse width modulation for the analytes detection (i.e., Moscatel wine samples (2% of alcohol and ethyl alcohol (70%. The results demonstrated that by using temperature modulation technique to the heating resistors, it is possible to realize the discrimination of VOC’s in fast and easy way through a chemical sensors array. Therefore, a discrimination model based on principal component analysis (PCA was implemented to each sensor, with data responses obtaining a variance of 94.5% and accuracy of 100%.

  17. RETRACTED ARTICLE: Quasi-distributed fiber bragg grating array sensor for furnace applications

    Science.gov (United States)

    Reddy, P. Saidi; Sai Prasad, R. L. N.; Sen Gupta, D.; Sai Shankar, M.; Srimannarayana, K.; Ravinder Reddy, P.

    2012-05-01

    An experimental work on distributed temperature sensing making use of the fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of the temperature profile in high temperature boilers is presented. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λ B1 =1545.8 nm, λ B2 =1547 nm, λ B3 =1550.8 nm, λ B4 =1555.5 nm at 30 °C) written in the hydrogen-loaded fiber in line. All the FBGs are encapsulated inside a stainless steel tube using the rigid probe technique for avoiding micro cracks. The spatial distribution of the temperature profile inside a prototype boiler was measured experimentally both in horizontal and vertical directions employing the above sensor, and the results are presented. Further, the finite element simulation has been carried out by using ANSYS R11 software to predict temperature contours in the boiler, and the experimental and predicted results were found to be closely matching.

  18. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jianfeng Wu

    2016-05-01

    Full Text Available For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments.

  19. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-05-18

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach's performance with Multisim simulations and actual experiments.

  20. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    Science.gov (United States)

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  1. Nanopore formation on Au coated pyramid under electron beam irradiations (plasmonic nanopore on pyramid

    Directory of Open Access Journals (Sweden)

    Seong Soo Choi

    2016-03-01

    Full Text Available There have been tremendous interests about the single molecule analysis using a sold-state nanopore. The solid-state nanopore can be fabricated either by drilling technique, or diffusion technique by using electron beam irradiations. The solid-state SiN nanopore device with electrical detection technique recently fabricated, however, the solid-state Au nanopore with optical detection technique can be better utilized as the next generation single molecule sensor. In this report, the nanometer size openings with its size less than 10 nm on the diffused membrane on the 200 nm Au pyramid were fabricated by using field emission scanning electron microscopy (FESEM electron beam irradiations, transmission electron microscopy (TEM, etc. After the sample was being kept under a room environment for several months, several Au (111 clusters with ~6 nm diameter formed via Ostwald ripening are observed using a high resolution TEM imaging. The nanopore with Au nanoclusters on the diffused membrane can be utilized as an optical nanopore device. Keywords: Electron beam irradiation, Surface diffusion, Carbon contamination, Au cluster, Ostwald ripening

  2. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Wiederoder, Michael S; Nallon, Eric C; Weiss, Matt; McGraw, Shannon K; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Paffenroth, Randy; Uzarski, Joshua R

    2017-11-22

    A cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating. An array of 12 sensors each coated with a different polymer-GNP mixture was exposed 100 times to a cycle of single analyte vapors consisting of 5 chemically similar CWA simulants and 8 common background interferents. The collected data was vector normalized to reduce concentration dependency, z-scored to account for baseline drift and signal-to-noise ratio, and Kalman filtered to reduce noise. The processed data was dimensionally reduced with principal component analysis and analyzed with four different machine learning algorithms to evaluate discrimination capabilities. For 5 similarly structured CWA simulants alone 100% classification accuracy was achieved. For all analytes tested 99% classification accuracy was achieved demonstrating the CWA discrimination capabilities of the developed system. The novel sensor fabrication methods and data processing techniques are attractive for development of sensor platforms for discrimination of CWA and other classes of chemical vapors.

  3. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    , acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.

  4. A novel sensor array for field based ocular ultraviolet radiation measurements

    International Nuclear Information System (INIS)

    Fleming, D. P.; Walsh, J. E.; Moore, L. A.; Bergmanson, J. P.; McMahon, D.

    2006-01-01

    The intensification of terrestrial solar ultraviolet radiation (UVR) due to the diminution of the ozone layer has promoted a variety of research into establishing the impact of this elevated potential dose of UVR on biological tissues. Certain anterior ocular tissues have been found to be susceptible to damage by incident UVR and potentially blinding diseases such as pterygium are thought to be a direct result of absorbed UVR at the nasal limbus. There is a need for more accurate quantification and localisation of incident UVR at the anterior ocular surface. A novel solar blind photodiode sensor array system has been designed, constructed and tested for this purpose. Initial measurements to quantify the irradiance across the anterior ocular surface within the latitudes known as the 'pterygium belt' provide us with a set of core data for different head orientations and tilt angles and indicate the accuracy and stability of the system. (authors)

  5. Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Cukierman, A.; Czaplewski, D.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Gannon, R.; Guyser, R.; Halverson, N. W.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hubmayr, J.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thakur, R. B.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.; Yoon, K. W.

    2017-06-01

    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.

  6. Heavy Ion Transient Characterization of a Photobit Hardened-by-Design Active Pixel Sensor Array

    Science.gov (United States)

    Marshall, Paul W.; Byers, Wheaton B.; Conger, Christopher; Eid, El-Sayed; Gee, George; Jones, Michael R.; Marshall, Cheryl J.; Reed, Robert; Pickel, Jim; Kniffin, Scott

    2002-01-01

    This paper presents heavy ion data on the single event transient (SET) response of a Photobit active pixel sensor (APS) four quadrant test chip with different radiation tolerant designs in a standard 0.35 micron CMOS process. The physical design techniques of enclosed geometry and P-channel guard rings are used to design the four N-type active photodiode pixels as described in a previous paper. Argon transient measurements on the 256 x 256 chip array as a function of incident angle show a significant variation in the amount of charge collected as well as the charge spreading dependent on the pixel type. The results are correlated with processing and design information provided by Photobit. In addition, there is a large degree of statistical variability between individual ion strikes. No latch-up is observed up to an LET of 106 MeV/mg/sq cm.

  7. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    Directory of Open Access Journals (Sweden)

    Javier Macias-Guarasa

    2012-10-01

    Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  8. Multiple products management system with sensors array in automated storage and retrieval systems

    Science.gov (United States)

    Vongbunyong, Supachai; Roengritronnachai, Perawat; Kongsanit, Savanut; Chanok-owat, Chawisa; Polchankajorn, Pongsakorn

    2018-01-01

    Automated Storage and Retrieval Systems (AS/RS) have now been widely used in a number of industries due to its capability to automatically manage the storage of products in effective ways. One of the key features of AS/RS is that each rack is not assigned for a specific product resulting in the benefit of space utilization and logistics related issues. In this research, sensor arrays are equipped at each rack in order to enhance this feature. As a result, various products can be identified and mixed in each rack, so that the space utilization efficiency can be increased. To prove the concept, a prototype system consisting of a Cartesian robot that manages the storage and retrieval of products with 9 variations based on size and color. The concept of Cyber-Physical System and self-awareness of the system are also implemented in this concept prototype.

  9. A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jianfeng Wu

    2014-07-01

    Full Text Available The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers’ channel resistor and the adjacent elements.

  10. High-resolution parallel-detection sensor array using piezo-phototronics effect

    Science.gov (United States)

    Wang, Zhong L.; Pan, Caofeng

    2015-07-28

    A pressure sensor element includes a substrate, a first type of semiconductor material layer and an array of elongated light-emitting piezoelectric nanostructures extending upwardly from the first type of semiconductor material layer. A p-n junction is formed between each nanostructure and the first type semiconductor layer. An insulative resilient medium layer is infused around each of the elongated light-emitting piezoelectric nanostructures. A transparent planar electrode, disposed on the resilient medium layer, is electrically coupled to the top of each nanostructure. A voltage source is coupled to the first type of semiconductor material layer and the transparent planar electrode and applies a biasing voltage across each of the nanostructures. Each nanostructure emits light in an intensity that is proportional to an amount of compressive strain applied thereto.

  11. Control of Turing patterns and their usage as sensors, memory arrays, and logic gates

    Science.gov (United States)

    Muzika, František; Schreiber, Igor

    2013-10-01

    We study a model system of three diffusively coupled reaction cells arranged in a linear array that display Turing patterns with special focus on the case of equal coupling strength for all components. As a suitable model reaction we consider a two-variable core model of glycolysis. Using numerical continuation and bifurcation techniques we analyze the dependence of the system's steady states on varying rate coefficient of the recycling step while the coupling coefficients of the inhibitor and activator are fixed and set at the ratios 100:1, 1:1, and 4:5. We show that stable Turing patterns occur at all three ratios but, as expected, spontaneous transition from the spatially uniform steady state to the spatially nonuniform Turing patterns occurs only in the first case. The other two cases possess multiple Turing patterns, which are stabilized by secondary bifurcations and coexist with stable uniform periodic oscillations. For the 1:1 ratio we examine modular spatiotemporal perturbations, which allow for controllable switching between the uniform oscillations and various Turing patterns. Such modular perturbations are then used to construct chemical computing devices utilizing the multiple Turing patterns. By classifying various responses we propose: (a) a single-input resettable sensor capable of reading certain value of concentration, (b) two-input and three-input memory arrays capable of storing logic information, (c) three-input, three-output logic gates performing combinations of logical functions OR, XOR, AND, and NAND.

  12. Heterogeneous metal-oxide nanowire micro-sensor array for gas sensing

    International Nuclear Information System (INIS)

    DeMeo, Dante; E Vandervelde, Thomas; MacNaughton, Sam; Sonkusale, Sameer; Wang, Zhilong; Zhang, Xinjie

    2014-01-01

    Vanadium oxide, manganese oxide, tungsten oxide, and nickel oxide nanowires were investigated for their applicability as chemiresistive gas sensors. Nanowires have excellent surface-to-volume ratios which yield higher sensitivities than bulk materials. Sensing elements consisting of these materials were assembled in an array to create an electronic nose platform. Dielectrophoresis was used to position the nanomaterials onto a microfabricated array of electrodes, which was subsequently mounted onto a leadless chip carrier and printed circuit board for rapid testing. Samples were tested in an enclosed chamber with vapors of acetone, isopropanol, methanol, and aqueous ammonia. The change in resistance of each assembly was measured. Responses varied between nanowire compositions, each demonstrating unique and repeatable responses to different gases; this enabled direct detection of the gases from the ensemble response. Sensitivities were calculated based on the fractional resistance change in a saturated environment and ranged from 6 × 10 −4 to 2 × 10 −5 %change ppm −1 . (papers)

  13. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    Science.gov (United States)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  14. Flow-through nanohole array based sensor implemented on analogue smartphone components

    Science.gov (United States)

    Gomez-Cruz, Juan; Nair, Srijit; Ascanio, Gabriel; Escobedo, Carlos

    2017-08-01

    Mobile communications have massively populated the consumer electronics market over the past few years and it is now ubiquitous, providing a timeless opportunity for the development of smartphone-based technologies as point-of-care (POC) diagnosis tools1 . The expectation for a fully integrated smartphone-based sensor that enables applications such as environmental monitoring, explosive detection and biomedical analysis has increased among the scientific community in the past few years2,3. The commercialization forecast for smartphone-based sensing technologies is very promising, but reliable, miniature and cost-effective sensing platforms that can adapt to portable electronics in still under development. In this work, we present an integrated sensing platform based on flow-through metallic nanohole arrays. The nanohole arrays are 260 nm in diameter and 520 nm in pitch, fabricated using Focused Ion Beam (FIB) lithography. A white LED resembling a smartphone flash LED serves as light source to excite surface plasmons and the signal is recorded via a Complementary Metal-Oxide-Semiconductor (CMOS) module. The sensing abilities of the integrated sensing platform is demonstrated for the detection of (i) changes in bulk refractive index (RI), (ii) real-time monitoring of surface modification by receptor-analyte system of streptavidin-biotin.

  15. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    Science.gov (United States)

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  16. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  17. MLAOS: A Multi-Point Linear Array of Optical Sensors for Coniferous Foliage Clumping Index Measurement

    Directory of Open Access Journals (Sweden)

    Yonghua Qu

    2014-05-01

    Full Text Available The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS, which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8–10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy.

  18. Biquaternion beamspace with its application to vector-sensor array direction findings and polarization estimations

    Science.gov (United States)

    Li, Dan; Xu, Feng; Jiang, Jing Fei; Zhang, Jian Qiu

    2017-12-01

    In this paper, a biquaternion beamspace, constructed by projecting the original data of an electromagnetic vector-sensor array into a subspace of a lower dimension via a quaternion transformation matrix, is first proposed. To estimate the direction and polarization angles of sources, biquaternion beamspace multiple signal classification (BB-MUSIC) estimators are then formulated. The analytical results show that the biquaternion beamspaces offer us some additional degrees of freedom to simultaneously achieve three goals. One is to save the memory spaces for storing the data covariance matrix and reduce the computation efforts of the eigen-decomposition. Another is to decouple the estimations of the sources' polarization parameters from those of their direction angles. The other is to blindly whiten the coherent noise of the six constituent antennas in each vector-sensor. It is also shown that the existing biquaternion multiple signal classification (BQ-MUSIC) estimator is a specific case of our BB-MUSIC ones. The simulation results verify the correctness and effectiveness of the analytical ones.

  19. Color Calibration for Colorized Vision System with Digital Sensor and LED Array Illuminator

    Directory of Open Access Journals (Sweden)

    Zhenmin Zhu

    2016-01-01

    Full Text Available Color measurement by the colorized vision system is a superior method to achieve the evaluation of color objectively and continuously. However, the accuracy of color measurement is influenced by the spectral responses of digital sensor and the spectral mismatch of illumination. In this paper, two-color vision system illuminated by digital sensor and LED array, respectively, is presented. The Polynomial-Based Regression method is applied to solve the problem of color calibration in the sRGB and CIE  L⁎a⁎b⁎ color spaces. By mapping the tristimulus values from RGB to sRGB color space, color difference between the estimated values and the reference values is less than 3ΔE. Additionally, the mapping matrix ΦRGB→sRGB has proved a better performance in reducing the color difference, and it is introduced subsequently into the colorized vision system proposed for a better color measurement. Necessarily, the printed matter of clothes and the colored ceramic tile are chosen as the application experiment samples of our colorized vision system. As shown in the experimental data, the average color difference of images is less than 6ΔE. It indicates that a better performance of color measurement is obtained via the colorized vision system proposed.

  20. Geometrical modeling of a two-dimensional sensor array for determining spatial position of a passive object

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2004-01-01

    This paper presents a model of an active sensor array which can determine the spatial position of a passive object by illuminating the object via a small set of emitters and measure the intensity of the reflection by means of a small set of receivers. All emitters and receivers are located...

  1. A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth.

    Science.gov (United States)

    Wang, Xiaomei; Sun, Fazhe; Huang, Yongan; Duan, Yongqing; Yin, Zhouping

    2015-02-21

    Micropatterned ZnO nanorod arrays were fabricated by the mechanoelectrospinning-assisted direct-writing process and the hydrothermal growth process, and utilized as gas sensors that exhibited excellent Ohmic behavior and sensitivity response to oxidizing gas NO2 at low concentrations (1-100 ppm).

  2. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    Science.gov (United States)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  3. Synthesis of CdS nanorod arrays and their applications in flexible piezo-driven active H2S sensors

    International Nuclear Information System (INIS)

    Wang, Penglei; Deng, Ping; Nie, Yuxin; Zhao, Yayu; Xing, Lili; Xue, Xinyu; Zhang, Yan

    2014-01-01

    A flexible piezo-driven active H 2 S sensor has been fabricated from CdS nanorod arrays. By coupling the piezoelectric and gas sensing properties of CdS nanorods, the piezoelectric output generated by CdS nanorod arrays acts not only as a power source, but also as a response signal to H 2 S. Under externally applied compressive force, the piezoelectric output of CdS nanorod arrays is very sensitive to H 2 S. Upon exposure to 600 ppm H 2 S, the piezoelectric output of the device decreased from 0.32 V (in air) to 0.12 V. Such a flexible device can be driven by the tiny mechanical energy in our living environment, such as human finger pinching. Our research can stimulate a research trend on designing new material systems and device structures for high-performance piezo-driven active gas sensors. (paper)

  4. Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit

    2018-03-01

    New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.

  5. Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors

    International Nuclear Information System (INIS)

    Zhang, Jia; Zhang, Rongfu; Wang, Xiaona; Feng, Wei; Hu, PingAn; Wang, Zhenlong; O’Neill, William

    2013-01-01

    Patterning oriented reduced graphene oxide (rGO) into functional structures is significant for its application in electronics and sensors. A large array of highly oriented rGO microbelts are prepared by a soft lithography process. These rGO microbelts have a uniform structure that enables the massive production of graphene electronics using a simple mask shielding process. A high performance NH 3 sensor array which was fabricated from rGO microbelts exhibits a reproducible performance with the relative resistance response (ΔR/R 0 ) reaching 0.35, whilst offering a large concentration range response of 10 ppm ∼38%, showing these sensors to be both highly sensitive and responsive. The impact of working temperature on the response to NH 3 in low and high concentration ranges of NH 3 is also discussed. (paper)

  6. Revealing the properties of oils from their dissolved hydrocarbon compounds in water with an integrated sensor array system.

    Science.gov (United States)

    Qi, Xiubin; Crooke, Emma; Ross, Andrew; Bastow, Trevor P; Stalvies, Charlotte

    2011-09-21

    This paper presents a system and method developed to identify a source oil's characteristic properties by testing the oil's dissolved components in water. Through close examination of the oil dissolution process in water, we hypothesise that when oil is in contact with water, the resulting oil-water extract, a complex hydrocarbon mixture, carries the signature property information of the parent oil. If the dominating differences in compositions between such extracts of different oils can be identified, this information could guide the selection of various sensors, capable of capturing such chemical variations. When used as an array, such a sensor system can be used to determine parent oil information from the oil-water extract. To test this hypothesis, 22 oils' water extracts were prepared and selected dominant hydrocarbons analyzed with Gas Chromatography-Mass Spectrometry (GC-MS); the subsequent Principal Component Analysis (PCA) indicates that the major difference between the extract solutions is the relative concentration between the volatile mono-aromatics and fluorescent polyaromatics. An integrated sensor array system that is composed of 3 volatile hydrocarbon sensors and 2 polyaromatic hydrocarbon sensors was built accordingly to capture the major and subtle differences of these extracts. It was tested by exposure to a total of 110 water extract solutions diluted from the 22 extracts. The sensor response data collected from the testing were processed with two multivariate analysis tools to reveal information retained in the response patterns of the arrayed sensors: by conducting PCA, we were able to demonstrate the ability to qualitatively identify and distinguish different oil samples from their sensor array response patterns. When a supervised PCA, Linear Discriminate Analysis (LDA), was applied, even quantitative classification can be achieved: the multivariate model generated from the LDA achieved 89.7% of successful classification of the type of the

  7. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  8. Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hyuk; Girault, Hubert H.; Lee, Hye Jin [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, Hyungi [Gyeongbuk Technopark, Gyeongsan (Korea, Republic of); Girault, Hubert H. [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2013-09-15

    A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM){sub 2}) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the Ni(DBM){sub 2} ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by Ni(DBM){sub 2} across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over Br{sup -}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, CO{sub 3}{sup 2-}, CH{sub 3}COO{sup -} and SO{sub 4}{sup 2-} ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

  9. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    Science.gov (United States)

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Solution-based analysis of multiple analytes by a sensor array: toward the development of an electronic tongue

    Science.gov (United States)

    Savoy, Steven M.; Lavigne, John J.; Yoo, J. S.; Wright, John; Rodriguez, Marc; Goodey, Adrian; McDoniel, Bridget; McDevitt, John T.; Anslyn, Eric V.; Shear, Jason B.; Ellington, Andrew D.; Neikirk, Dean P.

    1998-12-01

    A micromachined sensor array has been developed for the rapid characterization of multi-component mixtures in aqueous media. The sensor functions in a manner analogous to that of the mammalian tongue, using an array composed of individually immobilized polystyrene-polyethylene glycol composite microspheres selectively arranged in micromachined etch cavities localized o n silicon wafers. Sensing occurs via colorimetric or fluorometric changes to indicator molecules that are covalently bound to amine termination sites on the polymeric microspheres. The hybrid micromachined structure has been interfaced directly to a charged-coupled-device that is used for the simultaneous acquisition of the optical data from the individually addressable `taste bud' elements. With the miniature sensor array, acquisition of data streams composed of red, green, and blue color patterns distinctive for the analytes in the solution are rapidly acquired. The unique combination of carefully chosen reporter molecules with water permeable microspheres allows for the simultaneous detection and quantification of a variety of analytes. The fabrication of the sensor structures and the initial colorimetric and fluorescent responses for pH, Ca+2, Ce+3, and sugar are reported. Interface to microfluidic components should also be possible, producing a complete sampling/sensing system.

  11. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    Science.gov (United States)

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters.

  12. DOA and Polarization Estimation Using an Electromagnetic Vector Sensor Uniform Circular Array Based on the ESPRIT Algorithm.

    Science.gov (United States)

    Wu, Na; Qu, Zhiyu; Si, Weijian; Jiao, Shuhong

    2016-12-13

    In array signal processing systems, the direction of arrival (DOA) and polarization of signals based on uniform linear or rectangular sensor arrays are generally obtained by rotational invariance techniques (ESPRIT). However, since the ESPRIT algorithm relies on the rotational invariant structure of the received data, it cannot be applied to electromagnetic vector sensor arrays (EVSAs) featuring uniform circular patterns. To overcome this limitation, a fourth-order cumulant-based ESPRIT algorithm is proposed in this paper, for joint estimation of DOA and polarization based on a uniform circular EVSA. The proposed algorithm utilizes the fourth-order cumulant to obtain a virtual extended array of a uniform circular EVSA, from which the pairs of rotation invariant sub-arrays are obtained. The ESPRIT algorithm and parameter pair matching are then utilized to estimate the DOA and polarization of the incident signals. The closed-form parameter estimation algorithm can effectively reduce the computational complexity of the joint estimation, which has been demonstrated by numerical simulations.

  13. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    Science.gov (United States)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  14. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    Science.gov (United States)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  15. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  16. Prediction of warmed-over flavour development in cooked chicken by colorimetric sensor array.

    Science.gov (United States)

    Kim, Su-Yeon; Li, Jinglei; Lim, Na-Ri; Kang, Bo-Sik; Park, Hyun-Jin

    2016-11-15

    The aim of this study was to develop a simple and rapid method based on colorimetric sensor array (CSA) for evaluation of warmed-over flavour (WOF) in cooked chicken. All samples were classified according to storage time by CSA coupled with principle component analysis (PCA) or hierarchical cluster analysis (HCA). The CSA data were used to establish prediction models with thiobarbituric acid reactive substances (TBARS), pentanal, hexanal, or heptanal associated with WOF by partial least square regression (PLSR). For the TBARS model, the coefficient of determination (rp(2)) was 0.9997 in the prediction range of 0.28-0.69mg/kg. In each of the models for pentanal, hexanal, and heptanal, all rp(2) were higher than 0.960 in the range of 0.58-2.10mg/kg, 5.50-11.69mg/kg, and 0.09-0.16mg/kg, respectively. These results demonstrate that the CSA was able to predict WOF development and to distinguish between each storage time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Remote assessment of cultural heritage environments with wireless sensor array networks.

    Science.gov (United States)

    Agbota, Henoc; Mitchell, John E; Odlyha, Marianne; Strlič, Matija

    2014-05-19

    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported.

  18. A method to design high SNR nanoscale magnetic sensors using an array of tunnelling magneto-resistance (TMR) devices

    International Nuclear Information System (INIS)

    Gomez, P; Litvinov, D; Khizroev, S

    2007-01-01

    This paper presents a systematic method to design and calculate tunnelling magneto-resistance (TMR) sensors with high signal-to-noise ratio (SNR). The sensing module consists of four TMR devices arranged in a Wheatstone-bridge configuration. Closed-form equations were obtained to calculate TMR sensor current, array output voltage, magneto-resistance ratio, overall noise (thermal and shot) and SNR for a given bandwidth. Using this technique we were able to maximize the SNR by tuning the many parameters of the TMR devices. Typical SNR values are in excess of 45 dB

  19. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  20. A Robust and Low-Complexity Gas Recognition Technique for On-Chip Tin-Oxide Gas Sensor Array

    Directory of Open Access Journals (Sweden)

    Farid Flitti

    2008-01-01

    Full Text Available Gas recognition is a new emerging research area with many civil, military, and industrial applications. The success of any gas recognition system depends on its computational complexity and its robustness. In this work, we propose a new low-complexity recognition method which is tested and successfully validated for tin-oxide gas sensor array chip. The recognition system is based on a vector angle similarity measure between the query gas and the representatives of the different gas classes. The latter are obtained using a clustering algorithm based on the same measure within the training data set. Experimented results on our in-house gas sensors array show more than 98% of correct recognition. The robustness of the proposed method is tested by recognizing gas measurements with simulated drift. Less than 1% of performance degradation is noted at the worst case scenario which represents a significant improvement when compared to the current state-of-the-art.

  1. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array

    Science.gov (United States)

    Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun

    2018-01-01

    Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).

  2. Least Squares Neural Network-Based Wireless E-Nose System Using an SnO₂ Sensor Array.

    Science.gov (United States)

    Shahid, Areej; Choi, Jong-Hyeok; Rana, Abu Ul Hassan Sarwar; Kim, Hyun-Seok

    2018-05-06

    Over the last few decades, the development of the electronic nose (E-nose) for detection and quantification of dangerous and odorless gases, such as methane (CH₄) and carbon monoxide (CO), using an array of SnO₂ gas sensors has attracted considerable attention. This paper addresses sensor cross sensitivity by developing a classifier and estimator using an artificial neural network (ANN) and least squares regression (LSR), respectively. Initially, the ANN was implemented using a feedforward pattern recognition algorithm to learn the collective behavior of an array as the signature of a particular gas. In the second phase, the classified gas was quantified by minimizing the mean square error using LSR. The combined approach produced 98.7% recognition probability, with 95.5 and 94.4% estimated gas concentration accuracies for CH₄ and CO, respectively. The classifier and estimator parameters were deployed in a remote microcontroller for the actualization of a wireless E-nose system.

  3. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design.

    Science.gov (United States)

    Hall, Travis; Lie, Donald Y C; Nguyen, Tam Q; Mayeda, Jill C; Lie, Paul E; Lopez, Jerry; Banister, Ron E

    2017-11-15

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients' long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient's vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping

  4. A Fusion Approach to Feature Extraction by Wavelet Decomposition and Principal Component Analysis in Transient Signal Processing of SAW Odor Sensor Array

    Directory of Open Access Journals (Sweden)

    Prashant SINGH

    2011-03-01

    Full Text Available This paper presents theoretical analysis of a new approach for development of surface acoustic wave (SAW sensor array based odor recognition system. The construction of sensor array employs a single polymer interface for selective sorption of odorant chemicals in vapor phase. The individual sensors are however coated with different thicknesses. The idea of sensor coating thickness variation is for terminating solvation and diffusion kinetics of vapors into polymer up to different stages of equilibration on different sensors. This is expected to generate diversity in information content of the sensors transient. The analysis is based on wavelet decomposition of transient signals. The single sensor transients have been used earlier for generating odor identity signatures based on wavelet approximation coefficients. In the present work, however, we exploit variability in diffusion kinetics due to polymer thicknesses for making odor signatures. This is done by fusion of the wavelet coefficients from different sensors in the array, and then applying the principal component analysis. We find that the present approach substantially enhances the vapor class separability in feature space. The validation is done by generating synthetic sensor array data based on well-established SAW sensor theory.

  5. Fabrication of close-packed TES microcalorimeter arrays using superconducting molybdenum/gold transition-edge sensors

    Science.gov (United States)

    Finkbeiner, F. M.; Brekosky, R. P.; Chervenak, J. A.; Figueroa-Feliciano, E.; Li, M. J.; Lindeman, M. A.; Stahle, C. K.; Stahle, C. M.; Tralshawala, N.

    2002-02-01

    We present an overview of our efforts in fabricating Transition-Edge Sensor (TES) microcalorimeter arrays for use in astronomical x-ray spectroscopy. Two distinct types of array schemes are currently pursued: 5×5 single pixel TES array where each pixel is a TES microcalorimeter, and Position-Sensing TES (PoST) array. In the latter, a row of 7 or 15 thermally-linked absorber pixels is read out by two TES at its ends. Both schemes employ superconducting Mo/Au bilayers as the TES. The TES are placed on silicon nitride membranes for thermal isolation from the structural frame. The silicon nitride membranes are prepared by a Deep Reactive Ion Etch (DRIE) process into a silicon wafer. In order to achieve the concept of closely packed arrays without decreasing its structural and functional integrity, we have already developed the technology to fabricate arrays of cantilevered pixel-sized absorbers and slit membranes in silicon nitride films. Furthermore, we have started to investigate ultra-low resistance through-wafer micro-vias to bring the electrical contact out to the back of a wafer. .

  6. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  7. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    Directory of Open Access Journals (Sweden)

    Chuanjun Liu

    2017-02-01

    Full Text Available The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM sensor arrays based on molecularly imprinted sol-gel (MISG materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL; nonanal (NAL and bezaldehyde (BAL. The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS and tetrabutoxytitanium (TBOT. Aminopropyltriethoxysilane (APT; diethylaminopropyltrimethoxysilane (EAP and trimethoxy-phenylsilane (TMP were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA; nonanoic acid (NA and benzoic acid (BA were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA; multivariate analysis of covariance (MANCOVA and hierarchical cluster analysis (HCA. The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP effect and the matrix

  8. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    Directory of Open Access Journals (Sweden)

    Xiwang Cui

    2016-11-01

    Full Text Available Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  9. Infrared detectors, focal plane arrays, and imaging sensors; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert T.

    1989-10-01

    The present conference on advancements in IR detectors, Schottky-barrier focal plane arrays, CCD image analysis, and HgCdTe materials gives attention to a 256 x 256 PtSi array for IR astronomy, proposals for a second-generation meteosat's advanced optical payload, cryogenic bipolar technology for on-focal-plane signal processing, a parallel cellular processing system for fast generation of perspective plots, and ultrahigh-speed CCD image sensors for scanning applications. Also discussed are MBE GaAs rib waveguide experiments at 10.6 microns, an interferometric thermal detector, the development status of superconducting IR detector research, the absorption coefficients of n-type Hg(1-x)Cd(x)Te samples, and the influence of the surface channel on crosstalk in HgCdTe photovoltaic arrays.

  10. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    International Nuclear Information System (INIS)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-01-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a ∼10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38

  11. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  12. Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes.

    Science.gov (United States)

    Choi, Tae Young; Hwang, Byeong-Ung; Kim, Bo-Yeong; Trung, Tran Quang; Nam, Yun Hyoung; Kim, Do-Nyun; Eom, Kilho; Lee, Nae-Eung

    2017-05-31

    Stretchable and transparent touch sensors are essential input devices for future stretchable transparent electronics. Capacitive touch sensors with a simple structure of only two electrodes and one dielectric are an established technology in current rigid electronics. However, the development of stretchable and transparent capacitive touch sensors has been limited due to changes in capacitance resulting from dimensional changes in elastomeric dielectrics and difficulty in obtaining stretchable transparent electrodes that are stable under large strains. Herein, a stretch-unresponsive stretchable and transparent capacitive touch sensor array was demonstrated by employing stretchable and transparent electrodes with a simple selective-patterning process and by carefully selecting dielectric and substrate materials with low strain responsivity. A selective-patterning process was used to embed a stretchable and transparent silver nanowires/reduced graphene oxide (AgNWs/rGO) electrode line into a polyurethane (PU) dielectric layer on a polydimethylsiloxane (PDMS) substrate using oxygen plasma treatment. This method provides the ability to directly fabricate thin film electrode lines on elastomeric substrates and can be used in conventional processes employed in stretchable electronics. We used a dielectric (PU) with a Poisson's ratio smaller than that of the substrate (PDMS), which prevented changes in the capacitance resulting from stretching of the sensor. The stretch-unresponsive touch sensing capability of our transparent and stretchable capacitive touch sensor has great potential in wearable electronics and human-machine interfaces.

  13. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Steven Kopitzke

    2014-02-01

    Full Text Available Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  14. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  15. Field-programmable gate array based controller for multi spot light-addressable potentiometric sensors with integrated signal correction mode

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Carl Frederik; Schusser, Sebastian; Spelthahn, Heiko [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Heinrich-Mussmann-Strasse 1, 52428 Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, 52425 Juelich (Germany); Wagner, Torsten; Yoshinobu, Tatsuo [Tohoku University, Department of Electronic Engineering, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Schoening, Michael J., E-mail: schoening@fh-aachen.de [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Heinrich-Mussmann-Strasse 1, 52428 Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, 52425 Juelich (Germany)

    2011-11-01

    Highlights: > Flexible up-scalable design of a light-addressable potentiometric sensor set-up. > Utilisation of a field-programmable gate array to address LAPS measurement spots. > Measurements in amplitude-mode and phase-mode for different pH solutions. > Amplitude, phase and frequency behaviour of LAPS for single and multiple light stimulus. > Signal calibration method by brightness control to compensated systematic errors. - Abstract: A light-addressable potentiometric sensor (LAPS) can measure the concentration of one or several analytes at the sensor surface simultaneously in a spatially resolved manner. A modulated light pointer stimulates the semiconductor structure at the area of interest and a responding photocurrent can be read out. By simultaneous stimulation of several areas with light pointers of different modulation frequencies, the read out can be performed at the same time. With the new proposed controller electronic based on a field-programmable gate array (FPGA), it is possible to control the modulation frequencies, phase shifts, and light brightness of multiple light pointers independently and simultaneously. Thus, it is possible to investigate the frequency response of the sensor, and to examine the analyte concentration by the determination of the surface potential with the help of current/voltage curves and phase/voltage curves. Additionally, the ability to individually change the light intensities of each light pointer is used to perform signal correction.

  16. Hydrogen Detection With a Gas Sensor Array – Processing and Recognition of Dynamic Responses Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Gwiżdż Patryk

    2015-03-01

    Full Text Available An array consisting of four commercial gas sensors with target specifications for hydrocarbons, ammonia, alcohol, explosive gases has been constructed and tested. The sensors in the array operate in the dynamic mode upon the temperature modulation from 350°C to 500°C. Changes in the sensor operating temperature lead to distinct resistance responses affected by the gas type, its concentration and the humidity level. The measurements are performed upon various hydrogen (17-3000 ppm, methane (167-3000 ppm and propane (167-3000 ppm concentrations at relative humidity levels of 0-75%RH. The measured dynamic response signals are further processed with the Discrete Fourier Transform. Absolute values of the dc component and the first five harmonics of each sensor are analysed by a feed-forward back-propagation neural network. The ultimate aim of this research is to achieve a reliable hydrogen detection despite an interference of the humidity and residual gases.

  17. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  18. Testing of Streckeisen STS-5A and Nanometrics Trillium 120PH Sensors for the Alaska Transportable Array

    Science.gov (United States)

    Abbasi Baghbadorani, A.; Aderhold, K.; Bloomquist, D.; Frassetto, A.; Miller, P. E.; Busby, R. W.

    2017-12-01

    Starting in 2014, the IRIS Transportable Array facility began to install and operate seismic stations in Alaska and western Canada. By the end of the project, the full deployment of the array will cover a grid of 280 stations spaced about 85 km apart covering all of mainland Alaska and parts of the Yukon, British Columbia, and the Northwest Territories. Approximately 200 stations will be operated directly by IRIS through at least 2019. A key aspect of the Alaska TA is the need for stations to operate autonomously, on account of the high cost of installation and potential subsequent visits to remote field-sites to repair equipment. The TA is using newly developed broadband seismometers Streckeisen STS-5A and Nanometrics Trillium-120PH, designed for installation in shallow posthole emplacements. These new instruments were extensively vetted beforehand, but they are still relatively new to the TA inventory. Here we will assess their performance under deployment conditions and after repeated commercial shipping and travel to the field. Our objective is to provide a thorough accounting of the identified failures of the existing inventory of posthole instruments. We will assess the practices and results of instrument testing by the PASSCAL Instrument Center/Array Operations Facility (PIC/AOF), Alaska Operations Center (AOC), and broadband seismic sensor manufacturers (Streckeisen, Nanometrics) in order to document potential factors in and stages during the process for instrument failures. This will help to quantify the overall reliability of the TA seismic sensors and quality of TA practices and data collection, and identify potential considerations in future TA operations. Our results show that the overall rate of failure of all posthole instruments is improved station performance after sensor replacement, and that these are key elements in assessing whether or not a sensor should be replaced in the field.

  19. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  20. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  1. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  2. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  3. Understanding focused ion beam guided anodic alumina nanopore development

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → We study the effect of FIB patterning on pore evolution during anodization. → FIB patterned concaves with 1.5 nm depth can effectively guide nanopore growth. → The edge effect of FIB guided patterns causes nanopores to bend. → Anodization window is enlarged to 50-80 V for 150 nm interpore distance hexagonal arrays. - Abstract: Focused ion beam (FIB) patterning in combination with anodization has shown great promise in creating unique pore patterns. This work is aimed to understand the effect of the FIB patterned sites in guiding anodized pore development. Highly ordered porous anodic alumina has been created with the guidance of FIB created patterns on electropolished aluminum followed by oxalic acid anodization. Shallow concaves created by the FIB with only 1.5 nm depth can effectively guide the growth of ordered nanopore patterns. With the guidance of the FIB pattern, the anodization rate is much faster and the nanopore growth direction bends at the boundary of the FIB patterned and un-patterned regions. FIB patterning also enlarges the anodization window; ordered nanopore arrays with 150 nm interpore distances can be produced under an applied potential from 50 V to 80 V. The fundamental understanding of these unique processes is discussed.

  4. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  5. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong

    2013-01-01

    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  6. Hydrogen bubble dynamic template fabrication of nanoporous Cu film supported by graphene nanaosheets: A highly sensitive sensor for detection of nitrite.

    Science.gov (United States)

    Majidi, Mir Reza; Ghaderi, Seyran

    2017-12-01

    High surface area nanoporous Cu film (NPCF) has been successfully synthesized using a hydrogen bubble dynamic template on the graphene nanosheets (GNs) modified glassy carbon electrode (GCE). The effect of different synthesis conditions such as applied potential and deposition time on the NPCF morphology was investigated. The structure and constituent of the NPCF-GNs/GCE were characterized by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and electrochemical methods. The study on electrocatalytic performance of the NPCF-GNs/GCE demonstrated that this electrode has excellent catalytic activity toward nitrite oxidation. The quantitative measurement of nitrite by amperometric method showed a wide concentration range (0.1-100µmolL -1 ) with a detection limit and a sensitivity of 8.87 × 10 -8 molL -1 and 3.1 AL/molcm 2 , respectively. The excellent electrochemical response and high sensitivity of the proposed electrode were attributed to the 3D structure of NPCF and the synergic effect of NPCF and GNs. Furthermore, this electrode showed some other advantages including good repeatability, high reproducibility, long-term stability and anti-interference performance toward nitrite sensing. The applicability of the proposed electrode was proved by successful determination of nitrite in real samples (tap water, river water and sausage samples). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Automated optical testing of LWIR objective lenses using focal plane array sensors

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  8. Reliability of Measured Data for pH Sensor Arrays with Fault Diagnosis and Data Fusion Based on LabVIEW

    OpenAIRE

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-01-01

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagn...

  9. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  10. Heat treatment effect on crystal structure and design of highly sensitive room temperature CO2 gas sensors using anodic Bi2O3 nanoporous formed in a citric acid electrolyte

    Science.gov (United States)

    Ahila, M.; Dhanalakshmi, J.; Celina Selvakumari, J.; Pathinettam Padiyan, D.

    2016-10-01

    The effect of annealing temperature on the crystal structure of anodic bismuth trioxide (ABO) layers prepared via anodization in a citric acid-based electrolyte was studied. The samples were annealed in air at temperatures ranging from 200 °C to 600 °C. Characterization of nanoporous ABO layers was carried out through x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-visible (UV-Vis) diffuse reflectance spectroscopy and photoluminescence (PL). Effects of heat treatment on crystallinity, morphology and gas-sensing properties were investigated in detail. The XRD measurements showed that a gradual phase change from beta to gamma occurs with an increase in annealing temperature. The beta to gamma transformation occurred between 500 and 600 °C. The changes in the average crystallite sizes of beta and gamma occurring during heat treatment of the ABO layers are correlated with the mechanism of gamma-phase nucleation. During the growth of the gamma phase, the grain size gets enlarged with a reduction in the total area of grain boundary. The pores’ formation and the pore diameter of both anodized and annealed samples were found to be in the range of 50 to 150 nm. The band gap of the ABO layer crystallines was determined using the diffuse reflectance technique according to the Kubelka-Munk theory. Results showed that the band gap of the ABO layer decreased from 4.09 to 2.42 eV when the particle size decreased from 58 to 24 nm. The CO2 sensing properties of the ABO were investigated at room temperature for 0-100 ppm concentration. The variations in the electrical resistances were measured with the exposure of CO2 as a function of time. The maximum value of the response magnitude of 77% was obtained for 100 ppm of CO2. These experimental results show that the ABO layer of nanoporous is a promising material for CO2 sensors at room temperature.

  11. SU-E-T-111: Development of Proton Dosimetry System Using Fiber-Optic Cerenkov Radiation Sensor Array

    Energy Technology Data Exchange (ETDEWEB)

    Son, J [National Cancer Center, Ilsan, Gyeonggi-do, Korea University, Seoul (Korea, Republic of); Kim, M; Shin, D; Lim, Y; Lee, S; Kim, J; Kim, J [National Cancer Center, Goyangsi, Gyeonggi-do (Korea, Republic of); Hwang, U [National Medical Center in Korea, Seoul, Seoul (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: We had developed and evaluated a new dosimetric system for proton therapy using array of fiber-optic Cerenkov radiation sensor (FOCRS) which can measure a percent depth dose (PDD) instantly. In this study, the Bragg peaks and spread out Bragg peak (SOBP) of the proton beams measured by FOCRS array were compared with those measured by an ion chamber. Methods and Method: We fabricated an optical fiber array of FOCRS in a handmade phantom which is composed of poly-methyl methacrylate (PMMA). There are 75 holes of 1mm diameter inside the phantom which is designed to be exposed in direction of beam when it is emerged in water phantom. The proton beam irradiation was carried out using IBA cyclotron PROTEUS 235 at national cancer center in Korea and a commercial data acquisition system was used to digitize the analog signal. Results: The measured Bragg peak and SOBP for the proton ranges of 7∼ 20 cm were well matched with the result from ion chamber. The comparison results show that the depth of proton beam ranges and the width of SOBP measured by array of FOCRS are comparable with the measurement from multi-layer ion chamber (MLIC) although there are some uncertainty in the measurement of FOCRS array for some specific beam ranges. Conclusion: The newly developed FOCRS array based dosimetric system for proton therapy can efficiently reduce the time and effort needed for proton beam range measurement compared to the conventional method and has the potential to be used for the proton pencil beam application.

  12. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    Science.gov (United States)

    Hall, Travis; Nguyen, Tam Q.; Mayeda, Jill C.; Lie, Paul E.; Lopez, Jerry; Banister, Ron E.

    2017-01-01

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is

  13. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    Directory of Open Access Journals (Sweden)

    Travis Hall

    2017-11-01

    Full Text Available It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF non-contact vital signs (NCVS monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the

  14. Nanostructured Fiber Optic Cantilever Arrays and Hybrid MEMS Sensors for Chemical and Biological Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in nano-/micro-scale sensor fabrication and molecular recognition surfaces offer promising opportunities to develop miniaturized hybrid fiber optic and...

  15. Data-driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  16. Data–driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  17. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    Directory of Open Access Journals (Sweden)

    Yu-Fei Gao

    2017-04-01

    Full Text Available This paper investigates a two-dimensional angle of arrival (2D AOA estimation algorithm for the electromagnetic vector sensor (EMVS array based on Type-2 block component decomposition (BCD tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD method.

  18. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA)

    Science.gov (United States)

    Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir

    2013-01-01

    This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119

  19. Biomimetic flow-sensor arrays based on the filiform hairs on the cerci of crickets

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Floris, J.; Jaganatharaja, R.K.; Izadi, N.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    In this paper we report on the latest developments in biomimetic flow-sensors based on the flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound

  20. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    International Nuclear Information System (INIS)

    Benitez, D; Gaydecki, P; Quek, S; Torres, V

    2007-01-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research

  1. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform.

    Science.gov (United States)

    Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin

    2018-05-09

    Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.

  2. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene-Based Sensor Arrays for Detecting Acetone and Ethanol

    Directory of Open Access Journals (Sweden)

    Ali Daneshkhah

    2017-03-01

    Full Text Available Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP/carbon black (CB composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO layer or by treating with infrared (IR. In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC or PEO dispersed in DEC (PEO/DEC to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed.

  3. An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors

    International Nuclear Information System (INIS)

    Mieloszyk, Magdalena; Skarbek, Lukasz; Ostachowicz, Wieslaw; Krawczuk, Marek

    2011-01-01

    This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS (registered) and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.

  4. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Science.gov (United States)

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2007-07-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  5. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  6. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    Science.gov (United States)

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  7. Blood leakage detection during dialysis therapy based on fog computing with array photocell sensors and heteroassociative memory model.

    Science.gov (United States)

    Wu, Jian-Xing; Huang, Ping-Tzan; Lin, Chia-Hung; Li, Chien-Ming

    2018-02-01

    Blood leakage and blood loss are serious life-threatening complications occurring during dialysis therapy. These events have been of concerns to both healthcare givers and patients. More than 40% of adult blood volume can be lost in just a few minutes, resulting in morbidities and mortality. The authors intend to propose the design of a warning tool for the detection of blood leakage/blood loss during dialysis therapy based on fog computing with an array of photocell sensors and heteroassociative memory (HAM) model. Photocell sensors are arranged in an array on a flexible substrate to detect blood leakage via the resistance changes with illumination in the visible spectrum of 500-700 nm. The HAM model is implemented to design a virtual alarm unit using electricity changes in an embedded system. The proposed warning tool can indicate the risk level in both end-sensing units and remote monitor devices via a wireless network and fog/cloud computing. The animal experimental results (pig blood) will demonstrate the feasibility.

  8. Blood leakage detection during dialysis therapy based on fog computing with array photocell sensors and heteroassociative memory model

    Science.gov (United States)

    Wu, Jian-Xing; Huang, Ping-Tzan; Li, Chien-Ming

    2018-01-01

    Blood leakage and blood loss are serious life-threatening complications occurring during dialysis therapy. These events have been of concerns to both healthcare givers and patients. More than 40% of adult blood volume can be lost in just a few minutes, resulting in morbidities and mortality. The authors intend to propose the design of a warning tool for the detection of blood leakage/blood loss during dialysis therapy based on fog computing with an array of photocell sensors and heteroassociative memory (HAM) model. Photocell sensors are arranged in an array on a flexible substrate to detect blood leakage via the resistance changes with illumination in the visible spectrum of 500–700 nm. The HAM model is implemented to design a virtual alarm unit using electricity changes in an embedded system. The proposed warning tool can indicate the risk level in both end-sensing units and remote monitor devices via a wireless network and fog/cloud computing. The animal experimental results (pig blood) will demonstrate the feasibility. PMID:29515815

  9. An Automated Sensing System for Steel Bridge Inspection Using GMR Sensor Array and Magnetic Wheels of Climbing Robot

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2016-01-01

    Full Text Available Corrosion is one of the main causes of deterioration of steel bridges. It may cause metal loss and fatigue cracks in the steel components, which would lead to the collapse of steel bridges. This paper presents an automated sensing system to detect corrosion, crack, and other kinds of defects using a GMR (Giant Magnetoresistance sensor array. Defects will change the relative permeability and electrical conductivity of the material. As a result, magnetic field density generated by ferromagnetic material and the magnetic wheels will be changed. The defects are able to be detected by using GMR sensor array to measure the changes of magnetic flux density. In this study, magnetic wheels are used not only as the adhesion device of the robot, but also as an excitation source to provide the exciting magnetic field for the sensing system. Furthermore, compared to the eddy current method and the MFL (magnetic flux leakage method, this sensing system suppresses the noise from lift-off value fluctuation by measuring the vertical component of induced magnetic field that is perpendicular to the surface of the specimen in the corrosion inspection. Simulations and experimental results validated the feasibility of the system for the automated defect inspection.

  10. Calibration of a Sensor Array (an Electronic Tongue for Identification and Quantification of Odorants from Livestock Buildings

    Directory of Open Access Journals (Sweden)

    Jens Jørgen Lønsmann Iversen

    2007-01-01

    Full Text Available This contribution serves a dual purpose. The first purpose was to investigate the possibility of using a sensor array (an electronic tongue for on-line identification and quantification of key odorants representing a variety of chemical groups at two different acidities, pH 6 and 8. The second purpose was to simplify the electronic tongue by decreasing the number of electrodes from 14, which was the number of electrodes in the prototype. Different electrodes were used for identification and quantification of different key odorants. A total of eight electrodes were sufficient for identification and quantification in micromolar concentrations of the key odorants n-butyrate, ammonium and phenolate in test mixtures also containing iso-valerate, skatole and p-cresolate. The limited number of electrodes decreased the standard deviation and the relative standard deviation of triplicate measurements in comparison with the array comprising 14 electrodes. The electronic tongue was calibrated using 4 different test mixtures, each comprising 50 different combinations of key odorants in triplicates, a total of 600 measurements. Back propagation artificial neural network, partial least square and principal component analysis were used in the data analysis. The results indicate that the electronic tongue has a promising potential as an on- line sensor for odorants absorbed in the bioscrubber used in livestock buildings.

  11. Reliability of measured data for pH sensor arrays with fault diagnosis and data fusion based on LabVIEW.

    Science.gov (United States)

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-12-13

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.

  12. Reliability of Measured Data for pH Sensor Arrays with Fault Diagnosis and Data Fusion Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liao

    2013-12-01

    Full Text Available Fault diagnosis (FD and data fusion (DF technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2 sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.

  13. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    Science.gov (United States)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  14. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    , we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.

  15. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-01

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  16. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    Science.gov (United States)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  17. Portable SERS sensor for malachite green and other small dye molecules

    Science.gov (United States)

    Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan

    2017-02-01

    Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.

  18. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    Science.gov (United States)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  19. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  20. Point-source reconstruction with a sparse light-sensor array for optical TPC readout

    International Nuclear Information System (INIS)

    Rutter, G; Richards, M; Bennieston, A J; Ramachers, Y A

    2011-01-01

    A reconstruction technique for sparse array optical signal readout is introduced and applied to the generic challenge of large-area readout of a large number of point light sources. This challenge finds a prominent example in future, large volume neutrino detector studies based on liquid argon. It is concluded that the sparse array option may be ruled out for reasons of required number of channels when compared to a benchmark derived from charge readout on wire-planes. Smaller-scale detectors, however, could benefit from this technology.

  1. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    Science.gov (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  2. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography

    Science.gov (United States)

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-12-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  3. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  4. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jae-Sung Lee

    2014-07-01

    Full Text Available We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone. To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt’s dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylaminocinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  5. Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study

    Science.gov (United States)

    2018-01-01

    Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis. PMID:29854364

  6. Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study

    Directory of Open Access Journals (Sweden)

    Kensuke Sekihara

    2018-01-01

    Full Text Available Although the signal space separation (SSS method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis.

  7. Ti/TiO 2 nanotube array electrode as a new sensor to ...

    Indian Academy of Sciences (India)

    The Ti/TiO2 nanotube array (Ti-NTA) electrode was prepared by anodizing of the Ti foil ... and the pH=3.0 and =1.0 V (vs. reference electrode) were determined as the ... It was found that the photocurrent of EG was linearly dependent on the ...

  8. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    Science.gov (United States)

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  9. Numerical and Experimental Characterization of Fiber-Reinforced Thermoplastic Composite Structures with Embedded Piezoelectric Sensor-Actuator Arrays for Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Klaudiusz Holeczek

    2016-02-01

    Full Text Available The paper presents preliminary numerical and experimental studies of active textile-reinforced thermoplastic composites with embedded sensor-actuator arrays. The goal of the investigations was the assessment of directional sound wave generation capability using embedded sensor-actuator arrays and developed a wave excitation procedure for ultrasound measurement tasks. The feasibility of the proposed approach was initially confirmed in numerical investigations assuming idealized mechanical and geometrical conditions. The findings were validated in real-life conditions on specimens of elementary geometry. Herein, the technological aspects of unique automated assembly of thermoplastic films containing adapted thermoplastic-compatible piezoceramic modules and conducting paths were described.

  10. The Xsense project: The application of an intelligent sensor array for high sensitivity handheld explosives detectors

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Schmidt, Michael Stenbæk; Bosco, Filippo

    2011-01-01

    Multiple independent sensors are used in security and military applications in order to increase sensitivity, selectivity and data reliability. The Xsense project has been initiated at the Technical University of Denmark in collaboration with a number of partners in an effort to produce a handheld...

  11. Design and Test of an Oscillation-based System Architecture for DNA Sensor Arrays

    NARCIS (Netherlands)

    Liu, Hongyuan; Kerkhoff, Hans G.; Richardson, Andrew; Zhang, X.; Nouet, Pascal; Azais, Florence

    2005-01-01

    A DfT strategy for MEMS-based DNA sensors is investigated in this paper. Based on a fault-free and defect model developed for a single sensing element and the VHDL-AMS simulation results, it is implied that an oscillation-based interface might be a potential solution for both testing and read out of

  12. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors.

    Science.gov (United States)

    McAlpine, Michael C; Ahmad, Habib; Wang, Dunwei; Heath, James R

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a 'nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  13. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

    Science.gov (United States)

    McAlpine, Michael C.; Ahmad, Habib; Wang, Dunwei; Heath, James R.

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a `nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  14. A Synchronized Sensor Array for Remote Monitoring of Avian and Bat Interactions with Offshore Renewable Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Suryan, Robert [Oregon State Univ., Corvallis, OR (United States). Department of Fisheries and Wildlife; Albertani, Roberto [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial, and Manufacturing Engineering; Polagye, Brian [Univ. of Washington, Seattle, WA (United States). Department of Mechanical Engineering, Northwest National Marine Renewable Energy Center

    2016-07-15

    Wind energy production in the U.S. is projected to increase to 35% of our nation’s energy by 2050. This substantial increase in the U.S. is only a portion of the global wind industry growth, as many countries strive to reduce greenhouse gas emissions. A major environmental concern and potential market barrier for expansion of wind energy is bird and bat mortality from impacts with turbine blades, towers, and nacelles. Carcass surveys are the standard protocol for quantifying mortality at onshore sites. This method is imperfect, however, due to survey frequency at remote sites, removal of carcasses by scavengers between surveys, searcher efficiency, and other biases as well as delays of days to weeks or more in obtaining information on collision events. Furthermore, carcass surveys are not feasible at offshore wind energy sites. Near-real-time detection and quantification of interaction rates is possible at both onshore and offshore wind facilities using an onboard, integrated sensor package with data transmitted to central processing centers. We developed and experimentally tested an array of sensors that continuously monitors for interactions (including impacts) of birds and bats with wind turbines. The synchronized array includes three sensor nodes: (1) vibration (accelerometers and contact microphones), (2) optical (visual and infrared spectrum cameras), and (3) bioacoustics (acoustic and ultrasonic microphones). Accelerometers and contact acoustic microphones are placed at the root of each blade to detect impact vibrations and sound waves propagating through the structure. On-board data processing algorithms using wavelet analysis detect impact signals exceeding background vibration. Stereo-visual and infrared cameras were placed on the nacelle to allow target tracking, distance, and size calculations. On-board image processing and target detection algorithms identify moving targets within the camera field of view. Bioacoustic recorders monitor vocalizations

  15. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  16. Wide-range frequency selectivity in an acoustic sensor fabricated using a microbeam array with non-uniform thickness

    International Nuclear Information System (INIS)

    Shintaku, Hirofumi; Kotera, Hidetoshi; Kobayashi, Takayuki; Zusho, Kazuki; Kawano, Satoyuki

    2013-01-01

    In this study, we have demonstrated the fabrication of a microbeam array (MBA) with various thicknesses and investigated the suitability it for an acoustic sensor with wide-range frequency selectivity. For this, an MBA composed of 64 beams, with thicknesses varying from 2.99–142 µm, was fabricated by using single gray-scale lithography and a thick negative photoresist. The vibration of the beams in air was measured using a laser Doppler vibrometer; the resonant frequencies of the beams were measured to be from 11.5 to 290 kHz. Lastly, the frequency range of the MBA with non-uniform thickness was 10.9 times that of the MBA with uniform thickness. (paper)

  17. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Directory of Open Access Journals (Sweden)

    A. Haidar

    2005-05-01

    Full Text Available We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a 90° angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  18. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Science.gov (United States)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  19. All-Elastomer 3-Axis Contact Resistive Tactile Sensor Arrays and Micromilled Manufacturing Methods Thereof

    Science.gov (United States)

    Charalambides, Alexandros (Inventor); Bergbreiter, Sarah (Inventor); Penskiy, Ivan (Inventor)

    2018-01-01

    At least one tactile sensor includes an insulating layer and a conductive layer formed on the surface of the insulating layer. The conductive layer defines at least one group of flexible projections extending orthogonally from the surface of the insulating layer. The flexible projections include a major projection extending a distance orthogonally from the surface and at least one minor projection that is adjacent to and separate from the major projection wherein the major projection extends a distance orthogonally that is greater than the distance that the minor projection extends orthogonally. Upon a compressive force normal to, or a shear force parallel to, the surface, the major projection and the minor projection flex such that an electrical contact resistance is formed between the major projection and the minor projection. A capacitive tactile sensor is also disclosed that responds to the normal and shear forces.

  20. Magnetic measurements using array of integrated Hall sensors on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Ďuran, Ivan; Hronová-Bilyková, Olena; Stöckel, Jan; Sentkerestiová, J.; Havlíček, Josef

    2008-01-01

    Roč. 79, č. 10 (2008), 10F123-10F123 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/17th./. Albuquerque, 11.05.2008-15.05.2008] R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic Sensor * Fusion Reactor * Magnetic Diagnostics * CASTOR tokamak Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.738, year: 2008

  1. Implementation of an Optical Readout System for High-Sensitivity Terahertz Microelectromechanical Sensor Array

    Science.gov (United States)

    2014-09-01

    rod moves about the illumination scene, the pixels in the detector start to flicker . The ‘ flickering ’ effect is due to the metal rod blocking THz...still possible to mitigate convective heat exchange between the sensor and the ambient surroundings. To mitigate the effects of convective heat...detector start to flicker . The ‘ flickering ’ effect is due to the metal rod blocking THz radiation. This effect is more apparent in the video

  2. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system.

    Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  3. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    2003-01-01

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system. Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  4. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.

    Science.gov (United States)

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-02-25

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

  5. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo.

    Science.gov (United States)

    Vicente-Pérez, Eva M; Quinn, Helen L; McAlister, Emma; O'Neill, Shannon; Hanna, Lezley-Anne; Barry, Johanne G; Donnelly, Ryan F

    2016-12-01

    To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo. Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film. Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion. For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.

  6. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity.

    Science.gov (United States)

    Chapman, Peter J; Vogt, Frank; Dutta, Pampa; Datskos, Panos G; Devault, Gerald L; Sepaniak, Michael J

    2007-01-01

    The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities.

  7. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    Science.gov (United States)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  8. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  9. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  10. Nanofluidic Device with Embedded Nanopore

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  11. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    Science.gov (United States)

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  12. Fabrication and Electrochemical Characterization of Micro- and Nanoelectrode Arrays for Sensor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Said, Nur Azura Mohd; Twomey, Karen; Ogurtsov, Vladimir I; Herzog, Gregoire [Tyndall National Institute, Lee Maltings, University College Cork, Cork (Ireland); Arrigan, Damien W M, E-mail: gregoire.herzog@tyndall.ie [Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth (Australia)

    2011-08-17

    This paper describes the fabrication of microelectrode arrays, with two different geometries: disc (Designs d1 and d2) and band (Designs b1, b2 and b3) using three critical dimensions (100 nm, 1 {mu}m and 10 {mu}m) leading to 5 different designs, fabricated by the combination of UV photolithographic and e-beam lithographic techniques. Three silicon nitride layer thicknesses (200, 300 and 500 nm) were chosen to determine an optimized transducer design and fabrication process. Cyclic voltammetry characterisation using a simple redox probe ion, ferreocenecarboxylic acid in phosphate buffered saline electrolyte solution, demonstrated steady-state voltammetric curves for d1, d2, b1 and b2. A good agreement between experimental and theoretical data is found for devices d1, d2, b1 and b2. The experimental current for b3, on the other hand, is much lower compared to the calculated one- perhaps due to the overlapping of the diffusion layers of neighbouring microelectrodes in the array.

  13. Ultra-low power high precision magnetotelluric receiver array based customized computer and wireless sensor network

    Science.gov (United States)

    Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.

    2016-12-01

    Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-