WorldWideScience

Sample records for nanopore sensor array

  1. Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines.

    Science.gov (United States)

    Bang, Jin Ho; Lim, Sung H; Park, Erwin; Suslick, Kenneth S

    2008-11-18

    A general method has been developed for the preparation of microspheres of nanoporous pigments, their formulation into chemically responsive pigment inks, and the printing of these inks as colorimetric sensor arrays. Using an ultrasonic-spray aerosol-gel synthesis from chemically responsive dyes and common silica precursors, 16 different nanoporous pigment microspheres have been prepared and characterized. New colorimetric sensor arrays have been created by printing inks of these chemically responsive pigments as primary sensor elements; these arrays have been successfully tested for the detection, identification, and quantitation of toxic aliphatic amines. Among 11 structurally similar amines, complete identification of each analyte without confusion was achieved using hierarchical cluster analysis (HCA). Furthermore, visual identification of ammonia gas was easily made at the IDLH (immediately dangerous to life or health), PEL (permissible exposure limits), and 0.1 PEL concentrations with high reproducibility.

  2. Nanopore sensors for DNA analysis

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Venkatesan, B.M.; Shim, Jeong

    2012-01-01

    Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene-based, and functionali......Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene...

  3. Nanopore sensors : From hybrid to abiotic systems

    NARCIS (Netherlands)

    Kocer, Armagan; Tauk, Lara; Dejardin, Philippe

    2012-01-01

    The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is provide

  4. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  5. Nanoporous thin film platform for biophotonic sensors

    Science.gov (United States)

    Alla, Suresh; Solanki, Rina; Mattley, Yvette D.; Dabhi, Harish; Shahriari, Mahmoud R.

    2009-02-01

    A Nanoporous glass matrix is developed to encapsulate molecular probes for monitoring important biological parameters such as DO. The hydrophobic nanoporous host matrix is designed and fabricated using room temperature sol gel technique. The doped sol gel is then coated on biocompatible self adhesive patches or directly coated on the biocontainers. We demonstrate the application of this technique in non-invasive monitoring DO as well as oxygen partial pressure in a closed fermentation process as well as in a cell culture plate during bacterial growth. Dynamic response of sensor, sensitivity and accuracy is also demonstrated in this paper.

  6. Controllable shrinking of inverted-pyramid silicon nanopore arrays by dry-oxygen oxidation.

    Science.gov (United States)

    Deng, Tao; Chen, Jian; Li, Mengwei; Wang, Yifan; Zhao, Chenxu; Zhang, Zhonghui; Liu, Zewen

    2013-12-20

    A novel and simple technique for the controllable shrinkage of inverted-pyramid silicon (Si) nanopore arrays is reported. The Si nanopore arrays with sizes from 60 to 150 nm, made using a combination of dry and wet etching, were shrunk to sub 10 nm, or even closed, using direct dry-oxygen oxidation at 900 ° C. The shrinkage process of the pyramidal nanopore induced by oxidation was carefully modeled and simulated. The simulation was found to be in good agreement with the experimental data within most of the oxidation time range. Using this method, square nanopore arrays with an average size of 30 nm, and rectangular nanopores and nanoslits with feature sizes as small as 8 nm, have been obtained. Furthermore, focused ion beam cutting experiments revealed that the inner structure of the nanopore after the shrinkage kept its typical inverted-pyramid shape, which is of importance in many fields such as biomolecular sensors and ionic analogs of electronic devices, as well as nanostencils for surface nano-patterning.

  7. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  8. Plasmonic devices and sensors built from ordered nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Benjamin W.; Kobayashi, Yoji (University of California, Berkeley); Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R. (University of California, Berkeley); Robertson, Ian M. (University of Illinois Urbana-Champaign, Urbana, IL); House, Stephen D. (University of Illinois Urbana-Champaign, Urbana, IL); Graham, Dennis D. (University of Illinois Urbana-Champaign, Urbana, IL); Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD); Chang, Noel N. (University of Illinois Urbana-Champaign, Urbana, IL); El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  9. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography

    Energy Technology Data Exchange (ETDEWEB)

    Woldering, Leon A; Tjerkstra, R Willem; Vos, Willem L [Complex Photonic Systems (COPS), MESA Institute for Nanotechnology and Department of Science and Technology, University of Twente, PO Box 217, NL-7500 AE Enschede (Netherlands); Jansen, Henri V [Transducers Science and Technology (TST), MESA Institute for Nanotechnology and Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, PO Box 217, NL-7500 AE Enschede (Netherlands); Setija, Irwan D [ASML Netherlands B V, De Run 6501, NL-5504 DR Veldhoven (Netherlands)], E-mail: l.a.woldering@utwente.nl

    2008-04-09

    We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF{sub 6}, optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750 nm, pore diameters between 310 and 515 nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips.

  10. Visible Genotype Sensor Array

    Directory of Open Access Journals (Sweden)

    Takashi Imai

    2008-04-01

    Full Text Available A visible sensor array system for simultaneous multiple SNP genotyping has been developed using a new plastic base with specific surface chemistry. Discrimination of SNP alleles is carried out by an allele-specific extension reaction using immobilized oligonucleotide primers. The 3’-ends of oligonucleotide primers are modified with a locked nucleic acid to enhance their efficiency in allelic discrimination. Biotin-dUTPs included in the reaction mixture are selectively incorporated into extending primer sequences and are utilized as tags for alkaline phosphatase-mediated precipitation of colored chemical substrates onto the surface of the plastic base. The visible precipitates allow immediate inspection of typing results by the naked eye and easy recording by a digital camera equipped on a commercial mobile phone. Up to four individuals can be analyzed on a single sensor array and multiple sensor arrays can be handled in a single operation. All of the reactions can be performed within one hour using conventional laboratory instruments. This visible genotype sensor array is suitable for “focused genomics” that follows “comprehensive genomics”.

  11. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  12. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...... to have bulk refractive index sensitivities of 169 nm/RIU at a laser wavelength of 600 nm, demonstrating strongly increased overlap of the modes with the analyte in comparison to solid state evanescent wave sensors....

  13. Fiber Optic Geophysics Sensor Array

    Science.gov (United States)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  14. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    Science.gov (United States)

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  15. Monitoring tetracycline through a solid-state nanopore sensor

    Science.gov (United States)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  16. Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography.

    Science.gov (United States)

    Wang, Xinnan; Xu, Shuping; Cong, Ming; Li, Haibo; Gu, Yuejiao; Xu, Weiqing

    2012-04-10

    A highly ordered and hierarchical structural nanopore array is fabricated via anodizing a pre-patterned aluminum foil under an optimized voltage. A pre-patterned hexagonal nanoindentation array on an aluminum substrate is prepared via the nanosphere lithography method. This pattern leads to an elaborate nanochannel structure with seven nanopores in each nanoindentation after anodization treatment. The structure achieved in our study is new, interesting, and likely to be applied in photonic devices.

  17. Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua; Zhao Qitao [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States); Guan Xiyun, E-mail: xguan@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2010-08-24

    Nanopore stochastic sensor works by monitoring the ionic current modulations induced by the passage of analytes of interest through a single pore, which can be obtained from a biological ion channel by self-assembly or artificially fabricated in a solid-state membrane. In this minireview, we overview the use of biological nanopores and artificial nanopores for the detection of terrorist agents including explosives, organophosphorus nerve agents, nitrogen mustards, organoarsenic compounds, toxins, and viruses. We also discuss the current challenge in the development of deployable nanopore sensors for real-world applications.

  18. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    JIANG WeiFen; XIAO ShunHua; ZHANG HuanYun; DONG YongFen; LI XinJian

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device response of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  19. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device re-sponse of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  20. A tip-attached tuning fork sensor for the control of DNA translocation through a nanopore

    Science.gov (United States)

    Hyun, Changbae; Kaur, Harpreet; Huang, Tao; Li, Jiali

    2017-02-01

    In this work, we demonstrate that a tuning fork can be used as a force detecting sensor for manipulating DNA molecules and for controlling the DNA translocation rate through a nanopore. One prong of a tuning fork is glued with a probe tip which DNA molecules can be attached to. To control the motion and position of the tip, the tuning fork is fixed to a nanopositioning system which has sub-nanometer position control. A fluidic chamber is designed to fulfill many requirements for the experiment: for the access of a DNA-attached tip approaching to a nanopore, for housing a nanopore chip, and for measuring ionic current through a solid-state nanopore with a pair of electrodes. The location of a nanopore is first observed by transmission electron microscopy, and then is determined inside the liquid chambers with an optical microscope combined with local scanning the probe tip on the nanopore surface. When a DNA-immobilized tip approaches a membrane surface near a nanopore, free ends of the immobilized DNA strings can be pulled and trapped into the pore by an applied voltage across the nanopore chip, resulting in an ionic current reduction through the nanopore. The trapped DNA molecules can be lifted up from the nanopore at a user controlled speed. This integrated apparatus allows manipulation of biomolecules (DNA, RNA, and proteins) attached to a probe tip with sub-nanometer precision, and simultaneously allows measurement of the biomolecules by a nanopore device.

  1. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Krishna Kant

    2014-11-01

    Full Text Available The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm and lengths (5 μm to 20 μm was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores.

  2. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    Science.gov (United States)

    Kant, Krishna; Priest, Craig; Shapter, Joe G.; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  3. Manipulation of Protein Translocation through Nanopores by Flow Field Control and Application to Nanopore Sensors.

    Science.gov (United States)

    Hsu, Wei-Lun; Daiguji, Hirofumi

    2016-09-20

    The control of biomolecule translocation through nanopores is important in nanopore protein detection. Improvement in current nanopore molecule control is desired to enhance capture rates, extend translocation times, and ensure the effective detection of various proteins in the same solutions. We present a method that simultaneously resolves these issues through the use of a gate-modulated conical nanopore coupled with solutions of varying salt concentration. Simulation results show that the presence of an induced reverse electroosmotic flow (IREOF) results in inlet flows from the two ends of the nanopore centerline entering into the nanopore in opposite directions, which simultaneously elevates the capture rate and immobilizes the protein in the nanopore, thus enabling steady current blockage measurements for a range of proteins. In addition, it is shown that proteins with different size/charge ratios can be trapped by a gate modulation intensified flow field at a similar location in the nanopore in the same solution conditions.

  4. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    Science.gov (United States)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  5. Tunable Impedance Spectroscopy Sensors via Selective Nanoporous Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M.; Small, Leo J

    2017-09-01

    Impedance spectroscopy was leveraged to directly detect the sorption of I 2 by selective adsorption into nanoporous metal organic frameworks (MOF). Films of three different types of MOF frameworks, respectively, were drop cast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 C. The MOF frameworks varied in topology from small pores (equivalent to I 2 diameter) to large pore frameworks. The combination of the chemistry of the framework and pore size dictated quantity and kinetics of I 2 adsorption. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. Independent of MOF framework characteristics, all resultant sensors showed high response to I 2 in air. As an example of sensor output, I 2 was readily detected at 25 C in air within 720 s of exposure, using an un-optimized sensor geometry with a small pored MOF. Further optimization of sensor geometry, decreasing MOF film thicknesses and maximizing sensor capacitance, will enable faster detection of trace I 2 .

  6. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R.; Shaw, Michael J.; Nielson, Gregory N.; Lentine, Anthony L.

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  7. Nanopore-CMOS Interfaces for DNA Sequencing.

    Science.gov (United States)

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  8. Detection of a single enzyme molecule based on a solid-state nanopore sensor

    Science.gov (United States)

    Tan, ShengWei; Gu, DeJian; Liu, Hang; Liu, QuanJun

    2016-04-01

    The nanopore sensor as a high-throughput and low-cost technology can detect a single molecule in a solution. In the present study, relatively large silicon nitride (Si3N4) nanopores with diameters of ∼28 and ∼88 nm were fabricated successfully using a focused Ga ion beam. We have used solid-state nanopores with various sizes to detect the single horseradish peroxidase (HRP) molecule and for the first time analyzed single HRP molecular translocation events. In addition, a real-time monitored single enzyme molecular biochemical reaction and a translocation of the product of enzyme catalysis substrates were investigated by using a Si3N4 nanopore. Our nanopore system showed a high sensitivity in detecting single enzyme molecules and a real-time monitored single enzyme molecular biochemical reaction. This method could also be significant for studying gene expression or enzyme dynamics at the single-molecule level.

  9. A nano-frost array technique to prepare nanoporous PVDF membranes

    Science.gov (United States)

    Lee, Min Kyung; Lee, Jonghwi

    2014-07-01

    Frost, the solid deposition of water vapor from humid air, forms on the surface of a solid substrate when its temperature drops below the freezing point of water. In this study, we demonstrate how this natural phenomenon can be applied to develop novel nanoporous materials. The solvent annealing of polyvinylidene fluoride (PVDF) infiltrated into nanopores induced template-directed dewetting thus preparing nanoembossing films. Then, water nanodroplets formed on the cold polymer nanopatterned surfaces following the embossing patterns, similar to dew formation on the ground. Subsequently, the nanodroplets were frozen and then removed by freeze-drying. This nano-frost array technique produced nanoporous PVDF membranes with an average thickness of 250 (+/-48) nm. It was revealed that the nanopatterned surface formed by solvent annealing played an important role in achieving a nano-frost array with an adjustable size. Additionally, the freezing process led to significant changes of the PVDF crystallinity and polymorphism. Our results prove that the nano-frost array technique can be broadly used to design ordered nanoporous structures and provide new prospects in nanomaterial fields.Frost, the solid deposition of water vapor from humid air, forms on the surface of a solid substrate when its temperature drops below the freezing point of water. In this study, we demonstrate how this natural phenomenon can be applied to develop novel nanoporous materials. The solvent annealing of polyvinylidene fluoride (PVDF) infiltrated into nanopores induced template-directed dewetting thus preparing nanoembossing films. Then, water nanodroplets formed on the cold polymer nanopatterned surfaces following the embossing patterns, similar to dew formation on the ground. Subsequently, the nanodroplets were frozen and then removed by freeze-drying. This nano-frost array technique produced nanoporous PVDF membranes with an average thickness of 250 (+/-48) nm. It was revealed that the

  10. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  11. A Vacuum Microelectronic Pressure Sensor Array Integrated with Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    SU Jie; XIA Shanhong; CHEN Shaofeng

    2001-01-01

    This paper presents a microsystemthat integrates a Vacuum Microelectronic pressuresensor array with a temperature sensor. The Vac-uum Microelectronic pressure sensor array consists of4 × 4 sensing elements. The temperature sensor is aPt-thin-film resistor. Computer aided design is usedto optimize the structure.

  12. Fiber Optic Pressure Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array for measuring air flow pressure at multiple points on the skin of aircrafts for Flight Load Test...

  13. Fiber Optic Pressure Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array System for measuring air flow pressure at multiple points on the skin of aircrafts for Flight...

  14. Crosstalk between adjacent nanopores in a solid-state membrane array for multi-analyte high-throughput biomolecule detection

    Science.gov (United States)

    Raza, Muhammad Usman; Saleem, Sajid; Ali, Waqas; Iqbal, Samir M.

    2016-08-01

    Single nanopores are used to detect a variety of biological molecules. The modulations in ionic current under applied bias across the nanopore contain important information about translocating species, thus providing single analyte detection. These systems are, however, challenged in practical situations where multiple analytes have to be detected at high throughput. This paper presents the analysis of a multi-nanopore system that can be used for the detection of analytes with high throughput. As a scalable model, two nanopores were simulated in a single solid-state membrane. The interactions of the electric fields at the mouths of the individual nanopores were analyzed. The data elucidated the electrostatic properties of the nanopores from a single membrane and provided a framework to calculate the -3 dB distance, akin to the Debye length, from one nanopore to the other. This distance was the minimum distance between the adjacent nanopores such that their individual electric fields did not significantly interact with one another. The results can help in the optimal experimental design to construct solid-state nanopore arrays for any given nanopore size and applied bias.

  15. Side-gated ultrathin-channel nanopore FET sensors.

    Science.gov (United States)

    Yanagi, Itaru; Oura, Takeshi; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi

    2016-03-18

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET's drain current during DNA translocation through the nanopore.

  16. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  17. Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity

    Directory of Open Access Journals (Sweden)

    Anna Eichler-Volf

    2016-05-01

    Full Text Available Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In contrast to the influence of topography, the influence of relative humidity (RH on adhesion has been widely neglected. Some previous works deal with the influence of RH on the adhesive performance of fibrillar adhesive pads. Commonly, humidity-induced softening of the fibrils enhances adhesion. However, little is known on the influence of RH on solid anti-adhesive surfaces. We prepared polymeric nanoporous monolithic microsphere arrays (NMMAs with microsphere diameters of a few 10 µm to test their anti-adhesive properties at RHs of 2% and 90%. Despite the presence of continuous nanopore systems through which the inner nanopore walls were accessible to humid air, the topography-induced anti-adhesive properties of NMMAs on tacky counterpart surfaces were retained even at RH = 90%. This RH-independent robustness of the anti-adhesive properties of NMMAs significantly contrasts the adhesion enhancement by humidity-induced softening on nanoporous fibrillar adhesive pads made of the same material.

  18. Piezoresistive Foam Sensor Arrays for Marine Applications

    CERN Document Server

    Dusek, Jeff E; Lang, Jeffrey H

    2016-01-01

    Spatially-dense pressure measurements are needed on curved surfaces in marine environments to provide marine vehicles with the detailed, real-time measurements of the near-field flow necessary to improve performance through flow control. To address this challenge, a waterproof and conformal pressure sensor array comprising carbon black-doped-silicone closed-cell foam (CBPDMS foam) was developed for use in marine applications. The response of the CBPDMS foam sensor arrays was characterized using periodic hydrodynamic pressure stimuli from vertical plunging, from which a piecewise polynomial calibration was developed to describe the sensor response. Inspired by the distributed pressure and velocity sensing capabilities of the fish lateral line, the CBPDMS foam sensor arrays have significant advantages over existing commercial sensors for distributed flow reconstruction and control. Experimental results have shown the sensor arrays to have sensitivity on the order of 5 Pascal, dynamic range of 50-500 Pascal; are...

  19. A Large Scale Virtual Gas Sensor Array

    Science.gov (United States)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  20. Electrical Characterization of a Nanoporous Silicon Sensor for Low ppm Gas Moisture Sensing

    Directory of Open Access Journals (Sweden)

    Tarikul ISLAM

    2007-11-01

    Full Text Available A nanoporous silicon sensor prepared by electrochemical etching of p type single crystal silicon in HF electrolyte has been characterized for measuring gas moisture in the range of 6 to 100 ppmV. Impedance characteristics show that PS may also be useful for developing CMOS compatible trace moisture sensor. The behavior of the capacitive sensor has also been inverse modeled using multilayer perceptron neural network to determine the concentration of the soft sensor. The simulation results closely follow the actual sensor response.

  1. Self-assembled nanowire arrays as three-dimensional nanopores for filtration of DNA molecules.

    Science.gov (United States)

    Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu

    2015-01-01

    Molecular filtration and purification play important roles for biomolecule analysis. However, it is still necessary to improve efficiency and reduce the filtration time. Here, we show self-assembled nanowire arrays as three-dimensional (3D) nanopores embedded in a microfluidic channel for ultrafast DNA filtration. The 3D nanopore structure was formed by a vapor-liquid-solid (VLS) nanowire growth technique, which allowed us to control pore size of the filtration material by varying the number of growth cycles. λ DNA molecules (48.5 kbp) were filtrated from a mixture of T4 DNA (166 kbp) at the entrance of the 3D nanopore structure within 1 s under an applied electric field. Moreover, we observed single DNA molecule migration of T4 and λ DNA molecules to clarify the filtration mechanism. The 3D nanopore structure has simplicity of fabrication, flexibility of pore size control and reusability for biomolecule filtration. Consequently it is an excellent material for biomolecular filtration.

  2. Sub-additive ionic transport across arrays of solid-state nanopores

    Science.gov (United States)

    Gadaleta, A.; Sempere, C.; Gravelle, S.; Siria, A.; Fulcrand, R.; Ybert, C.; Bocquet, L.

    2014-01-01

    Nanopores, either biological, solid-state, or ultrathin pierced graphene, are powerful tools which are central to many applications, from sensing of biological molecules to desalination and fabrication of ion selective membranes. However, the interpretation of transport through low aspect-ratio nanopores becomes particularly complex as 3D access effects outside the pores are expected to play a dominant role. Here, we report both experiments and theory showing that, in contrast to naïve expectations, long-range mutual interaction across an array of nanopores leads to a non-extensive, sub-linear scaling of the global conductance on the number of pores N. A scaling analysis demonstrates that the N-dependence of the conductance depends on the topology of the network. It scales like G ˜ N/log N for a 1D line of pores, and like G˜ sqrt{N} for a 2D array, in agreement with experimental measurements. Our results can be extended to alternative transport phenomena obeying Laplace equations, such as diffusive, thermal, or hydrodynamic transport. Consequences of this counter-intuitive behavior are discussed in the context of transport across thin membranes, with applications in energy harvesting.

  3. Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes

    Science.gov (United States)

    Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh

    2017-02-01

    Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.

  4. Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  5. Cell Proliferation Tracking Using Graphene Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Ronan Daly

    2012-01-01

    Full Text Available The development of a novel label-free graphene sensor array is presented. Detection is based on modification of graphene FET devices and specifically monitoring the change in composition of the nutritive components in culturing medium. Micro-dispensing of Escherichia coli in medium shows feasibility of accurate positioning over each sensor while still allowing cell proliferation. Graphene FET device fabrication, sample dosing, and initial electrical characterisation have been completed and show a promising approach to reducing the sample size and lead time for diagnostic and drug development protocols through a label-free and reusable sensor array fabricated with standard and scalable microfabrication technologies.

  6. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  7. Self-ordered nanopore arrays through hard anodization assisted by anode temperature ramp

    Science.gov (United States)

    Mohammadniaei, M.; Maleki, K.; Kashi, M. Almasi; Ramezani, A.; Mayamei, Y.

    2016-10-01

    In the present work, hard anodization assisted by anode temperature ramp was employed to fabricate self-ordered nanoporous alumina in the wide range of interpore distances (259-405 nm) in pure oxalic acid and mixture of oxalic and phosphoric acid solutions. Anode temperature ramp technique was employed to adjust the anodization current density to optimize the self-ordering of the nanopore arrays in the interpore range in which no ordered self-assembled hard anodized anodic aluminum oxide has reported. It is found that the certain ratios of oxalic and phosphoric acid solutions in this anodization technique increased self-ordering of the nanopores especially for anodization voltages over the 170 V by increasing alumina's viscous flow which could lead to decrease the overall current density of anodization, yet leveled up by anode temperature ramp. However, below 150 V anodization voltage, the ratio of interpore distance to the anodization voltage of the both anodization techniques was the same (~2 nm/V), while above this voltage, it increased to about 2.2 nm/V.

  8. A SQUID series array dc current sensor

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J; Drung, D [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)], E-mail: joern.beyer@ptb.de, E-mail: dietmar.drung@ptb.de

    2008-09-15

    Superconducting quantum interference device (SQUID) sensors are used to sense changes in various physical quantities, which can be transformed into changes in the magnetic flux threading the SQUID loop. We have developed a novel SQUID array dc current sensor. The device is based on a series array of identical dc SQUIDs. An input signal current to be measured is coupled tightly but non-uniformly to the SQUID array elements. The input signal coupling to the individual array elements is chosen such that a single-valued, non-periodic overall voltage response is obtained. Flux offsets in the individual SQUIDs which would compromise the sensor voltage response are avoided or can be compensated. We present simulations and experimental results on the SQUID Array for Dc (SQUAD) current sensor current sensor performance. A dc current resolution of <1 nA in a measurement bandwidth of 0-25 Hz is achieved for an input inductance of L{sub In}<3 nH.

  9. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    Science.gov (United States)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  10. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  11. Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure,silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of ~10 μm. The film resistivity of ZnO/Siheterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages.

  12. Enhanced Field Emission from Well-Patterned Silicon Nanoporous Pillar Arrays

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-Nan; LI Xin-Jian

    2006-01-01

    @@ The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.

  13. Rf glow discharge optical emission spectrometry for the analysis of arrays of Ni nanowires in nanoporous alumina and titania membranes

    Energy Technology Data Exchange (ETDEWEB)

    Prida, V.M.; Bordel, N.; Hernando, B. [Depto. Fisica, Universidad Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Navas, D.; Pirota, K.R.; Vazquez, M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Hernandez-Velez, M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Depto. Fisica Aplicada, C-XII, Universidad Autonoma Madrid, Cantoblanco, 28049 Madrid (Spain); Menendez, A.; Pereiro, R.; Sanz-Medel, A. [Depto. Quimica Fisica y Analitica, Facultad de Quimica, Julian Claveria 8, 33006 Oviedo (Spain)

    2006-05-15

    Anodic alumina (Al{sub 2}O{sub 3}) and titania (TiO{sub 2}) nanoporous oxide membranes are among the most widely studied self-organized nanopore templates, formed by uniform and well aligned arrays of synthetized nanometric pores or tubes. Here, we perform a comparative study of the depth profiling analysis in self-ordered alumina and titania nanoporous membrane templates by means of the radiofrequency glow discharge coupled to optical emission spectrometry (rf-GD-OES) technique. The densely packed columnar arrays of hexagonally self-ordered nanoporous alumina membranes investigated, with an average inner pore diameter of 35 nm and 105 nm interspacing, give an uniform thickness pore length about more than 5 {mu}m, depending on the anodization time. Meanwhile, the analysis of the anodized titania nanotubes, with an average inner pore diameter of 100 nm and 40 nm wall thickness, shown to be about 300 nm in length. Each type of membranes were also studied in both cases, when the nanopores were empty and after filling with electrodeposited Ni. The direct analysis by rf-GD-OES reveals the ability of this technique to control the quality of these so synthesized nanocomposites formed by electrodeposited Ni nanowires into the alumina and titania nanoporous templates. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Rf glow discharge optical emission spectrometry for the analysis of arrays of Ni nanowires in nanoporous alumina and titania membranes

    Science.gov (United States)

    Prida, V. M.; Navas, D.; Pirota, K. R.; Hernandez-Velez, M.; Menéndez, A.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.; Hernando, B.; Vazquez, M.

    2006-05-01

    Anodic alumina (Al2O3) and titania (TiO2) nanoporous oxide membranes are among the most widely studied self-organized nanopore templates, formed by uniform and well aligned arrays of synthetized nanometric pores or tubes. Here, we perform a comparative study of the depth profiling analysis in self-ordered alumina and titania nanoporous membrane templates by means of the radiofrequency glow discharge coupled to optical emission spectrometry (rf-GD-OES) technique. The densely packed columnar arrays of hexagonally self-ordered nanoporous alumina membranes investigated, with an average inner pore diameter of 35 nm and 105 nm interspacing, give an uniform thickness pore length about more than 5 μm, depending on the anodization time. Meanwhile, the analysis of the anodized titania nanotubes, with an average inner pore diameter of 100 nm and 40 nm wall thickness, shown to be about 300 nm in length. Each type of membranes were also studied in both cases, when the nanopores were empty and after filling with electrodeposited Ni. The direct analysis by rf-GD-OES reveals the ability of this technique to control the quality of these so synthesized nanocomposites formed by electrodeposited Ni nanowires into the alumina and titania nanoporous templates.

  15. Development of flexible array tactile sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2010-01-01

    In this paper we describe the development of an array tactile sensor for use in robotic grippers based on a flexible piezoresistive material. We start by comparing different cell structures in terms of output characteristics and we construct an array of cells in a row and columns layout. A real...... time data acquisition system scans all the cells and converts electrical resistance to tactile pressure maps. We validate that this information can be used to improve grasping and perform object recognition. Key words: piezoresistivity, tactile, sensor, pressure, robotics...

  16. Recognizing frequency characteristics of gas sensor array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel method based on independent component analyzing (ICA) in frequency domain to distinguish the frequency characteristics of multi-sensor system is presented. The conditions of this type of ICA are considered and each step of resolving the problem is discussed. For a two gas sensor array, the frequency characteristics including amplitude-frequency and phase-frequency are recognized by this method, and cross-sensitivity between them is also eliminated. From the principle of similarity, the recognition m...

  17. Arrays of TiO2 Nanowires as Photoelectrochemical Sensors for Hydrazine Detection

    Directory of Open Access Journals (Sweden)

    Michael Ongaro

    2015-05-01

    Full Text Available Electrodes based on arrays of TiO2 nanowires were prepared by template sol-gel synthesis with the goal of developing a hydrazine photoelectrochemical sensor. Experimental conditions were chosen so that the gelation reaction occurred inside the nanopores of track-etched polycarbonate membranes, with consequent filling with TiO2 nanowires. Different procedures for the removal of the template were examined, in order to obtain arrays of self-standing TiO2 nanowires. The nanowire arrays were bound to fluorine doped tin oxide substrates to produce handy photoelectrodes. The photocurrent recorded with the photoelectrodes in the presence of hydrazine showed significant dependence on the pollutant concentration. The development of a photoelectrochemical sensor for hydrazine detection in water samples, based on this principle, is presented.

  18. A Prototype Tactile Sensor Array.

    Science.gov (United States)

    1982-09-15

    Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial

  19. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  20. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong, E-mail: liyong@pdsu.edu.cn [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Song, Xiao Yan [Department of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045 (China); Song, Yue Li; Ji, Peng Fei; Zhou, Feng Qun; Tian, Ming Li; Huang, Hong Chun [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Li, Xin Jian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2016-02-15

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic properties of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.

  1. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions.

    Science.gov (United States)

    Zhang, Ling; Chang, Haixin; Hirata, Akihiko; Wu, Hongkai; Xue, Qi-Kun; Chen, Mingwei

    2013-05-28

    Precisely probing heavy metal ions in water is important for molecular biology, environmental protection, and healthy monitoring. Although many methods have been reported in the past decade, developing a quantitative approach capable of detecting sub-ppt level heavy metal ions with high selectivity is still challenging. Here we report an extremely sensitive and highly selective nanoporous gold/aptamer based surface enhanced resonance Raman scattering (SERRS) sensor. The optical sensor has an unprecedented detection sensitivity of 1 pM (0.2 ppt) for Hg(2+) ions, the most sensitive Hg(2+) optical sensor known so far. The sensor also exhibits excellent selectivity. Dilute Hg(2+) ions can be identified in an aqueous solution containing 12 metal ions as well as in river water and underground water. Moreover, the SERRS sensor can be reused without an obvious loss of the sensitivity and selectivity even after 10 cycles.

  2. Construction of a Piezoresistive Neural Sensor Array

    Science.gov (United States)

    Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.

    1996-01-01

    The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors

  3. Advanced Sensor Arrays and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Ryter, John Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramaiyan, Kannan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brosha, Eric L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    Novel sensor packaging elements were designed, fabricated, and tested in order to facilitate the transition of electrochemical mixed-potential sensors toward commercialization. Of the two designs completed, the first is currently undergoing field trials, taking direct measurements within vehicle exhaust streams, while the second is undergoing preliminary laboratory testing. The sensors’ optimal operating conditions, sensitivity to hydrogen, and long-­term baseline stability were also investigated. The sensing capabilities of lanthanum chromite (La0.8Sr0.2CrO3) and indium-­doped tin oxide (ITO) working electrodes were compared, and the ITO devices were selected for pre-­commercial field trials testing at a hydrogen fuel cell vehicle fueling station in California. Previous data from that fueling station were also analyzed, and the causes of anomalous baseline drift were identified.

  4. Time/Wavelength Fiber Bragg Grating Multiplexing Sensor Array

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.

  5. Adaptive and mobile ground sensor array.

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, Michael Warren; O' Rourke, William T.; Zenner, Jennifer; Maish, Alexander B.

    2003-12-01

    The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomous deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.

  6. Integrated chemiresistor array for small sensor platforms

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES,ROBERT C.; CASALNUOVO,STEPHEN A.; WESSENDORF,KURT O.; SAVIGNON,DANIEL J.; HIETALA,SUSAN LESLIE; PATEL,SANJAY V.

    2000-04-13

    Chemiresistors are fabricated from materials that change their electrical resistance when exposed to certain chemical species. Composites of soluble polymers with metallic particles have shown remarkable sensitivity to many volatile organic chemicals, depending on the ability of the analyte molecules to swell the polymer matrix. These sensors can be made extremely small (< 100 square microns), operate at ambient temperatures, and require almost no power to read-out. However, the chemiresistor itself is only a part of a more complex sensor system that delivers chemical information to a user who can act on the information. The authors present the design, fabrication and performance of a chemiresistor array chip with four different chemiresistor materials, heaters and a temperature sensor. They also show the design and fabrication of an integrated chemiresistor array, where the electronics to read-out the chemiresistors is on the same chip with the electrodes for the chemiresistors. The circuit was designed to perform several functions to make the sensor data more useful. This low-power, integrated chemiresistor array is small enough to be deployed on a Sandia-developed microrobot platform.

  7. Miniature Sensor Node with Conformal Phased Array

    Directory of Open Access Journals (Sweden)

    W. De Raedt

    2011-12-01

    Full Text Available This paper reports on the design and fabrication of a fully integrated antenna beam steering concept for wireless sensor nodes. The conformal array circumcises four cube faces with a silicon core mounted on each face. Every silicon core represents a 2 by 1 antenna array with an antenna element consisting of a dipole antenna, a balun, and a distributed MEMS phase shifter. All these components are based on a single wafer process and designed to work at 17.2 GHz. Simulations of the entire system and first results of individual devices are reported.

  8. Recognizing frequency characteristics of gas sensor array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel method based on independent component analyzing (ICA) in frequency domain to distinguish the frequency characteristics of multi-sensor system is presented. The conditions of this type of ICA are considered and each step of resolving the problem is discussed. For a two gas sensor array, the frequency characteristics including amplitude-frequency and phase-frequency are recognized by this method, and cross-sensitivity between them is also eliminated. From the principle of similarity, the recognition mean square error is no more than 0.085.

  9. Development of a Tactile Sensor Array

    DEFF Research Database (Denmark)

    Marian, Nicolae; Drimus, Alin; Bilberg, Arne

    2010-01-01

    . The paper describes the related research work we have developed for sensor design, exploration and control for a robot gripping system, in order to analyze normal forces applied on the tactile pixels for gripping force control and generate tactile images for gripping positioning and object recognition....... Section 1 gives an introduction of principles and technologies in tactile sensing for robot grippers. Section 2 presents the sensor cell (taxel) and array design and characterization. Section 3 introduces object recognition and shape analysis ideas showing a few preliminary examples, where geometrical...

  10. Surface-enhanced Raman scattering of patterned copper nanostructure electrolessly plated on arrayed nanoporous silicon pillars.

    Science.gov (United States)

    Jiang, Wei Fen; Shan, Wen Wen; Ling, Hong; Wang, Yu Sheng; Cao, Yan Xia; Li, Xin Jian

    2010-10-20

    A new synthesized composite structure, a patterned copper/silicon nanoporous pillar array (Cu/Si-NPA) made by depositing Cu on Si-NPA using an immersion plating method, can be used as a surface-enhanced Raman scattering (SERS) substrate. Its surface component and morphology were analyzed by x-ray diffraction and field-emission scanning electron microscopy, respectively. It was found that the surface was Cu with two kinds of crystal structures: a continuous film composed of Cu nanocrystallites covering the Si-NPA, and a quasi-regular, interconnected network composed of loop-chains of Cu crystallites, with the size in the range of several tens of nanometer to 300 nm, surrounding the porous Si pillars. The composite structure is strongly SERS active using rhodamine 6G as probe molecules, which is mainly due to the patterned hierarchical Cu structure. © 2010 IOP Publishing Ltd

  11. Optical networks for wideband sensor array

    Science.gov (United States)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  12. Piezoresistive pressure sensor array for robotic skin

    Science.gov (United States)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  13. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information of the...... of the displacement. Systems for probing lateral displacements and in-plane vibrations (1-D and 2-D) are displayed, as will systems for probing angular velocity and torsional vibrations of rotating objects....

  14. Schottky Junction Methane Sensors Using Electrochemically Grown Nanocrystalline-Nanoporous ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    P. K. Basu

    2009-01-01

    Full Text Available Nanocrystalline-nanoporous ZnO thin films were prepared by an electrochemical anodization method, and the films were tested as methane sensors. It was found that Pd-Ag catalytic contacts showed better sensing performance compared to other noble metal contacts like Pt and Rh. The methane sensing temperature could be reduced to as low as 100∘C by sensitizing nanocrystalline ZnO thin films with Pd, deposited by chemical method. The sensing mechanism has been discussed briefly.

  15. Chemical Sensors Based on Piezoresistive Cantilever Array

    Institute of Scientific and Technical Information of China (English)

    于晓梅; 张大成; 王丛舜; 杜先锋; 王小宝; 阮勇

    2003-01-01

    U-shaped and rectangle piezoresistive cantilever arrays have been designed with the analysing results of stress,noise and sensitivity of the cantilevers. Based on silicon micromachining technology, the piezoresistive cantilevers were fabricated by using polysilicon as the piezoresistive materials. With the measurement results of noise and sensitivity, the Hooge factor is calculated to be 3 × 10-3, the gauge factor is 27, and the minimum detectable deflection of piezoresistive cantilevers are calculated to be 1.0nm for rectangle cantilever and 0.5 nm for the Ushaped cantilever at a 6 V bias voltage and a 1000 Hz measurement bandwidth. Using polymer-coated cantilevers as individual sensors, their responses to water vapour and ammonia were tested by measuring their output voltage signals. The measured results show that the sensor sensitivity to ammonia can reach a few ppm and the sensor responses are quick.

  16. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  17. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  18. Fabrication of Highly Ordered Polymeric Nanodot and Nanowire Arrays Templated by Supramolecular Assembly Block Copolymer Nanoporous Thin Films

    Directory of Open Access Journals (Sweden)

    Liu Xikui

    2009-01-01

    Full Text Available Abstract Realizing the vast technological potential of patternable block copolymers requires both the precise controlling of the orientation and long-range ordering, which is still a challenging topic so far. Recently, we have demonstrated that ordered nanoporous thin film can be fabricated from a simple supramolecular assembly approach. Here we will extend this approach and provide a general route to fabricate large areas of highly ordered polymeric nanodot and nanowire arrays. We revealed that under a mixture solvent annealing atmosphere, a near-defect-free nanoporous thin film over large areas can be achieved. Under the direction of interpolymer hydrogen bonding and capillary action of nanopores, this ordered porous nanotemplate can be properly filled with phenolic resin precursor, followed by curation and pyrolysis at middle temperature to remove the nanotemplate, a perfect ordered polymer nanodot arrays replication was obtained. The orientation of the supramolecular assembly thin films can be readily re-aligned parallel to the substrate upon exposure to chloroform vapor, so this facile nanotemplate replica method can be further extend to generate large areas of polymeric nanowire arrays. Thus, we achieved a successful sub-30 nm patterns nanotemplates transfer methodology for fabricating polymeric nanopattern arrays with highly ordered structure and tunable morphologies.

  19. Array of Biomimetic Hair Sensor Dedicated for Flow Pattern Recognition

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Bruinink, C.M.; Kolster, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    Flow sensor arrays can be used to extract features from flow fields rather than averaging or providing local measurements provided the sensors in the array structure can be interrogated individually. This paper addresses the latest developments in fabrication and array interfacing of biomimetic

  20. Smartphone Operated Signal Transduction by Ion Nanogating (STING) Amplifier for Nanopore Sensors: Design and Analytical Application

    Science.gov (United States)

    Özel, Rıfat Emrah; Kahnemouyi, Sina; Fan, Hsinwen; Mak, Wai Han; Lohith, Akshar; Seger, Adam; Teodorescu, Mircea; Pourmand, Nader

    2016-01-01

    In this report, we demonstrated a handheld wireless voltage-clamp amplifier for current measurement of nanopore sensors. This amplifier interfaces a sensing probe and connects wirelessly with a computer or smartphone for the required stimulus input, data processing and storage. To test the proposed Signal Transduction by Ion Nanogating (STING) wireless amplifier, in the current study the system was tested with a nano-pH sensor to measure pH of standard buffer solutions and the performance was compared against the commercial voltage-clamp amplifier. To our best knowledge, STING amplifier is the first miniaturized wireless voltage-clamp platform operated with a customized smart-phone application (app). PMID:27602408

  1. A nanoporous thin-film miniature interdigitated capacitive impedance sensor for measuring humidity

    Directory of Open Access Journals (Sweden)

    T. Islam

    2014-07-01

    Full Text Available This paper presents a development of a low-cost miniature humidity sensor with an interdigitated aluminium electrode connected in parallel on quartz substrate. Interdigitated capacitive device has been fabricated using the photolithography method. The aluminium electrode was covered with sensitive film of a nanoporous thin film of γ-Al2O3 made from novel sol–gel technique. Nanostructured thin film offers very high surface to volume ratio with distribution of micro pores for moisture detection. Pore morphologies of the film have been studied by field emission electron microscope and X-ray diffraction methods. Impedance measurement of the miniature capacitive humidity sensor toward relative humidity was investigated at room temperature by Agilent 4294A impedance analyzer (Agilent, Santa Clara, CA, USA. The device exhibits short response and recovery times and good repeatability.

  2. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  3. Colorimetric Sensor Array for White Wine Tasting.

    Science.gov (United States)

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  4. Colorimetric Sensor Array for White Wine Tasting

    Directory of Open Access Journals (Sweden)

    Soo Chung

    2015-07-01

    Full Text Available A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2 for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  5. Advanced flow noise reducing acoustic sensor arrays

    Science.gov (United States)

    Fine, Kevin; Drzymkowski, Mark; Cleckler, Jay

    2009-05-01

    SARA, Inc. has developed microphone arrays that are as effective at reducing flow noise as foam windscreens and sufficiently rugged for tough battlefield environments. These flow noise reducing (FNR) sensors have a metal body and are flat and conformally mounted so they can be attached to the roofs of land vehicles and are resistant to scrapes from branches. Flow noise at low Mach numbers is created by turbulent eddies moving with the fluid flow and inducing pressure variations on microphones. Our FNR sensors average the pressure over the diameter (~20 cm) of their apertures, reducing the noise created by all but the very largest eddies. This is in contrast to the acoustic wave which has negligible variation over the aperture at the frequencies of interest (f less or equal than 400 Hz). We have also post-processed the signals to further reduce the flow noise. Two microphones separated along the flow direction exhibit highly correlated noise. The time shift of the correlation corresponds to the time for the eddies in the flow to travel between the microphones. We have created linear microphone arrays parallel to the flow and have reduced flow noise as much as 10 to 15 dB by subtracting time-shifted signals.

  6. Capillarity-based preparation system for optical colorimetric sensor arrays

    Science.gov (United States)

    Luo, Xiao-gang; Yi, Xin; Bu, Xiang-nan; Hou, Chang-jun; Huo, Dan-qun; Yang, Mei; Fa, Huan-bao; Lei, Jin-can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  7. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  8. Controlled release of a model vaccine by nanoporous ceramic microneedle arrays.

    Science.gov (United States)

    Boks, Martine A; Unger, Wendy W J; Engels, Steef; Ambrosini, Martino; Kooyk, Yvette van; Luttge, Regina

    2015-08-01

    Current vaccination technology can advance from the use of novel ceramic nanoporous microneedle arrays (npMNA), where the material serves as a storage reservoir for vaccines. Moreover, npMNA will enhance vaccine efficacy by more precisely reaching skin dendritic cells, the kickstarters of T and B cell immunity. In the present study we assessed the efficacy of vaccination using npMNAs by in vivo application of OVA257-264 peptides mixed with agonistic anti-CD40 antibodies as adjuvant. The induction of OVA-specific CD8(+) T cells via npMNA was comparable with the frequency induced via intradermal injection using needle-syringe. However, only when expanding the vaccination area by using two npMNAs the frequencies of induced IFN-γ-specific effector CD8(+) T cells were comparable with those induced via needle-syringe injection. Analysis of vaccine release from npMNA in a human ex vivo skin explant model revealed that OVA257-264 peptides were indeed delivered intradermal, and release also increased by prolonging the npMNA application time on the human skin. Together, our studies demonstrate the potential of npMNA for vaccine delivery in human skin and in vivo induction of CD8(+) effector T cell responses.

  9. Solvatochromic sensor array for the identification of common organic solvents.

    Science.gov (United States)

    Rankin, Jacqueline M; Zhang, Qifan; LaGasse, Maria K; Zhang, Yinan; Askim, Jon R; Suslick, Kenneth S

    2015-04-21

    A cross-reactive colorimetric sensor array composed of solvatochromic dyes in semi-liquid matrices was used to successfully discriminate among eleven common solvents. The multidimensional array response is attributed to both chemical (i.e., analyte-dye interactions) and physical (i.e., spot blooming and refractive index alteration) changes in the sensor spot.

  10. Broadband Field Directionally Mapping using Maneuverable Acoustic Sensor Arrays

    Science.gov (United States)

    2015-09-30

    Maneuverable Acoustic Sensor Arrays David Smith Dept. of Electrical and Computer Engineering Duke University, Box 90291 Durham, NC 27708 phone: (919) 660...splines) EM algorithm. Both algorithms were run using a simulated 30 element acoustic vector sensor array with 900 snapshots. Attention has also

  11. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LUO Zhen; SHAN Ping; BU Xianzheng; YUAN Shuxian; AO Sansan

    2010-01-01

    In this paper, the sensors array technique is applied to the quality detection of aluminum alloy spot weld-ing. The sensors array has three forms, i.e., linear magnetic sensors array, annular magnetic sensors array and cross magnetic sensors array. An algorithm based on principal component analysis is proposed to extract the signal eigen-values. The three types of magnetic sensors array are used in the experiment of monitoring the signal. After the eigen-values are extracted, they are used to build a relationship with the nugget information. The result shows that when the distance between the core of the array and the pole is 60 mm, the arrays work best. In this case, when the eigenvalues' range of the linear array is 0.006 5-0.015 1, the quality of the spots is eligible. To the annular and cross array, when the ranges are 0.082 9—0.131 6 and 0.085 1—0.098 2 respectively, the nugget quality is eligible.

  12. A colorimetric sensor array of porous pigments.

    Science.gov (United States)

    Lim, Sung H; Kemling, Jonathan W; Feng, Liang; Suslick, Kenneth S

    2009-12-01

    The development of a low-cost, simple colorimetric sensor array capable of the detection and identification of toxic gases is reported. This technology uses a disposable printed array of porous pigments in which metalloporphyrins and chemically-responsive dyes are immobilized in a porous matrix of organically modified siloxanes (ormosils) and printed on a porous membrane. The printing of the ormosil into the membrane is highly uniform and does not lessen the porosity of the membrane, as shown by scanning electron microscopy. When exposed to an analyte, these pigments undergo reactions that result in well-defined color changes due to strong chemical interactions: ligation to metal ions, Lewis or Brønsted acid-base interactions, hydrogen bonding, etc. Striking visual identification of 3 toxic gases has been shown at the IDLH (immediately dangerous to life and health) concentration, at the PEL (permissible exposure level), and at a level well below the PEL. Identification and quantification of analytes were achieved using the color change profiles, which were readily distinguishable in a hierarchical clustering analysis (HCA) dendrogram, with no misclassifications in 50 trials.

  13. Photon counting arrays for AO wavefront sensors

    CERN Document Server

    Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva

    2005-01-01

    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...

  14. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  15. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    Science.gov (United States)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  16. Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode.

    Science.gov (United States)

    Song, Min-Jung; Yun, Dong-Hwa; Min, Nam-Ki; Hong, Suk-In

    2007-01-01

    An electrochemical biosensor array system was fabricated for the diagnosis and monitoring of liver diseases. Analysis on this array system with multiple samples was performed for point-of-care testing or home-use applications. Cholesterol, bilirubin and aminotransferases present in the serum are well-known biomarkers for liver diseases. For this study, we describe our biosensor array system consisting of cholesterol, bilirubin and glutamate sensors. To immobilize sensing enzymes on the array system, we employed a silanization technique. We observed that porous silicon layers formed on each working electrode notably increase the effective surface area. Sensing electrodes were placed in sampling wells to minimize the cross-interference effect so that multiple sampling would be possible with a low noise current. Compared with traditional analyte measurement procedures, our novel analytical device demonstrated acceptable sensitivities for the analyses of multiple samples and analytes without a marked cross-interference effect. The device sensitivities observed were 0.2656 microA/mM for cholesterol, 0.15354 mA/mM for bilirubin, 0.13698 microA/(U/l) for alanine aminotransferase (ALT) and 0.45439 microA/(U/l) for aspartate aminotransferase (AST).

  17. Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template.

    Science.gov (United States)

    Kowalski, Damian; Schmuki, Patrik

    2010-12-07

    A new concept for formation of nanostructured intrinsically conducting polymers (ICP) is demonstrated. Polypyrrole can be electropolymerized from an ionic-surfactant-solution in TiO(2) nanotube framework to form a geometrical structure of self-organized nanopore arrays. Polymerization is initialized selectively in the space between nanotube walls forming a mechanically stable polymer network with controlled wall thickness from 40 to 10 nm. Such robust polymer nanostructures are very promising for application in electrochemical systems of limited charge carrier diffusion length.

  18. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    Science.gov (United States)

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10-11 to 1 × 10-9 mol L-1 and 1 × 10-9 to 1.4 × 10-6 mol L-1 with a remarkably low detection limit of 1.8 × 10-11 mol L-1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples.

  19. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.

    Science.gov (United States)

    Wolfrum, Bernhard; Kätelhön, Enno; Yakushenko, Alexey; Krause, Kay J; Adly, Nouran; Hüske, Martin; Rinklin, Philipp

    2016-09-20

    fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.

  20. Highly ordered TiO2 nano-pore arrays fabricated from a novel polymethylmethacrylate/polydimethylsiloxane soft template

    Institute of Scientific and Technical Information of China (English)

    P. Zhong; W. X. Que

    2010-01-01

    A novel soft polymer template containing a double-layer structure, which includes a thin layer of polymethylmethacrylate (PMMA) used as a pattern layer and a thicker layer of polydimethylsiloxane (PDMS) used as a back layer, was fabricated from a replica molding process. Anodic aluminum oxide (AAO) template was used as the replica mold to be replicated to the polymethylmethacrylate layer by a thermal infiltration process under a vacuum condition. Results indicate that PMMA/PDMS soft templates with different sizes could be easily fabricated from the as-prepared AAO replica mold. The PMMA/PDMS soft templates were then employed to imprint a TiO2 gel for achieving TiO2 nano-pore arrays. After the imprinting process, the PDMS layer was firstly peeled off and the PMMA layer was then removed into acetonitrile, which can avoid any demolding problems like damages or distortions. The TiO2 nano-pore arrays with the crystalline of anatase could be obtained at a heat treatment temperature of 450°C.

  1. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-11-30

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.

  2. An ultrasonic array sensor for spacecraft leak direction finding.

    Science.gov (United States)

    Holland, Stephen D; Roberts, Ron; Chimenti, D E; Song, Jun Ho

    2006-12-01

    We have developed an ultrasonic array sensor useable for locating air leaks in manned spacecraft and have found that this sensor locates leaks in a 1-m(2) plate to within 2 cm. The sensor consists of a 63-element multiplexed array plus a reference element, all constructed from a single PZT disc and a printed circuit board. Cross-correlations of signals from the array elements with signals from the single reference element provide a measurement of the leak noise passing through the spacecraft skin under the array. A spatial Fourier transform reveals the dominant direction of propagation. Triangulation from multiple sensor locations can be used to find the source of the leak.

  3. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  4. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  5. Semiconductor Nanomembrane based Flight Sensors and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Phase I program would develop and demonstrate semiconductor nanomembrane (NM) based flight sensors and arrays on flexible substrates, using SOI (Silicon on...

  6. Growth process and mechanism of a multi-walled carbon nanotube nest deposited on a silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Jian Lv; Yang Xiaohui [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-03-01

    A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented.

  7. Multipath Array Processing for Co-Prime and Under-Sampled Sensor Arrays

    Science.gov (United States)

    2015-09-30

    freedom than physical sensors present in the array. However, the cost of the achievable degrees of freedom is a loss of approximately half of the array...of degrees of freedom of the array. A co-prime frequency comb is a novel active sonar waveform that achieves range-Doppler performance similar...localization with moving co-prime arrays,” in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, 2015. 6 2

  8. A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring.

    Science.gov (United States)

    Boutry, Clementine M; Nguyen, Amanda; Lawal, Qudus Omotayo; Chortos, Alex; Rondeau-Gagné, Simon; Bao, Zhenan

    2015-11-18

    An array of highly sensitive pressure sensors entirely made of biodegradable materials is presented, designed as a single-use flexible patch for application in cardiovascular monitoring. The high sensitivity in combination with fast response time is unprecedented when compared to recent reports on biodegradable pressure sensors (sensitivity three orders of magnitude higher), as illustrated by pulse wave velocity measurements, toward hypertension detection.

  9. Vapor Phase Detection Using Chemi-Resistor Sensor Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Nathan S. Lewis

    1999-02-17

    This paper focuses on two main areas: understanding sensor response times so as to obtain improved time response in the field when needed for vapor tracking and classification, and improved theoretical understanding of the sensor response properties that generate the pattern on the array in response to a given analyte.

  10. Learning from Crickets: Artificial Hair-Sensor Array Developments

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2010-01-01

    We have successfully developed biomimetic flowsensitive hair-sensor arrays taking inspiration from mechanosensory hairs of crickets. Our current generation of sensors achieves sub mm/s threshold air-flow sensitivity for single hairs operating in a bandwidth of a few hundred Hz and is the result of a

  11. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  12. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  13. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    Science.gov (United States)

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-05-23

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.

  14. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    Science.gov (United States)

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  15. Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements

    Science.gov (United States)

    Apel, Pavel Yu; Blonskaya, Irina V.; Orelovitch, Oleg L.; Sartowska, Bozena A.; Spohr, Reimar

    2012-06-01

    We reconstruct the profile of asymmetric ion track nanopores from an algorithm developed for conductometric measurements of symmetric nanopores. The validity of the reconstruction is supported by FESEM observations. Our analysis reveals that asymmetric pores fabricated by one-sided etching are funnel-like and not conical. The analysis provides the constriction diameter and the pore profile as a function of etching time. The reconstruction of the pore profile defines the starting conditions of asymmetric nanopores at breakthrough. The deviation from the conical shape is most pronounced at the pore tip. This critical zone dominates transport properties relevant to ion conductance, selectivity, current rectification, resistive pulse sensing and biosensors. The classical cone approximation used until now underestimates the tip diameter by a factor of two. As transport processes in nanopores depend in a highly nonlinear way on the constriction diameter the presented reconstruction must be taken into account when studying ionic and molecular transport processes in asymmetric pores.

  16. Magnetic noise measurements using cross-correlated Hall sensor arrays

    Science.gov (United States)

    Jung, G.; Ocio, M.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.

    2001-01-01

    An experimental technique for measuring magnetic fluctuations by means of a double-layer Hall sensor array is described. The technique relies on cross-correlating Hall signals from two independent sensors positioned one above the other in two separate two-dimensional-electron-gas layers of a GaAs/AlGaAs heterostructure. The effectiveness of the technique is demonstrated by a reduction of the magnitude of the background noise floor of the correlated sensors with respect to the noise level of the best single sensor.

  17. Light Sensor Candidates for the Cherenkov Telescope Array

    CERN Document Server

    Knoetig, M L; Kurz, M; Hose, J; Lorenz, E; Schweizer, T; Teshima, M; Buzhan, P; Popova, E; Bolmont, J; Tavernet, J -P; Vincent, P; Shayduk, M

    2011-01-01

    We report on the characterization of candidate light sensors for use in the next-generation Imaging Atmospheric Cherenkov Telescope project called Cherenkov Telescope Array, a major astro-particle physics project of about 100 telescopes that is currently in the prototyping phase. Our goal is to develop with the manufacturers the best possible light sensors (highest photon detection efficiency, lowest crosstalk and afterpulsing). The cameras of those telescopes will be based on classical super-bi-alkali Photomultiplier tubes but also Silicon Photomultipliers are candidate light sensors. A full characterisation of selected sensors was done. We are working in close contact with several manufacturers, giving them feedback and suggesting improvements.

  18. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography.

    Science.gov (United States)

    Janssen, Xander J A; Jonsson, Magnus P; Plesa, Calin; Soni, Gautam V; Dekker, Cees; Dekker, Nynke H

    2012-11-30

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafer's top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 μm × 12 μm) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate.

  19. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  20. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  1. Temperature-dependent photoluminescence and mechanism of CdS thin film grown on Si nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Li, Yan Tao [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); School of Material Science and Engineering, Henan University of Technology, Zhengzhou 454052 (China); Hu, Chu Xiong [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Li, Xin Jian, E-mail: lixj@zzu.edu.cn [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2015-09-15

    Highlights: • CdS/silicon nanoporous pillar array (CdS/Si-NPA) was prepared by a CBD method. • The PL spectrum of CdS/Si-NPA was measured at different temperatures, from 10 to 300 K. • The PL spectrum was composed of four emission bands, obeying different mechanisms. • The PL degradation with temperature was due to phonon-induced escape of carriers. - Abstract: Si-based cadmium sulfide (CdS) is a prospective semiconductor system in constructing optoelectronic nanodevices, and this makes the study on the factors which may affect its optical and electrical properties be of special importance. Here we report that CdS thin film was grown on Si nanoporous pillar array (Si-NPA) by a chemical bath deposition method, and the luminescent properties of CdS/Si-NPA as well as its mechanism were studied by measuring and analyzing its temperature-dependent photoluminescence (PL) spectrum. The low-temperature measurement disclosed that the PL spectrum of CdS/Si-NPA could be decomposed into four emission bands, a blue band, a green band, a red band and an infrared band. The blue band was due to the luminescence from Si-NPA substrate, and the others originate from the CdS thin film. With temperature increasing, the peak energy, PL intensity and peak profile shape for the PL bands from CdS evolves differently. Through theoretical and fitting analyses, the origins of the green, red and infrared band are attributed to the near band-edge emission, the radiative recombination from surface defects to Cd vacancies and those to S interstitials, respectively. The cause of PL degradation is due to the thermal quenching process, a phonon-induced electron escape but with different activation energies. These results might provide useful information for optimizing the preparing parameters to promote the performance of Si-based CdS optoelectronic devices.

  2. Harmful Gas Recognition Exploiting a CTL Sensor Array

    Directory of Open Access Journals (Sweden)

    Yao Zheng

    2013-10-01

    Full Text Available In this paper, a novel cataluminescence (CTL-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field.

  3. Lamb wave sensors array for nonviscous liquid sensing

    Institute of Scientific and Technical Information of China (English)

    CHEN; Zhijun; HAN; Tao; JI; Xiaojun; GUO; Huawei; SHI; Wenkang

    2006-01-01

    The interdigital transducer (IDT) can excite Lamb wave in a piezoelectric plate loading with a liquid layer, and the phase velocity of Lamb wave is associated with the properties of the liquid layer. In this paper, the concept of effective permittivity is introduced to study the Lamb wave's potential application in liquid sensing. Considering the measuring of ideal nonviscous liquid, the sensors array is designed to sense the density and the dielectric constant of the liquid layer simultaneously. Using LiNbO3 as piezoelectric material, in order to improve the sensors array sensitivity and the electro-mechanical coupling coefficient, the optimized results including plate thicknesses and cut orientations are presented by numerical simulation. These studies show that the Lamb wave sensors array can be potential in liquid sensing.

  4. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    Science.gov (United States)

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-09-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.

  5. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Rosamaria Capuano

    2015-04-01

    Full Text Available Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays.

  6. Three dimensional stress vector sensor array and method therefor

    Science.gov (United States)

    Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery

    2005-07-05

    A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.

  7. Printed strain sensor array for application to structural health monitoring

    Science.gov (United States)

    Zymelka, Daniel; Togashi, Kazuyoshi; Ohigashi, Ryoichi; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2017-10-01

    We demonstrate the development and practical use of low-cost printed strain sensor arrays built for applications in structural health monitoring. Sensors embedded in the array were designed to provide compensation for temperature variations and to enable their use in different seasons. The evaluation was carried out in laboratory tests and with practical application on a highway bridge. Measurements on the bridge were performed 7 months and 1 year after their installation. The developed devices were fully operational and could detect and localize cracks accurately in the monitored bridge structure.

  8. Plasma-assisted cataluminescence sensor array for gaseous hydrocarbons discrimination.

    Science.gov (United States)

    Na, Na; Liu, Haiyan; Han, Jiaying; Han, Feifei; Liu, Hualin; Ouyang, Jin

    2012-06-05

    Combining plasma activation and cross-reactivity of sensor array, we have developed a plasma-assisted cataluminescence (PA-CTL) sensor array for fast sensing and discrimination of gaseous hydrocarbons, which can be potentially used for fast diagnosis of lung cancer. Based on dielectric barrier discharge, a low-temperature plasma is generated to activate gaseous hydrocarbons with low cataluminescence (CTL) activities. Extremely increased CTL responses have been obtained, which resulted in a plasma assistance factor of infinity (∞) for some hydrocarbons. On a 4 × 3 PA-CTL sensor array made from alkaline-earth nanomaterials, gaseous hydrocarbons showed robust and unique CTL responses to generate characteristic patterns for fast discrimination. Because of the difference in the component of hydrocarbons in breath, exhaled breath samples from donors with and without lung cancer were tested, and good discrimination has been achieved by this technique. In addition, the feasibility of multidimentional detection based on temperature was confirmed. It had good reproducibility and gave a linear range of 65-6500 ng/mL or 77-7700 ppmv (R > 0.98) for CH(4) with a detection limit of 33 ng/mL (38 ppmv) on MgO. The PA-CTL sensor array is simple, low-cost, thermally stable, nontoxic, and has an abundance of alkaline-earth nanomaterials to act as sensing elements. This has expanded the applications of CTL-based senor arrays and will show great potential in clinical fast diagnosis.

  9. Electrical Characterization of Spherical Copper Oxide Memristive Array Sensors

    Science.gov (United States)

    2014-03-27

    running, dinner-table debate etiquette, sailing, electric guitar, and the Seattle bus system, but only earned his Bachelor of Science in Electrical ... ELECTRICAL CHARACTERIZATION OF SPHERICAL COPPER OXIDE MEMRISTIVE ARRAY SENSORS THESIS James P. Orta, Second Lieutenant, USAF AFIT-ENP-14-M-40...not subject to copyright protection in the United States. AFIT-ENP-14-M-40 ELECTRICAL CHARACTERIZATION OF SPHERICAL COPPER OXIDE MEMRISTIVE ARRAY

  10. Identification of catecholamine neurotransmitters using fluorescence sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Forough [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Hormozi-Nezhad, M. Reza, E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahmoudi, Morteza, E-mail: mahmoudi@stanford.edu [Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551 (Iran, Islamic Republic of); Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101 (United States)

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and L-DOPA) and their mixtures in the concentration range of 0.25–30 μmol L{sup −1}. Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. - Highlights: • We have proposed a fluorescence sensor array to detect catecholamine neurotransmitters. • Visual differentiation of catecholamines is provided by fluorescence array fingerprints. • Discrimination of catecholamines from each other, and from their mixture is obtained on a PCA plot. • Proposed sensor array can be used for detection of catecholamines in urine samples.

  11. Fabrication and characterization of nano-gas sensor arrays

    Science.gov (United States)

    Hassan, H. S.; Kashyout, A. B.; Morsi, I.; Nasser, A. A. A.; Raafat, A.

    2015-03-01

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor's output resistance for O2, H2 and CO2 gases as a function of temperature.

  12. Study on Manganin High Pressure Array Sensor

    Institute of Scientific and Technical Information of China (English)

    DUAN Jianhua; DU Xiaosong; YANG Bangchao; ZHOU Hongre

    2003-01-01

    A new kind of thin film manganin aray gauge is fabricated by adopting a new sensor fabrication technique. The sensitive materials (manganin thin films) are first deposited by magnetron sputtering on fused silica substrates, and then covered by a layer of SiO2 thin films by electron beam evaporation. Based on impedance match method of "back configuration", the highest pressure measured in Al target is 51.68 Gpa, the highest pressure in SiO2 package is 35.396 Gpa and the piezoresistance coefficient k is 0.026 Gpa-1. The upper limit and measure precision of sensor is improved.

  13. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Nashiren Farzilah Mailah

    2011-11-01

    Full Text Available This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  14. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    Science.gov (United States)

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  15. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    Science.gov (United States)

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  16. Transparent and flexible force sensor array based on optical waveguide.

    Science.gov (United States)

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB.

  17. Conductive polymer sensor arrays for smart orthopaedic implants

    Science.gov (United States)

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.

    2017-04-01

    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  18. Optical design of microlens array for CMOS image sensors

    Science.gov (United States)

    Zhang, Rongzhu; Lai, Liping

    2016-10-01

    The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.

  19. The design and test of MEMS piezoresistive ultrasonic sensor arrays

    Institute of Scientific and Technical Information of China (English)

    Lian Deqin; He Changde; Zhang Hui; Yu Jiaqi; Yuan Kejing; Xue Chenyang

    2013-01-01

    The design,fabrication and packaging of a type of MEMS piezoresistive ultrasonic transducer array are introduced.The consistency of the resonance frequency and the sensitivity of the array are tested.Moreover,we detect the directivity and the multi-target identification ability of the array.The results of the consistency of the resonance frequency and the sensitivity show that there is a gap between the practical and theoretical results.This paper analyzes this problem in detail and points out the direction of improvement.As for the directivity,the actual result is consistent with the theoretical one.The results of multiple target distinguishing tests demonstrate that the smallest resolution angle of the array is 5.72° when the distance between the sensor array and measured objects is 2m.

  20. Design and optimization of a flexible arrayed eddy current sensor

    Science.gov (United States)

    Sun, Zhenguo; Cai, Dong; Zou, Cheng; Zhang, Wenzeng; Chen, Qiang

    2017-04-01

    The inspection of the hollow axle inner surfaces is a key process to guarantee the safety of high-speed trains. A novel flexible arrayed eddy current sensor was developed to improve the reliability of the non-destructive testing of the hollow axle inner surfaces, whose main innovative aspect was the new design of excitation/sensing traces to achieve a differential and arrayed configuration. Only two independent excitation traces were used in the sensor to induce eddy currents, which can be detected by 16 differential sensing elements. The lift-off effects and the influence of the excitation frequency and geometrical parameters of the proposed sensor was investigated and presented in this paper. Finite element models were built to analyze the effects of each parameter on the sensor response amplitude. Experimental validations were conducted using a representative set of sensors. Results from experiments and simulations were consistent with each other, which showed that the sensor design can substantially suppress the lift-off effects and modifications of the studied parameters can substantially improve the sensor performance.

  1. Broadband ultrasonic sensor array via optical frequency domain reflectometry

    Science.gov (United States)

    Gabai, Haniel; Steinberg, Idan; Eyal, Avishay

    2015-03-01

    We introduce a new approach for multiplexing fiber-based ultrasound sensors using Optical Frequency Domain Reflectometry (OFDR). In the present demonstration of the method, each sensor was a short section of Polyimide-coated single-mode fiber. One end of the sensing fiber was pigtailed to a mirror and the other end was connected, via a fiber optic delay line, to a 1X4 fiber coupler. The multiplexing was enabled by using a different delay to each sensor. Ultrasonic excitation was performed by a 1MHz transducer which transmitted 4μs tone-bursts above the sensor array. The ultrasound waves generated optical phase variations in the fibers which were detected using the OFDR method. The ultrasound field at the sensors was successfully reconstructed without any noticeable cross-talk.

  2. Multidimensional colorimetric sensor array for discrimination of proteins.

    Science.gov (United States)

    Mao, Jinpeng; Lu, Yuexiang; Chang, Ning; Yang, Jiaoe; Zhang, Sichun; Liu, Yueying

    2016-12-15

    An extensible multidimensional colorimetric sensor array for the detection of protein is developed based on DNA functionalized gold nanoparticles (DNA-AuNPs) as receptors. In the presence of different proteins, the aggregation behavior of DNA-AuNPs was regulated by the high concentrations of salt and caused different color change; while DNA-AuNPs grew induced by the reduction of HAuCl4 and NH2OH as a reductant on the surface of nanoparticles exhibited different morphologies and color appearance for different proteins. The transducers based on AuNPs modified by specific and nonspecific DNA enables naked-eye discrimination of the target analytes. This extensible sensing platform with only two receptors could simultaneously discriminate ten native proteins and their thermally denatured conformations using hierarchical cluster analysis (HCA) at the concentration of 50nM with 100% accuracy. This opens up the possibility of the sensor array to investigate the different conformational changes of biomacromolecules, and it gives a new direction of developing multidimensional transduction principles based on plasmonic nanoparticle conjugates. Furthermore, the sensing system could discriminate proteins at the concentration of 500nM in the presence of 50% human urine, which indicated this sensor array has great potential ability in analyzing real biological fluids. In addition, the multidimensional colorimetric sensor array is suitable for analysis of target analytes in the resource-restricted regions because of rapid, simple, low cost, and in-field detection with the naked eye.

  3. Vega interstage multi-parameter measurements using FBG sensor array

    NARCIS (Netherlands)

    Cheng, L.K.; Ahlers, B.

    2006-01-01

    A new generation launcher, called Vega, has undergone its first qualification tests of force loading. Multi-parameter FBG sensor array has been installed on the Interstage 1/2 for temperature monitoring and direct comparison with conventional strain gauges. © 2006 OSA/OFS 2006.

  4. Contact CMOS imaging of gaseous oxygen sensor array.

    Science.gov (United States)

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3](2+)) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  5. Very Large Chemical Sensor Array for Mimicking Biological Olfaction

    Science.gov (United States)

    Beccherelli, R.; Zampetti, E.; Pantalei, S.; Bernabei, M.; Persaud, K. C.

    2009-05-01

    Olfactory receptor neurons (ORN) in the mammalian olfactory system, transduce molecular properties of the odorants into electrical signals and project these into the olfactory bulb (OB). In the biological system several millions of receptor neurons of a few hundred types create redundancy and the massive convergence of the ORNs to the OB, is thought to enhance the sensitivity and selectivity of the system. To explore this concept, the NEUROCHEM project will build a polymeric chemical sensor array consisting of 216 (65536) sensors with tens of different types. To interface such a large sensor array, a topological array configuration with n rows and m columns, has been adopted, to reduce the total wiring connections to n+m. A method of addressing a single element in the array in isolation of the rest of the network has been developed. Over the array ten different conductive polymers with different sensing characteristics will be deposited by means of electrodeposition and inkjet printing. A smaller prototype of 64 elements has been investigated and the results are here reported and discussed.

  6. Fabrication of N-doped TiO2 coatings on nanoporous Si nanopillar arrays through biomimetic layer by layer mineralization.

    Science.gov (United States)

    Yan, Yong; Wang, Dong; Schaaf, Peter

    2014-06-14

    Si/N-doped TiO2 core/shell nanopillar arrays with a nanoporous structure are fabricated through a simple protein-mediated TiO2 deposition process. The Si nanopillar arrays are used as templates and alternatively immersed in aqueous solutions of catalytic molecules (protamine, PA) and the titania precursor (titanium(iv) bis(ammonium lactato)dihydroxide, Ti-BALDH) for the layer by layer mineralization of a PA/TiO2 coating. After a subsequent calcination, a N-doped TiO2 layer is formed, and its thickness could be controlled by varying the cycles of deposition. Moreover, the nanoporous structure of the Si nanopillars strongly affects the formation of the TiO2 layer. The obtained Si/TiO2 nanocomposites show significantly improved solar absorption compared with commercially purchased TiO2 nanoparticles.

  7. Improved Circuits with Capacitive Feedback for Readout Resistive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Óscar Oballe-Peinado

    2016-01-01

    Full Text Available One of the most suitable ways of distributing a resistive sensor array for reading is an array with M rows and N columns. This allows reduced wiring and a certain degree of parallelism in the implementation, although it also introduces crosstalk effects. Several types of circuits can carry out the analogue-digital conversion of this type of sensors. This article focuses on the use of operational amplifiers with capacitive feedback and FPGAs for this task. Specifically, modifications of a previously reported circuit are proposed to reduce the errors due to the non-idealities of the amplifiers and the I/O drivers of the FPGA. Moreover, calibration algorithms are derived from the analysis of the proposed circuitry to reduce the crosstalk error and improve the accuracy. Finally, the performances of the proposals is evaluated experimentally on an array of resistors and for different ranges.

  8. Two-dimensional pixel array image sensor for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Beche, J.-F.; Cork, C. [and others

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  9. Colorimetric Sensor Arrays System Based on FPGA for Image Recognition

    Institute of Scientific and Technical Information of China (English)

    Rui Chen; Jian-Hua Xu; Ya-Dong Jiang

    2009-01-01

    A FPGA-based image recognition system is designed for colorimetric sensor array in order to recognize a wide range of volatile organic compounds. The gas molecule is detected by the responsive sensor array and the responsive image is obtained. The image is decomposed to RGB color components using CMOS image sensor. An embedded image recognition archi- tecture based on Xilinx Spartan-3 FPGA is designed to implement the algorithms of image recognition. The algorithm of color coherence vector is discussed in detail[X1] compared with the algorithm of color histograms, and experimental results demonstrate that both of the two algorithms could be analyzed effectively to represent different volatile organic compounds according to their different responsive images in this system.

  10. Non-specific sensor arrays for chemical detection

    Science.gov (United States)

    Johnson, Kevin; Minor, Christian

    2015-05-01

    Non-specific chemical sensor arrays have been the subject of considerable research efforts over the past thirty years with the idea that, by analogy to vertebrate olfaction, they are potentially capable of rendering complex chemical assessments with relatively modest logistical footprints. However, the actual implementation of such devices in challenging "real world" scenarios has arguably continued to fall short of these expectations. This work examines the inherent limitations of such devices for complex chemical sensing scenarios, placing them on a continuum between simple univariate sensors and complex multivariate analytical instrumentation and analyzing their utility in general-purpose chemical detection and accurate chemical sensing in the presence of unknown "unknowns." Results with simulated and acquired data sets are presented with discussion of the implications in development of chemical sensor arrays suitable for complex scenarios.

  11. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  12. Array gain for a conformal acoustic vector sensor array: An experimental study

    Science.gov (United States)

    Wang, Yong; Yang, Yi-Xin; He, Zheng-Yao; Lei, Bo; Sun, Chao; Ma, Yuan-Liang

    2016-12-01

    An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise. Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-to-noise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers. Project supported by the China Postdoctoral Science Foundation (Grant No. 2016M592782) and the National Natural Science Foundation of China (Grant Nos. 11274253 and 11604259).

  13. SQUID sensor array configurations for magnetoencephalography applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, J.; Robinson, S.E. [CTF Systems Inc., A subsidiary of VSM MedTech Ltd, Port Coquitlam, BC (Canada)

    2002-09-01

    Electrophysiological activity in the human brain generates a small magnetic field from the spatial superposition of individual neuronal source currents. At a distance of about 15 mm from the scalp, the observed field is of the order of 10{sub -13} to 10{sub -12} T peak-to-peak. This measurement process is termed magnetoencephalography (MEG). In order to minimize instrumental noise, the MEG is usually detected using superconducting flux transformers, coupled to SQUID (superconducting quantum interference device) sensors. Since MEG signals are also measured in the presence of significant environmental magnetic noise, flux transformers must be designed to strongly attenuate environmental noise, maintain low instrumental noise and maximize signals from the brain. Furthermore, the flux transformers must adequately sample spatial field variations if the brain activity is to be imaged. The flux transformer optimization for maximum brain signal-to-noise ratio (SNR) requires analysis of the spatial and temporal properties of brain activity, the environmental noise and how these signals are coupled to the flux transformer. Flux transformers that maximize SNR can detect the smallest brain signals and have the best ability to spatially separate dipolar sources. An optimal flux transformer design is a synthetic higher-order gradiometer based on relatively short-baseline first-order radial gradiometer primary sensors. (author)

  14. Biomimetic MEMS sensor array for navigation and water detection

    Science.gov (United States)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  15. Biochemical Sensors Using Carbon Nanotube Arrays

    Science.gov (United States)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Cassell, Alan M. (Inventor)

    2011-01-01

    Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes ("CNTs") is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.

  16. Parallel Calibration for Sensor Array Radio Interferometers

    CERN Document Server

    Brossard, Martin; Pesavento, Marius; Boyer, Rémy; Larzabal, Pascal; Wijnholds, Stefan J

    2016-01-01

    In order to meet the theoretically achievable imaging performance, calibration of modern radio interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algorithm estimates the apparent directions of the calibration sources, the directional and undirectional complex gains of the array elements and their noise powers, with a reasonable computational complexity. Furthermore, the algorithm takes into account the specific variation of the aforementioned parameter values across wavelength. Realistic numerical simulations reveal that the proposed scheme outperforms the mono-wavelength calibration scheme and approaches the derived constrained Cram\\'er-Rao bound even with the presence of non-calibration sources at unknown directions, in a computationally efficient manner.

  17. Piezoelectric impact force sensor array for tribological research on rigid disk storage media

    NARCIS (Netherlands)

    Burger, G.J.; Lammerink, T.S.J.; Fluitman, J.H.J.; Imai, S.; Tokuyama, M.; Hirose, S.

    1995-01-01

    This paper presents a method to measure impact forces on a surface by means of a piezoelectric thin film sensor array. The output signals of the sensor array provide information about the position, magnitude and wave form of the impact force. The sensor array may be used for tribological studies to

  18. Demonstration of a 4-Sensor Folded Sangac Sensor Array with Active Phase Biasing Scheme

    Institute of Scientific and Technical Information of China (English)

    Zhang-Qi Song; Ming-Ye Yang; Xue-Liang Zhang; Yong-Ming Hu

    2008-01-01

    A 4-sensor folded Sagnae sensor array with an active phase biasing scheme is presented. The overlapping of the signal and noise pulse is avoided through a time division multiplexing scheme and the noise pulses is eliminated almost completely. The scheme can address 16 sensors when the repeat frequency of input pulse is at 68.3 kHz. The alternative phase bias technique is demonstrated, which can provide sensors with stable phase bias. The future benefit of this technique is that the 1/f noise in the circuit can be suppressed.

  19. Digital Pixel Sensor Array with Logarithmic Delta-Sigma Architecture

    Science.gov (United States)

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-01-01

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia. PMID:23959239

  20. Digital Pixel Sensor Array with Logarithmic Delta-Sigma Architecture

    Directory of Open Access Journals (Sweden)

    Jing Li

    2013-08-01

    Full Text Available Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs. To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia.

  1. Digital pixel sensor array with logarithmic delta-sigma architecture.

    Science.gov (United States)

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-08-16

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia.

  2. Numerical simulations of odorant detection by biologically inspired sensor arrays.

    Science.gov (United States)

    Schuech, R; Stacey, M T; Barad, M F; Koehl, M A R

    2012-03-01

    The antennules of many marine crustaceans enable them to rapidly locate sources of odorant in turbulent environmental flows and may provide biological inspiration for engineered plume sampling systems. A substantial gap in knowledge concerns how the physical interaction between a sensing device and the chemical filaments forming a turbulent plume affects odorant detection and filters the information content of the plume. We modeled biological arrays of chemosensory hairs as infinite arrays of odorant flux-detecting cylinders and simulated the fluid flow around and odorant flux into the hair-like sensors as they intercepted a single odorant filament. As array geometry and sampling kinematics were varied, we quantified distortion of the flux time series relative to the spatial shape of the original odorant filament as well as flux metrics that may be important to both organisms and engineered systems attempting to measure plume structure and/or identify chemical composition. The most important predictor of signal distortion is the ratio of sensor diameter to odorant filament width. Achieving high peak properties (e.g. sharpness) of the flux time series and maximizing the total number of odorant molecules detected appear to be mutually exclusive design goals. Sensor arrays inspired specifically by the spiny lobster Panulirus argus and mantis shrimp Gonodactylaceus falcatus introduce little signal distortion but these species' neural systems may not be able to resolve plume structure at the level of individual filaments via temporal properties of the odorant flux. Current chemical sensors are similarly constrained. Our results suggest either that the spatial distribution of flux across the aesthetasc array is utilized by P. argus and G. falcatus, or that such high spatiotemporal resolution is unnecessary for effective plume tracking.

  3. Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Andrea Trucco

    2015-06-01

    Full Text Available For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed. In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches.

  4. Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays.

    Science.gov (United States)

    Trucco, Andrea; Traverso, Federico; Crocco, Marco

    2015-01-01

    For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed). In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches.

  5. Amplitude, phase, location and orientation calibration of an acoustic vector sensor array, part I: Theory

    NARCIS (Netherlands)

    Xu, B.; Wind, J.; Bree, H.E. de; Basten, T.G.H.; Druyvesteyn, E.

    2010-01-01

    An acoustic vector sensor array consists of multiple sound pressure microphones and particle velocity sensors. A pressure microphone usually has an omni-directional response, yet a particle velocity sensor is directional. Currently, acoustic vector sensor arrays are under investigation for far field

  6. Amplitude, phase, location and orientation calibration of an acoustic vector sensor array, part I: Theory

    NARCIS (Netherlands)

    Xu, B.; Wind, J.; Bree, H.E. de; Basten, T.G.H.; Druyvesteyn, E.

    2010-01-01

    An acoustic vector sensor array consists of multiple sound pressure microphones and particle velocity sensors. A pressure microphone usually has an omni-directional response, yet a particle velocity sensor is directional. Currently, acoustic vector sensor arrays are under investigation for far field

  7. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  8. An Artificial Nose Based on Microcantilever Array Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lang, H P [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ramseyer, J P [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Grange, W [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Braun, T [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Schmid, D [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Hunziker, P [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Jung, C [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Hegner, M [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Gerber, C [National Center of Competence in Research for Nanoscale Science, Institute of Physics of Univesity of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2007-03-15

    We used microfabricated cantilever array sensors for an artificial nose setup. Each cantilever is coated on its top surface with a polymer layer. Volatile gaseous analytes are detected by tracking the diffusion process of the molecules into the polymer layers, resulting in swelling of the polymer layers and therewith bending of the cantilevers. From the bending pattern of all cantilevers in the array, a characteristic 'fingerprint' of the analyte is obtained, which is evaluated using principal component analysis. In a flow of dry nitrogen gas, the bending of the cantilevers is reverted to its initial state before exposure to the analyte, which allows reversible and reproducible operation of the sensor. We show examples of detection of solvents, perfume essences and beverage flavors. In a medical application, the setup provides indication of presence of diseases in patient's breath samples.

  9. Combining a sensor and a pH-gated nanopore based on an avidin-biotin system.

    Science.gov (United States)

    Lepoitevin, Mathilde; Nguyen, Gael; Bechelany, Mikhael; Balanzat, Emmanuel; Janot, Jean-Marc; Balme, Sebastien

    2015-04-01

    Here we propose a new approach to tailor nanopores, which combines both pH gating and sensing properties. This strategy is based on PEG like-avidin grafting in nanopores designed by atomic layer deposition (ALD). Below pH 5 the nanopore is blocked. We show that the PEG chains are at the origin of these properties.

  10. Heat treatment and photoluminescence of 3-D vertical arrays of Al{sub 2}O{sub 3} nanopores on Al fabrics or foils

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Dong; Li, Licheng [Key Lab of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, College of Material Science and Engineering, Wuhan Textile University, 430073 Wuhan (China); Xu, Weilin, E-mail: weilin_xu@hotmail.com [Key Lab of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, College of Material Science and Engineering, Wuhan Textile University, 430073 Wuhan (China); Wang, Yunli; Jiang, Ming; Guo, Xueqin; Liu, Xin; Cao, Genyang [Key Lab of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, College of Material Science and Engineering, Wuhan Textile University, 430073 Wuhan (China); Li, Guangzhong; Li, Gang [State Key Laboratory of Porous Metal Material, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China); Wang, Nanfang [School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104 (China); Luo, Zhiping, E-mail: zluo@uncfsu.edu [Department of Chemistry and Physics and Southeastern North Carolina Regional Microanalytical and Imaging Consortium, Fayetteville State University, Fayetteville, NC 28301 (United States)

    2014-01-15

    Highlights: • Porous anodic alumina with highly ordered array of nanopores was prepared on Al fabric or foil by a two-step anodization process. • The porous anodic alumina layer is detached from the Al wire substrate after annealing at 600 °C. • The white Al{sub 2}O{sub 3} nanopores fabric was dyed to pink after Rhodamine B introduced into the pores of anodic layer. • The intensities of photoluminescence increase first, at 500 °C reach a maximum value, and then decrease. -- Abstract: Porous anodic alumina (PAA) with highly ordered arrays of nanopores was prepared on Al fabrics or foils by a two-step anodization process. Studies on structural and thermal properties of the prepared PAA membranes were carried out. Scanning electron microscopy and transmission electron microscopy were performed on the prepared PAA membranes at room temperature and 600 °C. Photoluminescence (PL) properties of PAA on Al foils under different annealing temperatures (100–600 °C) and PAA on Al fabrics before-after dyeing by Rhodamine B (RhB) have been investigated. For PAA on Al foils, with the increase of the annealing temperature, the PL intensity increases first, which reaches a maximum value at 500 °C, and then it decreases. For PAA on Al fabrics after dyeing by RhB, the white sample changed to pink and a new peak at 580 nm in the PL curve was found.

  11. Modification of Microelectrode Arrays: New Microelectrochemical Devices for Sensor Applications.

    Science.gov (United States)

    1986-08-22

    oxides. W03 is known to be such a redox active material and has been widely studied in connection with electrochromic display devices (Dautremont... devices . Quinone- Viologen Connected Microelectrodes: Use of an Electroactive Molecular Material With An Intrinsic pH Dependence. W03 is an example of an...REPORT & PERIOD COVERED Modification of Microelectrode Arrays: New Interim Technical Report Microelectrochemical Devices for Sensor Applications 6

  12. Research of optical rainfall sensor based on CCD linear array

    Institute of Scientific and Technical Information of China (English)

    YANG; Bifeng; LIU; Yuyan; LU; Ying; WU; Shangqian

    2015-01-01

    Rainfall monitoring is one of the most important meteorological observation elements for the disaster weather. The maintenance of current tipping bucket rain gauge and weighing type rain gauge is a critical issue. The optical rainfall sensor based on CCD linear array is mainly studied in this paper. Because of the maintenance-free time and good adaptability,it can be widely used in the automatic rainfall monitoring in severe environment and have a good perspective in using.

  13. Gust prediction via artificial hair sensor array and neural network

    Science.gov (United States)

    Pankonien, Alexander M.; Thapa Magar, Kaman S.; Beblo, Richard V.; Reich, Gregory W.

    2017-04-01

    Gust Load Alleviation (GLA) is an important aspect of flight dynamics and control that reduces structural loadings and enhances ride quality. In conventional GLA systems, the structural response to aerodynamic excitation informs the control scheme. A phase lag, imposed by inertia, between the excitation and the measurement inherently limits the effectiveness of these systems. Hence, direct measurement of the aerodynamic loading can eliminate this lag, providing valuable information for effective GLA system design. Distributed arrays of Artificial Hair Sensors (AHS) are ideal for surface flow measurements that can be used to predict other necessary parameters such as aerodynamic forces, moments, and turbulence. In previous work, the spatially distributed surface flow velocities obtained from an array of artificial hair sensors using a Single-State (or feedforward) Neural Network were found to be effective in estimating the steady aerodynamic parameters such as air speed, angle of attack, lift and moment coefficient. This paper extends the investigation of the same configuration to unsteady force and moment estimation, which is important for active GLA control design. Implementing a Recurrent Neural Network that includes previous-timestep sensor information, the hair sensor array is shown to be capable of capturing gust disturbances with a wide range of periods, reducing predictive error in lift and moment by 68% and 52% respectively. The L2 norms of the first layer of the weight matrices were compared showing a 23% emphasis on prior versus current information. The Recurrent architecture also improves robustness, exhibiting only a 30% increase in predictive error when undertrained as compared to a 170% increase by the Single-State NN. This diverse, localized information can thus be directly implemented into a control scheme that alleviates the gusts without waiting for a structural response or requiring user-intensive sensor calibration.

  14. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    Science.gov (United States)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  15. A sensor array is the solution to the CBRNE problem

    Science.gov (United States)

    Swaby, James A.

    2004-11-01

    Chemical/Biological/Radiological/Nuclear/Explosives (CBRNE) is a threat to all forces that deploy to any part of the globe. Lightweight expeditionary forces are especially vulnerable because they operate with minimum force structure in or near enemy forces and may become indirect targets due to the proximity of opposing forces. There is currently no integrated tactical, agile CBRNE detect-to-warn and detect-to-treat detection system suitable for lightweight expeditionary forces. The current solutions are often outside the deployment and support constraints of expeditionary forces. Expeditionary forces, typically, require a 30-day capability without re-supply and must maximize resources. Situational awareness is limited with little or no automation. Due to the limitations in existing detectors, no detector has been found to be the magic bullet for all types of agents. An array of sensors that are redundant and overlap the capabilities of each and the limitations of each technology, on the other hand, would provide a level of security that is progressively more acceptable to the warfighter. Initially, the array will be composed of integrated commercial-off-the-shelf (COTS) and government-off-the-shelf (GOTS) CBRNE samplers, identification devices, tamper sensors, and communications and alert equipment. The sensor array will plug-and-play new technologies as they become available.

  16. Pyroelectric sensor arrays for detection and thermal imaging

    Science.gov (United States)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  17. Design of Fixed Beamformers Based on Vector-Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Matthew Hawes

    2015-01-01

    Full Text Available Vector-sensor arrays such as those composed of crossed dipole pairs are used as they can account for a signal’s polarisation in addition to the usual direction of arrival information, hence allowing expanded capacity of the system. The problem of designing fixed beamformers based on such an array, with a quaternionic signal model, is considered in this paper. Firstly, we consider the problem of designing the weight coefficients for a fixed set of vector-sensor locations. This can be achieved by minimising the sidelobe levels while keeping a unitary response for the main lobe. The second problem is then how to find a sparse set of sensor locations which can be efficiently used to implement a fixed beamformer. We propose solving this problem by converting the traditional l1 norm minimisation associated with compressive sensing into a modified l1 norm minimisation which simultaneously minimises all four parts of the quaternionic weight coefficients. Further improvements can be made in terms of sparsity by converting the problem into a series of iteratively solved reweighted minimisations, as well as being able to enforce a minimum spacing between active sensor locations. Design examples are provided to verify the effectiveness of the proposed design methods.

  18. NOTE: Sampling and reconstruction schemes for biomagnetic sensor arrays

    Science.gov (United States)

    Naddeo, Adele; Della Penna, Stefania; Nappi, Ciro; Vardaci, Emanuele; Pizzella, Vittorio

    2002-09-01

    In this paper we generalize the approach of Ahonen et al (1993 IEEE Trans. Biomed. Eng. 40 859-69) to two-dimensional non-uniform sampling. The focus is on two main topics: (1) searching for the optimal sensor configuration on a planar measurement surface; and (2) reconstructing the magnetic field (a continuous function) from a discrete set of data points recorded with a finite number of sensors. A reconstruction formula for Bz is derived in the framework of the multidimensional Papoulis generalized sampling expansion (Papoulis A 1977 IEEE Trans. Circuits Syst. 24 652-4, Cheung K F 1993 Advanced Topics in Shannon Sampling and Interpolation Theory (New York: Springer) pp 85-119) in a particular case. Application of these considerations to the design of biomagnetic sensor arrays is also discussed.

  19. Sampling and reconstruction schemes for biomagnetic sensor arrays.

    Science.gov (United States)

    Naddeo, Adele; Della Penna, Stefania; Nappi, Ciro; Vardaci, Emanuele; Pizzella, Vittorio

    2002-09-21

    In this paper we generalize the approach of Ahonen et al (1993 IEEE Trans. Biomed. Eng. 40 859-69) to two-dimensional non-uniform sampling. The focus is on two main topics: (1) searching for the optimal sensor configuration on a planar measurement surface; and (2) reconstructing the magnetic field (a continuous function) from a discrete set of data points recorded with a finite number of sensors. A reconstruction formula for Bz is derived in the framework of the multidimensional Papoulis generalized sampling expansion (Papoulis A 1977 IEEE Trans. Circuits Syst. 24 652-4, Cheung K F 1993 Advanced Topics in Shannon Sampling and Interpolation Theory (New York: Springer) pp 85-119) in a particular case. Application of these considerations to the design of biomagnetic sensor arrays is also discussed.

  20. Simulation of Current Measurement Using Magnetic Sensor Arrays and Its Error Model

    Institute of Scientific and Technical Information of China (English)

    WANGJing; YAOJian-jun; WANGJian-hua

    2004-01-01

    Magnetic sensor arrays are proposed to measure electric current in a non-contac tway. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques are necessary to study the factors influencing the accuracy of current measurement. This paper presents a simulation method to estimate the impact of sensing area and position of sensors on the accuracy of current measurement. Several error models are built up to support computer-aided design of magnetic sensor arrays.

  1. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  2. Ultrasensitive sliver nanorods array SERS sensor for mercury ions.

    Science.gov (United States)

    Song, Chunyuan; Yang, Boyue; Zhu, Yu; Yang, Yanjun; Wang, Lianhui

    2017-01-15

    With years of outrageous mercury emissions, there is an urgent need to develop convenient and sensitive methods for detecting mercury ions in response to increasingly serious mercury pollution in water. In the present work, a portable, ultrasensitive SERS sensor is proposed and utilized for detecting trace mercury ions in water. The SERS sensor is prepared on an excellent sliver nanorods array SERS substrate by immobilizing T-component oligonucleotide probes labeled with dye on the 3'-end and -SH on the 5'-end. The SERS sensor responses to the specific chemical bonding between thymine and mercury ions, which causes the previous flexible single strand of oligonucleotide probe changing into rigid and upright double chain structure. Such change in the structure drives the dyes far away from the excellent SERS substrate and results in a SERS signal attenuation of the dye. Therefore, by monitoring the decay of SERS signal of the dye, mercury ions in water can be detected qualitatively and quantitatively. The experimental results indicate that the proposed optimal SERS sensor owns a linear response with wide detecting range from 1pM to 1μM, and a detection limit of 0.16pM is obtained. In addition, the SERS sensor demonstrates good specificity for Hg(2+), which can accurately identify trace mercury ions from a mixture of ten kinds of other ions. The SERS sensor has been further executed to analyze the trace mercury ions in tap water and lake water respectively, and good recovery rates are obtained for sensing both kinds of water. With its high selectivity and good portability, the ultrasensitive SERS sensor is expected to be a promising candidate for discriminating mercury ions in the fields of environmental monitoring and food safety.

  3. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, Joel [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    2017-05-17

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced to the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.

  4. Metal-organic complex-functionalized protein nanopore sensor for aromatic amino acids chiral recognition.

    Science.gov (United States)

    Guo, Yanli; Niu, Aihua; Jian, Feifei; Wang, Ying; Yao, Fujun; Wei, Yongfeng; Tian, Lei; Kang, Xiaofeng

    2017-03-27

    Chiral recognition at single-molecule level for small active molecules is important, as exhibited by many nanostructures and molecular assemblies in biological systems, but it presents a significant challenge. We report a simple and rapid sensing strategy to discriminate all enantiomers of natural aromatic amino acids (AAA) using a metal-organic complex-functionalized protein nanopore, in which a chiral recognition element and a chiral recognition valve were equipped. A trifunctional molecule, heptakis-(6-deoxy-6-amino)-β-cyclodextrin (am7βCD), was non-covalently lodged within the nanopore of an α-hemolysin (αHL) mutant, (M113R)7-αHL. Copper(ii) ion reversibly bonds to the amino group of am7βCD to form an am7βCD-Cu(II) complex, which allowed chiral recognition for each enantiomer in the mixture of AAA by distinct current signals. The Cu(II) plugging valve plays a crucial rule that holds chiral molecules in the nanocavity for a sufficient registering time. Importantly, six enantiomers of all nature AAA could be simultaneously recognized at one time. Enantiomeric excess (ee) could also be accurately detected by this approach. It should be possible to generalize this approach for sensing of other chiral molecules.

  5. Nonuniformity compensation for IR focal plane array sensors

    Science.gov (United States)

    Venkateswarlu, Ronda; Er, Meng H.; Gan, Yu H.; Fong, Yew C.

    1997-08-01

    Recent reports indicate that cooled and uncooled IR focal plane array sensors are progressing to a field-worthy level for commercial and defense applications. They offer higher sensitivity, amenability to signal processing and mechanical simplicity. However these sensors contain large detector-to- detector dark current (offset) and responsivity (gain) variations. These variations result in a severe problem called fixed pattern noise that can mask/distort the image obtained from the sensor. The correction process is generally termed as nonuniformity compensation. Conventional two-point compensation techniques are accurate enough, but require built-in controllable temperature references along with mechanical and electro-optical shutters. Therefore this compensation technique detracts the mechanical simplicity of using IR focal plane arrays. Scene-based nonuniformity techniques dispenses with the requirement of temperature references and shutters, but are not accurate enough for certain applications. This paper discusses two-point and scene-based nonuniformity compensation algorithms and proposes an empirical formula to automatically calculate the scene constants, which is an essential step towards practical applications. This paper reports the analyzed results of testing the algorithms on a number of IR images. A practical problem of 'artifacts' which arise when using scene-based nonuniformity compensation is also discussed. A common hardware scheme to implement both the algorithms is also presented in this paper.

  6. Feasibility study of patient motion monitoring using tactile array sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kang, Seong Hee; Kim, Dong Su; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, the Catholic University of Korea, Seoul (Korea, Republic of); Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2014-11-15

    The aim of this study is to evaluate patient pretreatment set-up error and intra-fraction motion using the tactile array sensors (Pressure Profile Systems Inc, Los Angeles, CA) which could measure distributed pressure profiles along the contacting surface and to check a feasibility of the sensor (tactile array sensor) in the patient motion monitoring. Laser alignment and optical camera based monitoring system are very useful for reduce patient set-up error but these systems could not monitor the blind area like patient's back position. Actually after patient alignment using laser or optical monitoring system, it was assumed that there is no error in the patient's back position (pressure profile distribution). But if an error occurs in the patient's back position, it will affect the radiation therapy accuracy. In spite of optical motion monitoring or using the immobilization tool, distributed pressure profiles of patient's back position was changed during inter and intra-fraction. For more accurate patient set-up, blind area (patient's back) monitoring was necessary. We expect that the proposed method will be very useful for make up for the weakness of optical monitoring method.

  7. Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors.

    Science.gov (United States)

    Kumar, Neeraj; Froner, Elena; Guider, Romain; Scarpa, Marina; Bettotti, Paolo

    2014-03-21

    Porous materials are ideal hosts to fabricate high sensitivity devices. Their large specific area and the possibility to modify the type and the strength of the matrix-analyte interactions allow the realization of sensors with finely tailored characteristics. In this article, we investigate how mass transport across the nanoporous structure influences the response due to the non-specific signal by comparing flow-through versus flow-over geometries. We observed a systematic overestimation of the sensitivity for porous substrate devices made of closed-ended pores compared with open-ended pore ones. Our analysis shows that such an effect is due to (unbound) analytes or contaminants that remain trapped within the pores and are not removed by rinsing of the sample. This result was verified by measuring similar samples in both flow through and flow over configurations, as well as their residual response after blockage of all their active sites. We also notice that sensors based on free-standing membranes show similar results independent of the fact that mass transport is induced by either an external pressure source or simply by Brownian motions.

  8. Ferromagnetic resonance investigation in permalloy magnetic antidot arrays on alumina nanoporous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Suárez, R.L., E-mail: rrodriguez@fis.puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Palma, J.L.; Burgos, E.O. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Michea, S. [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J.; Denardin, J.C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Aliaga, C. [Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago (Chile)

    2014-01-15

    The magnetic properties of Ni{sub 80}Fe{sub 20} antidot arrays with hole diameters of 18 and 70 nm fabricated by a template-assisted method were investigated using the ferromagnetic resonance technique. Tuning the antidot arrays by changing the hole diameter enables control on the angular dependence of the ferromagnetic resonance field. The scanning electron microscope images reveal a quite regular hexagonal arrangement of the pores, however the angular dependence of the resonance field do not exhibit the six-fold symmetry expected for this symmetry. Micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our real system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects the ferromagnetic resonance field symmetry. - Highlights: • We use the FMR technique to investigate the magnetic properties of Py antidots. • We studied the effect of pore diameter on FMR angular measurement. • FMR field does not exhibit the six-fold symmetry. • For all angular positions there are two resonance modes always present. • Micromagnetic simulations agree with the experimental results with defects.

  9. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhuomin [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang Qingtang [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002 (China); Li Gongke, E-mail: cesgkl@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2012-05-21

    Highlights: Black-Right-Pointing-Pointer Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. Black-Right-Pointing-Pointer NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. Black-Right-Pointing-Pointer NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7-4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography-mass spectrometry (GC-MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient

  10. WO{sub 3} thin film based multiple sensor array for electronic nose application

    Energy Technology Data Exchange (ETDEWEB)

    Ramgir, Niranjan S., E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.; Kaur, M.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. [Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre, Mumbai–400085 (India); Goyal, Deepak, E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com [Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre, Mumbai–400085 (India); Centre for Converging Technologies, University of Rajasthan, Jaipur-302004 (India)

    2015-06-24

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.

  11. High-resolution displacement sensor using squid array amplifier

    Science.gov (United States)

    Chui, T.; Penanen, K.; Barmatz, M.; Paik, H.

    Improvement in the measurement of displacement has profound implications for gravitational physics. Examples of high-impact projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated ?axion? particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.

  12. Nanowire sensors and arrays for chemical/biomolecule detection

    Science.gov (United States)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  13. Advanced array techniques for unattended ground sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Followill, F.E.; Wolford, J.K.; Candy, J.V.

    1997-05-06

    Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  14. Arrays of Remote Autonomous Sensors Using On-Board Hybrid Power Supplies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is significant need for arrays of miniature sensors that are completely wireless. Ideally these sensors would be built as an integrated device, including...

  15. Colorimetric plasmon resonance microfluidics on nanohole array sensors

    Directory of Open Access Journals (Sweden)

    Austin Hsiao

    2015-09-01

    Full Text Available We present the label-free colorimetric visualization in microfluidics using plasmon resonance on a large-area and over a wide field-of-view (>100 mm2 nanohole array device called nanoLycurgus Cup Array (nanoLCA. We demonstrate the spectral detection and colorimetric sensing of static solutions of different concentrations of glycerol–water confined in parallel microfluidic channels integrated with nanoLCA. Taking advantage of the large sensor area and the colorimetric sensing capability of nanoLCA, we visualize in real-time the modulation of two immiscible solutions (water and oil, generated with integrated flow-focus microfluidics, in a label-free manner. Finite Element Method (FEM based simulation tool (COMSOL was used to verify the droplet formation in the microfluidics. Finite Difference Time Domain (FDTD electromagnetic simulation was used to identify the resonance modes of the plasmonic sensor. Finally, we demonstrate the real-time monitoring of streptavidin–biotin biomolecular interaction with the plasmonic biosensor.

  16. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    Science.gov (United States)

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  17. Modified Michelson fiber-optic interferometer: A remote low-coherence distributed strain sensor array

    Science.gov (United States)

    Yuan, Libo

    2003-01-01

    A simple modified Michelson fiber-optic low-coherence interferometric quasi-distributed sensing system permitting absolute length measurement in remote reflective sensor array is proposed. The sensor reflective signals characteristics have been analyzed and the relationship between light signal intensities and sensors number was given for multiplexing potential evaluation. The proposed sensing scheme will be useful for the remote measurement of strain. An important application could be deformation sensing in smart structures. Experimentally, a three sensors array has been demonstrated.

  18. Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted

    Science.gov (United States)

    2016-09-16

    all orientations. However, when used with linear array sensors, the exciting magnetic flux density (Bx) of the orthogonal coils is not uniform over...array sensors, the exciting magnetic flux density (Bx) of the orthogonal coils is not uniform over the sensor region, resulting in an output signal...of the y-direction coil. The magnetic flux density components, Bx, generated by the y-direction coil, is not uniform over the sensor region, which

  19. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    Science.gov (United States)

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  20. Focal Plane Array Sensor for Imaging Infrared Seeker of Antitank Guided Missile

    Directory of Open Access Journals (Sweden)

    A.V.R. Warrier

    1995-07-01

    Full Text Available Technological issues and Processes for fabrication of mercury cadmium telluride detector arrays, charge coupled device readout arrays and integration of these into a focal plane array sensor have been discussed. Mini arrays of 16 X 16 size have been realised and tested to prove the technology and process schedule with a view to scaling up this for larger arrays to be used in the antitank guided missile.

  1. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Science.gov (United States)

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active... Array Sensor System Low Frequency Active (SURTASS LFA) sonar systems with certain geographical...

  2. Study of acoustic signal in the process of resistance spot welding based on array sensor system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This investigation was performed to study acoustic field signal in order to improve RSW quality. Researchers firstly built an acoustic array sensor system, which included 8 MPA-416 acoustic sensors, data acquisition card and LabVIEW. The system obtained the acoustic field information in the process of nugget growing. Due to the nonlinearity field signal, array sensor algorithm was utilized to quantitatively analyze the characteristics of acoustic field and reduced noise. The experiment and calculation results show that array sensor system can acquire acoustic field signal of nugget growing in the RSW process and array processing algorithm based on acoustic field can extract characteristic parameters to evaluate RSW quality. It was concluded that the acoustic array sensor system offers a new methodology for RSW quality inspection.

  3. Integrated microfluidic spectroscopic sensor using arrayed waveguide grating

    Science.gov (United States)

    Hu, Zhixiong; Glidle, Andrew; Ironside, Charles N.; Sorel, Marc; Strain, Michael; Cooper, Jonathan M.; Yin, Huabing

    2013-08-01

    With non-invasive properties and high sensitivities, portable optical biosensors are extremely desirable for point-of-care (POC) applications. Lab-on-a-chip technology such as microfluidics has been treated as an ideal approach to integrate complex sample processing and analysis units with optical detection elements. The work in this paper has developed an integrated dispersive component in combination with a microfluidic chip, providing a portable and inexpensive platform for on-chip spectroscopic sensing. We demonstrate an integrated microfluidic spectroscopic sensor by using an arrayed waveguide grating (AWG) device. In particular, a visible AWG device (λc=680nm) with chip size of 12.1mm by 1.5mm was designed and fabricated by employing flamed hydrolysis deposited (FHD) silica as the waveguide material. A straight input waveguide is used to perform device characterization while a perpendicular curved waveguide is employed to introduce laser excitation light. A polymer microfluidic chip is integrated with the AWG device by oxygen plasma bonding. To prove effectiveness of the integrated spectroscopic sensor, fluorescence spectrum of an organic fluorophore (Cy5) was tested. Reconstructed spectrum by using the AWG device is compared with the outcome from a conventional spectrometer and a good consistency is presented.

  4. Data set from gas sensor array under flow modulation☆

    Science.gov (United States)

    Ziyatdinov, Andrey; Fonollosa, Jordi; Fernández, Luis; Gutiérrez-Gálvez, Agustín; Marco, Santiago; Perera, Alexandre

    2015-01-01

    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point. The data presented here have been deposited to the web site of The University of California at Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation). The code repository for reproducible analysis applied to the data is hosted at the GutHub web site (https://github.com/variani/pulmon). The data and code can be used upon citation of [1]. PMID:26217733

  5. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

    Science.gov (United States)

    Lewis, Nathan S [La Canada, CA; Freund, Michael S [Winnipeg, CA; Briglin, Shawn S [Chittenango, NY; Tokumaru, Phillip [Moorpark, CA; Martin, Charles R [Gainesville, FL; Mitchell, David [Newtown, PA

    2009-09-29

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  6. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan S. (La Canada, CA); Freund, Michael S. (Winnipeg, CA); Briglin, Shawn S. (Chittenango, NY); Tokumaru, Phillip (Moorpark, CA); Martin, Charles R. (Gainesville, FL); Mitchell, David (Newtown, PA)

    2009-09-29

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  7. Detecting changes of a distant gas source with an array of MOX gas sensors.

    Science.gov (United States)

    Pashami, Sepideh; Lilienthal, Achim J; Trincavelli, Marco

    2012-11-27

    We address the problem of detecting changes in the activity of a distant gas source from the response of an array of metal oxide (MOX) gas sensors deployed in an open sampling system. The main challenge is the turbulent nature of gas dispersion and the response dynamics of the sensors. We propose a change point detection approach and evaluate it on individual gas sensors in an experimental setup where a gas source changes in intensity, compound, or mixture ratio. We also introduce an efficient sensor selection algorithm and evaluate the change point detection approach with the selected sensor array subsets.

  8. Design of a Large-scale Three-dimensional Flexible Arrayed Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Junxiang Ding

    2011-01-01

    Full Text Available This paper proposes a new type of large-scale three-dimensional flexible arrayed tactile sensor based on conductive rubber. It can be used to detect three-dimensional force information on the continuous surface of the sensor, which realizes a true skin type tactile sensor. The widely used method of liquid rubber injection molding (LIMS method is used for "the overall injection molding" sample preparation. The structure details of staggered nodes and a new decoupling algorithm of force analysis are given. Simulation results show that the sensor based on this structure can achieve flexible measurement of large-scale 3-D tactile sensor arrays.

  9. Amplitude, phase, location and orientation calibration of an acoustic vector sensor array, part II: Experiments

    NARCIS (Netherlands)

    Basten, T.G.H.; Wind, J.; Xu, B.; Bree, H.E. de; Druyvesteyn, E.

    2010-01-01

    An acoustic vector sensor array consists of multiple sound pressure microphones and particle velocity sensors. A pressure microphone usually has an omni-directional response, yet a particle velocity sensor is directional and usually has a response pattern as a figure of eight. Currently, acoustic

  10. Amplitude, phase, location and orientation calibration of an acoustic vector sensor array, part II: Experiments

    NARCIS (Netherlands)

    Basten, T.G.H.; Wind, J.; Xu, B.; Bree, H.E. de; Druyvesteyn, E.

    2010-01-01

    An acoustic vector sensor array consists of multiple sound pressure microphones and particle velocity sensors. A pressure microphone usually has an omni-directional response, yet a particle velocity sensor is directional and usually has a response pattern as a figure of eight. Currently, acoustic ve

  11. Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout

    Energy Technology Data Exchange (ETDEWEB)

    Ferhanoglu, Onur; Urey, Hakan

    2011-07-01

    Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-{lambda}) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization ({approx}20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. {approx}30% increase in the average sensitivity was demonstrated for a 160x120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

  12. Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout.

    Science.gov (United States)

    Ferhanoglu, Onur; Urey, Hakan

    2011-07-01

    Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-λ) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization (~20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. ~30% increase in the average sensitivity was demonstrated for a 160×120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

  13. DNA-Based Nanopore Sensing.

    Science.gov (United States)

    Liu, Lei; Wu, Hai-Chen

    2016-12-05

    Nanopore sensing is an attractive, label-free approach that can measure single molecules. Although initially proposed for rapid and low-cost DNA sequencing, nanopore sensors have been successfully employed in the detection of a wide variety of substrates. Early successes were mostly achieved based on two main strategies by 1) creating sensing elements inside the nanopore through protein mutation and chemical modification or 2) using molecular adapters to enhance analyte recognition. Over the past five years, DNA molecules started to be used as probes for sensing rather than substrates for sequencing. In this Minireview, we highlight the recent research efforts of nanopore sensing based on DNA-mediated characteristic current events. As nanopore sensing is becoming increasingly important in biochemical and biophysical studies, DNA-based sensing may find wider applications in investigating DNA-involving biological processes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In-plane shear piezoelectric wafer active sensor phased arrays for structural health monitoring

    Science.gov (United States)

    Wang, Wentao; Zhou, Wensong; Wang, Peng; Wang, Chonghe; Li, Hui

    2016-04-01

    This paper proposes a new way for guided wave structural health monitoring using in-plane shear (d36 type) piezoelectric wafer active sensors phased arrays. Conventional piezoelectric wafer active sensors phased arrays based on inducing into specific Lamb wave modes (d31 type) has already widely used for health monitoring of the thin-wall structures. Rather than Lamb wave modes, the in-plane shear piezoelectric wafer active sensors phased arrays induces in-plane shear horizontal (SH) guided waves. The SH guided waves are distinct with the Lamb waves with simple waveform and less additional converted wave modes and the zero symmetric mode (SH0) is non-dispersive. In this paper, the advantage of the shear horizontal wave and the in-plane shear piezoelectric wafers capability to generate SH waves is first reviewed. Then finite element analysis of a 4-in-plane shear wafer active sensors phased array embedded on a rectangular aluminium plate is performed. In addition, numerical simulations with respect to creaks with different sizes as well as locations are implemented by the in-plane shear wafer active sensors phased array. For comparison purposes, the same numerical simulations using the conventional piezoelectric wafer active sensors phased arrays are also employed at the same time. Results indicate that the in-plane shear (d36 type) piezoelectric wafer active sensors phased arrays has the potential to identify damage location and assess damage severity in structural health monitoring.

  15. A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion.

    Science.gov (United States)

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-07-12

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

  16. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    Directory of Open Access Journals (Sweden)

    Yadong Wang

    2013-07-01

    Full Text Available This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

  17. A Low-cost Soft Tactile Sensing Array using 3D Hall Sensors

    OpenAIRE

    Wang, H.; de Boer, G.; Kow, J; Ghajari, M; Alazmani, A; R. Hewson; Culmer, P

    2016-01-01

    Tactile sensors are essential for robotic systems to safely interact with the external world and to precisely manipulate objects. Existing tactile sensors are typically either expensive or limited by poor performance, and most are not mechanically compliant. This work presents MagTrix, a soft tactile sensor array based on four 3D Hall sensors with corresponding permanent magnets. MagTrix has the capability to precisely measure triaxis force (1 mN resolution) and to determine contact area. In ...

  18. Fiber optic strain twin-sensor-array for smart structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    赵士刚; 苑立波

    2008-01-01

    A multiplexed white light interferometric fiber optic twin-sensor-array was designed to monitor the structural health of large buildings. In this sensing system, based on a Michelson interferometer, an optical path matching technique is used to demodulate each twin-sensor. Each twin-sensor-array consists of a 2×N sensing element linked by a 3 dB coupler. When one of the twin-sensor is used to measure strain, variations caused by temperature can be compensated for by referencing the other twin-sensor. The multiplexing capacity of the sensing scheme has been analyzed and experimental results with a 2×3 twin-sensor-array are given.

  19. Printable polythiophene gas sensor array for low-cost electronic noses

    Science.gov (United States)

    Chang, Josephine B.; Liu, Vincent; Subramanian, Vivek; Sivula, Kevin; Luscombe, Christine; Murphy, Amanda; Liu, Jinsong; Fréchet, Jean M. J.

    2006-07-01

    A route for generating arrays of printable polythiophene-based gas sensor materials suitable for low-cost manufacturing is demonstrated. Materials with complementary sensor responses are synthesized by incorporating functional groups into the molecule, either along the polymer backbone or as end-capping groups. Using these materials as printable sensor inks, a functional, integrated gas sensor array chip is fabricated using additive deposition techniques. The sensor array shows sensitivity to a range of volatile organic compounds down to concentrations of 10ppm. A three-terminal thin film transistor structure is used, allowing the extraction of multiple parameters that help to elucidate the mechanisms responsible for sensor response and the role of the functional groups in this response.

  20. Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays.

    Science.gov (United States)

    Huo, Danqun; Wu, Yu; Yang, Mei; Fa, Huanbao; Luo, Xiaogang; Hou, Changjun

    2014-02-15

    Colorimetric artificial tongue and nose were used to discriminate nine Chinese green teas from different geographical origins and grade levels. Printing nanoporous porphyrin, dimeric metalloporphyrins, metallosalophen complexes and chemically responsive dyes on a hydrophobic membrane, the developed sensor array of artificial tongue and nose showed a unique pattern of colorimetric change upon exposure to green tea liquids or gases. All green tea samples, both in liquid and gas analysis, gave distinct patterns according to geographical origin and grade level, thus resulting in their facile identification. The good reproducibility of colorimetric artificial tongue and nose was proved. Data analysis was performed by chemometric techniques: hierarchical cluster analysis (HCA), and principal component analysis (PCA). Chinese green tea from the same geographical origin could cluster together in PCA score plot. No errors in classification by HCA were observed in 90 trials. The colorimetric artificial tongue and nose can be used to discriminate Chinese green tea according to geographical origin and grade level.

  1. A Bio-Hybrid Tactile Sensor Incorporating Living Artificial Skin and an Impedance Sensing Array

    Directory of Open Access Journals (Sweden)

    David Cheneler

    2014-12-01

    Full Text Available The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised of alginate encapsulated fibroblasts is described. The electrical properties are modulated by mechanical stress induced during contact, and changes are detected by a ten-channel dual-electrode impedance sensing array. By continuously monitoring the impedance of the sensor array at a fixed frequency, whilst normal and tangential loads are applied to the skin surface, transient mechanotransduction has been observed. The results demonstrate the effectiveness and feasibility of the preliminary prototype bio-hybrid tactile sensor.

  2. Meteorological Sensor Array (MSA)-Phase I. Volume 2 (Data Management Tool: Proof of Concept)

    Science.gov (United States)

    2014-10-01

    Meteorological Sensor Array ( MSA )–Phase I, Volume 2 (Data Management Tool: “Proof of Concept”) by Sandra Harrison and Gail Vaucher ARL...Missile Range, NM 88002-5501 ARL-TR-7133 October 2014 Meteorological Sensor Array ( MSA )–Phase I, Volume 2 (Data Management Tool: “Proof...2014–September 30, 2014 4. TITLE AND SUBTITLE Meteorological Sensor Array ( MSA )–Phase I, Volume 2 (Data Management Tool: “Proof of Concept”) 5a

  3. Evolutionary Adaptive Discovery of Phased Array Sensor Signal Identification

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. McJunkin; Milos Manic

    2011-05-01

    Tomography, used to create images of the internal properties and features of an object, from phased array ultasonics is improved through many sophisiticated methonds of post processing of data. One approach used to improve tomographic results is to prescribe the collection of more data, from different points of few so that data fusion might have a richer data set to work from. This approach can lead to rapid increase in the data needed to be stored and processed. It also does not necessarily lead to have the needed data. This article describes a novel approach to utilizing the data aquired as a basis for adapting the sensors focusing parameters to locate more precisely the features in the material: specifically, two evolutionary methods of autofocusing on a returned signal are coupled with the derivations of the forumulas for spatially locating the feature are given. Test results of the two novel methods of evolutionary based focusing (EBF) illustrate the improved signal strength and correction of the position of feature using the optimized focal timing parameters, called Focused Delay Identification (FoDI).

  4. Beamforming and Power Control in Sensor Arrays Using Reinforcement Learning

    Science.gov (United States)

    Almeida, Náthalee C.; Fernandes, Marcelo A.C.; Neto, Adrião D.D.

    2015-01-01

    The use of beamforming and power control, combined or separately, has advantages and disadvantages, depending on the application. The combined use of beamforming and power control has been shown to be highly effective in applications involving the suppression of interference signals from different sources. However, it is necessary to identify efficient methodologies for the combined operation of these two techniques. The most appropriate technique may be obtained by means of the implementation of an intelligent agent capable of making the best selection between beamforming and power control. The present paper proposes an algorithm using reinforcement learning (RL) to determine the optimal combination of beamforming and power control in sensor arrays. The RL algorithm used was Q-learning, employing an ε-greedy policy, and training was performed using the offline method. The simulations showed that RL was effective for implementation of a switching policy involving the different techniques, taking advantage of the positive characteristics of each technique in terms of signal reception. PMID:25808769

  5. Beamforming and Power Control in Sensor Arrays Using Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Náthalee C. Almeida

    2015-03-01

    Full Text Available The use of beamforming and power control, combined or separately, has advantages and disadvantages, depending on the application. The combined use of beamforming and power control has been shown to be highly effective in applications involving the suppression of interference signals from different sources. However, it is necessary to identify efficient methodologies for the combined operation of these two techniques. The most appropriate technique may be obtained by means of the implementation of an intelligent agent capable of making the best selection between beamforming and power control. The present paper proposes an algorithm using reinforcement learning (RL to determine the optimal combination of beamforming and power control in sensor arrays. The RL algorithm used was Q-learning, employing an ε-greedy policy, and training was performed using the offline method. The simulations showed that RL was effective for implementation of a switching policy involving the different techniques, taking advantage of the positive characteristics of each technique in terms of signal reception.

  6. Nanoscale optofluidic sensor arrays for Dengue virus detection

    Science.gov (United States)

    Mandal, Sudeep; Akhmechet, Roman; Chen, Likun; Nugen, Sam; Baeumner, Antje; Erickson, David

    2007-09-01

    Here we present our work towards the development of Nanoscale Optofluidic Sensor Arrays (NOSA), which is an optofluidic architecture for performing label free, highly parallel, detections of biomolecular interactions. The approach is based on the use of optically resonant devices whose resonant wavelength is shifted due to a local change in refractive index caused by a positive binding event between a surface bound molecule and it solution phase target. A special two stage micro-/nanofluidics architecture is used to first functionalize the devices and then to deliver the targets. Two variants of the NOSA will be presented here. The first approach utilizes a 1D resonant cavity in a 1D silicon-on-insulator (SOI) waveguide with a unique differential size functionalization approach. This approach allows binding events at one or at a combination of the many sensing sites which causes a unique shift in the output resonator spectrum. The latter approach consists of a SOI waveguide evanescently coupled to multiple 1-D photonic crystal resonators of different sizes along the length, each of which is functionalized with a different oligonucleotide probe. These devices have an extremely low limit of detection and are compatible with aqueous environments. The primary advantage of these devices over existing technology is that it combines the sensitivity (limit of detection) of nanosensor technology with the parallelism of the microarray type format. Our initial application is in the detection of viral RNA of Dengue virus.

  7. Model-based Processing of Microcantilever Sensor Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Clague, D S; Candy, J V; Sinensky, A K; Lee, C L; Rudd, R E; Burnham, A K

    2005-04-27

    We have developed a model-based processor (MBP) for a microcantilever-array sensor to detect target species in solution. We perform a proof-of-concept experiment, fit model parameters to the measured data and use them to develop a Gauss-Markov simulation. We then investigate two cases of interest, averaged deflection data and multi-channel data. For this evaluation we extract model parameters via a model-based estimation, perform a Gauss-Markov simulation, design the optimal MBP and apply it to measured experimental data. The performance of the MBP in the multi-channel case is evaluated by comparison to a ''smoother'' (averager) typically used for microcantilever signal analysis. It is shown that the MBP not only provides a significant gain ({approx} 80dB) in signal-to-noise ratio (SNR), but also consistently outperforms the smoother by 40-60 dB. Finally, we apply the processor to the smoothed experimental data and demonstrate its capability for chemical detection. The MBP performs quite well, apart from a correctable systematic bias error.

  8. Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes.

    Science.gov (United States)

    Yang, Rui-Zhu; Dong, Wen-Fei; Meng, Xiang; Zhang, Xu-Lin; Sun, Yun-Lu; Hao, Ya-Wei; Guo, Jing-Chun; Zhang, Wen-Yi; Yu, Yong-Sen; Song, Jun-Feng; Qi, Zhi-Mei; Sun, Hong-Bo

    2012-06-12

    We present novel nanoporous TiO(2)/polyion thin-film-coated long-period fiber grating (LPFG) sensors for the direct measurement of low-molecular-weight chemicals by monitoring the resonance wavelength shift. The hybrid overlay films are prepared by a simple layer-by-layer deposition approach, which is mainly based on the electrostatic interaction of TiO(2) nanoparticles and polyions. By the alternate immersion of LPFG into dispersions of TiO(2) nanoparticles and polyions, respectively, the so-formed TiO(2)/polyion thin film exhibits a unique nanoporous internal structure and has a relative higher refractive index than LPFG cladding. In particular, the porosity of the thin film reduces the diffusion coefficient and enhances the permeability retention of low-molecular-weight analytes within the porous film. The increases in the refractive index of the LPFG overlay results in a distinguished modulation of the resonance wavelength. Therefore, the detection sensitivity of LPFG sensors has been greatly improved, according to theoretical simulation. After the structure of the TiO(2)/polyion thin film was optimized, glucose solutions as an example with a low concentration of 10(-7) M was easily detected and monitored at room temperature.

  9. Fiber grating sensor demodulation technique using a linear array of photodetectors

    Science.gov (United States)

    Jun, Tao; Lei, Mu; Ping, Du

    2008-12-01

    The article describes the theory, characters and performance of the linear array of photodetectors includes CCD, PDA, CMOS and InGaAs, presents fiber grating sensor demodulation technique using linear InGaAs array and designs the demodulation system based on this technique. Furthermore, the system is used to measure the strain and temperature respectively, and prove the system have a good practicability. The demodulation system has a high resolution and measurement precision, changes the size of traditional Fiber Grating Sensors demodulation system essentially, and realizes basically the intelligence of the FBG sensors and lays a foundation for the industrialization of the FBG sensors.

  10. Experimental research and identification of mine fire by using bionic smell sensors array

    Energy Technology Data Exchange (ETDEWEB)

    Yang Hong-min; Luo Hai-zhu [Henan Polytechnic University, Jiaozuo (China). Institute of Safety Science and Engineering

    2007-08-15

    The paper discusses the present situation of smell identification technology and give a brief account of kinds of smell sensors and their development. The sensitivity of the smell sensors array to different odors, the identification mechanism of different odor source substances and their mixture ratio were studied. The change of background value with working conditions underground and its influence on smell sensors were studied. Results indicate that the small sensors array can identify the kinds of mine fire, the burning objects, and the mixing ratio, based on the ANN. 5 refs., 6 figs.

  11. High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide

    NARCIS (Netherlands)

    Ingham, C.J.; Bomer, J.; Sprenkels, A.; Berg, van der A.; Vos, de W.M.; Hylckama, van J.

    2010-01-01

    Handling microorganisms in high throughput and their deployment into miniaturized platforms presents significant challenges. Contact printing can be used to create dense arrays of viable microorganisms. Such "living arrays", potentially with multiple identical replicates, are useful in the selection

  12. High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide

    NARCIS (Netherlands)

    Ingham, Colin; Bomer, Johan; Sprenkels, Ad; Berg, van den Albert; Vos, de Willem; Hylckama Vlieg, van Johan

    2010-01-01

    Handling microorganisms in high throughput and their deployment into miniaturized platforms presents significant challenges. Contact printing can be used to create dense arrays of viable microorganisms. Such "living arrays'', potentially with multiple identical replicates, are useful in the selectio

  13. Ultra-Thin Flexible Eddy Current Sensor Array for Gap Measurements

    Institute of Scientific and Technical Information of China (English)

    丁天怀; 陈祥林; 黄毅平

    2004-01-01

    An ultra-thin flexible eddy current proximity sensor array was developed for online measurements of tiny gaps between large smooth metallic and nonmetallic surfaces of arbitrary shapes. The probe of the flexible eddy current sensor array, which includes a set of sensor coils, is fabricated on a thin flexible substrate using the flexible printed circuit board process which allows the probe to be very thin and flexible so that it can conform to the surface geometry of the measured objects. The sensor coils are connected to an inductance-capacitance oscillator, which converts the distance between the sensor coil and the metallic target to a frequency output. Experimental results show that the measurement accuracy of the sensor system can reach ±0.5% for a 2-mm gap and the sensor system is suitable for online gap measurements.

  14. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  15. Innovative Self-Powered and Self-Contained Sensor Array for Separation Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a self-contained, self-powered, robust flight test sensor array for the determination of separation. The proposed system uses...

  16. Robust, Self-Contained and Bio-Inspired Shear Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a robust, bio-inspired, and self-contained sensor array for the measurement of shear stress. The proposed system uses commercially...

  17. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    Science.gov (United States)

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay.

  18. Development and validation of a colorimetric sensor array for fish spoilage monitoring

    DEFF Research Database (Denmark)

    Morsy, Mohamed K.; Zor, Kinga; Kostesha, Natalie;

    2016-01-01

    Given the need for non-destructive methods and sensors for food spoilage monitoring, we have evaluated sixteen chemo-sensitive compounds incorporated in an array for colorimetric detection of typical spoilage compounds (trimethylamine, dimethylamine, cadaverine, putrescine) and characterized...

  19. Bottom-up fabrication of nanohole arrays loaded with gold nanoparticles: extraordinary plasmonic sensors.

    Science.gov (United States)

    Weiler, Markus; Quint, Stefan B; Klenk, Simon; Pacholski, Claudia

    2014-12-18

    A chemical route to periodic hole arrays in gold films whose holes are loaded with single gold nanoparticles is presented, paving the road to mass production of highly sensitive plasmonic sensors on large areas.

  20. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    Directory of Open Access Journals (Sweden)

    Panida Lorwongtragool

    2014-10-01

    Full Text Available A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities.

  1. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    Science.gov (United States)

    Lorwongtragool, Panida; Sowade, Enrico; Watthanawisuth, Natthapol; Baumann, Reinhard R.; Kerdcharoen, Teerakiat

    2014-01-01

    A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs)/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities. PMID:25340447

  2. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  3. Low-power Broadband Digitizer for Millimeter-Wave Sensor Array Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiplexing in frequency domain using a bank of high-Q micro-resonators is an emerging method of reading out large arrays of transition-edge sensors and...

  4. Innovative Self-Powered and Self-Contained Sensor Array for Separation Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a self-contained, self-powered, robust flight test sensor array for the determination of separation. The proposed system uses off the...

  5. Development of a Tonometric Sensor with a Decoupled Circular Array for Precisely Measuring Radial Artery Pulse.

    Science.gov (United States)

    Jun, Min-Ho; Kim, Young-Min; Bae, Jang-Han; Jung, Chang Jin; Cho, Jung-Hee; Jeon, Young Ju

    2016-05-26

    The radial artery pulse is one of the major diagnostic indices used clinically in both Eastern and Western medicine. One of the prominent methods for measuring the radial artery pulse is the piezoresistive sensor array. Independence among channels and an appropriate sensor arrangement are important for effectively assessing the spatial-temporal information of the pulse. This study developed a circular-type seven-channel piezoresistive sensor array using face-down bonding (FDB) as one of the sensor combination methods. The three-layered housing structure that included independent pressure sensor units using the FDB method not only enabled elimination of the crosstalk among channels, but also allowed various array patterns to be created for effective pulse measurement. The sensors were arranged in a circular-type arrangement such that they could estimate the direction of the radial artery and precisely measure the pulse wave. The performance of the fabricated sensor array was validated by evaluating the sensor sensitivity per channel, and the possibility of estimating the blood vessel direction was demonstrated through a radial artery pulse simulator. We expect the proposed sensor to allow accurate extraction of the pulse indices for pulse diagnosis.

  6. A Circular aperture-array structure optical system for digital sun sensor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the first type of Rayleigh Sommerfeld diffraction formula, an imaging model of circular aperture-array structure digital sun sensor optical system is developed. Then a 6×6 circular aperture-array structure optical system is designed. The results of numerical simulation show that the optical system is designed well and is conformed to the requirements of miniaturization and high accuracy of sun sensor.

  7. Passive ranging with flank and towed array sensors

    NARCIS (Netherlands)

    Beerens, S.P.; IJsselmuide, S.P. van; Koersel, A.C. van

    2003-01-01

    In the current sensor suites on board submarines the Passive Ranging Sonar (PRS) is a separate sensor, usually with three or more hydrophone groups on either side of the submarine. The aperture of this sensor is limited by the length of the boat, which makes ranging up to moderate distances possible

  8. Prime Microlens Arrays for Hartmann-Shack Sensors: An Economical Fabrication Technology

    Science.gov (United States)

    de Lima Monteiro, D. W.; Akhzar-Mehr, O.; Vdovin, G.

    A Hartmann-Shack wavefront sensor consists basically of two elements: a microlens array and a photosensitive detector. This paper presents a technique to fabricate close-packed microlens arrays compliant to the sensor requirements. The method is based on bulk-silicon anisotropic etching and requires a single etch mask. We first etch a micromirror array in a KOH solution and use it later as a mold for the replication of microlens arrays. The elements in the fabricated microlens arrays feature excellent fit to a parabolic mirror surface, 100% optical fill factor, excellent parallelism of the optical axes and very high precision of the array pitch. The uniformity of the focal length of the microlenses is high (in the order of 5%) and the surface roughness — expressed in terms of wavefront — is of the order of 8-13 nm. This technology also enables simple single-mask fabrication of arbitrary aspherical optical surfaces.

  9. Study of cross-shaped ultrasonic array sensor applied to partial discharge location in transformer oil.

    Science.gov (United States)

    Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo

    2013-11-01

    A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.

  10. Multi-material additive manufacturing of robot components with integrated sensor arrays

    Science.gov (United States)

    Saari, Matt; Cox, Bryan; Galla, Matt; Krueger, Paul S.; Richer, Edmond; Cohen, Adam L.

    2015-06-01

    Fabricating a robotic component comprising 100s of distributed, connected sensors can be very difficult with current approaches. To address these challenges, we are developing a novel additive manufacturing technology to enable the integrated fabrication of robotic structural elements with distributed, interconnected sensors and actuators. The focus is on resistive and capacitive sensors and electromagnetic actuators, though others are anticipated. Anticipated applications beyond robotics include advanced prosthetics, wearable electronics, and defense electronics. This paper presents preliminary results for printing polymers and conductive material simultaneously to form small sensor arrays. Approaches to optimizing sensor performance are discussed.

  11. Arrays of biomimetic hair flow-sensor dedicated for measuring flow patterns

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Krijnen, G.J.M.

    2011-01-01

    Next to image sensors, future’s robots will definitely use a variety of sensing mechanisms for navigation and prevention of risks to human life, for example flow-sensor arrays for 3D hydrodynamic reconstruction of the near environment. This paper aims to quantify the possibilities of our artificial

  12. Feature extraction using distribution representation for colorimetric sensor arrays used as explosives detectors

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Raich, Raviv; Kostesha, Natalie

    2012-01-01

    We present a colorimetric sensor array which is able to detect explosives such as DNT, TNT, HMX, RDX and TATP and identifying volatile organic compounds in the presence of water vapor in air. To analyze colorimetric sensors with statistical methods, a suitable representation of sensory readings...

  13. A Sensor Array for the Detection and Discrimination of Methane and Other Environmental Pollutant Gases

    Science.gov (United States)

    Hannon, Ami; Lu, Yijiang; Li, Jing; Meyyappan, M.

    2016-01-01

    We address the sensitive detection and discrimination of gases impacting the environment, such as CH4, NH3, SO2, and CO, using a sensor array and aided by principal component analysis (PCA). A 32-element chemiresistive sensor array consisting of nine different sensor materials including seven types of modified single-walled carbon nanotubes and two types of polymers has been constructed. PCA results demonstrate excellent discriminating ability of the chemiresistor sensor chip in the 1–30 ppm concentration range. The accuracy of the sensor was verified against data collected using cavity ring down spectroscopy. The sensor chip has also been integrated with a smartphone and has been shown to reproduce the sensing performance obtained with the laboratory measurement system. PMID:27463716

  14. A Sensor Array for the Detection and Discrimination of Methane and Other Environmental Pollutant Gases

    Directory of Open Access Journals (Sweden)

    Ami Hannon

    2016-07-01

    Full Text Available We address the sensitive detection and discrimination of gases impacting the environment, such as CH4, NH3, SO2, and CO, using a sensor array and aided by principal component analysis (PCA. A 32-element chemiresistive sensor array consisting of nine different sensor materials including seven types of modified single-walled carbon nanotubes and two types of polymers has been constructed. PCA results demonstrate excellent discriminating ability of the chemiresistor sensor chip in the 1–30 ppm concentration range. The accuracy of the sensor was verified against data collected using cavity ring down spectroscopy. The sensor chip has also been integrated with a smartphone and has been shown to reproduce the sensing performance obtained with the laboratory measurement system.

  15. A Sensor Array for the Detection and Discrimination of Methane and Other Environmental Pollutant Gases.

    Science.gov (United States)

    Hannon, Ami; Lu, Yijiang; Li, Jing; Meyyappan, M

    2016-07-25

    We address the sensitive detection and discrimination of gases impacting the environment, such as CH₄, NH₃, SO₂, and CO, using a sensor array and aided by principal component analysis (PCA). A 32-element chemiresistive sensor array consisting of nine different sensor materials including seven types of modified single-walled carbon nanotubes and two types of polymers has been constructed. PCA results demonstrate excellent discriminating ability of the chemiresistor sensor chip in the 1-30 ppm concentration range. The accuracy of the sensor was verified against data collected using cavity ring down spectroscopy. The sensor chip has also been integrated with a smartphone and has been shown to reproduce the sensing performance obtained with the laboratory measurement system.

  16. AGV trace sensing and processing technology based on RGB color sensor array

    Science.gov (United States)

    Xu, Kebao; Zhu, Ping; Wang, Juncheng; Yun, Yuliang

    2009-05-01

    AGV(Automatic Guided Vehicle) is widely used in manufacturing factories, harbors, docks and logistics fields, because of its accurate automatic tracking. An AGV tracking method of detecting trace color based on RGB color sensor is provided here. DR, DG, DB values of trace color are obtained by color sensor, with which hue value denoting trace color characteristic can be calculated. Combined with graph theory algorithm, hue value can be used as a parameter for tracking deviation and branch identification to implement shortest path tracking. In addition, considering discreteness and uncertainty of single sensor in detecting trace information, sensor array is adopted for information fusion to achieve accurate tracking. Compared to tracking trace by single intensity sensor, AGV tracking based on RGB color sensor array has much better trace tracking and branch identification performances on complex roads.

  17. Semiconductor Sensor Array Based Electronic Nose for Milk, Rancid Milk and Yoghurt Odors Identification

    Science.gov (United States)

    Botre, B.; Gharpure, D.; Shaligram, A.; Sadistap, S.

    2009-05-01

    This paper presents the use semiconductor sensor array based electronic nose for the identification of milk, rancid milk and yoghurt odors. A low cost sensor array, serial data acquisition system and E-nose software package (ESP) tool are used to generate the database, feature extraction and normalization. The MLP NN is trained using the NeuroSolutions for the identification. The network has successfully classified milk, rancid milk and yoghurt odors with 96% success rate. A sensitivity analysis is done to test the performance of the sensor data in the trained network

  18. Array of 12 coils to measure the position, alignment, and sensitivity of magnetic sensors over temperature

    Science.gov (United States)

    Husstedt, Hendrik; Ausserlechner, Udo; Kaltenbacher, Manfred

    2012-04-01

    A measurement setup is presented that allows one to determine the position, alignment, and sensitivity of magnetic sensors over temperature. To this end, an array of 12 coils is used where the number of coils is larger than the number of unknowns to increase accuracy, and to ensure an adequate measurement signal for an arbitrary orientation of the magnetic sensors. With this coil array, a 3D sensing system is analyzed which is used during the testing of automotive magnetic sensors. In particular, the influence of assembly tolerances, and the variation of temperature are examined.

  19. A comparison of minimum norm and MUSIC for a combined MEG/EEG sensor array

    Science.gov (United States)

    Ahrens, H.; Argin, F.; Klinkenbusch, L.

    2012-09-01

    Many different algorithms for imaging neuronal activity with magnetoencephalography (MEG) or electroencephalography (EEG) have been developed so far. We validate the result of other authors that a combined MEG/EEG sensor array provides smaller source localisation errors than a single MEG or single EEG sensor array for the same total number of sensors. We show that Multiple Signal Classification (MUSIC) provides smaller localisation errors than an unweighted minimum norm method for activity located in the cortical sulcus regions. This is important for many medical applications, e.g. the localisation of the origin of epileptic seizures (focal epilepsy) that can be located very deep in the cortical sulcus.

  20. Odour Mapping Under Strong Backgrounds With a Metal Oxide Sensor Array

    Science.gov (United States)

    Ziyatdinov, Andrey; Calvo, José María Blanco; Lechón, Miguel; Bermúdez i Badia, Sergi; Verschure, Paul F. M. J.; Marco, Santiago; Perera, Alexandre

    2011-09-01

    This work describes the data from navigation experiments with the mobile robot, equipped with the sensor array of three MOX gas sensors. Performed four series of measurements aim to explore the capabilities of sensor array to build the odour map with one or two odour sources in the wind tunnel space. It was demonstrated that the method based on Independent Component Analysis (ICA) is able to discriminate two odour sources, that in future can be used in the surge-and-cast robot navigation algorithm.

  1. Atomic layer deposition of nanoporous biomaterials.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  2. Design a New Strategy Based on Nanoparticle-Enhanced Chemiluminescence Sensor Array for Biothiols Discrimination

    Science.gov (United States)

    Shahrajabian, Maryam; Hormozi-Nezhad, M. Reza

    2016-08-01

    Array-based sensor is an interesting approach that suggests an alternative to expensive analytical methods. In this work, we introduce a novel, simple, and sensitive nanoparticle-based chemiluminescence (CL) sensor array for discrimination of biothiols (e.g., cysteine, glutathione and glutathione disulfide). The proposed CL sensor array is based on the CL efficiencies of four types of enhanced nanoparticle-based CL systems. The intensity of CL was altered to varying degrees upon interaction with biothiols, producing unique CL response patterns. These distinct CL response patterns were collected as “fingerprints” and were then identified through chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). The developed array was able to successfully differentiate between cysteine, glutathione and glutathione disulfide in a wide concentration range. Moreover, it was applied to distinguish among the above analytes in human plasma.

  3. A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.

    Science.gov (United States)

    Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong

    2012-01-01

    In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.

  4. Least-Square Collaborative Beamforming Linear Array for Steering Capability in Green Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    NikNoordini NikAbdMalik; Mazlina Esa; Nurul Mu’azzah Abdul Latiff

    2016-01-01

    Abstract-This paper presents a collaborative beamforming (CB) technique to organize the sensor node’s location in a linear array for green wireless sensor network (WSN) applications. In this method, only selected clusters and active CB nodes are needed each time to perform CB in WSNs. The proposed least-square linear array (LSLA) manages to select nodes to perform as a linear antenna array (LAA), which is similar to and as outstanding as the conventional uniform linear array (ULA). The LSLA technique is also able to solve positioning error problems that exist in the random nodes deployment. The beampattern fluctuations have been analyzed due to the random positions of sensor nodes. Performances in terms of normalized power gains are given. It is demonstrated by a simulation that the proposed technique gives similar performances to the conventional ULA and at the same time exhibits lower complexity.

  5. TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2.

    Science.gov (United States)

    Zhang, Xiaoxing; Zhang, Jinbin; Jia, Yichao; Xiao, Peng; Tang, Ju

    2012-01-01

    The detection of partial discharge through analysis of SF(6) gas components in gas-insulated switchgear, is significant for the diagnosis and assessment of the operating state of power equipment. The present study proposes the use of a TiO(2) nanotube array sensor for detecting the SF(6) decomposition product SO(2), and the application of the anodic oxidation method for the directional growth of highly ordered TiO(2) nanotube arrays. The sensor response of 10-50 ppm SO(2) gas is tested, and the sensitive response mechanism is discussed. The test results show that the TiO(2) nanotube sensor array has good response to SO(2) gas, and by ultraviolet radiation, the sensor can remove attached components very efficiently, shorten recovery time, reduce chemical poisoning, and prolong the life of the components.

  6. TiO2 Nanotube Array Sensor for Detecting the SF6 Decomposition Product SO2

    Directory of Open Access Journals (Sweden)

    Ju Tang

    2012-03-01

    Full Text Available The detection of partial discharge through analysis of SF6 gas components in gas-insulated switchgear, is significant for the diagnosis and assessment of the operating state of power equipment. The present study proposes the use of a TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2, and the application of the anodic oxidation method for the directional growth of highly ordered TiO2 nanotube arrays. The sensor response of 10–50 ppm SO2 gas is tested, and the sensitive response mechanism is discussed. The test results show that the TiO2 nanotube sensor array has good response to SO2 gas, and by ultraviolet radiation, the sensor can remove attached components very efficiently, shorten recovery time, reduce chemical poisoning, and prolong the life of the components.

  7. Sensors and devices containing ultra-small nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  8. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  9. Design and performance of the ULTRA 320x240 uncooled focal plane array and sensor

    Science.gov (United States)

    Herring, Robert J.; Howard, Philip E.

    1996-06-01

    The ULTRA (Uncooled, Low cost, Technology Reinvestment Alliance) Consortium, consisting of the Honeywell Technology Center of Honeywell Incorporated, the Autonetics Missile Systems Division of Rockwell International Corporation, Inframetrics Incorporated, and the New Jersey Institute of Technology, has been formally working together over the past year in an effort to develop, manufacture and sell industrial and military sensors and components incorporating silicon microbolometer uncooled focal plane array (UFPA) technology. Towards that end, Rockwell has been actively engaged in developing the UFPA component, with assistance from Honeywell, with the intention of being a merchant supplier of the UFPA. Inframetrics has been developing subsystems required to construct and characterize a prototype sensor, and NJIT is designing a Multi-Wavelength Imaging Pyrometry system around the performance of the uncooled prototype sensor. TRP Office funding administered by ARPA has been key to the significant advances made over the course of the year in this program. This paper will describe both the UFPA component specification and the prototype sensor. It will give a architectural overview of the detector array, with the anticipated performance characteristics. Multiplexer design and simulation, and array processing, will be addressed. A description of the array packaging, interface requirements, and unique design considerations will be provided. Anticipated and actual component performance will be explained and contrasted. The background of the sensor development will be presented. An overview of the camera architecture will be given, with some discussion of trade-offs in subsystem design of the sensor. Specific emphasis is placed on the radiometric evaluation of the sensor.

  10. Challenges and the state of the technology for printed sensor arrays for structural monitoring

    Science.gov (United States)

    Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory

    2017-04-01

    Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.

  11. Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors

    Institute of Scientific and Technical Information of China (English)

    WANG Buhong; WANG Yongliang; CHEN Hui; GUO Ying

    2004-01-01

    Array calibration with angularly dependent gain and phase uncertainties has long been a difficult problem. Although many array calibration methods have been reported extensively in the literature, they almost all assumed an angularly independent model for array uncertainties. Few calibration methods have been developed for the angularly dependent array uncertainties. A novel and efficient auto-calibration method for angularly dependent gain and phase uncertainties is proposed in this paper, which is called ISM (Instrumental Sensors Method). With the help of a few well-calibrated instrumental sensors, the ISM is able to achieve favorable and unambiguous direction-of-arrivals (DOAs) estimate and the corresponding angularly dependent gain and phase estimate simultaneously, even in the case of multiple non-disjoint sources. Since the mutual coupling and sensor position errors can all be described as angularly dependent gain/phase uncertainties, the ISM proposed still works in the presence of a combination of all these array perturbations. The ISM can be applied to arbitrary array geometries including linear arrays. The ISM is computationally efficient and requires only one-dimensional search, with no high-dimensional nonlinear search and convergence burden involved. Besides, no small error assumption is made, which is always an essential prerequisite for many existing array calibration techniques. The estimation performance of the ISM is analyzed theoretically and simulation results are provided to demonstrate the effectiveness and behavior of the proposed ISM.

  12. Optical sensor array platform based on polymer electronic devices

    NARCIS (Netherlands)

    Koetse, M.M.; Rensing, P.A.; Sharpe, R.B.A.; Heck, G.T. van; Allard, B.A.M.; Meulendijks, N.N.M.M.; Kruijt, P.G.M.; Tijdink, M.W.W.J.; Zwart, R.M. de; Houben, R.J.; Enting, E.; Veen, S.J.J.F. van; Schoo, H.F.M.

    2007-01-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be

  13. Optical sensor array platform based on polymer electronic devices

    NARCIS (Netherlands)

    Koetse, M.M.; Rensing, P.A.; Sharpe, R.B.A.; Heck, G.T. van; Allard, B.A.M.; Meulendijks, N.N.M.M.; Kruijt, P.G.M.; Tijdink, M.W.W.J.; Zwart, R.M. de; Houben, R.J.; Enting, E.; Veen, S.J.J.F. van; Schoo, H.F.M.

    2007-01-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrate

  14. Haussdorff and hellinger for colorimetric sensor array classification

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Jensen, Bjørn Sand; Schmidt, Mikkel Nørgaard

    2012-01-01

    ; however, each sensor reading consists of hundreds of pixel values, and methods for combining these readings from multiple sensors must be developed to make a classification system. In this work we examine two distance based classification methods, K-Nearest Neighbor (KNN) and Gaussian process (GP...

  15. A flexible touch-pressure sensor array with wireless transmission system for robotic skin.

    Science.gov (United States)

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  16. A flexible touch-pressure sensor array with wireless transmission system for robotic skin

    Science.gov (United States)

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  17. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    Science.gov (United States)

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  18. In-situ Instrumental Setup for Influence Study of Hard-axis Bias Magnetic Field on MR transfer curves of sing MTJ sensor and MTJs array sensor

    CERN Document Server

    Li, L; Pong, P W T

    2016-01-01

    Establishment of home-made measurement setups for the characterization of MR sensor is proposed and described here. The MR loops of MR sensors can be obtained with the instrument using two-point probe measurement and four-point probe measurement. Two pairs of Helmholtz coils can supply a hard-axis magnetic field and a soft-axis magnetic field for the sensor. The single MTJ sensor and MTJs array sensor in Wheatstone bridge were characterized and compared here. The influence of hard-bias magnetic field on MR transfer curves of sing MTJ sensor and MTJs array sensor are investigated. The corresponding optimal hard-axis magnetic fields were obtained through Helmholtz coils to eliminate the hysteresis for linear response of single MTJ sensor and MTJs array sensor.

  19. Realization of 16-channel digital PGC demodulator for fiber laser sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lin; He Jun; Li Fang; Liu Yuliang, E-mail: wlcas@semi.ac.cn [Optoelectronics System Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 (China)

    2011-02-01

    This paper describes a 16-element DFB FL (distributed feedback fiber laser) sensor array system interrogated by NI-PXI-based (PCI extensions for Instrumentation) digital PGC (phase generated carrier) technique. The lasing wavelengths of the DFB FLs are changed by the external strains or temperatures, and hence they can be used as sensors by detecting the wavelength shifts. An unbalanced MI (Michelson interferometer) is employed in the sensor array system to amplify the wavelength shifts of DFB FL sensors to detectable phase shifts. The output phase signals of the MI are separated into different channels by a DWDM, and then detected by a low-noise photodiode array. The digital PGC algorithm is realized on a PXI platform (NI, National Instruments), which consists of three FPGA (Field Programmable Gate Array) modules and a high performance system controller. The normalization of the interference fringe is proposed and realized in this paper to reduce the influence of the light intensity fluctuations, and a trigger mechanism is introduced into the digital multi-channel PGC demodulation scheme to synchronize the date among different channels. A 16-element DFB fiber laser sensor array system has been set up in the experiment and the demodulated results have demonstrated a minimum detectable wavelength shift of 1x10{sup -6} pmA/{radical}Hz, a linearity of as high as 0.9994, and a dynamic range of 110dB-100Hz.

  20. FY04 LDRD Final Report Stroke Sensor Development Using Microdot Sensor Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J C; Wilson, T S; Alvis, R M; Paulson, C N; Setlur, U S; McBride, M T; Brown, S B; Bearinger, J P; Colston, B W

    2005-11-15

    major thrust area for the Medical Technology Program (M-division). Through MTP, LLNL has a sizable investment and recognizable expertise in stroke treatment research. The proposed microdot array sensor for stroke will complement this existing program in which mechanical devices are being designed for removing the thrombus. The following list of stroke projects and their relative status shows that MTP has a proven track record of taking ideas to industry: The goal of this LDRD funded project was to develop and demonstrate a minimally invasive optical fiber-based sensor for rapid and in-vivo measurements of multiple stroke biomarkers (e.g. pH and enzyme). The development of this sensor also required the development of a new fabrication technology for attaching indicator chemistries to optical fibers. A benefit of this work is to provide clinicians with a tool to assess vascular integrity of the region beyond the thrombus to determine whether or not it is safe to proceed with the removal of the clot. Such an assessment could extend the use of thrombolytic drug treatment to acute stroke victims outside the current rigid temporal limitation of 3 hours. Furthermore, this sensor would also provide a tool for use with emerging treatments involving the use of mechanical devices for removing the thrombus. The sensor effectively assesses the risk for reperfusion injury.

  1. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors.

    Science.gov (United States)

    Harada, Shingo; Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2014-04-22

    Mammalian-mimicking functional electrical devices have tremendous potential in robotics, wearable and health monitoring systems, and human interfaces. The keys to achieve these devices are (1) highly sensitive sensors, (2) economically fabricated macroscale devices on flexible substrates, and (3) multifunctions beyond mammalian functions. Although highly sensitive artificial electronic devices have been reported, none have been fabricated using cost-effective macroscale printing methods and demonstrate multifunctionalities of artificial electronics. Herein we report fully printed high-sensitivity multifunctional artificial electronic whiskers (e-whisker) integrated with strain and temperature sensors using printable nanocomposite inks. Importantly, changing the composition ratio tunes the sensitivity of strain. Additionally, the printed temperature sensor array can be incorporated with the strain sensor array beyond mammalian whisker functionalities. The sensitivity for the strain sensor is impressively high (∼59%/Pa), which is the best sensitivity reported to date (>7× improvement). As the proof-of-concept for a truly printable multifunctional artificial e-whisker array, two- and three-dimensional space and temperature distribution mapping are demonstrated. This fully printable flexible sensor array should be applicable to a wide range of low-cost macroscale electrical applications.

  2. Vinegar Classification Based on Feature Extraction and Selection From Tin Oxide Gas Sensor Array Data

    Directory of Open Access Journals (Sweden)

    Huang Xingyi

    2003-03-01

    Full Text Available Tin oxide gas sensor array based devices were often cited in publications dealing with food products. However, during the process of using a tin oxide gas sensor array to analysis and identify different gas, the most important and difficult was how to get useful parameters from the sensors and how to optimize the parameters. Which can make the sensor array can identify the gas rapidly and accuracy, and there was not a comfortable method. For this reason we developed a device which satisfied the gas sensor array act with the gas from vinegar. The parameters of the sensor act with gas were picked up after getting the whole acting process data. In order to assure whether the feature parameter was optimum or not, in this paper a new method called “distinguish index”(DI has been proposed. Thus we can assure the feature parameter was useful in the later pattern recognition process. Principal component analysis (PCA and artificial neural network (ANN were used to combine the optimum feature parameters. Good separation among the gases with different vinegar is obtained using principal component analysis. The recognition probability of the ANN is 98 %. The new method can also be applied to other pattern recognition problems.

  3. Differentiating surface and bulk interactions in nanoplasmonic interferometric sensor arrays

    CERN Document Server

    Zeng, Beibei; Bartoli, Filbert J

    2014-01-01

    Detecting specific target analytes and differentiating them from interfering background effects is a crucial but challenging task in complex multi-component solutions commonly encountered in environmental, chemical, biological, and medical sensing applications. Here we present a simple nanoplasmonic interferometric sensor platform that can differentiate the adsorption of a thin protein layer on the sensor surface (surface effects) from bulk refractive index changes (interfering background effects) at a single sensing spot, exploiting the different penetration depths of multiple propagating surface plasmon polaritons excited in the ring-hole nanostructures. A monolayer of bovine serum albumin (BSA) molecules with an effective thickness of 1.91nm is detected and differentiated from a 10-3 change in the bulk refractive index unit of the solution. The noise level of the retrieved real-time sensor output compares favorably with traditional prism-based surface plasmon resonance sensors, but is achieved using a sign...

  4. Distributed thin film sensor array for damage detection and localization

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-04-01

    The authors have developed a capacitive-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. The measurement principle is based on a measurable change in capacitance provoked by strain. In the case of bidirectional in-plane strain, the sensor output contains the additive measurement of both principal strain components. In this paper, we present an algorithm for retrieving unidirectional strain from the bidirectional measurements of the capacitive-based thin film sensor when place in a hybrid dense sensor network with state-of-the-art unidirectional strain sensors. The algorithm leverages the advantages of a hybrid dense network for application of the thin film sensor to reconstruct the surface strain maps. A bidirectional shape function is assumed, and it is differentiated to obtain expressions for planar strain. A least squares estimator (LSE) is used to reconstruct the planar strain map from the networks measurements, after the system's boundary conditions have been enforced in the model. The coefficients obtained by the LSE can be used to reconstruct the estimated strain map. Results from numerical simulations and experimental investigations show good performance of the algorithm.

  5. Massive Sensor Array Fault Tolerance: Tolerance Mechanism and Fault Injection for Validation

    Directory of Open Access Journals (Sweden)

    Dugan Um

    2010-01-01

    Full Text Available As today's machines become increasingly complex in order to handle intricate tasks, the number of sensors must increase for intelligent operations. Given the large number of sensors, detecting, isolating, and then tolerating faulty sensors is especially important. In this paper, we propose fault tolerance architecture suitable for a massive sensor array often found in highly advanced systems such as autonomous robots. One example is the sensitive skin, a type of massive sensor array. The objective of the sensitive skin is autonomous guidance of machines in unknown environments, requiring elongated operations in a remote site. The entirety of such a system needs to be able to work remotely without human attendance for an extended period of time. To that end, we propose a fault-tolerant architecture whereby component and analytical redundancies are integrated cohesively for effective failure tolerance of a massive array type sensor or sensor system. In addition, we discuss the evaluation results of the proposed tolerance scheme by means of fault injection and validation analysis as a measure of system reliability and performance.

  6. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    Science.gov (United States)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  7. Development of Diamond and Silicon MEMS Sensor Arrays with Integrated Readout for Vapor Detection

    Science.gov (United States)

    Possas-Abreu, Maira; Ghassemi, Farbod; Rousseau, Lionel; Scorsone, Emmanuel; Descours, Emilie; Lissorgues, Gaelle

    2017-01-01

    This paper reports on the development of an autonomous instrument based on an array of eight resonant microcantilevers for vapor detection. The fabricated sensors are label-free devices, allowing chemical and biological functionalization. In this work, sensors based on an array of silicon and synthetic diamond microcantilevers are sensitized with polymeric films for the detection of analytes. The main advantage of the proposed system is that sensors can be easily changed for another application or for cleaning since the developed gas cell presents removable electrical connections. We report the successful application of our electronic nose approach to detect 12 volatile organic compounds. Moreover, the response pattern of the cantilever arrays is interpreted via principal component analysis (PCA) techniques in order to identify samples. PMID:28538653

  8. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  9. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  10. Fabrication and characterization of a MEMS nano-Tesla ferromagnetic-piezoelectric magnetic sensor array

    Science.gov (United States)

    Qu, Peng; Gollapudi, Sreenivasulu; Bidthanapally, Rao; Srinivasan, Gopalan; Petrov, Vladimir; Qu, Hongwei

    2016-06-01

    A self-biased MEMS magnetic sensor array with ferromagnetic-piezoelectric composites has been fabricated and characterized. The array with two Quartz-Nickel-Metglas cantilevers with nano-tesla sensitivity was fabricated by MEMS processes including silicon-quartz low temperature bonding, quartz wafer thinning, and electroplating of thick nickel thin films. Under self-biasing due to magnetization grading of ferromagnetic layer, magnetoelectric coefficients of 6.6 and 5.6 V/cm Oe and resolutions of ˜0.58 and ˜0.75 nT are obtained at the mechanical resonant frequencies of 191.5 and 184.8 Hz for the two sensors in the array, respectively. Such arrays have the potential for applications in biomagnetic imaging technologies including magneto-cardiography.

  11. High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide.

    Science.gov (United States)

    Ingham, Colin; Bomer, Johan; Sprenkels, Ad; van den Berg, Albert; de Vos, Willem; van Hylckama Vlieg, Johan

    2010-06-07

    Handling microorganisms in high throughput and their deployment into miniaturized platforms presents significant challenges. Contact printing can be used to create dense arrays of viable microorganisms. Such "living arrays", potentially with multiple identical replicates, are useful in the selection of improved industrial microorganisms, screening antimicrobials, clinical diagnostics, strain storage, and for research into microbial genetics. A high throughput method to print microorganisms at high density was devised, employing a microscope and a stamp with a massive array of PDMS pins. Viable bacteria (Lactobacillus plantarum, Esherichia coli), yeast (Candida albicans) and fungal spores (Aspergillus fumigatus) were deposited onto porous aluminium oxide (PAO) using arrays of pins with areas from 5 x 5 to 20 x 20 microm. Printing onto PAO with up to 8100 pins of 20 x 20 microm area with 3 replicates was achieved. Printing with up to 200 pins onto PAO culture chips (divided into 40 x 40 microm culture areas) allowed inoculation followed by effective segregation of microcolonies during outgrowth. Additionally, it was possible to print mixtures of C. albicans and spores of A. fumigatus with a degree of selectivity by capture onto a chemically modified PAO surface. High resolution printing of microorganisms within segregated compartments and on functionalized PAO surfaces has significant advantages over what is possible on semi-solid surfaces such as agar.

  12. Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.

    Science.gov (United States)

    Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei

    2016-07-01

    The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.

  13. Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick; Porter, Frederick S.; Ray, C.; Sadleir, John E.; Smith, S. J.; Wassell, Edward J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.

  14. Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery

    Science.gov (United States)

    Benfield, David; Yue, Shichao; Lou, Edmond; Moussa, Walied A.

    2014-08-01

    A six-axis sensor array has been developed to quantify the 3D force and moment loads applied in scoliosis correction surgery. Initially this device was developed to be applied during scoliosis correction surgery and augmented onto existing surgical instrumentation, however, use as a general load sensor is also feasible. The development has included the design, microfabrication, deployment and calibration of a sensor array. The sensor array consists of four membrane devices, each containing piezoresistive sensing elements, generating a total of 16 differential voltage outputs. The calibration procedure has made use of a custom built load application frame, which allows quantified forces and moments to be applied and compared to the outputs from the sensor array. Linear or non-linear calibration equations are generated to convert the voltage outputs from the sensor array back into 3D force and moment information for display or analysis.

  15. Integrated sensor array for on-line monitoring micro bioreactors

    NARCIS (Netherlands)

    Krommenhoek, Erik Eduard

    2007-01-01

    In this thesis the development of a microbioreactor array with integrated sensoss suitable for on-line screening of micro organisms is described. Therefore, an array of 2 micro bioreactors compatible with the 96-well microtiterplate format has been made and tested. The developed system was shown to 

  16. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  17. Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array

    Directory of Open Access Journals (Sweden)

    Chung-Shing Hu

    2012-01-01

    Full Text Available Conventionally, a pulse taking platform is based on a single sensor, which initiates a feasible method of quantitative pulse diagnosis. The aim of this paper is to implement a pulse taking platform with a tactile array sensor. Three-dimensional wrist pulse signals are constructed, and the length, width, ascending slope, and descending slope are defined following the surface of the wrist pulse. And the pressure waveform of the wrist pulse obtained through proposed pulse-taking platform has the same performance as the single sensor. Finally, the results of a paired samples t-test reveal that the repeatability of the proposal platform is consistent with clinical experience. On the other hand, the results of ANOVA indicate that differences exist among different pulse taking depths, and this result is consistent with clinical experience in traditional Chinese medicine pulse diagnosis (TCMPD. Hence, the proposed pulse taking platform with an array sensor is feasible for quantification in TCMPD.

  18. Crosstalk suppression in networked resistive sensor arrays using virtual ground technique

    Science.gov (United States)

    Sahai Saxena, Raghvendra; Semwal, Sushil Kumar; Singh Rana, Pratap; Bhan, R. K.

    2013-11-01

    In 2D resistive sensor arrays, the interconnections are reduced considerably by sharing rows and columns among various sensor elements in such a way that one end of each sensor is connected to a row node and other end connected to a column node. This scheme results in total N + M interconnections for N × M array of sensors. Thus, it simplifies the interconnect complexity but suffers from the crosstalk problem among its elements. We experimentally demonstrate that this problem can be overcome by putting all the row nodes at virtually equal potential using virtual ground of high gain operational amplifiers in negative feedback. Although it requires large number of opamps, it solves the crosstalk problem to a large extent. Additionally, we get the response of all the sensors lying in a column simultaneously, resulting in a faster scanning capability. By performing lock-in-amplifier based measurements on a light dependent resistor at a randomly selected location in a 4 × 4 array of otherwise fixed valued resistors, we have shown that the technique can provide 86 dB crosstalk suppression even with a simple opamp. Finally, we demonstrate the circuit implementation of this technique for a 16 × 16 imaging array of light dependent resistors.

  19. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing

    Science.gov (United States)

    Kottapalli, A. G. P.; Asadnia, M.; Miao, J. M.; Barbastathis, G.; Triantafyllou, M. S.

    2012-11-01

    In order to perform underwater surveillance, autonomous underwater vehicles (AUVs) require flexible, light-weight, reliable and robust sensing systems that are capable of flow sensing and detecting underwater objects. Underwater animals like fish perform a similar task using an efficient and ubiquitous sensory system called a lateral-line constituting of an array of pressure-gradient sensors. We demonstrate here the development of arrays of polymer microelectromechanical systems (MEMS) pressure sensors which are flexible and can be readily mounted on curved surfaces of AUV bodies. An array of ten sensors with a footprint of 60 (L) mm × 25 (W) mm × 0.4 (H) mm is fabricated using liquid crystal polymer (LCP) as the sensing membrane material. The flow sensing and object detection capabilities of the array are illustrated with proof-of-concept experiments conducted in a water tunnel. The sensors demonstrate a pressure sensitivity of 14.3 μV Pa-1. A high resolution of 25 mm s-1 is achieved in water flow sensing. The sensors can passively sense underwater objects by transducing the pressure variations generated underwater by the movement of objects. The experimental results demonstrate the array’s ability to detect the velocity of underwater objects towed past by with high accuracy, and an average error of only 2.5%.

  20. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    Directory of Open Access Journals (Sweden)

    Ruifang Xie

    2015-12-01

    Full Text Available The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM, the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  1. A NEW FABRICATION PROCESS FOR A FLEXIBLE SKIN WITH TEMPERATURE SENSOR ARRAY AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    LEE Gwo-Bin; HUANG Fu-Chun; Lee Chia-Yen; Mian Jiun-Jih

    2004-01-01

    This paper reports a novel technique for fabrication of a flexible skin with a temperature sensor array (40 × 1 sensors). A simplified MEMS technology using platinum resistors as sensing materials, which are sandwiched between two polyimide layers as flexible substrates is developed. The two polyimide layers are deposited on top of a thin aluminum layer, which serves as a sacrificial layer such that the flexible skin can be released by metal etching and peeled off easily. The flexible skin with a temperature sensor array has a high mechanical flexibility and can be handily attached on a highly curved surface to detect tiny temperature distribution inside a small area. The sensor array shows a linear output and has a sensitivity of 7.SmV/℃ (prior to amplifiers) at a drive current of 1 mA. To demonstrate its applications, two examples have been demonstrated, including measurement of temperature distribution around a micro heater of a micro PCR (polymerase chain reaction) chip for DNA amplification and detection of separation point for flow over a circular cylinder. The development of the flexible skin with a temperature sensor array may be crucial for measuring temperature distribution on any curved surface in the fields of aerodynamics, space exploration, auto making and biomedical applications etc.

  2. Development of multianalyte sensor arrays for continuous monitoring of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Milanovich, F.P.; Richards, J.B.; Brown, S.B. [Lawrence Livermore National Lab., CA (United States); Healey, B.G.; Chadha, S.; Walt, D. [Tufts Univ., Medford, MA (United States)

    1995-01-01

    Industrial development has led to the release of numerous hazardous materials into the environment posing a potential threat to surrounding waters. Environmental analysis of sites contaminated by several chemicals calls for continuous monitoring of multiple analytes. Monitoring can be achieved by using imaging bundles (300--400 {micro}m in diameter), containing several thousand individual optical fibers for the fabrication of sensors. Multiple sensor sites are created at the distal end of the fiber by immobilizing different analyte-specific fluorescent dyes. By coupling these imaging fibers to a charge coupled device (CCD), one has the ability to spatially and spectrally discriminate the multiple sensing sites simultaneously and hence monitor analyte concentrations.

  3. Extraction and evaluation of gas-flow-dependent features from dynamic measurements of gas sensors array

    Science.gov (United States)

    Kalinowski, Paweł; Woźniak, Łukasz; Jasiński, Grzegorz; Jasiński, Piotr

    2016-11-01

    Gas analyzers based on gas sensors are the devices which enable recognition of various kinds of volatile compounds. They have continuously been developed and investigated for over three decades, however there are still limitations which slow down the implementation of those devices in many applications. For example, the main drawbacks are the lack of selectivity, sensitivity and long term stability of those devices caused by the drift of utilized sensors. This implies the necessity of investigations not only in the field of development of gas sensors construction, but also the development of measurement procedures or methods of analysis of sensor responses which compensate the limitations of sensors devices. One of the fields of investigations covers the dynamic measurements of sensors or sensor-arrays response with the utilization of flow modulation techniques. Different gas delivery patterns enable the possibility of extraction of unique features which improves the stability and selectivity of gas detecting systems. In this article three utilized flow modulation techniques are presented, together with the proposition of the evaluation method of their usefulness and robustness in environmental pollutants detecting systems. The results of dynamic measurements of an commercially available TGS sensor array in the presence of nitrogen dioxide and ammonia are shown.

  4. A Method of Reducing Random Drift in the Combined Signal of an Array of Inertial Sensors

    Science.gov (United States)

    2015-09-30

    Invention [0003] The present invention relates to the components of inertial measurement units, sensors such as gyroscopes and accelerometers. More...METHOD OF REDUCING RANDOM DRIFT IN THE COMBINED SIGNAL OF AN ARRAY OF INERTIAL SENSORS STATEMENT OF GOVERNMENT INTEREST [0001] The invention described...royalties thereon or therefore. CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the

  5. A Pt-doped TiO2 nanotube arrays sensor for detecting SF6 decomposition products.

    Science.gov (United States)

    Zhang, Xiaoxing; Tie, Jing; Zhang, Jinbin

    2013-10-30

    The detection of partial discharge and analysis of SF6 gas components in gas-insulated switchgear (GIS) is important for the diagnosis and operating state assessment of power equipment. The use of a Pt-doped TiO2 nanotube arrays sensor for detecting sulfur hexafluoride (SF6) decomposition products is proposed in this paper. The electrochemical pulse deposition method is employed to prepare the sensor array. The sensor's response to the main characteristic gaseous decomposition products of SF6 is evaluated. The gas sensing characteristic curves of the Pt-doped TiO2 nanotube sensor and intrinsic TiO2 nanotube arrays sensor are compared. The mechanism of the sensitive response is discussed. Test results showed that the Pt-doped nanoparticles not only change the gas sensing selectivity of the TiO2 nanotube arrays sensor with respect to the main characteristic SF6 decomposition products, but also reduce the operating temperature of the sensor.

  6. Passive Detection of Narrowband Sources Using a Sensor Array

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H; Candy, J V; Guidry, B L

    2007-10-24

    In this report we derive a model for a highly scattering medium, implemented as a set of MATLAB functions. This model is used to analyze an approach for using time-reversal to enhance the detection of a single frequency source in a highly scattering medium. The basic approach is to apply the singular value decomposition to the multistatic response matrix for a time-reversal array system. We then use the array in a purely passive mode, measuring the response to the presence of a source. The measured response is projected onto the singular vectors, creating a time-reversal pseudo-spectrum. We can then apply standard detection techniques to the pseudo-spectrum to determine the presence of a source. If the source is close to a particular scatterer in the medium, then we would expect an enhancement of the inner product between the array response to the source with the singular vector associated with that scatterer. In this note we begin by deriving the Foldy-Lax model of a highly scattering medium, calculate both the field emitted by the source and the multistatic response matrix of a time-reversal array system in the medium, then describe the initial analysis approach.

  7. X-ray imaging sensor arrays on foil using solution processed organic photodiodes and organic transistors

    Science.gov (United States)

    Kumar, Abhishek; Moet, Date; van der Steen, Jan-Laurens; Tripathi, Ashutosh; Rodriguez, Francisco G.; Maas, Joris; Simon, Matthias; Reutten, Walter; Douglas, Alexander; Raaijmakers, Rob; Malinowski, Pawel E.; Myny, Kris; Shafique, Umar; Andriessen, Ronn; Heremans, Paul; Gelinck, Gerwin

    2014-05-01

    We demonstrate organic imaging sensor arrays fabricated on flexible plastic foil with the solution processing route for both photodiodes and thin film transistors. We used the photovoltaic P3HT:PCBM blend for fabricating the photodiodes using spin coating and pentacene as semiconductor material for the TFTs. Photodiodes fabricated with P3HT:PCBM absorb in the green part of the visible spectrum which matches with the typical scintillator output wavelength. The arrays consist of 32x32 pixels with variation in pixel resolution of 200μmx200μm, 300μmx300μm and of 1mmx1mm. The accurate reproducibility of shadow images of the objects demonstrates the potential of these arrays for imaging purposes. We also demonstrate that the crosstalk is relatively insignificant despite the fact that the active photodiode forms a continuous layer in the array. Since both photodiodes and TFTs are made of organic material, they are processed at low temperatures below 150°C on foil which means that these imaging sensors can be flexible, light weight and low cost when compared to conventional amorphous silicon based imaging sensors on rigid substrates. In combination with a scintillator on top of the arrays, we show the potential of these arrays for the X-ray imaging applications.

  8. Highly sensitive label-free dual sensor array for rapid detection of wound bacteria.

    Science.gov (United States)

    Sheybani, Roya; Shukla, Anita

    2017-06-15

    Wound infections are a critical healthcare concern worldwide. Rapid and effective antibiotic treatments that can mitigate infection severity and prevent the spread of antibiotic resistance are contingent upon timely infection detection. In this work, dual electrochemical pH and cell-attachment sensor arrays were developed for the real-time spatial and temporal monitoring of potential wound infections. Biocompatible polymeric device coatings were integrated to stabilize the sensors and promote bacteria attachment while preventing non-specific cell and protein fouling. High sensitivity (bacteria concentration of 10(2) colony forming units (CFU)/mL and -88.1±6.3mV/pH over a pH range of 1-13) and stability over 14 days were achieved without the addition of biological recognition elements. The dual sensor array was demonstrated to successfully monitor the growth of both gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time through lag and log growth phases and following antibiotic administration and in simulated shallow wounds conditions. The versatile fabrication methods utilized in sensor development, superior sensitivity, prolonged stability, and lack of non-specific sensor fouling may enable long-term in situ sensor array operation in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    Science.gov (United States)

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  10. Coating based Fiber Bragg Grating humidity sensor array

    NARCIS (Netherlands)

    Cheng, L.K.; Boersma, A.; Jansen, T.H.

    2012-01-01

    A coating based FBG humidity sensor is developed for distributed humidity sensing. The sensitivity of the coated FBG is optimized by varying the chemical composition and the thickness of the coating. A sensitivity of ~2 pm/%RH and a rapid response are demonstrated. The composition of the coating can

  11. Tomographic Imaging on Distributed Unattended Ground Sensor Arrays

    Science.gov (United States)

    2007-11-02

    around the next corner, what is upstairs, where is the person in a red jacket , or even what was the person in the red jacket doing 5 minutes ago...cameras and detectors to seismic , acoustic, magnetic, smoke, toxin, and temperature sensors. A working example of just such a network was developed at

  12. Multi-colorimetric sensor array for detection of illegal materials

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Boisen, Anja; Jakobsen, Mogens Havsteen;

    2012-01-01

    and signal processing enhancements to sensing methods, recognition ability, data acquisition time and data processing algorithms are necessary. In this research we work towards the development of a rapid, easy in use, highly sensitive, specific (minimal false positives) sensor based on a colorimetric sensing...

  13. Chemometric Classification of Unknown Vapors by Conversion of Sensor Array Pattern Vectors to Vapor Descriptors: Extension from Mass-Transducing Sensors To Volume-Transducing Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Wise, Barry M.

    2001-06-28

    A new chemometric method was recently described for classifying unknowns by transforming the vector containing the responses from a multivariate detector to a vector containing descriptors of the detected analyte (Grate et al. 1999). This approach was derived for sensor arrays where each sensor's signal is proportional to the amount of vapor sorbed by a polymer on the sensor surface. In this case, the response is proportional to the partition coefficient, K, and the concentration of the vapor in the gas phase, Cv, where K is the ratio of the concentration of vapor in the sorbent polymer phase, Cs, to Cv.

  14. Simulation of Eddy-Current Corrosion Detection Using a Sensor Array

    Science.gov (United States)

    Katyal, V.; Bowler, J. R.

    2003-03-01

    A computer simulation has been developed to evaluate eddy-current probes containing magnetic field sensor arrays for the detection and evaluation of hidden corrosion. The simulation is used to assess probes that incorporate magneto-resistive or Hall devices in a closely-spaced, linear array. These probes will allow rapid data acquisition over a track width determined by the length of the array. The benefit of the simulation is that adjustments to the virtual probe parameters are easily made allowing improvements in sensitivity, imaging capability and resolution. A number of probe designs have been studied in this way including the "racetrack" probe.

  15. Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    Science.gov (United States)

    Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Leutenegger, M. A.; Porst, J.-P.; Porter, F. S.; Ray, C. A.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.; Smith, D. R.; Swetz, D. S.

    2012-01-01

    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.

  16. Equivalent thermal history reconstruction from a partially crystallized glass-ceramic sensor array

    Science.gov (United States)

    Heeg, Bauke

    2015-11-01

    The basic concept of a thermal history sensor is that it records the accumulated exposure to some unknown, typically varying temperature profile for a certain amount of time. Such a sensor is considered to be capable of measuring the duration of several (N) temperature intervals. For this purpose, the sensor deploys multiple (M) sensing elements, each with different temperature sensitivity. At the end of some thermal exposure for a known period of time, the sensor array is read-out and an estimate is made of the set of N durations of the different temperature ranges. A potential implementation of such a sensor was pioneered by Fair et al. [Sens. Actuators, A 141, 245 (2008)], based on glass-ceramic materials with different temperature-dependent crystallization dynamics. In their work, it was demonstrated that an array of sensor elements can be made sensitive to slight differences in temperature history. Further, a forward crystallization model was used to simulate the variations in sensor array response to differences in the temperature history. The current paper focusses on the inverse aspect of temperature history reconstruction from a hypothetical sensor array output. The goal of such a reconstruction is to find an equivalent thermal history that is the closest representation of the true thermal history, i.e., the durations of a set of temperature intervals that result in a set of fractional crystallization values which is closest to the one resulting from the true thermal history. One particular useful simplification in both the sensor model as well as in its practical implementation is the omission of nucleation effects. In that case, least squares models can be used to approximate the sensor response and make reconstruction estimates. Even with this simplification, sensor noise can have a destabilizing effect on possible reconstruction solutions, which is evaluated using simulations. Both regularization and non-negativity constrained least squares

  17. Performance Analysis for Lateral-Line-Inspired Sensor Arrays

    Science.gov (United States)

    2011-06-01

    frequency is encoded in the nerve fibers connected to the lateral line [10], indicating that at least some high level information about vortices is being...Mogdans. Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, carassius auratus, under still and running water conditions...M. Humphreys. Wall-pressure-array measure- ments beneath a separating/ reattaching flow region. Physics of Fluids, 15(3):706–717, March 2003. [37

  18. Condition-Based Maintenance using Sensor Arrays and Telematics

    CERN Document Server

    Palem, Gopalakrishna

    2013-01-01

    Emergence of uniquely addressable embeddable devices has raised the bar on Telematics capabilities. Though the technology itself is not new, its application has been quite limited until now. Sensor based telematics technologies generate volumes of data that are orders of magnitude larger than what operators have dealt with previously. Real-time big data computation capabilities have opened the flood gates for creating new predictive analytics capabilities into an otherwise simple data log systems, enabling real-time control and monitoring to take preventive action in case of any anomalies. Condition-based-maintenance, usage-based-insurance, smart metering and demand-based load generation etc. are some of the predictive analytics use cases for Telematics. This paper presents the approach of condition-based maintenance using real-time sensor monitoring, Telematics and predictive data analytics.

  19. A portable interferometric micro-array reader on image sensor

    OpenAIRE

    Villar Zafra, Aitor

    2014-01-01

    [ANGLÈS] Microarrays constitute a valuable analytical tool for multiplex and high-throughput analysis and are widely used in genomics and proteomics with many potential applications. During the last decades, protein chips have found increasing acceptance for diagnostic applications due to several advantages over conventional bioanalysis such as miniaturization, parallelization, real-time and sensitivity. Even though the majority of DNA-sensor systems relies on labeling of DNA, the recent prog...

  20. Nanoporous array anodic titanium-supported co-polymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds.

    Science.gov (United States)

    Jia, Jing; Liang, Xiaojing; Wang, Licheng; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2013-12-13

    A nanoporous array anodic titanium-supported co-polymeric ionic liquids (NAAT/PILs) solid-phase microextraction (SPME) fiber was prepared in situ on the titanium wire. NAAT was selected as the substrate, in view of its high surface-to-volume ratio, easy preparation, mechanical stability, and rich titanol groups on its surface which can anchor silica coupling agent containing vinyl and then introduce ionic liquid copolymers as sorbents. In this work, 1-vinyl-3-nonanol imidazolium bromide ([C9OHVIm]Br) and 1,4-di(3-vinylimidazolium) butane dibromide ([(VIM)2C4]2[Br]) were synthesized and used as monomer and crosslinker, respectively. Extraction properties of the NAAT/PILs fiber for polar alcohols and volatile fatty acids (VFAs) in aqueous matrix were examined using gaseous sampling-SPME (GS-SPME) and headspace SPME (HS-SPME) mode, respectively. Combining the superior properties of NAAT substrate and the strong hydrogen bond interaction of PILs to polar compounds, the NAAT/PILs SPME fiber showed much higher adsorption affinity to aliphatic alcohols than bare NAAT and pure PILs fibers. The detection limits (LOD) of established GS-SPME-GC-FID method are in the range of 0.35-17.30ngL(-1) with a linear range from 0.01 to 500ngmL(-1). Also, it showed high extraction performance toward volatile fatty acids (VFAs) compounds from aqueous matrix. Under the optimized SPME conditions, wide linear ranges were obtained with correlation coefficients (R(2)) greater than 0.99 and limits of detection were in the range of 0.85-8.74ngL(-1). Moreover, real-world samples were analyzed and good results were obtained.

  1. Effect of boron-doping on the luminescent and electrical properties of a CdS/Si heterostructure based on Si nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Xiao Bo [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000 (China); Cai, Xiao Jun [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Li, Xin Jian, E-mail: lixj@zzu.edu.cn [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2015-05-25

    Highlights: • B-doped CdS/Si-NPA heterostructure was prepared by a CBD method. • B-doping does not affect the crystal structure and surface morphology of CdS/Si-NPA. • The optical/electrical properties of CdS/Si-NPA could be tuned by changing [B]/[Cd] ratio. • CdS/Si-NPA with optimal physical properties could be prepared with [B]/[Cd] = 0.01. • The method may find applications in preparing CdS/Si-NPA devices with high device performances. - Abstract: Using silicon nanoporous pillar array (Si-NPA) as substrates and boric acid as dopant source, a series of CdS/Si nanoheterostructures were prepared by growing B-doped CdS thin films on Si-NPA via a chemical bath deposition (CBD) method. The structural, optical and electrical properties of CdS/Si-NPA were studied as a function of the [B]/[Cd] ratio of the initial CBD solutions. Our results disclosed that B concentration could be tuned effectively through changing the ratio of [B]/[Cd], which would bring large variation on the optical and electrical properties of CdS/Si-NPA without affecting its crystal structure and surface morphology. The samples with optimal optical and electrical properties were prepared with [B]/[Cd] = 0.01, in which the physical properties of relatively strong light absorption, small electrical resistivity, low turn-on voltage, small leakage current density and high breakdown voltage could be obtained. These results indicated that B-doping might be an effective path for promoting the performance of the optoelectronic devices based on CdS/Si-NPA.

  2. Wearable autonomous microsystem with electrochemical gas sensor array for real-time health and safety monitoring.

    Science.gov (United States)

    Li, Haitao; Mu, Xiaoyi; Wang, Zhe; Liu, Xiaowen; Guo, Min; Jin, Rong; Zeng, Xiangqun; Mason, Andrew J

    2012-01-01

    Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high demand for a wearable autonomous multi-analyte gas sensor system for real-time environmental monitoring. This paper presents a system level solution through synergistic integration of sensors, electronics, and data analysis algorithms. Electrochemical sensors featuring ionic liquids were chosen to provide low-power room-temperature operation, rapid response, high sensitivity, good selectivity, and a long operating life with low maintenance. The system utilizes a multi-mode electrochemical instrumentation circuit that combines all signal condition functions within a single microelectronics chip to minimize system cost, size and power consumption. Embedded sensor array signal processing algorithms enable gas classification and concentration estimation within a real-world mixture of analytes. System design and integration methodologies are described, and preliminary results are shown for a first generation SO(2) sensor and a thumb-drive sized prototype system.

  3. Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface.

    Science.gov (United States)

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2016-02-01

    Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor.

  4. Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis

    NARCIS (Netherlands)

    De, Arpita; Nieuwkasteele, van Jan; Carlen, Edwin T.; Berg, van den Albert

    2013-01-01

    We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integrated with a small volume microfluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection syste

  5. Sparsity and super-resolution in sound source localization with sensor arrays

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2014-01-01

    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) is a method for solving such undetermined problems which achieves simultaneously sparsity, thus super-resolution, and computational...

  6. Sparsity and super-resolution in sound source localization with sensor arrays

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2014-01-01

    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) is a method for solving such undetermined problems which achieves simultaneously sparsity, thus super-resolution, and computational...

  7. Data representation and feature selection for colorimetric sensor arrays used as explosives detectors

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Kostesha, Natalie

    2011-01-01

    Within the framework of the strategic research project Xsense at the Technical University of Denmark, we are developing a colorimetric sensor array which can be useful for detection of explosives like DNT, TNT, HMX, RDX and TATP and identification of volatile organic compounds in the presence...

  8. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  9. X-ray imaging sensor arrays on foil using solution processed organic photodiodes and organic transistors

    NARCIS (Netherlands)

    Kumar, A.; Moet, D.; Steen, J.L. van der; Tripathi, A.K.; Rodriguez, F.G.; Maas, J.; Simon, M.; Reutten, W.; Douglas, A.; Raaijmakers, R.; Malinowski, P.E.; Myny, K.; Shafique, U.; Andriessen, R.; Heremans, P.; Gelinck, G.H.

    2014-01-01

    We demonstrate organic imaging sensor arrays fabricated on flexible plastic foil with the solution processing route for both photodiodes and thin film transistors. We used the photovoltaic P3HT:PCBM blend for fabricating the photodiodes using spin coating and pentacene as semiconductor material for

  10. Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking

    Directory of Open Access Journals (Sweden)

    Constantine G. Kakoyiannis

    2010-01-01

    Full Text Available Wireless sensors emerged as narrowband, resource-constrained devices to provide monitoring services over a wide life span. Future applications of sensor networks are multimedia-driven and include sensor mobility. Thus, sensors must combine small size, large bandwidth, and diversity capabilities. Compact arrays, offering transmit/receive diversity, suffer from strong mutual coupling (MC, which causes lower antenna efficiency, loss of bandwidth, and signal correlation. An efficient technique to reduce coupling in compact arrays is described herein: a defect was inserted in the ground plane (GNDP area between each pair of elements. The defect disturbed the GNDP currents and offered multidecibel coupling suppression, bandwidth recovery, and reduction of in-band correlation. Minimal pattern distortion was estimated. Computational results were supported by measurements. The bandwidth of unloaded arrays degraded gracefully from 38% to 28% with decreasing interelement distance (0.25 to 0.10. Defect-loaded arrays exhibited active impedance bandwidths 37–45%, respectively. Measured coupling was reduced by 15–20 dB.

  11. Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface

    Directory of Open Access Journals (Sweden)

    Óscar Oballe-Peinado

    2016-02-01

    Full Text Available Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor.

  12. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Science.gov (United States)

    Wei, Hsien-Chin; Huang, Su-Hua; Jiang, Joe-Air; Lee, Yeun-Chung

    2017-01-01

    Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES) array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA) platform. An adjustable microampere constant-current (AMCC) source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives. PMID:28165412

  13. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Directory of Open Access Journals (Sweden)

    Hsien-Chin Wei

    2017-02-01

    Full Text Available Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA platform. An adjustable microampere constant-current (AMCC source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  14. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jong-Seok Kim

    2016-01-01

    Full Text Available The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  15. Development of a MEMS-based sensor array to characterise in situ loads during scoliosis correction surgery.

    Science.gov (United States)

    Benfield, D; Lou, E; Moussa, W

    2008-08-01

    Finite element analysis was implemented in three stages to design a piezoresistive, micro-electro-mechanical systems sensor array consisting of four-terminal sensors placed on deformable silicon diaphragms. This sensor array was used to retrofit the Contrel-Dubousset instrumentation in order to capture forces and moments applied by surgeons in real time during scoliosis correction surgery. Outputs from the sensor array have been designed to be compatible with a low-power wireless data transmission system that is currently being developed with a collaborating team in the biomedical industry. The designed sensor array is capable of resolving forces of up to 1000 N and moments of up to 4000 N mm in three dimensions during surgery. A process flow to produce the first prototyped version of this micro sensor with known performance characteristics is presented and tested. Acceptable correlation was found between the performance of the manufactured prototypes, numerical simulation and similar documented devices.

  16. Enzyme sensor array for the determination of biogenic amines in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Jana [University of Greifswald, Institute for Chemistry and Biochemistry (Germany); Wittmann, Christine [Fachhochschule Neubrandenburg, Department of Technology (Germany)

    2002-01-01

    An enzyme sensor array for the simultaneous determination of the three biogenic amines (histamine, tyramine and putrescine) by pattern recognition using an artificial neural network and its application to different food samples is described. A combination of a monoamine oxidase, a tyramine oxidase and a diamine oxidase (with specific activities sufficient for rapid detection) are immobilised each on a separate screen-printed thick-film electrode via transglutaminase and glutaraldehyde to compare these cross-linking reagents with regard to their suitability. To calculate the amount of a specific biogenic amine, the raw data from multichannel software were transferred to a neural network. The sensor array takes 20 min to complete (excluding statistical data analysis) with only one extraction and subsequent neutralisation step required prior to sensor measurement. The lower detection limits with the enzyme sensor were 10 mg/kg for histamine and tyramine, and 5 mg/kg for putrescine with a linear range up to 200 mg/kg for histamine and tyramine and 100 mg/kg for putrescine. The application area of the enzyme sensor array was tested from fish to meat products, sauerkraut, beer, dairy products, wine and further fermented foods and compared with the data of conventional LC analyses (mean correlation coefficient: 0.854). (orig.)

  17. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  18. Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted Structures Inspection

    Directory of Open Access Journals (Sweden)

    Chaofeng Ye

    2016-09-01

    Full Text Available In eddy current non-destructive testing of a multi-layered riveted structure, rotating current excitation, generated by orthogonal coils, is advantageous in providing sensitivity to defects of all orientations. However, when used with linear array sensors, the exciting magnetic flux density ( B x of the orthogonal coils is not uniform over the sensor region, resulting in an output signal magnitude that depends on the relative location of the defect to the sensor array. In this paper, the rotating excitation coil is optimized to achieve a uniform B x field in the sensor array area and minimize the probe size. The current density distribution of the coil is optimized using the polynomial approximation method. A non-uniform coil design is derived from the optimized current density distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM model. The signal magnitude for an optimized coil is seen to be more robust with respect to offset of defects from the coil center. A novel multilayer coil structure, fabricated on a multi-layer printed circuit board, is used to build the optimized coil. A prototype probe with the optimized coil and 32 giant magnetoresistive (GMR sensors is built and tested on a two-layer riveted aluminum sample. Experimental results show that the optimized probe has better defect detection capability compared with a conventional non-optimized coil.

  19. Two dimensional, electronic particle tracking in liquids with a graphene-based magnetic sensor array

    Science.gov (United States)

    Neumann, Rodrigo F.; Engel, Michael; Steiner, Mathias

    2016-07-01

    The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual nanoparticles in the liquid with high accuracy and (b) the reconstruction of a particle's flow-driven trajectory across the integrated sensor array with sub-pixel precision as a function of time, in what we call the ``Magnetic nanoparticle velocimetry'' technique. Since the method does not rely on optical detection, potential lab-on-chip applications include particle tracking and flow analysis in opaque media at the sub-micron scale.The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual

  20. Correction of Faulty Sensors in Phased Array Radars Using Symmetrical Sensor Failure Technique and Cultural Algorithm with Differential Evolution

    Directory of Open Access Journals (Sweden)

    S. U. Khan

    2014-01-01

    Full Text Available Three issues regarding sensor failure at any position in the antenna array are discussed. We assume that sensor position is known. The issues include raise in sidelobe levels, displacement of nulls from their original positions, and diminishing of null depth. The required null depth is achieved by making the weight of symmetrical complement sensor passive. A hybrid method based on memetic computing algorithm is proposed. The hybrid method combines the cultural algorithm with differential evolution (CADE which is used for the reduction of sidelobe levels and placement of nulls at their original positions. Fitness function is used to minimize the error between the desired and estimated beam patterns along with null constraints. Simulation results for various scenarios have been given to exhibit the validity and performance of the proposed algorithm.

  1. Zero-crossing detection algorithm for arrays of optical spatial filtering velocimetry sensors

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Pedersen, Finn; Hanson, Steen Grüner

    2008-01-01

    This paper presents a zero-crossing detection algorithm for arrays of compact low-cost optical sensors based on spatial filtering for measuring fluctuations in angular velocity of rotating solid structures. The algorithm is applicable for signals with moderate signal-to-noise ratios, and delivers...... a "real-time" output (0-1 kHz). The sensors use optical spatial-filtering velocimetry on the dynamical speckles arising from scattering off a rotating solid object with a non-specular surface. The technology measures the instantaneous angular velocity of a target, without being biased by any linear...... factor is directly related to the thermal expansion and refractive-index coefficients of the optics (> 10(-5) K-1 for glass). By cascade-coupling an array of sensors, the ensemble-averaged angular velocity is measured in "real-time". This will reduce the influence of pseudo-vibrations arising from...

  2. Performance investigation of side-coupled interlaced symmetric-shaft-shape photonic crystal sensor arrays

    Science.gov (United States)

    Fu, Zhongyuan; Zhou, Jian; Huang, Lijun; Sun, Fujun; Tian, Huiping

    2016-12-01

    We design symmetric-shaft-shape photonic crystal sensor arrays (SSPhCSAs) which can be used in refractive index sensing, and the performance of the structure is investigated. The structure consists of four symmetric-shaft-shape photonic crystal (SSPhC) cavities side-coupled to a W1 photonic crystal (PhC) waveguide. Each cavity has slightly different cavity spacing with different resonant frequency. By using two dimensional finite-difference time-domain (2D-FDTD) method, the simulation result obtained indicates the performance of the sensor arrays. The sensitivities of the four sensor units are 178, 252, 328 and 398 nm/RIU, respectively, with the detection limit of 10-3. The crosstalk lower than 20 dB is obtained.

  3. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...

  4. Vector-Sensor Array Processing for Polarization Parameters and DOA Estimation

    Directory of Open Access Journals (Sweden)

    Paulus Caroline

    2010-01-01

    Full Text Available This paper presents a method allowing a complete characterization of wave signals received on a vector-sensor array. The proposed technique is based on wavefields separation processing and on estimation of fundamental waves attributes as the state of polarization state and the direction of arrival. Estimation of these attributes is an important step in data processing for a wide range of applications where vector sensor antennas technology is involved such as seismic processing, electromagnetic fields studies, and telecommunications. Compared to the classic techniques, the proposed method is based on computation of multicomponent wideband spectral matrices which enable to take into account all information given by the vector sensor array structures and thus provide a complete characterization of a larger number of sources.

  5. FBG sensor array-based-low speed impact localization system on composite plate

    Science.gov (United States)

    Sai, Yaozhang; Jiang, Mingshun; Sui, Qingmei; Lu, Shizeng; Jia, Lei

    2016-03-01

    A fiber Bragg grating (FBG) sensors-based impact localization system on composite structure and a novel localization algorithm independent of wave velocity were proposed. Six FBG sensors constitute two isosceles right triangle FBG arrays. Impact signals were detected by a high-speed FBG interrogation system. Morlet wavelet transform was employed to extract time differences of impact signals. The straight lines equations, which are through impact source and FBG sensors of right-angled vertices of FBG arrays, can be obtained by the time differences. The coordinate of impact source is the intersection of straight lines. Testing experiments were carried out on composite plate within 400 mm × 400 mm monitor area. The experimental results showed that the maximum and average errors were 20.92 and 8.67 mm, respectively. This article provides a simple and stable impact source localization system independent of wave velocity.

  6. Towards sensor array materials: can failure be delayed?

    Science.gov (United States)

    Mekid, Samir; Saheb, Nouari; Khan, Shafique M. A.; Qureshi, Khurram K.

    2015-06-01

    Further to prior development in enhancing structural health using smart materials, an innovative class of materials characterized by the ability to feel senses like humans, i.e. ‘nervous materials’, is discussed. Designed at all scales, these materials will enhance personnel and public safety, and secure greater reliability of products. Materials may fail suddenly, but any system wishes that failure is known in good time and delayed until safe conditions are reached. Nervous materials are expected to be the solution to this statement. This new class of materials is based on the novel concept of materials capable of feeling multiple structural and external stimuli, e.g. stress, force, pressure and temperature, while feeding information back to a controller for appropriate real-time action. The strain-stress state is developed in real time with the identified and characterized source of stimulus, with optimized time response to retrieve initial specified conditions, e.g. shape and strength. Sensors are volumetrically embedded and distributed, emulating the human nervous system. Immediate applications are in aircraft, cars, nuclear energy and robotics. Such materials will reduce maintenance costs, detect initial failures and delay them with self-healing. This article reviews the common aspects and challenges surrounding this new class of materials with types of sensors to be embedded seamlessly or inherently, including appropriate embedding manufacturing techniques with modeling and simulation methods.

  7. Artificial Roughness Encoding with a Bio-inspired MEMS-based Tactile Sensor Array

    Directory of Open Access Journals (Sweden)

    Calogero Maria Oddo

    2009-04-01

    Full Text Available A compliant 2x2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad.

  8. Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)

    Science.gov (United States)

    2015-07-01

    0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law ...calibration exercises were conducted. The first exercise examined the MSA-Phase I dynamic sensors (ultrasonic anemometers); the second assessed the MSA...Phase I thermodynamic sensors (barometers, thermometers, hygrometers, and pyranometers). This report documents the results of a detailed calibration

  9. DNA translocations through solid-state plasmonic nanopores.

    Science.gov (United States)

    Nicoli, Francesca; Verschueren, Daniel; Klein, Misha; Dekker, Cees; Jonsson, Magnus P

    2014-12-10

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations.

  10. GPS Array as a Sensor of Lithosphere, Troposphere and Ionosphere

    Science.gov (United States)

    Heki, K.

    2011-12-01

    The Japanese dense array of GPS receivers (GEONET) started operation in 1993, and is currently composed of ~1200 stations. GPS (or GNSS in general) receivers can be compared to a Swiss army knife: it could be used not only for positioning (a knife) but also for various purposes, e.g. remote sensing of tropospheric water vapor or ionospheric electrons (screw driver, tin opener etc). Dense GPS arrays have been found extremely useful for variety of geophysical studies. In this lecture, I briefly review their historical achievements, recent highlights, and future perspectives. In Japan, first generation GPS stations were implemented in 1993 (the Kanto-Tokai region) and 1994 (nationwide) by GSI, Japan. Shortly after the launch, they successfully caught coseismic crustal movement of several major earthquakes, the 1994 October Shikotan (Mw8.3), the 1994 December Sanriku (Mw7.6), and the 1995 January Kobe (Mw7.0) earthquakes. These earthquakes accelerated the densification of the GPS network, achieving 1000 in the number of stations within the following 2-3 years. In addition to coseismic jumps, important discoveries continued in 1990s, e.g. large-scale afterslip of interplate thrust earthquakes and slow slip events (SSE). Later it was shown that tilt- and strainmeter can better observe short-term SSEs, and InSAR can draw more detailed maps of coseismic crustal movements. Now GPS array is recognized as a good tool to measure crustal movement with high temporal resolution and stability and with moderate sensitivity and spatial resolution. GPS data are also useful to study hydrosphere. Seasonal crustal movements in Japan mainly reflect changes in hydrological loads. Multipath signatures in GPS data also provide useful information on the environment around the antenna, e.g. soil moisture, snow depth and vegetation. I will compare the snow depth record over a winter inferred by analyzing GPS multipath signatures, and observed by a conventional apparatus. GPS can also measure

  11. [Optimization method of MOS sensor array for identification of traditional Chinese medicine based on electronic nose].

    Science.gov (United States)

    Zou, Hui-Qin; Liu, Yong; Tao, Ou; Lin, Hui; Su, Yu-Zhen; Lin, Xiang-Long; Yan, Yong-Hong

    2013-01-01

    Optimization of sensor array is a significant topic in the application of electronic nose (EN). Stepwise discriminant analysis and cluster analysis combining with screening of typical index were employed to optimize the original array in the classification of 100 samples from 10 kinds of traditional Chinese medicine based on alpha-FOX3000 EN. And the identification ability was evaluated by three algorithm including principle component analysis, Fisher discriminant analysis and random forest. The results showed that the identification ability of EN was improved since not only the effective information was maintained but also the redundant one was eliminated by the optimized array. The optimized method was eventually established, it was accurate and efficient. And the optimized array was built up, that is, S1, S2, S5, S6, S8, S12.

  12. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  13. A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes.

    Science.gov (United States)

    Pioggia, G; Di Francesco, F; Marchetti, A; Ferro, M; Leardi, R; Ahluwalia, A

    2007-05-15

    An impedentiometric electronic tongue based on the combination of a composite sensor array and chemometric techniques aimed at the discrimination of soluble compounds able to elicit different gustative perceptions is presented. A composite array consisting of chemo-sensitive layers based on carbon nanotubes or carbon black dispersed in polymeric matrices and doped polythiophenes was used. The electrical impedance of the sensor array was measured at a frequency of 150 Hz by means of an impedance meter. The experimental set-up was designed in order to allow the automatic selection of a test solution and dipping of the sensor array following a dedicated measurement protocol. Measurements were carried out on 15 different solutions eliciting 5 different tastes (sodium chloride, citric acid, glucose, glutamic acid and sodium dehydrocholate for salty, sour, sweet, umami and bitter, respectively) at 3 concentration levels comprising the human perceptive range. In order to avoid over-fitting, more than 100 repetitions for each sample were carried in a 4-month period. Principal component analysis (PCA) was used to detect and remove outliers. Classification was performed by linear discriminant analysis (LDA). A fairly good degree of discrimination was obtained.

  14. Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study

    Directory of Open Access Journals (Sweden)

    Ana Pimentel

    2016-04-01

    Full Text Available The present work reports the influence of zinc oxide (ZnO seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.

  15. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  16. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.

    Science.gov (United States)

    Matatagui, D; Fontecha, J; Fernández, M J; Aleixandre, M; Gràcia, I; Cané, C; Horrillo, M C

    2011-09-15

    An array of Love-wave sensors based on quartz and Novolac has been developed to detect chemical warfare agents (CWAs). These weapons are a risk for human health due to their efficiency and high lethality; therefore an early and clear detection is of enormous importance for the people safety. Love-wave devices realized on quartz as piezoelectric substrate and Novolac as guiding layer have been used to make up an array of six sensors, which have been coated with specific polymers by spin coating. The CWAs are very dangerous and for safety reasons their well known simulants have been used: dimethylmethyl phosphonate (DMMP), dipropyleneglycol methyl ether (DPGME), dimethylmethyl acetamide (DMA), dichloroethane (DCE), dichloromethane (DCM) and dichloropentane (DCP). The array has been exposed to these CWA simulants detecting very low concentrations, such as 25 ppb of DMMP, a simulant of nerve agent sarin. Finally, principal component analysis (PCA) as data pre-processing and discrimination technique, and probabilistic neural networks (PNN) as patterns classification technique have been applied. The performance of the sensor array has shown stability, accuracy, high sensitivity and good selectivity to these simulants.

  17. Multi-channel optical sensor-array for measuring ballistocardiograms and respiratory activity in bed.

    Science.gov (United States)

    Brüser, Christoph; Kerekes, Anna; Winter, Stefan; Leonhardt, Steffen

    2012-01-01

    Our work covers improvements in sensors and signal processing for unobtrusive, long-term monitoring of cardiac (and respiratory) rhythms using only non-invasive vibration sensors. We describe a system for the unobtrusive monitoring of vital signs by means of an array of novel optical ballistocardiography (BCG) sensors placed underneath a regular bed mattress. Furthermore, we analyze the systems spatial sensitivity and present proof-of-concept results comparing our system to a more conventional BCG system based on a single electromechanical-film (EMFi) sensor. Our preliminary results suggest that the proposed optical multi-channel system could have the potential to reduce beat-to-beat heart rate estimation errors, as well as enable the analysis of more complex breathing patterns.

  18. Planar Array Sensor for High-speed Component Distribution Imaging in Fluid Flow Applications

    Directory of Open Access Journals (Sweden)

    Uwe Hampel

    2007-10-01

    Full Text Available A novel planar array sensor based on electrical conductivity measurements ispresented which may be applied to visualize surface fluid distributions. The sensor ismanufactured using printed-circuit board fabrication technology and comprises of 64 x 64interdigital sensing structures. An associated electronics measures the electricalconductivity of the fluid over each individual sensing structure in a multiplexed manner byapplying a bipolar excitation voltage and by measuring the electrical current flowing from adriver electrode to a sensing electrode. After interrogating all sensing structures, a two-dimensional image of the conductivity distribution over a surface is obtained which in turnrepresents fluid distributions over sensor’s surface. The employed electronics can acquire upto 2500 frames per second thus being able to monitor fast transient phenomena. The systemhas been evaluated regarding measurement accuracy and depth sensitivity. Furthermore, theapplication of the sensor in the investigation of two different flow applications is presented.

  19. Simultaneous determination of fermented milk aroma compounds by a potentiometric sensor array.

    Science.gov (United States)

    Hruskar, Mirjana; Major, Nikola; Krpan, Marina; Vahcić, Nada

    2010-09-15

    The paper reports on the application of an electronic tongue for simultaneous determination of ethanol, acetaldehyde, diacetyl, lactic acid, acetic acid and citric acid content in probiotic fermented milk. The alphaAstree electronic tongue by Alpha M.O.S. was employed. The sensor array comprised of seven non-specific, cross-sensitive sensors developed especially for food analysis coupled with a reference Ag/AgCl electrode. Samples of plain, strawberry, apple-pear and forest-fruit flavored probiotic fermented milk were analyzed both by standard methods and by the potentiometric sensor array. The results obtained by these methods were used for the development of neural network models for rapid estimation of aroma compounds content in probiotic fermented milk. The highest correlation (0.967) and lowest standard deviation of error for the training (0.585), selection (0.503) and testing (0.571) subset was obtained for the estimation of ethanol content. The lowest correlation (0.669) was obtained for the estimation of acetaldehyde content. The model exhibited poor performance in average error and standard deviations of errors in all subsets which could be explained by low sensitivity of the sensor array to the compound. The obtained results indicate that the potentiometric electronic tongue coupled with artificial neural networks can be applied as a rapid method for the determination of aroma compounds in probiotic fermented milk.

  20. Optimizing Concentric Circular Antenna Arrays for High-Altitude Platforms Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasser Albagory

    2014-04-01

    Full Text Available Wireless Sensor Networks (WSN has gained interest in many applications and it becomes important to improve its performance. Antennas and communication performance are most important issues of WSN. In this paper, an adaptive concentric circular array (CCA is proposed to improve the link between the sink and sensor nodes. This technique is applied to the new High – Altitude Platform (HAP Wireless Sensor Network (WSN. The proposed array technique is applied for two coverage scenarios; a wider coverage cell of 30 km radius and a smaller cell of 8 km radius. The feasibility of the link is discussed where it shows the possibility of communications between the HAP sink station and sensor nodes located on the ground. The proposed CCA array is optimized using a modified Dolph-Chebyshev feeding function. A comparison with conventional antenna models in literature shows that the link performance in terms of bit energy to noise power spectral density ratio can be improved by up to 11.37 dB for cells of 8 km radius and 16.8 dB in the case of 30 km radius cells that make the link at 2.4 GHz feasible and realizable compared to using conventional antenna techniques.

  1. Application of Gas Sensor Arrays in Assessment of Wastewater Purification Effects

    Directory of Open Access Journals (Sweden)

    Łukasz Guz

    2014-12-01

    Full Text Available A gas sensor array consisting of eight metal oxide semiconductor (MOS type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR. A comparison of the gas sensor array (electronic nose response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose—gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I chemical oxygen demand (COD (r = 0.988; (II total suspended solids (TSS (r = 0.938; (III turbidity (r = 0.940; (IV pH (r = 0.554; (V nitrogen compounds: N-NO3 (r = 0.958, N-NO2 (r = 0.869 and N-NH3 (r = 0.978; (VI and volatile organic compounds (VOC (r = 0.987. Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  2. Two dimensional, electronic particle tracking in liquids with a graphene-based magnetic sensor array.

    Science.gov (United States)

    Neumann, Rodrigo F; Engel, Michael; Steiner, Mathias

    2016-07-14

    The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual nanoparticles in the liquid with high accuracy and (b) the reconstruction of a particle's flow-driven trajectory across the integrated sensor array with sub-pixel precision as a function of time, in what we call the "Magnetic nanoparticle velocimetry" technique. Since the method does not rely on optical detection, potential lab-on-chip applications include particle tracking and flow analysis in opaque media at the sub-micron scale.

  3. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  4. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    Science.gov (United States)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  5. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  6. Fibre-optic sensors using long-period gratings and microlens arrays

    Science.gov (United States)

    Liu, Michael Shun Yee

    In this project, two fibre-optic sensing systems were developed which use long-period fibre grating (LPG) and Brillouin scattering in single-mode fibre for temperature and bending measurement. In order to realize the LPG grating sensor, two novel LPG fabrication techniques, namely, the microlens array technique and the plano-convex microlens techniques were also developed in this project. The microlens array is characterized by a higher transmission efficiency of UV laser light and higher LPG inscription efficiency than other conventional method, such as the amplitude mask technique. By using the same hydrogen loaded germanosilicate fibre and UV laser irradiation, the microlens array technique can produce an LPG rejection band with a peak loss of -11 dB after 50 seconds of UV laser irradiation while using a metal amplitude mask, a -10.9 dB resonant peak can only be produced after 200 seconds of UV laser irradiation. The microlens array technique was further improved by polishing the microlens array to produce the piano-convex microlens array via which the problems of damage to the microlens array and fibre due to internal focusing and excessive power on the inscription plane were eliminated. Also, the new method is capable of selective control of resonant peaks at higher harmonic frequencies by using the plano-convex microlens array with different polishing depths. In the second stage of the study, a highly sensitive temperature sensor based on a packaged LPG was developed. In addition, a low-cost and high return loss fibre-optic switch was implemented with this packaged LPG. In this project a simple LPG bending sensor was developed which is based on the measurement of total transmitted power, instead of the wavelength shift. It has been shown that the total transmitted power from a LPG has a linear response with respect to the bending curvature within the range from 0 to 0.001 mm-1. Therefore, this kind of LPGs can be used as bending sensors for different

  7. Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays

    Science.gov (United States)

    Chervenak, James A.; Adams, J. M.; Bailey, C. N.; Bandler, S.; Brekosky, R. P.; Eckart, M. E.; Erwin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadlier, J. E.; Smith, S. J.

    2012-01-01

    We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R(sub n), G, and T(sub c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring.

  8. Development and characterization of electrochemical cantilever sensor for bio/chemical sensing applications

    DEFF Research Database (Denmark)

    Quan, Xueling; Fischer, Lee MacKenzie; Boisen, Anja

    2011-01-01

    We report the improvements made to our previously developed electrochemical cantilever (EC) sensor, where nanoporous gold material is employed as working electrodes in microcantilever arrays, while combined counter-reference electrodes are integrated on the chip. For a surface stress change of 1m...

  9. Hygroscopic particle behavior studied by interdigitated array microelectrode impedance sensors.

    Science.gov (United States)

    Schindelholz, Eric; Tsui, Lok-kun; Kelly, Robert G

    2014-01-09

    The hygroscopic behavior of soluble salts bears importance in many research fields including atmospheric sciences, corrosion, porous building materials, and pharmaceuticals. Several methods have been used to study deliquescence (solid to liquid) and efflorescence (liquid to solid) phase transitions of these salts. In this study, we measured the deliquescence and efflorescence RH values of single salt microparticles deposited on an interdigitated microelectrode sensor via electrical impedance. The salts examined were NaCl, LiCl, NaBr, KCl, and MgCl2. Measured values were in agreement with in situ optical microscopic observations and, with the exception of MgCl2, literature values. In the case of MgCl2, deliquescence occurred at 33% RH and 12-15% RH, with the latter range being previously unreported. The depressed deliquescence RH was hypothesized to be a result of the formation of a metastable MgCl2 hydrate. Incomplete efflorescence of MgCl2 was also observed after exposure to <1.5% RH for up to 22 h due to formation of solid shells which trapped fluid. The phenomena elucidated by these results provide an explanation for the anomalous water retention and uptake behavior of MgCl2 below 33% RH reported elsewhere in the literature. The results presented in this study validate the use of this method as an alternative or complementary method for study of bulk-phase transitions of substrate-deposited particles across a broad RH range. These findings also demonstrate the utility of this method for detection of fluid trapping which cannot be directly ascertained by gravimetric and line-of-sight techniques commonly used in the study of hygroscopic particles.

  10. Fast direction of arrival algorithm based on vector-sensor arrays using wideband sources

    Institute of Scientific and Technical Information of China (English)

    SUN Guo-cang; HUI Jun-ying; CHEN Yang

    2008-01-01

    An acoustic vector sensor (AVS) can capture more information than a conventional acoustic pressure sensor (APS). As a result, more output channels are required when multiple AVS are formed into arrays, making processing the data stream computationally intense. This paper proposes a new algorithm based on the propagator method for wideband coherent sources that eliminates eigen-decomposition in order to reduce the computational burden. Data from simulations and lake trials showed that the new algorithm is valid: it resolves coherent sources, breaks left/right ambiguity, and allows inter element spacing to exceed a half-wavelength.

  11. Comparison of pH Data Measured with a pH Sensor Array Using Different Data Fusion Methods

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liao

    2012-09-01

    Full Text Available This paper introduces different data fusion methods which are used for an electrochemical measurement using a sensor array. In this study, we used ruthenium dioxide sensing membrane pH electrodes to form a sensor array. The sensor array was used for detecting the pH values of grape wine, generic cola drink and bottled base water. The measured pH data were used for data fusion methods to increase the reliability of the measured results, and we also compared the fusion results with other different data fusion methods.

  12. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds.

  13. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, Xinsheng, E-mail: xsyang@swjtu.edu.cn [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Zhao, Yong [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney 2052, NSW (Australia)

    2015-12-15

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  14. Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger [ORNL; Lenarduzzi, Roberto [ORNL; Killough, Stephen M [ORNL; McIntyre, Timothy J [ORNL

    2015-01-01

    Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detect the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.

  15. Determination of pork spoilage by colorimetric gas sensor array based on natural pigments.

    Science.gov (United States)

    Huang, Xiao-wei; Zou, Xiao-bo; Shi, Ji-yong; Guo, Yanin; Zhao, Jie-wen; Zhang, Jianchun; Hao, Limin

    2014-02-15

    A new colorimetric gas-sensor array based on four natural pigments, that were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L.), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica), was developed for pork freshness evaluation. A colour change profile for each sample was obtained by differentiating the images of the sensor array before and after exposure to the odour of sample. The total viable count (TVC) per gram of pork was obtained by classical microbiological plating methods, and the biogenic amines were measured by HPLC. Biogenic amine index (BAI) for the determination of meat freshness was developed from the sum of putrescine and cadaverine. The colour change profiles were analysed using principal component analysis and correlated with conventional methods (BAI, TVC). A partial least squares (PLS) prediction model was obtained with r=0.854 and 0.933 for BAI and TVC, respectively.

  16. Monolithic photovotaic PbS-on-Si infrared-sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Masek, J.; Zogg, H.; Maissen, C.; Blunier, S. (Arbeitsgemeinschaft fur Industrielle Forschung, Swiss Federal Inst. of Tech., ETH-Honggerberg, CH-8093 Zurich (CH)); Ishida, A. (Shizuoka Univ., Hamamatsu (Japan). Faculty of Engineering)

    1990-01-01

    The authors have grown epitaxial narrow-gap PbS-on-Si substrates using a stacked CaF{sub 2}-BaF{sub 2} intermediate buffer layer, and have fabricated linear arrays of photovoltaic infrared (IR) sensors in the PbS layer for the first time. The sensors of the array exhibit resistance-area products at zero bias of 3{Omega}{center dot}cm{sup 2} at 200 K (3.4-{mu}m cutoff wavelength) and 2{center dot}10{sup 5} {Omega}{center dot}cm{sup 2} at 84 K (4-{mu}m cutoff), with corresponding detectivities of 2{center dot}10{sup 10} and 1{center dot}10{sup 13}cm{center dot}{radical}Hz/W, respectively.

  17. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    Science.gov (United States)

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed. PMID:23112638

  18. Quickest Detection of a Random Signal in Background Noise Using a Sensor Array

    Directory of Open Access Journals (Sweden)

    Poor H Vincent

    2005-01-01

    Full Text Available The problem of detecting the onset of a signal impinging at an unknown angle on a sensor array is considered. An algorithm based on parallel CUSUM tests matched to each of a set of discrete beamforming angles is proposed. Analytical approximations are developed for the mean time between false alarms, and for the detection delay of this algorithm. Simulations are included to verify the results of this analysis.

  19. Circuit design for the retina-like image sensor based on space-variant lens array

    Science.gov (United States)

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  20. Mission-Oriented Sensor Arrays and UAVs - a Case Study on Environmental Monitoring

    Science.gov (United States)

    Figueira, N. M.; Freire, I. L.; Trindade, O.; Simões, E.

    2015-08-01

    This paper presents a new concept of UAV mission design in geomatics, applied to the generation of thematic maps for a multitude of civilian and military applications. We discuss the architecture of Mission-Oriented Sensors Arrays (MOSA), proposed in Figueira et Al. (2013), aimed at splitting and decoupling the mission-oriented part of the system (non safety-critical hardware and software) from the aircraft control systems (safety-critical). As a case study, we present an environmental monitoring application for the automatic generation of thematic maps to track gunshot activity in conservation areas. The MOSA modeled for this application integrates information from a thermal camera and an on-the-ground microphone array. The use of microphone arrays technology is of particular interest in this paper. These arrays allow estimation of the direction-of-arrival (DOA) of the incoming sound waves. Information about events of interest is obtained by the fusion of the data provided by the microphone array, captured by the UAV, fused with information from the termal image processing. Preliminary results show the feasibility of the on-the-ground sound processing array and the simulation of the main processing module, to be embedded into an UAV in a future work. The main contributions of this paper are the proposed MOSA system, including concepts, models and architecture.

  1. Electrowetting liquid lens array on curved substrates for wide field of view image sensor

    Science.gov (United States)

    Bang, Yousung; Lee, Muyoung; Won, Yong Hyub

    2016-03-01

    In this research, electrowetting liquid lens array on curved substrates is developed for wide field of view image sensor. In the conventional image sensing system, this lens array is usually in the form of solid state. However, in this state, the lens array which is similar to insect-like compound eyes in nature has several limitations such as degradation of image quality and narrow field of view because it cannot adjust focal length of lens. For implementation of the more enhanced system, the curved array of lenses based on electrowetting effect is developed in this paper, which can adjust focal length of lens. The fabrication of curved lens array is conducted upon the several steps, including chamber fabrication, electrode & dielectric layer deposition, liquid injection, and encapsulation. As constituent materials, IZO coated convex glass, UV epoxy (NOA 68), DI water, and dodecane are used. The number of lenses on the fabricated panel is 23 by 23 and each lens has 1mm aperture with 1.6mm pitch between adjacent lenses. When the voltage is applied on the device, it is observed that each lens is changed from concave state to convex state. From the unique optical characteristics of curved array of liquid lenses such as controllable focal length and wide field of view, we can expect that it has potential applications in various fields such as medical diagnostics, surveillance systems, and light field photography.

  2. MISSION-ORIENTED SENSOR ARRAYS AND UAVs – A CASE STUDY ON ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    N. M. Figueira

    2015-08-01

    Full Text Available This paper presents a new concept of UAV mission design in geomatics, applied to the generation of thematic maps for a multitude of civilian and military applications. We discuss the architecture of Mission-Oriented Sensors Arrays (MOSA, proposed in Figueira et Al. (2013, aimed at splitting and decoupling the mission-oriented part of the system (non safety-critical hardware and software from the aircraft control systems (safety-critical. As a case study, we present an environmental monitoring application for the automatic generation of thematic maps to track gunshot activity in conservation areas. The MOSA modeled for this application integrates information from a thermal camera and an on-the-ground microphone array. The use of microphone arrays technology is of particular interest in this paper. These arrays allow estimation of the direction-of-arrival (DOA of the incoming sound waves. Information about events of interest is obtained by the fusion of the data provided by the microphone array, captured by the UAV, fused with information from the termal image processing. Preliminary results show the feasibility of the on-the-ground sound processing array and the simulation of the main processing module, to be embedded into an UAV in a future work. The main contributions of this paper are the proposed MOSA system, including concepts, models and architecture.

  3. Monitoring and evaluation of alcoholic fermentation processes using a chemocapacitor sensor array.

    Science.gov (United States)

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-09-02

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument.

  4. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors

    Directory of Open Access Journals (Sweden)

    Kaiming Nie

    2016-01-01

    Full Text Available This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM. The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs are used to quantize the time of photons’ arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor’s resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip’s output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5–20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes.

  5. High-Speed Tactile Sensing for Array-Type Tactile Sensor and Object Manipulation Based on Tactile Information

    Directory of Open Access Journals (Sweden)

    Wataru Fukui

    2011-01-01

    Full Text Available We have developed a universal robot hand with tactile and other sensors. An array-type tactile sensor is crucial for dexterous manipulation of objects using a robotic hand, since this sensor can measure the pressure distribution on finger pads. The sensor has a very high resolution, and the shape of a grasped object can be classified by using this sensor. The more the number of measurement points provided, the higher the accuracy of the classification, but with a corresponding lengthening of the measurement cycle. In this paper, the problem of slow response time is resolved by using software for an array-type tactile sensor with high resolution that emulates the human sensor system. The validity of the proposed method is demonstrated through experiments.

  6. Polymer microlens array integrated with imaging sensors by UV-molding technique

    Science.gov (United States)

    Lai, Jianjun; Zhao, Yue; Ke, Caijun; Yi, Xinjian; Zhang, TianXu

    2005-01-01

    Fabrication of Polymer microlens array based on UV-molding techniques is presented. UV-molding enables for the integration of polymer microlens array on top of arbitrary substrates like glass, silicon other polymeric films. In this technique, photoresist or glass mold is first fabricated by conventional photolithnic method and subsequently served as transparent replication tool. UV curable polymer resin is then coated on patterned or unpatterned substrates and a contact mask aligner is used to align substrates and replication mold tool and then make the mold immersed into the resin. Replication of polymer on substrates is achieved by UV photopolymerisation of the resin. Resin thickness and gap distance between mold and substrate are carefully controlled in order to obtain acceptable thickness of cured polymer base. The UV molding technique was used to molding of a polymer film carring microlens array on the surface of an experimental CCD imaging sensor chip in this paper to enhance its fill factor and sensitivity.

  7. Micro-Drilling of Polymer Tubular Ultramicroelectrode Arrays for Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Niels B. Larsen

    2013-05-01

    Full Text Available We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene (PEDOT, a conductive polymer. Arrays of Ø 100 µm tubular electrodes each having a height of 0.37 ± 0.06 µm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM.

  8. Micro-drilling of polymer tubular ultramicroelectrode arrays for electrochemical sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Skaarup, Steen; Geschke, Oliver

    2013-01-01

    We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer. Arrays of Ø 100 μm tubular electrodes each having a height of 0.37 ± 0.06 μm were...... reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals...... were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM....

  9. Micro-drilling of polymer tubular ultramicroelectrode arrays for electrochemical sensors.

    Science.gov (United States)

    Kafka, Jan; Skaarup, Steen; Geschke, Oliver; Larsen, Niels B

    2013-05-14

    We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer. Arrays of Ø 100 µm tubular electrodes each having a height of 0.37 ± 0.06 µm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM.

  10. Pairwise graphical models for structural health monitoring with dense sensor arrays

    Science.gov (United States)

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  11. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    Science.gov (United States)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  12. Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography

    Science.gov (United States)

    Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun

    2016-04-01

    Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.

  13. A Triboelectric Sensor Array for Electrostatic Studies on the Lunar Surface

    Science.gov (United States)

    Johansen, Michael R.; Mackey, Paul J.; Calle, C. I.

    2015-01-01

    The moons electrostatic environment requires careful consideration in the development of future lunar landers. Electrostatically charged dust was well documented during the Apollo missions to cause thermal control, mechanical, and visibility issues. The fine dust particles that make up the surface are electrostatically charged as a result of numerous charging mechanisms. The relatively dry conditions on the moon creates a prime tribocharging environment during surface operations. The photoelectric effect is dominant for lunar day static charging, while plasma electrons are the main contributor for lunar night electrostatic effects. Electrostatic charging is also dependent on solar intensity, Earth-moon relative positions, and cosmic ray flux. This leads to a very complex and dynamic electrostatic environment that must be studied for the success of long term lunar missions.In order to better understand the electrostatic environment of planetary bodies, Kennedy Space Center, in previous collaboration with the Jet Propulsion Laboratory, has developed an electrostatic sensor suite. One of the instruments included in this package is the triboelectric sensor array. It is comprised of strategically selected materials that span the triboelectric series and that also have previous spaceflight history. In this presentation, we discuss detailed testing with the triboelectric sensor array performed at Kennedy Space Center. We will discuss potential benefits and use cases of this low mass, low cost sensor package, both for science and for mission success.

  14. Design and characterization of novel all-solid-state potentiometric sensor array dedicated to physiological measurements.

    Science.gov (United States)

    Toczyłowska-Mamińska, Renata; Kloch, Monika; Zawistowska-Deniziak, Anna; Bala, Agnieszka

    2016-10-01

    A novel construction of all-solid-state potentiometric sensor array designed for physiological measurements has been presented. The planar construction and elimination of liquid phase creates broad opportunities for the modifications in the sensing part of the sensor. The designed construction is based on all-solid-state ion-selective electrodes integrated with the ionic-liquid based reference electrode. Work parameters of the sensor arrays were characterized. It has been shown that presented sensor design indicates high sensitivity (55.2±1mV/dec, 56.3±2mV/dec, 58.4±1mV/dec and 53.5±1mV/pH for sodium-, potassium-, chloride- and pH-selective electrodes, respectively in 10(-5)-10(-1.5)M range of primary ions), low response time (t95 did not exceed 10s), high potential stability (potential drift in 28-h measurement was ca. ±2mV) and potential repeatability ca. ±1mV. The system was successfully applied to the simultaneous determination of K(+), Cl(-), Na(+) and pH in the model physiological solution and for the ion flux studies in human colon epithelium Caco-2 cell line as well.

  15. A Supramolecular Sensor Array Using Lanthanide-Doped Nanoparticles for Sensitive Detection of Glyphosate and Proteins.

    Science.gov (United States)

    Wang, Meng; Ye, Hebo; You, Lei; Chen, Xueyuan

    2016-01-13

    Lanthanide (Ln(3+))-doped nanoparticles (NPs) are an intensive area of research in chemical and materials sciences. Herein a sensor array of Ln(3+)-doped NPs was developed for the first time toward sensitive molecular sensing based on a novel strategy of the hybridized time-resolved Förster resonance energy transfer (TR-FRET) with the indicator displacement assay (IDA) concept (TR-FRET-IDA). The sensor platform was generated in situ by binding a series of negatively charged indicators on the surface of ligand-free LiYF4:Ce/Tb NPs. The TR-FRET between NPs and dyes resulted in indicator emission and was employed as a means of removing undesired short-lived background luminescence from the indicator effectively. Displacement of indicators from the NP/indicator ensembles by glyphosate, a common herbicide, led to turn-off of the indicator emission. The sensor array was able to successfully discriminate 11 biologically relevant anions with high accuracy and sensitivity in pure aqueous buffer both qualitatively and quantitatively. Furthermore, the differentiation of six model proteins in the nM range was achieved with 100% accuracy for the classification, thereby demonstrating the versatility of this simple sensor platform. The study of the mechanism of binding and signal modulation further verified TR-FRET-IDA as a reliable sensing paradigm.

  16. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    Science.gov (United States)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  17. Enhanced processing in arrays of optimally tuned nonlinear biomimetic sensors: A coupling-mediated Ringelmann effect and its dynamical mitigation

    Science.gov (United States)

    Nikitin, Alexander P.; Bulsara, Adi R.; Stocks, Nigel G.

    2017-03-01

    Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea, we describe an array of magnetic sensors where each individual sensor can self-tune to an optimal operating regime. The self-tuning gives the array its "biomimetic" features. We show that the overall performance of the array can, as expected, be improved by increasing the number of sensors but, however, coupling between sensors reduces the overall performance even though the individual sensors in the system could see an improvement. We quantify the similarity of this phenomenon to the Ringelmann effect that was formulated 103 years ago to account for productivity losses in human and animal groups. We propose a global feedback scheme that can be used to greatly mitigate the performance degradation that would, normally, stem from the Ringelmann effect.

  18. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Repasky, Kevin [Montana State Univ., Bozeman, MT (United States)

    2014-02-01

    A fiber sensor array for sub-surface CO2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO2} absorption features where a transmission measurement is made allowing the CO2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO2/day began on July 10, 2012. The elevated subsurface CO2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project

  19. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    Science.gov (United States)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  20. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  1. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Science.gov (United States)

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  2. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    Science.gov (United States)

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-12

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  3. Hi-Speed Tactile Sensing for Array-type Tactile Sensor and Object Manipulation based on Tactile Information

    Science.gov (United States)

    Fukui, Wataru; Kobayashi, Futoshi; Kojima, Fumio; Nakamoto, Hiroyuki; Maeda, Tadashi; Imamura, Nobuaki; Shirasawa, Hidenori

    Recently, a robotic hand with tactile sensors is developed all over the world. We also have developed a universal robot hand with tactile sensors and other sensors. Tactile sensors are very important for manipulating objects dexterously. However, array-type tactile sensor has many I/O, thus require much processing time. In this paper, we propose a hi-speed tactile sensing based on the genetic algorithm in order to measure the tactile information rapidly. The validity of the proposed method shows through some experiments. Moreover, a multi-object manipulation according to the tactile information is proposed.

  4. Direction of arrival estimates with vector sensors : First results of an atmospheric infrasound array in the Netherlands

    NARCIS (Netherlands)

    Zon, A.T. van; Evers, L.; Vossen, R. van; Ainslie, M.A.

    2009-01-01

    The Royal Netherlands Meteorological Institute has continuously operated an outdoor atmospheric infrasound array containing 37 pairs of particle velocity sensors (Microflown) and 6 pressure sensors in the north of the Netherlands in the fall of 2008. As initial results, we detected transients caused

  5. Low-cost ultrasonic distance sensor arrays with networked error correction.

    Science.gov (United States)

    Dai, Hongjun; Zhao, Shulin; Jia, Zhiping; Chen, Tianzhou

    2013-09-05

    Distance has been one of the basic factors in manufacturing and control fields, and ultrasonic distance sensors have been widely used as a low-cost measuring tool. However, the propagation of ultrasonic waves is greatly affected by environmental factors such as temperature, humidity and atmospheric pressure. In order to solve the problem of inaccurate measurement, which is significant within industry, this paper presents a novel ultrasonic distance sensor model using networked error correction (NEC) trained on experimental data. This is more accurate than other existing approaches because it uses information from indirect association with neighboring sensors, which has not been considered before. The NEC technique, focusing on optimization of the relationship of the topological structure of sensor arrays, is implemented for the compensation of erroneous measurements caused by the environment. We apply the maximum likelihood method to determine the optimal fusion data set and use a neighbor discovery algorithm to identify neighbor nodes at the top speed. Furthermore, we adopt the NEC optimization algorithm, which takes full advantage of the correlation coefficients for neighbor sensors. The experimental results demonstrate that the ranging errors of the NEC system are within 2.20%; furthermore, the mean absolute percentage error is reduced to 0.01% after three iterations of this method, which means that the proposed method performs extremely well. The optimized method of distance measurement we propose, with the capability of NEC, would bring a significant advantage for intelligent industrial automation.

  6. Low-Cost Ultrasonic Distance Sensor Arrays with Networked Error Correction

    Directory of Open Access Journals (Sweden)

    Tianzhou Chen

    2013-09-01

    Full Text Available Distance has been one of the basic factors in manufacturing and control fields, and ultrasonic distance sensors have been widely used as a low-cost measuring tool. However, the propagation of ultrasonic waves is greatly affected by environmental factors such as temperature, humidity and atmospheric pressure. In order to solve the problem of inaccurate measurement, which is significant within industry, this paper presents a novel ultrasonic distance sensor model using networked error correction (NEC trained on experimental data. This is more accurate than other existing approaches because it uses information from indirect association with neighboring sensors, which has not been considered before. The NEC technique, focusing on optimization of the relationship of the topological structure of sensor arrays, is implemented for the compensation of erroneous measurements caused by the environment. We apply the maximum likelihood method to determine the optimal fusion data set and use a neighbor discovery algorithm to identify neighbor nodes at the top speed. Furthermore, we adopt the NEC optimization algorithm, which takes full advantage of the correlation coefficients for neighbor sensors. The experimental results demonstrate that the ranging errors of the NEC system are within 2.20%; furthermore, the mean absolute percentage error is reduced to 0.01% after three iterations of this method, which means that the proposed method performs extremely well. The optimized method of distance measurement we propose, with the capability of NEC, would bring a significant advantage for intelligent industrial automation.

  7. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2016-04-01

    Full Text Available Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.

  8. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement.

    Science.gov (United States)

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-04-06

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.

  9. A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces

    Directory of Open Access Journals (Sweden)

    Zhenguo Sun

    2016-06-01

    Full Text Available A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.

  10. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    Science.gov (United States)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  11. Development and Demonstration of Measurement-Time Efficient Methods for Impedance Spectroscopy of Electrode and Sensor Arrays

    OpenAIRE

    Derek Johnson; Matthew Smith; Kevin R. Cooper

    2008-01-01

    The development of impedance-based array devices is hindered by a lack of robust platforms and methods upon which to evaluate and interrogate sensors. One aspect to be addressed is the development of measurement-time efficient techniques for broadband impedance spectroscopy of large electrode arrays. The objective of this work was to substantially increase the low frequency impedance measurement throughput capability of a large channel count array analyzer by developing true parallel measurem...

  12. G3 Assisted Rational Design of Chemical Sensor Array Using Carbonitrile Neutral Receptors

    Directory of Open Access Journals (Sweden)

    Yatimah Alias

    2013-10-01

    Full Text Available Combined computational and experimental strategies for the systematic design of chemical sensor arrays using carbonitrile neutral receptors are presented. Binding energies of acetonitrile, n-pentylcarbonitrile and malononitrile with Ca(II, Mg(II, Be(II and H+ have been investigated with the B3LYP, G3, CBS-QB3, G4 and MQZVP methods, showing a general trend H+ > Be(II > Mg(II > Ca(II. Hydrogen bonding, donor-acceptor and cation-lone pair electron simple models were employed in evaluating the performance of computational methods. Mg(II is bound to acetonitrile in water by 12.5 kcal/mol, and in the gas phase the receptor is more strongly bound by 33.3 kcal/mol to Mg(II compared to Ca(II. Interaction of bound cations with carbonitrile reduces the energies of the MOs involved in the proposed σ-p conjugated network. The planar malononitrile-Be(II complex possibly involves a π-network with a cationic methylene carbon. Fabricated potentiometric chemical sensors show distinct signal patterns that can be exploited in sensor array applications.

  13. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  14. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    Science.gov (United States)

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  15. PVDF array sensor for Lamb wave reception: Aircraft structural health monitoring

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2016-02-01

    Fracture critical structures need structural health monitoring (SHM) to improve safety and reliability as well as reduce downtime and maintenance costs. Lamb waves provide promising techniques for on-line SHM systems because of their large volumetric coverage and good sensitivity to defects. Extensive research has focused on using features derived from time signals obtained at sparse locations distributed across the structure. Commonly used features are wave amplitude, energy, and time of arrival. However, the modal content of received Lamb waves contains valuable information about the existence and characteristics of defects, but cannot be determined from these signal features. Wave scattering at a defect often results in mode conversions in both transmitted and reflected waves. Features like change in time of arrival or amplitude reduction can be interpreted as being a result of mode conversion. This work is focused on the design of a 1D array sensor such that received wave signals at equally spaced locations are available for modal analysis in the wavenumber-frequency domain. PVDF (polyvinylidene fluoride) is selected as the active material of the sensor because of its low interference with wave fields in structures. The PVDF array sensor is fabricated to have 16 independent channels and its capability to detect and characterize different types of defects is demonstrated experimentally.

  16. A First Step Towards a Microfabricated Thin-Film Sensor Array on the Basis of Chalcogenide Glass Materials

    Directory of Open Access Journals (Sweden)

    Michael J. Schöning

    2002-09-01

    Full Text Available A first step towards a microfabricated potentiometric thin-film sensor array for the simultaneous detection of Pb2+, Cd2+ and Cu2+ has been realized. The sensitive layers used are on the basis of chalcogenide glass materials. These thin-film chalcogenide glass materials that consist of mixtures of Pb-Ag-As-I-S, Cd-Ag-As-I-S or Cu-Ag-As-Se have been prepared by pulsed laser deposition technique. The developed sensor array has been physically characterized by means of scanning electron microscopy and Rutherford backscattering spectrometry. The electrochemical sensor characterization has been performend by potentiometric measurements.

  17. Fiber Bragg Grating Sensor Array System Based on Digital Phase Generated Carrier Demodulation and Reference Compensation Method

    Institute of Scientific and Technical Information of China (English)

    Jun He; Fang Li; Hao Xiao; Yu-Liang Liu

    2008-01-01

    A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1×10-3 pm/Hz1/2.

  18. A PARALIND Decomposition-Based Coherent Two-Dimensional Direction of Arrival Estimation Algorithm for Acoustic Vector-Sensor Arrays

    Science.gov (United States)

    Zhang, Xiaofei; Zhou, Min; Li, Jianfeng

    2013-01-01

    In this paper, we combine the acoustic vector-sensor array parameter estimation problem with the parallel profiles with linear dependencies (PARALIND) model, which was originally applied to biology and chemistry. Exploiting the PARALIND decomposition approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to unknown locations. The proposed algorithm works well to achieve automatically paired azimuth and elevation angles for coherent and incoherent angle estimation of acoustic vector-sensor arrays, as well as the paired correlated matrix of the sources. Our algorithm, in contrast with conventional coherent angle estimation algorithms such as the forward backward spatial smoothing (FBSS) estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, not only has much better angle estimation performance, even for closely-spaced sources, but is also available for arbitrary arrays. Simulation results verify the effectiveness of our algorithm. PMID:23604030

  19. Code-division multiplexing of superconducting transition-edge sensor arrays

    Science.gov (United States)

    Irwin, K. D.; Niemack, M. D.; Beyer, J.; Cho, H. M.; Doriese, W. B.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2010-03-01

    Multiplexed superconducting quantum interference device (SQUID) amplifiers have recently enabled the deployment of kilopixel arrays of superconducting transition-edge sensor (TES) detectors on a variety of receivers for astrophysics. Existing multiplexing techniques for TES arrays, however, have constraints due to aliasing of SQUID noise, the size of the required filtering elements, or the complexity of the room-temperature electronics that make it difficult to scale to much larger arrays. We have developed a Walsh code-division SQUID multiplexer that has the potential to enable the multiplexing of larger arrays or pixels with faster thermal response times. The multiplexer uses superconducting switches to modulate the polarity of coupling between N individual TES detectors and a single output SQUID channel. The polarities of the detector signals are switched in the pattern of an N × N Walsh matrix, so a frame composed of N orthogonal samples can be used to reconstruct the detector signals without degradation. We present an analysis of the circuit architecture and preliminary results.

  20. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  1. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides.

    Science.gov (United States)

    Qian, Sihua; Lin, Hengwei

    2015-01-01

    Due to relatively low persistence and high effectiveness for insect and pest eradication, organophosphates (OPs) and carbamates are the two major classes of pesticides that broadly used in agriculture. Hence, the sensitive and selective detection of OPs and carbamates is highly significant. In this current study, a colorimetric sensor array comprising five inexpensive and commercially available thiocholine and H2O2 sensitive indicators for the simultaneous detection and identification of OPs and carbamates is developed. The sensing mechanism of this array is based on the irreversible inhibition capability of OPs and carbamates to the activity of acetylcholinesterase (AChE), preventing production of thiocholine and H2O2 from S-acetylthiocholine and acetylcholine and thus resulting in decreased or no color reactions to thiocholine and H2O2 sensitive indicators. Through recognition patterns and standard statistical methods (i.e., hierarchical clustering analysis and principal component analysis), the as-developed array demonstrates not only discrimination of OPs and carbamates from other kinds of pesticides but, more interestingly, identification of them exactly from each other. Moreover, this array is experimentally confirmed to have high selectivity and sensitivity, good anti-interference capability, and potential applications in real samples for OPs and carbamates.

  2. A Microcantilever Sensor Array for the Detection and Inventory of Desert Tortoises

    Energy Technology Data Exchange (ETDEWEB)

    Venedam, R. J.; Dillingham, T. R.

    2008-07-01

    We have designed and tested a portable instrument consisting of a small infrared camera coupled with an array of piezoresistive microcantilever sensors that is used to provide real-time, non-invasive data on desert tortoise den occupancy. The piezoresistive microcantilever (PMC) sensors are used to obtain a chemical “signature” of tortoise presence from the air deep within the dens, and provide data in cases where the camera cannot extend deep enough into the den to provide visual evidence of tortoise presence. The infrared camera was used to verify the PMC data during testing, and in many cases, such as shallower dens, may be used to provide exact numbers on den populations.

  3. Development of detector for leakage magnetic flux using hall sensor array and lock-in-amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Chul; Lee, Jin Yi [Chosun University, Gwangju (Korea, Republic of)

    2004-05-15

    It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. The method for arraying sensors is important on the magnetic camera because of obtaining a high spatial resolution. This work proposes an equation to evaluate the limitation of spatial resolution on the condition of decided size of magnetic sensor package. And the possibility of obtaining the high spatial resolution in spite of above mentioned limitation would be verified. Also a method for high ratio of signal-to-noise was attempted by use of Lock-In-Amplifier.

  4. A unified algorithm for target detection and tracing based on data of array sensors

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong; CHEN Fuhu

    2008-01-01

    A unified method for target detection and tracing based on data from sensors of array is presented in order to improve detection and tracking abilities of the weak targets with low signal-to-noise ratio. Assuming that the multiple targets are uncorrelated each other and the number of the targets is known a priori, the status of the targets can be estimated with the maximum a-posteriori (MAP) method directly through the sensors data. The proposed method is different from the classical method, by which it can detect and track targets simultaneously by adding the target's signal energy information besides its direction of arrival(DOA) information.Simulated and sea trial data results show that the detection and tracing capabilities of weak targets can be improved and wrong tracing and missing tracing problems, which exist in the classical tracing method when it is faced with the crossing targets, can be resolved by the proposed method.

  5. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface

    CERN Document Server

    Ruffini, G; Fuentemilla, L; Grau, C; Farres, E; Marco-Pallares, J; Watts, P C P; Silva, S R P

    2007-01-01

    Fatigue, sleepiness and disturbed sleep are important factors in health and safety in modern society and there is considerable interest in developing technologies for routine monitoring of associated physiological indicators. Electrophysiology, the measurement of the electrical activity of biological origin, is a key technique for the measurement of physiological parameters in several applications, but it has been traditionally difficult to develop sensors for measurements outside the laboratory or clinic with the required quality and robustness. In this paper we report the results from first human experiments using a new electrophysiology sensor called ENOBIO, using carbon nanotube arrays for penetration of the outer layers of the skin and improved electrical contact. These tests, which have included traditional protocols for the analysis of the electrical activity of the brain--spontaneous EEG and ERP--indicate performance on a par with state of the art research-oriented wet electrodes, suggesting that the ...

  6. High and stable photoelectrochemical activity of ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays: nanoporous surface with Cu(x)S as a hole mediator.

    Science.gov (United States)

    Ouyang, Wei-Xin; Yu, Yu-Xiang; Zhang, Wei-De

    2015-06-14

    Advanced materials for electrocatalytic and photoelectrochemical water splitting are key for taking advantage of renewable energy. In this study, ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays with a nanoporous surface were fabricated via ion exchange and successive ionic layer adsorption and reaction (SILAR) processes. The ZnO/ZnSe/CdSe/Cu(x)S sample displays a high photocurrent density of 12.0 mA cm(-2) under AM 1.5G illumination, achieves the highest IPCE value of 89.5% at 500 nm at a bias potential of 0.2 V versus Ag/AgCl, and exhibits greatly improved photostability. The functions of the ZnSe, CdSe, and Cu(x)S layers in the ZnO/ZnSe/CdSe/Cu(x)S heterostructure were clarified. ZnSe is used as a passivation layer to reduce the trapping and recombination of charge carriers at the interfaces of the semiconductors. CdSe functions as a highly efficient visible light absorber and builds heterojunctions with the other components to improve the separation and transportation of the photoinduced electrons and holes. Cu(x)S serves as a passivation layer and an effective p-type hole mediator, which passivates the defects and surface states of the semiconductors and forms p-n junctions with CdSe to promote the hole transportation at the semiconductor-electrolyte interface. The nanoporous surface of the ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays, together with the tunnel transportation of the charge carriers in the thin films of ZnSe and CdSe, also facilitates the kinetics of photoelectrochemical reactions and improves the optical absorption as well.

  7. Study of heat transfer in the bubble meniscus with an array of temperature micro-sensors

    Directory of Open Access Journals (Sweden)

    Orlik Evgeniy

    2016-01-01

    Full Text Available Experimental setup has been designed and manufactured to study the evaporation processes in the bubble meniscus. New method for accurate measurements of local heat transfer has been proposed in collaboration with Kyushu University. Two side transparent coatings (thin film uniform heater and an array of temperature micro-sensors are developed on sapphire substrates. Application of such substrate allows one to investigate heat transfer in the vicinity of the contact line. The shadow technique is used to define shape and contact angles of bubble.

  8. Measurement of the magnetic induction vector in superconductors using a double-layer Hall sensor array

    Science.gov (United States)

    Abulafia, Y.; McElfresh, M.; Shaulov, A.; Yeshurun, Y.; Paltiel, Y.; Majer, D.; Shtrikman, H.; Zeldov, E.

    1998-06-01

    We describe an experimental technique for simultaneous measurement of both the normal (Bz) and the in-plane (Bx) components of the magnetic induction field near the surface of a superconducting sample. This technique utilizes a novel design of a double-layered Hall sensor array fabricated from a GaAs/AlGaAs heterostructure containing two parallel layers of a two-dimensional electron gas. The effectiveness of this technique is demonstrated in measurements of Bx and Bz and the current distribution at the surface of a thin YBa2Cu3O7 crystal.

  9. A Compact, Low-Power Cantilever-Based Sensor Array for Chemical Detection

    Energy Technology Data Exchange (ETDEWEB)

    Loui, A; Ratto, T; Wilson, T; Mukerjee, E; Hu, Z; Sulchek, T; Hart, B

    2007-02-22

    A compact and low-power cantilever-based sensor array has been developed and used to detect various vapor analytes. This device employs sorptive polymers that are deposited onto piezoresistive cantilevers. We have successfully detected several organic vapors, representing a breadth of chemical properties and over a range of concentrations. Comparisons of the polymer/vapor partition coefficient to the cantilever deflection responses show that a simple linear relationship does not exist, emphasizing the need to develop an appropriate functional model to describe the chemical-to-mechanical transduction that is unique to this sensing modality.

  10. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.

    Science.gov (United States)

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Williams, Pat; Holmes, Andrea E

    2017-03-04

    There is a significant demand for devices that can rapidly detect chemical-biological-explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances.

  11. Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis.

    Science.gov (United States)

    De, Arpita; van Nieuwkasteele, Jan; Carlen, Edwin T; van den Berg, Albert

    2013-06-07

    We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integrated with a small volume microfluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection system that eliminates erroneous sensor responses from sample switching due to flow rate fluctuations and provides precise sample volumes down to 10 nl. Biochemical sensing is demonstrated with real-time 15-mer DNA-PNA (peptide nucleic acid) duplex hybridization measurements from different sample concentrations in a low ionic strength, and the equilibrium dissociation constant KD ≈ 140 nM has been extracted from the experimental data using the first order Langmuir binding model. Chemical sensing is demonstrated with pH measurements from different injected samples in flow that have sensitivities consistent with the gate-oxide materials. A differential sensor measurement configuration results in a 30× reduction in sensor drift. The integrated label-free analysis platform is suitable for a wide range of small volume chemical and biochemical analyses.

  12. The Design of FPGA-based Array CCD Sensor Drive System

    Directory of Open Access Journals (Sweden)

    Chengtao Cai

    2014-01-01

    Full Text Available CCD Sensor is the crutial equipment for environment perception which is widely used in various fields such as surveilliance,vision navigation and machine vision. The commercial CCD device has been encapsulated the sensor driver inside which is not opened for secondary development. Even this mode facilitate the usage but it really can not content the customizable need. For solving this challenging but imperative issue, we designed a novel CCD sensor driver system which implement the efficient and effective image acquisition task in customizing approach. The working principle and driving timing sequence about ICX625AQA the interline CCD image sensor used in our system are discussed in detail. For handling with this data intensive task, a high performance Field Programmable GateArray (FPGA controller is used for data allocation and translation, the peripheral circuits including AD9974 and CXD3400 drive interface which process the horizontal signal and vertical signal, respectively. The designed system proposed at the end of this paper.

  13. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.

    Science.gov (United States)

    Park, Chulhee; Kang, Moon Gi

    2016-05-18

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors.

  14. A Study on Group Key Agreement in Sensor Network Environments Using Two-Dimensional Arrays

    Directory of Open Access Journals (Sweden)

    Moon-Seog Jun

    2011-08-01

    Full Text Available These days, with the emergence of the concept of ubiquitous computing, sensor networks that collect, analyze and process all the information through the sensors have become of huge interest. However, sensor network technology fundamentally has wireless communication infrastructure as its foundation and thus has security weakness and limitations such as low computing capacity, power supply limitations and price. In this paper, and considering the characteristics of the sensor network environment, we propose a group key agreement method using a keyset pre-distribution of two-dimension arrays that should minimize the exposure of key and personal information. The key collision problems are resolved by utilizing a polygonal shape’s center of gravity. The method shows that calculating a polygonal shape’s center of gravity only requires a very small amount of calculations from the users. The simple calculation not only increases the group key generation efficiency, but also enhances the sense of security by protecting information between nodes.

  15. A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays

    Science.gov (United States)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Suria, Ateeq J.; Chapin, Caitlin A.; Senesky, Debbie G.

    2016-09-01

    A miniature sensor for detecting the orientation of incident ultraviolet light was microfabricated using gallium nitride (GaN)-on-sapphire substrates and semi-transparent interdigitated gold electrodes for sun sensing applications. The individual metal-semiconductor-metal photodetector elements were shown to have a stable and repeatable response with a high sensitivity (photocurrent-to-dark current ratio (PDCR) = 2.4 at -1 V bias) and a high responsivity (3200 A/W at -1 V bias) under ultraviolet (365 nm) illumination. The 3 × 3 GaN-on-sapphire ultraviolet photodetector array was integrated with a gold aperture to realize a miniature sun sensor (1.35 mm × 1.35 mm) capable of determining incident light angles with a ±45° field of view. Using a simple comparative figure of merit algorithm, measurement of incident light angles of 0° and 45° was quantitatively and qualitatively (visually) demonstrated by the sun sensor, supporting the use of GaN-based sun sensors for orientation, navigation, and tracking of the sun within the harsh environment of space.

  16. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Science.gov (United States)

    Kampmann, Peter; Kirchner, Frank

    2014-01-01

    With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach. PMID:24743158

  17. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  18. A Pt-Doped TiO2 Nanotube Arrays Sensor for Detecting SF6 Decomposition Products

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2013-10-01

    Full Text Available The detection of partial discharge and analysis of SF6 gas components in gas-insulated switchgear (GIS is important for the diagnosis and operating state assessment of power equipment. The use of a Pt-doped TiO2 nanotube arrays sensor for detecting sulfur hexafluoride (SF6 decomposition products is proposed in this paper. The electrochemical pulse deposition method is employed to prepare the sensor array. The sensor’s response to the main characteristic gaseous decomposition products of SF6 is evaluated. The gas sensing characteristic curves of the Pt-doped TiO2 nanotube sensor and intrinsic TiO2 nanotube arrays sensor are compared. The mechanism of the sensitive response is discussed. Test results showed that the Pt-doped nanoparticles not only change the gas sensing selectivity of the TiO2 nanotube arrays sensor with respect to the main characteristic SF6 decomposition products, but also reduce the operating temperature of the sensor.

  19. Fluorescence lifetime imaging using a single photon avalanche diode array sensor (Conference Presentation)

    Science.gov (United States)

    Wargocki, Piotr M.; Spence, David J.; Goldys, Ewa M.; Charbon, Edoardo; Bruschini, Claudio E.; Antalović, Ivan Michel; Burri, Samuel

    2017-02-01

    Single photon detectors allows us work with the weakest fluorescence signals. Single photon arrays, combined with ps-controlled gating allow us to create image maps of fluorescence lifetimes, which can be used for in-vivo discrimination of tissue activity. Here we present fluorescence lifetime imaging using the `SwissSPAD' sensor, a 512-by-128-pixel array of gated single photon detectors, fabricated in a standard high-voltage 0.35 μm CMOS process. We present a protocol for spatially resolved lifetime measurements where the lifetime can be retrieved for each pixel. We demonstrate the system by imaging patterns of Fluorescein and Rhodamine B on test slides, as well as measuring mixed samples to retrieve both components of the decay lifetime. The single photon sensitivity of the sensor creates a valuable instrument to perform live cell or live animal (in vivo) measurements of the weak autofluorescent signals, for example distinguishing unlabelled free and bound NADH. Our ultimate goal is to create a real time fluorescence lifetime imaging system, possibly integrated into augmented reality goggles, which could allow immediate discrimination of in vivo tissues.

  20. Infrared Range Sensor Array for 3D Sensing in Robotic Applications

    Directory of Open Access Journals (Sweden)

    Yongtae Do

    2013-04-01

    Full Text Available This paper presents the design and testing of multiple infrared range detectors arranged in a two-dimensional (2D array. The proposed system can collect the sparse three-dimensional (3D data of objects and surroundings for robotics applications. Three kinds of tasks are considered using the system: detecting obstacles that lie ahead of a mobile robot, sensing the ground profile for the safe navigation of a mobile robot, and sensing the shape and position of an object on a conveyor belt for pickup by a robot manipulator. The developed system is potentially a simple alternative to high-resolution (and expensive 3D sensing systems, such as stereo cameras or laser scanners. In addition, the system can provide shape information about target objects and surroundings that cannot be obtained using simple ultrasonic sensors. Laboratory prototypes of the system were built with nine infrared range sensors arranged in a 3×3 array and test results confirmed the validity of system.

  1. Information theory analysis of sensor-array imaging systems for computer vision

    Science.gov (United States)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.

    1983-01-01

    Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.

  2. Graphene-based polyaniline arrays for deoxyribonucleic acid electrochemical sensor: effect of nanostructure on sensitivity.

    Science.gov (United States)

    Yang, Tao; Meng, Le; Zhao, Jinlong; Wang, Xinxing; Jiao, Kui

    2014-01-01

    DNA detection sensitivity can be improved by carefully controlling the texture of the sensor substrate, which was normally investigated on metal or metal oxide nanostructured platform. Morphology effects on the biofunctionalization of polymer micro/nanoelectrodes have not been investigated in detail. To extend this topic, we used graphene oxide (GNO) as the supporting material to prepare graphene-based polyaniline nanocomposites with different morphologies as a model for comparing their DNA sensing behaviors. Owing to GNO serving as an excellent support or template for nucleation and growth of polyaniline (PANI), PANI nanostructures grown on GNO substrate were successfully obtained. However, if GNO supporting was absent, the obtained PANI nanowires showed a connected network. Furthermore, adjustment of reaction time can be used for dominating the topographies of PANI-GNO nanocomposites, meaning that different reaction times resulted in various formations of PANI-GNO nanocomposites, including small horns (5 and 12 h), vertical arrays (18 h), and nanotips (24 h). The next-step electrochemical data showed that the DNA electrochemical sensors constructed on the different morphologies possessed different ssDNA surface coverage and hybridization efficiency. Compared with other morphologies of PANI-GNO nanocomposite (5, 12, and 24 h), vertical arrays (18 h) exhibited the highest sensitivity (2.08 × 10(-16) M, 2 orders of magnitude lower than others). It is can be concluded that this nanocomposite with higher surface area and more accessible space can provide an optimal balance for DNA immobilization and DNA hybridization detection.

  3. New Navigation System for Automatic Guided Vehicles Using an Ultrasonic Sensor Array

    Science.gov (United States)

    Tabata, Katsuhiko; Nishida, Yoshifumi; Iida, Yoshihiro; Iwai, Toshiaki

    We propose a new navigation system for Automatic Guided Vehicles (AGV) used as a carrier in the factory. The guided marker of the navigation system is composed of ultrasonic transducers instead of the traditional markers such as electromagnetic tape, light reflective tape and so on. The proposed system is available to be used not only indoors but also outdoors and adaptable to a temporary route. The ultrasonic sensor is generically susceptible to noise, so that we make the following propositions. First, a phased array of the ultrasonic sensors is employed in searching a land marker to improve the signal-to-noise ratio. Second, the specific ID with 7bits is assigned as the land marker to avoid the system errors ascribable to an ultrasonic interference. In addition, the proposed system is quite compact in virtue of the embedded technology of a microcomputer and Field Programmable Gate Array (FPGA). This paper reports the development of the proto-type system of navigation system and confirmation of its fundamental performances.

  4. Wireless Remote Monitoring of Glucose Using a Functionalized ZnO Nanowire Arrays Based Sensor

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2011-08-01

    Full Text Available This paper presents a prototype wireless remote glucose monitoring system interfaced with a ZnO nanowire arrays-based glucose sensor, glucose oxidase enzyme immobilized onto ZnO nanowires in conjunction with a Nafion® membrane coating, which can be effectively applied for the monitoring of glucose levels in diabetics. Global System for Mobile Communications (GSM services like General Packet Radio Service (GPRS and Short Message Service (SMS have been proven to be logical and cost effective methods for gathering data from remote locations. A communication protocol that facilitates remote data collection using SMS has been utilized for monitoring a patient’s sugar levels. In this study, we demonstrate the remote monitoring of the glucose levels with existing GPRS/GSM network infra-structures using our proposed functionalized ZnO nanowire arrays sensors integrated with standard readily available mobile phones. The data can be used for centralized monitoring and other purposes. Such applications can reduce health care costs and allow caregivers to monitor and support to their patients remotely, especially those located in rural areas.

  5. Light sensors selection for the Cherenkov Telescope Array: PMT and SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Shayduk, M., E-mail: mshayduk@googlemail.com [DESY Zeuthen, D-15738 (Germany); Mirzoyan, R.; Kurz, M.; Knoetig, M. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Bolmont, J. [LPNHE Universite Pierre et Marie Curie, Paris (France); Dickinson, H. [Oskar Klein Centre, Stockholm University (Sweden); Lorenz, E. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Tavernet, J.-P. [LPNHE Universite Pierre et Marie Curie, Paris (France); Hose, J.; Teshima, M. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Vincent, P. [LPNHE Universite Pierre et Marie Curie, Paris (France)

    2012-12-11

    The Cherenkov Telescope Array (CTA) is planned as the next generation ground-based instrument (after VERITAS, H.E.S.S. and MAGIC) for astrophysics by means of very high energy {gamma}-rays. The CTA collaboration includes the MAGIC, the H.E.S.S. and the VERITAS collaborations. Also, a large number of astrophysicists from European institutions, from Japan and USA have joined the CTA. The CTA array will comprise about 100 imaging telescopes of three sizes that shall provide one order of magnitude higher sensitivity than the current generation of telescopes. Every telescope will use an imaging camera based on {approx}2000PMTs. We have set up a PMT development program with Hamamatsu (Japan) and Electron Tube Enterprises (England) aiming to produce 1.5 in. PMTs of optimized parameters for the CTA project. The entire scientific community, including the medicine and biology, as well as many industrial applications, where a low light level sensors are necessary, may profit from it. Together with PMTs also SiPMs are interesting sensor candidates for the CTA telescopes. One expects about two times higher photon detection efficiency for SiPM compared to PMT. A set of parameters like the photon detection efficiency, cross-talk, afterpulsing, dark rate together with other important factors were evaluated. Here we report on the progress of these developments, based on detailed measurements.

  6. The Transition-Edge-Sensor Array for the Micro-X Sounding Rocket

    Science.gov (United States)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, Sarah Elizabeth; Chervenak J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J. P.; Porter, F. S.; Sadleir, J. E.; Smith, Stephen J.; Figueroa-Feliciano, Enectali

    2012-01-01

    The Micro-X sounding rocket program will fly a 128-element array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of the Puppis-A supernova remnant. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (< 4 eV at 1 keV), we have designed the pixels using 600 x 600 sq. micron Au/Bi absorbers, which overhang 140 x 140 sq. micron Mo/Au sensors. The data-rate capabilities of the rocket telemetry system require the pulse decay to be approximately 2 ms to allow a significant portion of the data to be telemetered during flight. Here we report experimental results from the flight array, including measurements of energy resolution, uniformity, and absorber thermalization. In addition, we present studies of test devices that have a variety of absorber contact geometries, as well as a variety of membrane-perforation schemes designed to slow the pulse decay time to match the telemetry requirements. Finally, we describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  7. A novel device based on a fluorescent cross-responsive sensor array for detecting pesticide residue

    Science.gov (United States)

    Huang, Jing; Hou, Changjun; Lei, Jincan; Huo, Danqun; Luo, Xiaogang; Dong, Liang

    2016-11-01

    In this paper, a novel, simple, rapid, and low-cost detection device for pesticide residue was constructed. A sensor array based on a cross-responsive mechanism was designed. The data collection and processing system was used to detect fluorescent signal of the sensor arrays, and to extract unique patterns of the tested pesticide residue. Four selected pesticides, carbendazim, diazine, fenvalerate, and pentachloronitrobenzene, were detected by the proposed device. Unsupervised pattern recognition methods, hierarchical cluster analysis and principal component analysis, were used to analyze the data. The results showed that the methods could 100% discriminate the four pesticide residues. According to the standard regression linear curve of the fluorescence intensity and the concentration of pesticide, the quantitative value of the pesticide was detected, and the device obtained responses at concentrations below 8 ppb, and it has a good linear relationship in the range of 0.01-1 ppm. According to the results, the proposed detection device showed excellent selectivity and discrimination ability for the pesticide residues. However, our preliminary study demonstrated that the proposed detection device has excellent potential application for the safety inspection of food.

  8. Information theory analysis of sensor-array imaging systems for computer vision

    Science.gov (United States)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.

    1983-01-01

    Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.

  9. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    Science.gov (United States)

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali

    2016-01-01

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

  10. Sparse model inversion and processing of spatial frequency-domain electromagnetic induction sensor array data for improved landmine discrimination

    Science.gov (United States)

    Tantum, Stacy L.; Colwell, Kenneth A.; Scott, Waymond R.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2013-06-01

    Frequency-domain electromagnetic induction (EMI) sensors have been shown to provide target signatures which enable discrimination of landmines from harmless clutter. In particular, frequency-domain EMI sensors are well-suited for target characterization by inverting a physics-based signal model. In many model-based signal processing paradigms, the target signatures can be decomposed into a weighted sum of parameterized basis functions, where the basis functions are intrinsic to the target under consideration and the associated weights are a function of the target sensor orientation. When sensor array data is available, the spatial diversity of the measured signals may provide more information for estimating the basis function parameters. After model inversion, the basis function parameters can form the foundation of model-based classification of the target as landmine or clutter. In this work, sparse model inversion of spatial frequency-domain EMI sensor array data followed by target classification using a statistical model is investigated. Results for data measured with a prototype frequency-domain EMI sensor at a standardized test site are presented. Preliminary results indicate that extracting physics-based features from spatial frequency-domain EMI sensor array data followed by statistical classification provides an effective approach for classifying targets as landmine or clutter.

  11. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Science.gov (United States)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  12. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.

    2017-09-12

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  13. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2017-07-18

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  14. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement.

    Science.gov (United States)

    Yu, Ping; Liu, Weiting; Gu, Chunxin; Cheng, Xiaoying; Fu, Xin

    2016-06-03

    A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5-400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility.

  15. High spatial resolution Hall sensor array for edge plasma magnetic field measurements

    Science.gov (United States)

    Liu, Yuhong; Maurer, David A.; Navratil, Gerald A.; Rivera, Nicholas

    2005-09-01

    A one-dimensional, high-spatial resolution, 20-element Hall sensor array has been developed to directly measure the edge plasma perpendicular magnetic field and its fluctuations as a function of radius with 4-mm resolution. The array employs new small-area, high-sensitivity indium antimonide (InSb) Hall probes in combination with a high-density seven-layer printed circuit board to provide for connections to supply Hall current, record the measured Hall voltage output signals, and mitigate inductive pickup. A combination of bench and in situ measurements is described that provides absolute calibration of the diagnostic array in the presence of a strong transverse magnetic field component that is approximately 1000 times greater than the perpendicular fluctuating field needed to be resolved by the diagnostic. The Hall probes calibrated using this method are capable of magnetic field measurements with a sensitivity of 7V/T over the frequency band from 0 to 20 kHz.

  16. Detection of volatile compounds with mass-sensitive sensor arrays in the presence of variable ambient humidity.

    Science.gov (United States)

    Dickert, F L; Hayden, O; Zenkel, M E

    1999-04-01

    Mass-sensitive sensor arrays were established for the detection of isomeric or highly analogue analyte mixtures, which show similar physical and morphological properties. Supramolecular host-guest chemistry and arrays of four mass-sensitive quartz crystal microbalances have been successfully combined with multivariate calibration techniques in the presence of variable air moisture. This system enabled even the separation of xylene isomers [Formula: see text] a task that might be crucial even by gas chromatography. The data of the sensor arrays were analyzed with partial least squares and artificial neural networks. The xylene isomers could be detected with an accuracy of ∼1% in the range of 0-200 ppm, nearly eliminating the residual water cross-sensitivity of the sensor coatings, which allows effective work place or environmental monitoring of toxic compounds with fast response levels.

  17. Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture.

    Science.gov (United States)

    Lim, Sung H; Mix, Samantha; Xu, Zeyu; Taba, Brian; Budvytiene, Indre; Berliner, Anders N; Queralto, Nuria; Churi, Yair S; Huang, Richard S; Eiden, Michael; Martino, Raymond A; Rhodes, Paul; Banaei, Niaz

    2014-02-01

    Sepsis is a medical emergency demanding early diagnosis and tailored antimicrobial therapy. Every hour of delay in initiating effective therapy measurably increases patient mortality. Blood culture is currently the reference standard for detecting bloodstream infection, a multistep process which may take one to several days. Here, we report a novel paradigm for earlier detection and the simultaneous identification of pathogens in spiked blood cultures by means of a metabolomic "fingerprint" of the volatile mixture outgassed by the organisms. The colorimetric sensor array provided significantly faster detection of positive blood cultures than a conventional blood culture system (12.1 h versus 14.9 h, P detection. The colorimetric sensor array also allowed for discrimination between unrelated strains of methicillin-resistant Staphylococcus aureus, indicating that the metabolomic fingerprint has the potential to track nosocomial transmissions. Altogether, the colorimetric sensor array is a promising tool that offers a new paradigm for diagnosing bloodstream infections.

  18. Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores.

    Science.gov (United States)

    Actis, Paolo; Vilozny, Boaz; Seger, R Adam; Li, Xiang; Jejelowo, Olufisayo; Rinaudo, Marguerite; Pourmand, Nader

    2011-05-17

    Most of the research in the field of nanopore-based platforms is focused on monitoring ion currents and forces as individual molecules translocate through the nanopore. Molecular gating, however, can occur when target analytes interact with receptors appended to the nanopore surface. Here we show that a solid state nanopore functionalized with polyelectrolytes can reversibly bind metal ions, resulting in a reversible, real-time signal that is concentration dependent. Functionalization of the sensor is based on electrostatic interactions, requires no covalent bond formation, and can be monitored in real time. Furthermore, we demonstrate how the applied voltage can be employed to tune the binding properties of the sensor. The sensor has wide-ranging applications and, its simplest incarnation can be used to study binding thermodynamics using purely electrical measurements with no need for labeling.

  19. An Optical Wavefront Sensor Based on a Double Layer Microlens Array

    Directory of Open Access Journals (Sweden)

    Hsiang-Chun Wei

    2011-10-01

    Full Text Available In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin, the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.

  20. An efficient approach for preprocessing data from a large-scale chemical sensor array.

    Science.gov (United States)

    Leo, Marco; Distante, Cosimo; Bernabei, Mara; Persaud, Krishna

    2014-09-24

    In this paper, an artificial olfactory system (Electronic Nose) that mimics the biological olfactory system is introduced. The device consists of a Large-Scale Chemical Sensor Array (16; 384 sensors, made of 24 different kinds of conducting polymer materials)that supplies data to software modules, which perform advanced data processing. In particular, the paper concentrates on the software components consisting, at first, of a crucial step that normalizes the heterogeneous sensor data and reduces their inherent noise. Cleaned data are then supplied as input to a data reduction procedure that extracts the most informative and discriminant directions in order to get an efficient representation in a lower dimensional space where it is possible to more easily find a robust mapping between the observed outputs and the characteristics of the odors in input to the device. Experimental qualitative proofs of the validity of the procedure are given by analyzing data acquired for two different pure analytes and their binary mixtures. Moreover, a classification task is performed in order to explore the possibility of automatically recognizing pure compounds and to predict binary mixture concentrations.

  1. Characterization of Residual Stresses in Ferrous Components by Magnetic Anisotropy Measurements Using a Hall Effect Sensor Array Probe

    Science.gov (United States)

    Lo, C. C. H.

    2011-06-01

    A new surface sensor probe comprising an angular array of Hall effect sensors has been developed for characterization of residual stresses in ferrous materials by means of stress-induced magnetic anisotropy measurements. The sensor probe applies a radially spreading ac magnetic field to a test sample, and detects stray fields in different directions simultaneously to determine the principal stress axes. In situ measurements were conducted on a annealed steel plate under four-point bending stresses to evaluate the probe performance. The ratio of stray field signals measured along and perpendicular to the stress axis varies linearly with the surface stress, indicating the possibility of characterizing residual stresses in ferrous components using the sensor array probe.

  2. M-ARRAY QUADRATURE AMPLITUDE MODULATION WIRELESS SENSOR NETWORK MODULATOR RELIABILITY AND ACCURACY ANALYZE IN CIVIL SHM

    Directory of Open Access Journals (Sweden)

    Mohammud Ershadul Haque

    2013-01-01

    Full Text Available Wireless Sensor Network (WSN is the new invention applying for assessment the damage of the historical or high rise civil building structural health. Technical challenges affecting deployment of wireless sensor network including the range of the transmission problem, low data transmission rate of the existing SHM strategies. The most vital factor of SHM wireless sensor systems is the modulator accuracy and reliability that qualify the wireless communication system to assess large building structure health Information. The objective of this article is to provide solution to measure both reliability and accuracy of the wireless sensor network modulator. we computed M-array QAM modulator BER and compare the simulation result with theoretical to find out optimum modulation technique for transmission System with considering maximum data rate, AWGN channel and also measured modulator accuracy based on ZigBee by computing M-array modulator Error Vector Magnitude (EVM to quantify the transmitter quality.

  3. Multi-Sensor Arrays for Online Monitoring of Cell Dynamics in in vitro Studies with Choroid Plexus Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Soledad García Gómez de las Heras

    2012-02-01

    Full Text Available Sensors and multi-sensor arrays are the basis of new technologies for the non-label monitoring of cell activity. In this paper we show that choroid plexus cells can be cultured on silicon chips and that sensors register in real time changes in their activity, constituting an interesting experimental paradigm for cell biology and medical research. To validate the signals recorded (metabolism = peri-cellular acidification, oxygen consumption = respiration; impedance = adhesion, cell shape and motility we performed experiments with compounds that act in a well-known way on cells, influencing these parameters. Our in vitro model demonstrates the advantages of multi-sensor arrays in assessment and experimental characterization of dynamic cellular events—in this case in choroid plexus functions, however with applicability to other cell types as well.

  4. AN INVESTIGATION ON WETTABILITY MECHANISM OF ANODIC ALUMINUM OXIDE SURFACE WITH ORDERED NANOPORE ARRAYS%多孔阳极氧化铝有序阵列表面润湿机制的研究

    Institute of Scientific and Technical Information of China (English)

    杨军; 王建; 王多书; 王成伟

    2013-01-01

    Based on anodic aluminum oxide (AAO) films with ordered nanopore arrays prepared by using an electrochemical two-step anodization method,the wettability of these structured and chemically heterogeneous surfaces was studied via employing bidistilled water and 1,2-dichloroethane as testing liquid.It is indicated that,with increase of nanopore diameter,contact angles of the two kinds of liquid are increased gradually.Using Owens's and Yang's methods,the composition of solid surface energy for AAO film was analysed.It is found that the contributions of surface nanostructure and surface chemical component are about 90% and 10% respectively.Obviously,the increased nanopore diameter leads to change surface energy,further obtains the variation in wettability.This work is very beneficial to understand the wetting mechanism induced cooperatively by nanostructure and chemical component.%基于二次阳极氧化法制备的多孔阳极氧化铝(AAO)有序阵列薄膜,研究了二次蒸馏水和1,2-二氯乙烷两种液体在该结构化、化学异质表面的润湿特性.研究结果表明,随着纳米孔径的增加,两种测液在其表面的接触角均不断增大.采用Owens二液法和Yang氏孔径法对AAO表面能构成的分析发现,在AAO表面能的构成中,表面微纳结构项的贡献约占90%,而表面化学成分的贡献约占10%.显然,纳米孔径的增加导致了其AAO薄膜表面能明显的降低,从而改变了其表面润湿特性.这对于深入理解由表面微纳结构和表面化学成分协同诱导的润湿机制是十分有益的.

  5. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-05-18

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach's performance with Multisim simulations and actual experiments.

  6. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jianfeng Wu

    2016-05-01

    Full Text Available For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments.

  7. Design and prototype of radar sensor with Vivaldi linear array for through-wall radar imaging: an experimental study

    Science.gov (United States)

    Yılmaz, Betül; Özdemir, Caner

    2016-10-01

    We present a radar sensor that was designed to detect and image moving objects/targets on the other side of a wall. The radar sensor was composed of a linear array of Vivaldi antenna elements, an radio frequency (RF) switch, a microcontroller unit, and an RF transceiver. For the linear array, a total of eight antenna elements were used as sensors in synthetic aperture radar (SAR) configuration in the cross-range axis to improve the resolution in this dimension. Design steps of Vivaldi antenna elements and the entire linear array were presented. After the design, the prototyping procedure and the details of the radar sensor were given. Through-the-wall radar (TWR) imaging experiments were performed for stationary and moving targets using the assembled sensor. The resultant TWR images after these experiments were presented. During the image formation, a back-projection type image focusing algorithm was implemented and applied to increase the signal-to-noise ratio of the raw images. The constructed radar images demonstrated that our radar sensor could successfully detect and image both stationary and moving targets on the other side of the wall.

  8. Optical observation of DNA translocation through Al2O3 sputtered silicon nanopores in porous membrane

    Science.gov (United States)

    Yamazaki, Hirohito; Ito, Shintaro; Esashika, Keiko; Taguchi, Yoshihiro; Saiki, Toshiharu

    2016-03-01

    Nanopore sensors are being developed as a platform for analyzing single DNA, RNA, and protein. In nanopore sensors, ionic current measurement is widely used and proof-of-concept of nanopore DNA sequencing by it has been demonstrated by previous studies. Recently, we proposed an alternative platform of nanopore DNA sequencing that incorporates ultraviolet light and porous silicon membrane to perform high-throughput measurement. In the development of our DNA sequencing platform, controlling nanopore size in porous silicon membrane is essential but remains a challenge. Here, we report on observation of DNA translocation through Al2O3 sputtered silicon nanopores (Al2O3 nanopores) by our optical scheme. Electromagnetic wave simulation was performed to analyze the excitation volume on Al2O3 nanopores generated by focused ultraviolet light. In the experiment, DNA translocation time through Al2O3 nanopores was compared with that of silicon nanopores and we examined the effect of nanopore density and thickness of membrane by supplementing the static electric field simulation.

  9. Nanoporous Gold: Fabrication, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Michael L. Reed

    2009-12-01

    Full Text Available Nanoporous gold (np-Au has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and characterization techniques to probe unusual nanoscale properties and applications spanning from fuel cells to electrochemical sensors. Here, we provide a review of the recent advances in np-Au research, with special emphasis on microfabrication and characterization techniques. We conclude the paper with a brief outline of challenges to overcome in the study of nanoporous metals.

  10. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    , acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.

  11. Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks.

    Science.gov (United States)

    Campbell, Michael G; Liu, Sophie F; Swager, Timothy M; Dincă, Mircea

    2015-11-04

    Applications of porous metal-organic frameworks (MOFs) in electronic devices are rare, owing in large part to a lack of MOFs that display electrical conductivity. Here, we describe the use of conductive two-dimensional (2D) MOFs as a new class of materials for chemiresistive sensing of volatile organic compounds (VOCs). We demonstrate that a family of structurally analogous 2D MOFs can be used to construct a cross-reactive sensor array that allows for clear discrimination between different categories of VOCs. Experimental data show that multiple sensing mechanisms are operative with high degrees of orthogonality, establishing that the 2D MOFs used here are mechanistically unique and offer advantages relative to other known chemiresistor materials.

  12. Classification of Mixtures of Odorants from Livestock Buildings by a Sensor Array (an Electronic Tongue)

    Science.gov (United States)

    Abu-Khalaf, Nawaf; Iversen, Jens Jørgen Lønsmann

    2007-01-01

    An electronic tongue comprising different numbers of electrodes was able to classify test mixtures of key odorants characteristic of bioscrubbers of livestock buildings (n-butyrate, iso-valerate, phenolate, p-cresolate, skatole and ammonium). The classification of model solutions indicates that the electronic tongue has a promising potential as an online sensor for characterization of odorants in livestock buildings. Back propagation artificial neural network was used for classification. The average classification rate was above 80% in all cases. A limited, but sufficient number of electrodes were selected by average classification rate and relative entropy. The sufficient number of electrodes decreased standard deviation and relative standard deviation compared to the full electrode array.

  13. Classification of Mixtures of Odorants from Livestock Buildings by a Sensor Array (an Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Jens Jørgen Lønsmann Iversen

    2007-01-01

    Full Text Available An electronic tongue comprising different numbers of electrodes was able to classify test mixtures of key odorants characteristic of bioscrubbers of livestock buildings (n-butyrate, iso-valerate, phenolate, p-cresolate, skatole and ammonium. The classification of model solutions indicates that the electronic tongue has a promising potential as an on- line sensor for characterization of odorants in livestock buildings. Back propagation artificial neural network was used for classification. The average classification rate was above 80% in all cases. A limited, but sufficient number of electrodes were selected by average classification rate and relative entropy. The sufficient number of electrodes decreased standard deviation and relative standard deviation compared to the full electrode array.

  14. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    Directory of Open Access Journals (Sweden)

    Javier Macias-Guarasa

    2012-10-01

    Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  15. Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol

    CERN Document Server

    Henderson, Shawn W; Amiri, Mandana; Austermann, Jason; Beall, James A; Chaudhuri, Saptarshi; Cho, Hsiao-Mei; Choi, Steve K; Cothard, Nicholas F; Crowley, Kevin T; Duff, Shannon M; Fitzgerald, Colin P; Gallardo, Patricio A; Halpern, Mark; Hasselfield, Matthew; Hilton, Gene; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D; Koopman, Brian J; Li, Dale; Li, Yaqiong; McMahon, Jeff; Nati, Federico; Niemack, Michael D; Reintsema, Carl D; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L; Simon, Sara M; Staggs, Suzanne T; Vavagiakis, Eve M; Ward, Jonathan T

    2016-01-01

    Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol...

  16. Study of metal magnetic memory (MMM) technique using permanently installed magnetic sensor arrays

    Science.gov (United States)

    Li, Zhichao; Dixon, Steve; Cawley, Peter; Jarvis, Rollo; Nagy, Peter B.

    2017-02-01

    The metal magnetic memory (MMM) effect has been reported to be a non-destructive testing technique capable of evaluating stress concentration and detecting defects in steel. This method has been shown to work well in some instances, but has failed in other trials. Its mechanism has been explained widely but the sensitivity to stress concentration has not been satisfactorily investigated. In this paper, both the normal and tangential components of the stress induced MMM signal were measured by two permanently installed magnetic sensor arrays on two types of notched L80 steel specimens. As expected, the results show that an externally applied magnetic field changes the magnetic field perturbation due to the notches linearly. Plastic deformation and residual stress around notches will increase the remnant flux leakage but the effects are small, which suggests that the MMM effect is very small in the material tested and that it will not be useful in practice.

  17. Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Cukierman, A.; Czaplewski, D.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Gannon, R.; Guyser, R.; Halverson, N. W.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hubmayr, J.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thakur, R. B.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.; Yoon, K. W.

    2017-06-01

    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.

  18. Simulation of a sensor array for multiparameter measurements at the prosthetic limb interface

    Science.gov (United States)

    Rowe, Gabriel I.; Mamishev, Alexander V.

    2004-07-01

    Sensitive skin is a highly desired device for biomechanical devices, wearable computing, human-computer interfaces, exoskeletons, and, most pertinent to this paper, for lower limb prosthetics. The measurement of shear stress is very important because shear effects are key factors in developing surface abrasions and pressure sores in paraplegics and users of prosthetic/orthotic devices. A single element of a sensitive skin is simulated and characterized in this paper. Conventional tactile sensors are designed for measurement of the normal stress only, which is inadequate for comprehensive assessment of surface contact conditions. The sensitive skin discussed here is a flexible array capable of sensing shear and normal forces, as well as humidity and temperature on each element.

  19. High-resolution parallel-detection sensor array using piezo-phototronics effect

    Science.gov (United States)

    Wang, Zhong L.; Pan, Caofeng

    2015-07-28

    A pressure sensor element includes a substrate, a first type of semiconductor material layer and an array of elongated light-emitting piezoelectric nanostructures extending upwardly from the first type of semiconductor material layer. A p-n junction is formed between each nanostructure and the first type semiconductor layer. An insulative resilient medium layer is infused around each of the elongated light-emitting piezoelectric nanostructures. A transparent planar electrode, disposed on the resilient medium layer, is electrically coupled to the top of each nanostructure. A voltage source is coupled to the first type of semiconductor material layer and the transparent planar electrode and applies a biasing voltage across each of the nanostructures. Each nanostructure emits light in an intensity that is proportional to an amount of compressive strain applied thereto.

  20. A versatile sensor performance evaluation platform with an impactor-inspired sample chamber and virtual pin grid array

    Science.gov (United States)

    Field, Christopher R.; Tamanaha, Cy R.; Woytowitz, Morgan; Rose-Pehrsson, Susan L.

    2014-06-01

    We present the details necessary for building a scalable, flexible, and universal sensor performance evaluation platform with an impactor-inspired sample chamber and a virtual pin grid array for maintaining electrical connections. The system is designed to accommodate a wide range of sensors varying in physical dimensions, electrical connections, and transduction mechanisms. By integrating a switch matrix system with a commercial chip carrier, we have built a platform for rapidly screening sensors for promise in military, homeland security, and commercial applications without requiring custom circuits or packages for each sensor technology. Intuitive, graphical software is written and provided to control and monitor temperature, flow rate, and electrical connections. The system is capable of operating and interfacing with a variety of vapor delivery systems for chemical vapor detection measurements of emerging sensor technologies.

  1. Fiber-optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.;

    2015-01-01

    to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity......A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential...... of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent...

  2. SnO2/Pt Thin Film Laser Ablated Gas Sensor Array

    Directory of Open Access Journals (Sweden)

    Rahman Wagiran

    2011-08-01

    Full Text Available A gas sensor array was developed in a 10 × 10 mm2 space using Screen Printing and Pulse Laser Ablation Deposition (PLAD techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO2 and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa of O2. A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times.

  3. SnO2/Pt thin film laser ablated gas sensor array.

    Science.gov (United States)

    Shahrokh Abadi, Mohammad Hadi; Hamidon, Mohd Nizar; Shaari, Abdul Halim; Abdullah, Norhafizah; Wagiran, Rahman

    2011-01-01

    A gas sensor array was developed in a 10 × 10 mm(2) space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO(2) and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O(2). A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times.

  4. Fiber-optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.

    2015-01-01

    A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to inte...

  5. Miniaturized platform with on-chip strain sensors for compression testing of arrayed materials.

    Science.gov (United States)

    MacQueen, Luke; Chebotarev, Oleg; Simmons, Craig A; Sun, Yu

    2012-10-21

    We report a microfabricated mechanical testing platform with on-chip strain sensors for in situ mechanical characterization of arrayed materials. The device is based on deformable elastomeric membranes that are actuated by pressure that is delivered through an underlying channel network. The bulging membranes compress material samples that are confined between the membranes and a rigid top-plate. Carbon nanotube-based strain sensors that exhibit strain-dependent electrical resistivity were integrated within the membranes to provide continuous read-out of membrane deflection amplitude. We used this platform to study the cyclic compression of several different silicone samples and thereby measured their elastic moduli. The results obtained using our miniaturized platform were in excellent agreement with those obtained using a commercially available mechanical testing platform and clearly demonstrated the utility of our platform for the mechanical testing of small samples in parallel. The miniaturized platform can significantly increase mechanical testing efficiency, particularly when testing of iterative sample formulations is required.

  6. Rapid Multi-Damage Identification for Health Monitoring of Laminated Composites Using Piezoelectric Wafer Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Liang Si

    2016-05-01

    Full Text Available Through the use of the wave reflection from any damage in a structure, a Hilbert spectral analysis-based rapid multi-damage identification (HSA-RMDI technique with piezoelectric wafer sensor arrays (PWSA is developed to monitor and identify the presence, location and severity of damage in carbon fiber composite structures. The capability of the rapid multi-damage identification technique to extract and estimate hidden significant information from the collected data and to provide a high-resolution energy-time spectrum can be employed to successfully interpret the Lamb waves interactions with single/multiple damage. Nevertheless, to accomplish the precise positioning and effective quantification of multiple damage in a composite structure, two functional metrics from the RMDI technique are proposed and used in damage identification, which are the energy density metric and the energy time-phase shift metric. In the designed damage experimental tests, invisible damage to the naked eyes, especially delaminations, were detected in the leftward propagating waves as well as in the selected sensor responses, where the time-phase shift spectra could locate the multiple damage whereas the energy density spectra were used to quantify the multiple damage. The increasing damage was shown to follow a linear trend calculated by the RMDI technique. All damage cases considered showed completely the developed RMDI technique potential as an effective online damage inspection and assessment tool.

  7. A thermo-acoustic gas sensor array for photochemically critical species in the martian atmosphere

    Science.gov (United States)

    Zent, Aaron P.; Quinn, Richard C.; Madou, Marc

    1998-02-01

    We describe the development of a thermoacoustic oxidant sensor (TAOS) array to quantify gases that play critical roles in the chemical evolution of the martian surface and atmosphere. The sensor combines a chemiresistor with an acoustic wave-plate device, micro-fabricated on thermally isolated hot-plates; their measurement modes are respectively: conductivity changes of chemically sensitive films, and mass changes of the same coatings. Metal Phthalocyanines (MePcs) and other organic semiconductors such as 1,4-polybutadiene are used as chemical coatings because of their chemical stability and the fact that these compounds have been shown to exhibit selectivity to oxidizing gases. The specific target gases of this experiment are H 2O 2, H 2O, O 3 and CO. Identification and quantification of these gases at the martian surface would contribute to both atmospheric and soil chemistry studies. The species H 2O 2 and/or O 3, may be responsible for the unique reactive properties of the martian regolith, as discovered in the Viking biology experiments. In addition, each of the target gases are believed to play a role in the photochemical recycling of CO 2.

  8. Color Calibration for Colorized Vision System with Digital Sensor and LED Array Illuminator

    Directory of Open Access Journals (Sweden)

    Zhenmin Zhu

    2016-01-01

    Full Text Available Color measurement by the colorized vision system is a superior method to achieve the evaluation of color objectively and continuously. However, the accuracy of color measurement is influenced by the spectral responses of digital sensor and the spectral mismatch of illumination. In this paper, two-color vision system illuminated by digital sensor and LED array, respectively, is presented. The Polynomial-Based Regression method is applied to solve the problem of color calibration in the sRGB and CIE  L⁎a⁎b⁎ color spaces. By mapping the tristimulus values from RGB to sRGB color space, color difference between the estimated values and the reference values is less than 3ΔE. Additionally, the mapping matrix ΦRGB→sRGB has proved a better performance in reducing the color difference, and it is introduced subsequently into the colorized vision system proposed for a better color measurement. Necessarily, the printed matter of clothes and the colored ceramic tile are chosen as the application experiment samples of our colorized vision system. As shown in the experimental data, the average color difference of images is less than 6ΔE. It indicates that a better performance of color measurement is obtained via the colorized vision system proposed.

  9. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array.

  10. MLAOS: a multi-point linear array of optical sensors for coniferous foliage clumping index measurement.

    Science.gov (United States)

    Qu, Yonghua; Fu, Lizhe; Han, Wenchao; Zhu, Yeqing; Wang, Jindi

    2014-05-23

    The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI) by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS), which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8-10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy.

  11. MLAOS: A Multi-Point Linear Array of Optical Sensors for Coniferous Foliage Clumping Index Measurement

    Directory of Open Access Journals (Sweden)

    Yonghua Qu

    2014-05-01

    Full Text Available The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS, which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8–10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy.

  12. Biologically inspired large scale chemical sensor arrays and embedded data processing

    Science.gov (United States)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  13. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  14. Nanopore formation on Au coated pyramid under electron beam irradiations (plasmonic nanopore on pyramid

    Directory of Open Access Journals (Sweden)

    Seong Soo Choi

    2016-03-01

    Full Text Available There have been tremendous interests about the single molecule analysis using a sold-state nanopore. The solid-state nanopore can be fabricated either by drilling technique, or diffusion technique by using electron beam irradiations. The solid-state SiN nanopore device with electrical detection technique recently fabricated, however, the solid-state Au nanopore with optical detection technique can be better utilized as the next generation single molecule sensor. In this report, the nanometer size openings with its size less than 10 nm on the diffused membrane on the 200 nm Au pyramid were fabricated by using field emission scanning electron microscopy (FESEM electron beam irradiations, transmission electron microscopy (TEM, etc. After the sample was being kept under a room environment for several months, several Au (111 clusters with ~6 nm diameter formed via Ostwald ripening are observed using a high resolution TEM imaging. The nanopore with Au nanoclusters on the diffused membrane can be utilized as an optical nanopore device.

  15. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    Science.gov (United States)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  16. Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels

    Science.gov (United States)

    Yoo, B.; Purekar, A. S.; Zhang, Y.; Pines, D. J.

    2010-07-01

    A damage detection method based on an innovative 2D phased sensor array made of piezoelectric paint is proposed for in situ damage detection of a thin isotropic panel using guided Lamb waves. A design analysis of candidate 2D arrays based on spiral, cruciform and circular element layouts is performed. In this study, a 2D phased sensor array with a spiral configuration is fabricated using a piezoelectric composite (piezopaint) patch and used for detecting damages in an aluminum panel. Steered array responses are generated from the raw sensor signals using a directional filtering algorithm based on phased array signal processing. The fundamental flexural (or transverse), A0 mode, of the guided Lamb waves is used though the sensing and analysis technique is not limited to the mode used in this work. To enhance the proposed analysis technique, empirical mode decomposition (EMD) and a Hilbert-Huang transform (HHT) are applied. A new damage detection algorithm including threshold setting and damage index (DI) calculation is developed and implemented for detecting damages in the form of holes and a simulated crack. The characteristic damage indices consistently increase as damage size grows.

  17. Super-sensitive Molecule-hugging Graphene Nanopores

    CERN Document Server

    Garaj, Slaven; Branton, Daniel; Golovchenko, Jene A

    2012-01-01

    Longitudinal resolution and lateral sensitivity are decisive characteristics that determine the suitability of a nanopore sensor for sequencing a strand of DNA as well as other important polymers. Previous modeling of DNA induced ionic current blockades in single atom thick graphene nanopores has shown these nanopores to have sufficient longitudinal resolution to distinguish individual nucleobases along the length of a DNA molecule. Here we experimentally focus on the sensitivity to small changes in DNA diameter that can be discerned with graphene nanopores. We show that remarkably large sensitivities (0.5 nA/A)are obtained when the nanopore is tailored to have a diameter close to that of the polymer of interest. Our results have been obtained with double-stranded DNA (dsDNA). Smaller graphene nanopores that can be tuned to the diameter of single-stranded DNA (ssDNA) for sequencing have only recently been demonstrated. Our results indicate that nanopore sensors based on such pores will provide excellent resol...

  18. Synthesis of CdS nanorod arrays and their applications in flexible piezo-driven active H2S sensors.

    Science.gov (United States)

    Wang, Penglei; Deng, Ping; Nie, Yuxin; Zhao, Yayu; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-02-21

    A flexible piezo-driven active H2S sensor has been fabricated from CdS nanorod arrays. By coupling the piezoelectric and gas sensing properties of CdS nanorods, the piezoelectric output generated by CdS nanorod arrays acts not only as a power source, but also as a response signal to H2S. Under externally applied compressive force, the piezoelectric output of CdS nanorod arrays is very sensitive to H2S. Upon exposure to 600 ppm H2S, the piezoelectric output of the device decreased from 0.32 V (in air) to 0.12 V. Such a flexible device can be driven by the tiny mechanical energy in our living environment, such as human finger pinching. Our research can stimulate a research trend on designing new material systems and device structures for high-performance piezo-driven active gas sensors.

  19. Stretchable Multichannel Electromyography Sensor Array Covering Large Area for Controlling Home Electronics with Distinguishable Signals from Multiple Muscles.

    Science.gov (United States)

    Kim, Namyun; Lim, Taehoon; Song, Kwangsun; Yang, Sung; Lee, Jongho

    2016-08-17

    Physiological signals provide important information for biomedical applications and, more recently, in the form of wearable electronics for active interactions between bodies and external environments. Multiple physiological sensors are often required to map distinct signals from multiple points over large areas for more diverse applications. In this paper, we present a reusable, multichannel, surface electromyography (EMG) sensor array that covers multiple muscles over relatively large areas, with compliant designs that provide different levels of stiffness for repetitive uses, without backing layers. Mechanical and electrical characteristics along with distinct measurements from different muscles demonstrate the feasibility of the concept. The results should be useful to actively control devices in the environment with one array of wearable sensors, as demonstrated with home electronics.

  20. Filter-free integrated sensor array based on luminescence and absorbance measurements using ring-shaped organic photodiodes.

    Science.gov (United States)

    Abel, Tobias; Sagmeister, Martin; Lamprecht, Bernhard; Kraker, Elke; Köstler, Stefan; Ungerböck, Birgit; Mayr, Torsten

    2012-12-01

    An optical waveguiding sensor array featuring monolithically integrated organic photodiodes as integrated photo-detector, which simplifies the readout system by minimizing the required parts, is presented. The necessity of any optical filters becomes redundant due to the proposed platform geometry, which discriminates between excitation light and sensing signal. The sensor array is capable of measuring luminescence or absorption, and both sensing geometries are based on the identical substrate. It is demonstrated that background light is virtually non-existent. All sensing and waveguide layers, as well as in- and out-coupling elements are assembled by conventional screen-printing techniques. Organic photodiodes are integrated by layer-by-layer vacuum deposition onto glass or common polymer foils. The universal and simple applicability of this sensor chip is demonstrated by sensing schemes for four different analytes. Relative humidity, oxygen, and carbon dioxide are measured in gas phase using luminescence-based sensor schemes; the latter two analytes are also measured by absorbance-based sensor schemes. Furthermore, oxygen and pH in aqueous media were enabled. The consistency of calibration characteristics extending over different sensor chips is verified.