WorldWideScience

Sample records for nanoparticles transmission electron

  1. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles

    International Nuclear Information System (INIS)

    Asoro, M.A.; Ferreira, P.J.; Kovar, D.

    2014-01-01

    Transmission electron microscopy and scanning transmission electron microscopy studies were conducted in situ on 2–5 nm Pt and 10–40 nm Ag nanoparticles to study mechanisms for sintering and to measure relevant sintering kinetics in nanoscale particles. Sintering between two separated particles was observed to initiate by either (1) diffusion of the particles on the sample support or (2) diffusion of atoms or small clusters of atoms to the neck region between the two particles. After particle contact, the rate of sintering was controlled by atomic surface diffusivity. The surface diffusivity was determined as a function of particle size and temperature from experimental measurements of the rate of neck growth of the particles. The surface diffusivities did not show a strong size effect for the range of particle sizes that were studied. The surface diffusivity for Pt nanoparticles exhibited the expected Arrhenius temperature dependence and did not appear to be sensitive to the presence of surface contaminants. In contrast, the surface diffusivity for Ag nanoparticles was affected by the presence of impurities such as carbon. The diffusivities for Ag nanoparticles were consistent with previous measurements of bulk surface diffusivities for Ag in the presence of C, but were significantly slower than those obtained from pristine Ag

  2. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.

    Science.gov (United States)

    Liu, Liming; Wang, Honghang; Yi, Zichuan; Deng, Quanrong; Lin, Zhidong; Zhang, Xiaowen

    2018-02-01

    Bismuth (Bi) nanoparticles are prepared by using NaBi(MoO 4 ) 2 nanosheets in the beam of electrons emitted by transmission electron microscope. The formation and growth of Bi nanoparticles are investigated in situ. The sizes of Bi nanoparticles are confined within the range of 6-10nm by controlling irradiation time. It is also observed that once the diameter of nanoparticles is larger than 10nm, the Bi particles are stable as a result of the immobility of large nanoparticles. In addition, some nanoparticles on the edges form nanorods, which are explained as the result of a coalescence process, if the irradiation period is longer than 10min. The in situ research on Bi nanoparticles facilitates in-depth investigations of the physicochemical behavior and provides more potential applications in various fields such as sensors, catalysts and optical devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reconstruction and visualization of nanoparticle composites by transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Lockwood, R. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Malac, M., E-mail: marek.malac@nrc-cnrc.gc.ca [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Furukawa, H. [SYSTEM IN FRONTIER INC., 2-8-3, Shinsuzuharu bldg. 4F, Akebono-cho, Tachikawa-shi, Tokyo 190-0012 (Japan); Li, P.; Meldrum, A. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada)

    2012-02-15

    This paper examines the limits of transmission electron tomography reconstruction methods for a nanocomposite object composed of many closely packed nanoparticles. Two commonly used reconstruction methods in TEM tomography were examined and compared, and the sources of various artefacts were explored. Common visualization methods were investigated, and the resulting 'interpretation artefacts' ( i.e., deviations from 'actual' particle sizes and shapes arising from the visualization) were determined. Setting a known or estimated nanoparticle volume fraction as a criterion for thresholding does not in fact give a good visualization. Unexpected effects associated with common built-in image filtering methods were also found. Ultimately, this work set out to establish the common problems and pitfalls associated with electron beam tomographic reconstruction and visualization of samples consisting of closely spaced nanoparticles. -- Highlights: Black-Right-Pointing-Pointer Electron tomography limits were explored by both experiment and simulation. Black-Right-Pointing-Pointer Reliable quantitative volumetry using electron tomography is not presently feasible. Black-Right-Pointing-Pointer Volume rendering appears to be better choice for visualization of composite samples.

  4. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    International Nuclear Information System (INIS)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C.; Oliviero, E.; Fichtner, P. F. P.

    2016-01-01

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors

  5. The use of transmission electron microscopy in the quantification of nanoparticle dose

    International Nuclear Information System (INIS)

    Hondow, N; Brydson, R; Brown, A

    2014-01-01

    There are an increasing number of potential applications for nanoparticles in clinical medicine, including targeted drug delivery and contrast agents for biomedical imaging. Current in vitro studies are concerned with the biological impact of nanoparticles, with electron microscopy commonly employed to image their intracellular location. It is critical to quantify the absolute nanoparticle dose internalized by cells in a given exposure, and to understand the factors which affect this. In this work we are aiming to develop a full quantitative description of quantum dot uptake by an in vitro cell line. Transmission electron microscopy of thin cell sections provides the location and number of cellular vesicles per 2-D cell slice plus the number of quantum dots per vesicle. These results can then be correlated to other techniques to quantify the internalized nanoparticle dose distribution for whole cells

  6. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  7. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy

    NARCIS (Netherlands)

    Zecevic, J.; Hermannsdorfer, Justus; Schuh, Tobias; de Jong, Krijn P.; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of

  8. Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate

    KAUST Repository

    Anjum, Dalaver H.; Stiger, Rebecca M.; Finley, James J.; Conway, James F.

    2010-01-01

    We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL

  9. Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate

    KAUST Repository

    Anjum, Dalaver H.

    2010-07-01

    We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL suspension and controlling electron dose, we can assess properties of particle size, morphology, crystallinity, and aggregation in situ and at high detail. We observed round silver nanoparticles with a well-defined diameter of 7.0 ± 1.5 nm that are faceted with crystalline cubic structures and ∼80% of the particles have multiply twinned faults. We also applied cryo-electron tomography to investigate the structure of the nanoparticles and to directly visualize the IL wetting around them. In addition to particles, we observed nanorods that appear to have assembled from individual nanoparticles. Reexamination of the samples after 4-5 days from initial preparation showed significant changes in morphology, and potential mechanisms for this are discussed. © 2010 Materials Research Society.

  10. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance

    International Nuclear Information System (INIS)

    Lacava, L.M.; Lacava, B.M.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Tronconi, A.L.; Morais, P.C.

    2001-01-01

    Atomic force microscopy (AFM), transmission electron microscopy (TEM), and ferromagnetic resonance (FMR) were used to unfold the nanoparticle size of a ferrofluid sample. Compared to TEM, the AFM method showed a nanoparticle diameter (D m ) reduction of 20% and standard deviation (σ) increase of 15%. The differences in D m and σ were associated with the AFM tip and the nanoparticle concentration on the substrate

  11. Gas-phase synthesis of magnesium nanoparticles : A high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Kooi, B.J.; Palasantzas, G.; de Hosson, J.T.M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg{1010} facets. Oxidation of Mg yields a MgO shell (similar to 3 nm

  12. In-situ synthesis of Ag nanoparticles by electron beam irradiation

    International Nuclear Information System (INIS)

    Gong, Jiangfeng; Liu, Hongwei; Jiang, Yuwen; Yang, Shaoguang; Liao, Xiaozhou; Liu, Zongwen; Ringer, Simon

    2015-01-01

    Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber at room temperature and the growth mechanism was explored in detail. The sizes of the Ag nanoparticles are controlled by the electron beam current density. Two nanoparticle growth stages were identified. The first growth stage was dominated by the discharging effect, while the second stage was controlled by the heating effect. The nanoparticle synthesis method should be applicable to the synthesis of other metallic nanoparticles. - Highlights: • Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber. • The sizes of the Ag nanoparticles are controlled by the electron beam current density. • The growth mechanism was studied, two growth stages were confirmed. • The first growth stage was dominated by the discharging effect, and the second stage was controlled by the heating effect.

  13. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study

    International Nuclear Information System (INIS)

    Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg(1010) facets. Oxidation of Mg yields a MgO shell (∼3 nm thick), which has an orientation relation with the Mg. Inhomogeneous facet oxidation influences their growth kinetics resulting in a relatively broad size and shape distribution. Faceted voids between Mg and MgO shells indicate a fast outward diffusion of Mg and vacancy rearrangement into voids. The faceting of polar (220) planes is assisted by electron irradiation

  14. Transmission electron microscopy and Raman characterization of copper (I) oxide microspheres composed of nanoparticles

    International Nuclear Information System (INIS)

    Wang Wenzhong; Tu Ya; Wang Lijuan; Liang Yujie; Shi Honglong

    2013-01-01

    Highlights: ► Raman spectroscopy of copper (I) oxide microspheres were investigated. ► Infrared active mode is greatly activated in Raman scattering spectrum. ► Infrared active mode shows up in Raman spectrum of copper (I) oxide microspheres. ► The defects existed in spheres could be responsible for the observed Raman property. - Abstract: The high-resolution transmission electron microscope and Raman spectroscopy were used to investigate the microstructures and Raman scattering property of copper (I) oxide microspheres composed of nanoparticles. High-resolution transmission electron microscope images indicate that the copper (I) oxide microspheres are composed of nanoparticles with random growth direction, indicating that there are many defects in microspheres. The Raman spectrum shows that infrared active mode, which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is activated and shows up in Raman scattering spectrum. On the basis of investigations of the microstructure features of copper (I) oxide microspheres, we attribute the appearance of IR active mode in Raman scattering spectrum to the breakdown of the symmetry of the lattice due to the presence of defects in the prepared copper (I) oxide microspheres as observed in HRTEM images.

  15. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo; Wang, Chongmin; Nix, William D.; Cui, Yi

    2012-01-01

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.

    2012-09-04

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    Science.gov (United States)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  18. Transformations of gold nanoparticles investigated using variable temperature high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Young, N.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Huis, M.A. van; Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technolgy, Lorentzweg 1, NL-2628CJ, Delft, The Netherlands. (Netherlands); Xu, H. [Department of Geology and Geophysics, and Materials Science Program, University of Wisconsin-Madison, Madison, WI (United States); Kirkland, A.I., E-mail: angus.kirkland@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2010-04-15

    Recently designed advanced in-situ specimen holders for transmission electron microscopy (TEM) have been used in studies of gold nanoparticles. We report results of variable temperature TEM experiments in which structural transformations have been correlated with specimen temperature, allowing general trends to be identified. Transformation to a decahedral morphology for particles in the size range 5-12 nm was observed for the majority of particles regardless of their initial structure. Following in-situ annealing, decahedra were found to be stable at room temperature, confirming this as the equilibrium morphology, in agreement with recently calculated phase diagrams. Other transitions at low temperature in addition to surface roughening have also been observed and correlated with the same nanoscale phase diagram. Investigations of gold particles at high temperature have revealed evidence for co-existing solid and liquid phases. Overall, these results are important in a more precise understanding of the structure and action of catalytic gold nanoparticles and in the experimental verification of theoretical calculations.

  19. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles

    Science.gov (United States)

    Michen, Benjamin; Geers, Christoph; Vanhecke, Dimitri; Endes, Carola; Rothen-Rutishauser, Barbara; Balog, Sandor; Petri-Fink, Alke

    2015-01-01

    Standard transmission electron microscopy nanoparticle sample preparation generally requires the complete removal of the suspending liquid. Drying often introduces artifacts, which can obscure the state of the dispersion prior to drying and preclude automated image analysis typically used to obtain number-weighted particle size distribution. Here we present a straightforward protocol for prevention of the onset of drying artifacts, thereby allowing the preservation of in-situ colloidal features of nanoparticles during TEM sample preparation. This is achieved by adding a suitable macromolecular agent to the suspension. Both research- and economically-relevant particles with high polydispersity and/or shape anisotropy are easily characterized following our approach (http://bsa.bionanomaterials.ch), which allows for rapid and quantitative classification in terms of dimensionality and size: features that are major targets of European Union recommendations and legislation. PMID:25965905

  20. Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits?

    International Nuclear Information System (INIS)

    De Backer, A; De Wael, A; Gonnissen, J; Martinez, G T; Béché, A; Van Aert, S; MacArthur, K E; Jones, L; Nellist, P D

    2015-01-01

    Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations. (paper)

  1. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.

  2. Characterization of magnetic core-shell nanoparticles by fluxgate magnetorelaxometry, ac susceptibility, transmission electron microscopy and photon correlation spectroscopy-A comparative study

    International Nuclear Information System (INIS)

    Ludwig, Frank; Heim, Erik; Schilling, Meinhard

    2009-01-01

    We have compared the structure parameters of magnetic core-shell nanoparticles determined from fluxgate magnetorelaxometry measurements applying the moment superposition model with the results from other methods. For the characterization of the magnetic cores, the nanoparticles are immobilized by freeze-drying. The core size distribution estimated for superparamagnetic Fe 3 O 4 magnetic nanoparticles (MNPs) with polyacrylic acid shell agrees well with that from transmission electron microscopy measurements. The distribution of hydrodynamic diameters of nanoparticle suspensions estimated from magnetorelaxometry measurements is in good agreement with that obtained from ac susceptibility and photon correlation spectroscopy measurements. Advantages of magnetorelaxometry compared to the other two integral techniques are that it is fast and the signal is less dominated by larger particles.

  3. Dynamics of Supported Metal Nanoparticles Observed in a CS Corrected Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Dunin-Borkowski, Rafal E.; Wagner, Jakob Birkedal

    resulting in the formation of larger particles and a loss of catalytic performance. Several models of sintering in different systems have been put forward [1,2]. However, most investigations have been post mortem studies, revealing only the final state of the catalyst. Transmission electron microscopy (TEM....... The combined capabilities of ETEM and image CS correction provide unique possibilities to study this relationship. However, in order to fully quantify image contrast from such experiments, a deeper understanding of the scattering of fast electrons in the presence of gas molecules in the pole piece gap...... of the microscope is needed. As industrial catalysts are usually complex high surface area materials, they are often not suited for fundamental studies. For this purpose, model systems consisting of gold nanoparticles on sheets of low surface area boron nitride and graphite supports were produced. Sheets...

  4. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  5. Silver nanoparticles: synthesis and size control by electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, K A; Dhole, S D; Bhoraskar, V N [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune-411007 (India)

    2006-07-14

    Silver nanoparticles were synthesized by irradiating solutions, prepared by mixing AgNO{sub 3} and poly-vinyl alcohol (PVA), with 6 MeV electrons. The electron-irradiated solutions and the thin coatings cast from them were characterized using the ultraviolet-visible (UV-vis), x-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. During electron irradiation, the process of formation of the silver nanoparticles appeared to be initiated at an electron fluence of {approx}2 x 10{sup 13} e cm{sup -2}. This was evidenced from the solution, which turned yellow and exhibited the characteristic plasmon absorption peak around 455 nm. Silver nanoparticles of different sizes in the range 60-10 nm, with a narrow size distribution, could be synthesized by varying the electron fluence from 2 x 10{sup 13} to 3 x 10{sup 15} e cm{sup -2}. Silver nanoparticles of sizes in the range 100-200 nm were also synthesized by irradiating an aqueous AgNO{sub 3} solution with 6 MeV electrons.

  6. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas

    DEFF Research Database (Denmark)

    Liu, Xi; Zhang, Chenghua; Li, Yongwang

    2017-01-01

    Structuralevolution of iron nanoparticles involving the formationand growth of iron carbide nuclei in the iron nanoparticle was directlyvisualized at the atomic level, using environmental transmission electronmicroscopy (TEM) under reactive conditions mimicking Fischer–Tropschsynthesis. Formation...... and electronenergy-loss spectra provides a detailed picture from initial activationto final degradation of iron under synthesis gas....

  7. Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alloyeau, D., E-mail: alloyeau.damien@gmail.com [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris 7/CNRS, UMR 7162, 2 Place Jussieu, 75251 Paris (France); Laboratoire d' Etude des Microstructures - ONERA/CNRS, UMR 104, B.P. 72, 92322 Chatillon (France); Ricolleau, C. [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris 7/CNRS, UMR 7162, 2 Place Jussieu, 75251 Paris (France); Oikawa, T. [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris 7/CNRS, UMR 7162, 2 Place Jussieu, 75251 Paris (France); JEOL (Europe) SAS, Espace Claude Monet, 1 Allee de Giverny, 78290 Croissy-sur-Seine (France); Langlois, C. [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris 7/CNRS, UMR 7162, 2 Place Jussieu, 75251 Paris (France); Le Bouar, Y.; Loiseau, A. [Laboratoire d' Etude des Microstructures - ONERA/CNRS, UMR 104, B.P. 72, 92322 Chatillon (France)

    2009-06-15

    Nanoparticles' morphology is a key parameter in the understanding of their thermodynamical, optical, magnetic and catalytic properties. In general, nanoparticles, observed in transmission electron microscopy (TEM), are viewed in projection so that the determination of their thickness (along the projection direction) with respect to their projected lateral size is highly questionable. To date, the widely used methods to measure nanoparticles thickness in a transmission electron microscope are to use cross-section images or focal series in high-resolution transmission electron microscopy imaging (HRTEM 'slicing'). In this paper, we compare the focal series method with the electron tomography method to show that both techniques yield similar particle thickness in a range of size from 1 to 5 nm, but the electron tomography method provides better statistics since more particles can be analyzed at one time. For this purpose, we have compared, on the same samples, the nanoparticles thickness measurements obtained from focal series with the ones determined from cross-section profiles of tomograms (tomogram slicing) perpendicular to the plane of the substrate supporting the nanoparticles. The methodology is finally applied to the comparison of CoPt nanoparticles annealed ex situ at two different temperatures to illustrate the accuracy of the techniques in detecting small particle thickness changes.

  8. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen, E-mail: delucas@u-bourgogne.fr

    2016-12-15

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  9. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    International Nuclear Information System (INIS)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen

    2016-01-01

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  10. Fabrication of carbon layer coated FE-nanoparticles using an electron beam irradiation

    Science.gov (United States)

    Kim, Hyun Bin; Jeun, Joon Pyo; Kang, Phil Hyun; Oh, Seung-Hwan

    2016-01-01

    A novel synthesis of carbon encapsulated Fe nanoparticles was developed in this study. Fe chloride (III) and polyacrylonitrile (PAN) were used as precursors. The crosslinking of PAN molecules and the nucleation of Fe nanoparticles were controlled by the electron beam irradiation dose. Stabilization and carbonization processes were carried out using a vacuum furnace at 275 °C and 1000 °C, respectively. Micro structures were evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fe nanoparticles were formed with diameters of 100 nm, and the Fe nanoparticles were encapsulated by carbon layers. As the electron beam irradiation dose increased, it was observed that the particle sizes decreased.

  11. Quantification of metallic nanoparticle morphology with tilt series imaging by transmission electron microscopy

    Science.gov (United States)

    Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2012-02-01

    We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.

  12. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    Science.gov (United States)

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  13. Electronically cloaked nanoparticles

    Science.gov (United States)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  14. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy

    International Nuclear Information System (INIS)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L; Jose-Yacaman, Miguel

    2009-01-01

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  15. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy.

    Science.gov (United States)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L

    2009-03-11

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  16. Electron energy loss spectroscopy of gold nanoparticles on graphene

    International Nuclear Information System (INIS)

    DeJarnette, Drew; Roper, D. Keith

    2014-01-01

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports

  17. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  18. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Williams, Wyn

    2014-01-01

    The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (<50 nm) from mixed FeCl3 / FeCl2 precursor solution at pH ~ 12 has been confirmed using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry. Off-axis electron holography allowed for visuali......The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (holography allowed...

  19. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nguy, Amanda [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine

  20. Structure determination of chitosan-stabilized Pt and Pd based bimetallic nanoparticles by X-ray photoelectron spectroscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Wu, Lihua; Shafii, Salimah; Nordin, Mohd Ridzuan; Liew, Kong Yong; Li, Jinlin

    2012-01-01

    Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures. -- Highlights: ► Chitosan-stabilized bimetallic nanoparticles were prepared at room temperature in aqueous solution. ► The presence of Fe or Ni shells was proven by XPS study. ► The existence of noble metal cores covered by amorphous shells was indicated by TEM study. ► The formation of noble metal core-transition metal shell structures was confirmed.

  1. The role of electron irradiation history in liquid cell transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Trevor H.; Mehta, Hardeep S.; Park, Chiwoo; Kelly, Ryan T.; Shokuhfar, Tolou; Evans, James E.

    2018-04-20

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC- TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.

  2. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  3. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Rai, V. N.; Srivastava, A. K.; Mukharjee, C.

    2015-01-01

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique

  4. New insight into nanoparticle precipitation by electron beams in borosilicate glasses

    Science.gov (United States)

    Sabri, M. M.; Möbus, G.

    2017-06-01

    Nanoprecipitation in different oxide glasses by means of electron irradiation in transmission electron microscopy (TEM) has been compared in this study. Upon irradiation, groups or patterns of nanoparticles with various morphologies and sizes were formed in borosilicate glasses, loaded with zinc, copper, and silver. The study successfully includes loading ranges for the target metal from doping level (1%) over medium level (20%) to majority phase (60%). It is found that particle patterning resolution is affected by parallel processes of amorphous phase separation, glass ablation, and delocalised precipitation. In addition, via an in-situ study, it is confirmed that by heating alone without irradiation, no precipitate nanoparticles form.

  5. New insight into nanoparticle precipitation by electron beams in borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, M.M.; Moebus, G. [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2017-06-15

    Nanoprecipitation in different oxide glasses by means of electron irradiation in transmission electron microscopy (TEM) has been compared in this study. Upon irradiation, groups or patterns of nanoparticles with various morphologies and sizes were formed in borosilicate glasses, loaded with zinc, copper, and silver. The study successfully includes loading ranges for the target metal from doping level (1%) over medium level (20%) to majority phase (60%). It is found that particle patterning resolution is affected by parallel processes of amorphous phase separation, glass ablation, and delocalised precipitation. In addition, via an in-situ study, it is confirmed that by heating alone without irradiation, no precipitate nanoparticles form. (orig.)

  6. How to determine the morphology of plasmonic nanocrystals without transmission electron microscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Battie, Yann, E-mail: yann.battie@univ-lorraine.fr [Université de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Izquierdo-Lorenzo, Irene [Université de Technologie de Troyes, LNIO (CNRS UMR 6279) (France); Resano-Garcia, Amandine; Naciri, Aotmane En; Akil, Suzanna [Université de Lorraine, LCP-A2MC, Institut Jean Barriol (France); Adam, Pierre Michel; Jradi, Safi [Université de Technologie de Troyes, LNIO (CNRS UMR 6279) (France)

    2016-08-15

    This paper reports the complete ellipsometric characterization of gold nanoparticles (NPs) embedded in a photoresist films. The effective dielectric function of nanocomposite films as well as the shape distribution and the volume fraction of NPs are extracted from ellipsometric measurements by introducing an effective medium theory which takes into account the NP shape distribution and the intrinsic confinement effect. This theory remains valid as long as the nanoparticle interaction is negligible. We show that the magnitude of the confinement depends on the nanoparticle shape and the environment through chemical damping. This suggests that the NP shape distribution can be directly estimated by ellipsometry, while the determination of absolute radius distribution requires transmission electron microscopy measurements. The imaginary part of the effective dielectric function exhibits a strong asymmetric surface plasmon band, while a large variation of the real part occurs close to the resonance. The redshift and the broadening of the plasmon band as the gold volume fraction increases are correlated to the evolution of NP shape distribution. This evolution is attributed to a competition between the nucleation and the coalescence of NPs. This unambiguously demonstrates that ellipsometry combined with a shape-distributed effective medium theory is a powerful alternative tool to transmission electron microscopy for the NP shape analysis.

  7. Electron tomography of porous materials and magnetic nanoparticles

    International Nuclear Information System (INIS)

    Uusimäki, T.

    2015-01-01

    Electron tomography, as carried out in a transmission electron microscope is a method to reveal the three dimensional structure of the sample at the nanometer scale. It is based on tilting the sample and recording subsequent images at different projections angles. Using specific reconstruction algorithms the density distribution of the sample can then be reproduced. In this thesis, electron tomography has been implemented for material science specimens and more rigorously to porous media infiltrated with magnetic nanoparticles. The volume and spatial distribution along with the knowledge of the demagnetizing factors were then used within a magnetic Monte Carlo simulation to predict the magnetic response of the nanoparticle assembly. The local curvature of nanoparticles within the template, known to be a critical geometrical parameter influencing material properties, was extracted with two distinctive methods. Furthermore, new capabilities needed for image analysis and processing of the tilt series had to be implemented for improved alignments and segmentation. A new method to align the tilt series without depending on markers was written for obtaining high quality reconstructions. Also a comparison was made between different scanning TEM acquisition modes such as incoherent bright field and high angle annular dark field imaging modes with respect to resolution and contrast changes. (author) [de

  8. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Dehghan, Roya; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2011-01-01

    the reactivity of the nanoparticles and the importance of controlling the gas composition and specimen temperature during this type of experiment. Similar behaviour was observed for a non-promoted catalyst. Imaging and analysis of the promoted sample before and after reduction indicated a uniform distribution...... resolution transmission electron microscopy and scanning transmission electron microscopy imaging. The cobalt particles were mainly face centred cubic while some hexagonal close packed particles were also found. Reoxidation of the sample upon cooling to room temperature, still under flowing H2, underlines...

  9. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    Science.gov (United States)

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  10. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  11. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    Science.gov (United States)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.

  12. Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics

    International Nuclear Information System (INIS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-01-01

    In this work, we synthesized uniform Cu–Ag core–shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core–shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu–Ag core–shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu–Ag core–shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu–Ag core–shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu–Ag core–shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties. (paper)

  13. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  14. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    Science.gov (United States)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  15. Transmission electron microscopy of carbon-coated and iron-doped titania nanoparticles

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-02

    We present a study on the properties of iron (Fe)-doped and carbon (C)-coated titania (TiO2) nanoparticles (NPs) which has been compiled by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). These TiO2 NPs were prepared by using the flame synthesis method. This method allows the simultaneous C coating and Fe doping of TiO2 NPs. XRD investigations revealed that the phase of the prepared NPs was anatase TiO2. Conventional TEM analysis showed that the average size of the TiO2 NPs was about 65 nm and that the NPs were uniformly coated with the element C. Furthermore, from the x-ray energy dispersive spectrometry analysis, it was found that about 8 at.% Fe was present in the synthesized samples. High-resolution TEM (HRTEM) revealed the graphitized carbon structure of the layer surrounding the prepared TiO2 NPs. HRTEM analysis further revealed that the NPs possessed the crystalline structure of anatase titania. Energy-filtered TEM (EFTEM) analysis showed the C coating and Fe doping of the NPs. The ratio of L3 and L2 peaks for the Ti-L23 and Fe-L23 edges present in the core loss electron energy loss spectroscopy (EELS) revealed a +4 oxidation state for the Ti and a +3 oxidation state for the Fe. These EELS results were further confirmed with XPS analysis. The electronic properties of the samples were investigated by applying Kramers-Kronig analysis to the low-loss EELS spectra acquired from the prepared NPs. The presented results showed that the band gap energy of the TiO2 NPs decreased from an original value of 3.2 eV to about 2.2 eV, which is quite close to the ideal band gap energy of 1.65 eV for photocatalysis semiconductors. The observed decrease in band gap energy of the TiO2 NPs was attributed to the presence of Fe atoms at the lattice sites of the anatase TiO2 lattice. In short, C-coated and Fe-doped TiO2 NPs were synthesized with a rather cost-effective and comparatively easily scalable method. The

  16. Nanoparticle composites for printed electronics

    International Nuclear Information System (INIS)

    Männl, U; Van den Berg, C; Magunje, B; Härting, M; Britton, D T; Jones, S; Van Staden, M J; Scriba, M R

    2014-01-01

    Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used. (paper)

  17. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  18. Diaminobenzidine photoconversion is a suitable tool for tracking the intracellular location of fluorescently labelled nanoparticles at transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    M. Malatesta

    2012-04-01

    Full Text Available Chitosan-based nanoparticles (NPs deserve particular attention as suitable drug carriers in the field of pharmaceutics, since they are able to protect the encapsulated drugs and/or improve their efficacy by making them able to cross biological barriers (such as the blood-brain barrier and reach their intracellular target sites. Understanding the intracellular location of NPs is crucial for designing drug delivery strategies. In this study, fluorescently-labelled chitosan NPs were administered in vitro to a neuronal cell line, and diaminobenzidine (DAB photoconversion was applied to correlate fluorescence and transmission electron microscopy to precisely describe the NPs intracellular fate. This technique allowed to demonstrate that chitosan NPs easily enter neuronal cells, predominantly by endocytosis; they were found both inside membrane-bounded vesicles and free in the cytosol, and were observed to accumulate around the cell nucleus.

  19. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  20. Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Abellan Baeza, Patricia; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.

    2014-01-14

    In this paper we present in situ transmission electron microscopy (TEM) of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerization of an oxaliplatin analog, designed for an ongoing program in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point toward key design parameters that enable this new characterization approach for organic nanomaterials. We describe the preparation of the synthetic micellar nanoparticles to- gether with their characterization in liquid water.

  1. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  2. Electron Tomography of Nanoparticle Clusters: Implications for Atmospheric Lifetimes and Radiative Forcing of Soot

    Science.gov (United States)

    vanPoppel, Laura H.; Friedrich, Heiner; Spinsby, Jacob; Chung, Serena H.; Seinfeld, John H.; Buseck, Peter R.

    2005-01-01

    Nanoparticles are ubiquitous in nature. Their large surface areas and consequent chemical reactivity typically result in their aggregation into clusters. Their chemical and physical properties depend on cluster shapes, which are commonly complex and unknown. This is the first application of electron tomography with a transmission electron microscope to quantitatively determine the three-dimensional (3D) shapes, volumes, and surface areas of nanoparticle clusters. We use soot (black carbon, BC) nanoparticles as an example because it is a major contributor to environmental degradation and global climate change. To the extent that our samples are representative, we find that quantitative measurements of soot surface areas and volumes derived from electron tomograms differ from geometrically derived values by, respectively, almost one and two orders of magnitude. Global sensitivity studies suggest that the global burden and direct radiative forcing of fractal BC are only about 60% of the value if it is assumed that BC has a spherical shape.

  3. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  4. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Song, T.K.; Gautam, Sanjeev; Chae, K.H.; Kim, S.S.; Jang, K.W.

    2015-01-01

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L 3,2 NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L 3,2 edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles

  5. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Vats, Prashant; Gautam, S.; Gupta, V.P.; Verma, K.D.; Chae, K.H.; Hashim, Mohd; Choi, H.K.

    2014-01-01

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L 3,2 edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L 3,2 -edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L 3,2 -edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior

  6. Reflectivity and transmissivity of a cavity coupled to a nanoparticle

    Science.gov (United States)

    Khan, M. A.; Farooq, K.; Hou, S. C.; Niaz, Shanawer; Yi, X. X.

    2014-07-01

    Any dielectric nanoparticle moving inside an optical cavity generates an optomechanical interaction. In this paper, we theoretically analyze the light scattering of an optomechanical cavity which strongly interacts with a dielectric nanoparticle. The cavity is driven by an external laser field. This interaction gives rise to different dynamics that can be used to cool, trap and levitate nanoparticle. We analytically calculate reflection and transmission rate of the cavity field, and study the time evolution of the intracavity field, momentum and position of the nanoparticle. We find the nanoparticle occupies a discrete position inside the cavity. This effect can be exploited to separate nanoparticle and couplings between classical particles and quantized fields.

  7. An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere

    International Nuclear Information System (INIS)

    Dubau, L.; Castanheira, L.; Berthomé, G.; Maillard, F.

    2013-01-01

    This study shows that the predominant degradation mechanism of Pt/Vulcan XC72 electrocatalysts strongly depends on the nature of the gas atmosphere and of the upper potential limit used in accelerated stress tests (ASTs). The morphological changes of Pt/Vulcan XC72 nanoparticles were studied by identical location transmission electron microscopy (IL-TEM), following accelerated stress tests in different potential ranges and under various gas atmospheres. X-ray photoelectron spectroscopy was used to probe changes in carbon surface chemistry. Whereas minor changes were detected under neutral atmosphere (Ar) and low potential limit conditions (0.05 2 ). With an increase of the upper potential limit to 1.23 V vs. RHE, the trends observed previously were maintained but 3D Ostwald ripening strongly overlapped with the three other degradation mechanisms, precluding any identification of the dominant mechanism

  8. Crystal structure of TiNi nanoparticles obtained by Ar ion beam deposition

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2008-01-01

    Nanoparticles are a state of matter that have properties different from either molecules or bulk solids, turning them into a very interesting class of materials to study. In the present work, the crystal structure of TiNi nanoparticles obtained by ion beam deposition is characterized. TiNi nanoparticles were obtained from TiNi wire samples by sputtering with Ar ions using a Gatan precision ion polishing system. The TiNi nanoparticles were deposited on a Lacey carbon film that was used for characterization by transmission electron microscopy. The nanoparticles were characterized by high-resolution transmission electron microscopy, high-angle annular dark-field imaging, electron diffraction, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Results of nanodiffraction seem to indicate that the nanoparticles keep the same B2 crystal structure as the bulk material but with a decreased lattice parameter

  9. Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts.

    Science.gov (United States)

    Jensen, Louise Helene Søgaard; Skjolding, Lars Michael; Thit, Amalie; Sørensen, Sara Nørgaard; Købler, Carsten; Mølhave, Kristian; Baun, Anders

    2017-06-01

    Increasing use of engineered nanoparticles has led to extensive research into their potential hazards to the environment and human health. Cellular uptake from the gut is sparsely investigated, and microscopy techniques applied for uptake studies can result in misinterpretations. Various microscopy techniques were used to investigate internalization of 10-nm gold nanoparticles in Daphnia magna gut lumen and gut epithelial cells following 24-h exposure and outline potential artifacts (i.e., high-contrast precipitates from sample preparation related to these techniques). Light sheet microscopy confirmed accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut epithelium, permitting only single particles through. Structures resembling nanoparticles were also observed inside gut cells. Elemental analysis could not verify these to be gold, and they were likely artifacts from the preparation, such as osmium and iron. Importantly, gold nanoparticles were found inside holocrine cells with disrupted membranes. Thus, false-positive observations of nanoparticle internalization may result from either preparation artifacts or mistaking disrupted cells for intact cells. These findings emphasize the importance of cell integrity and combining elemental analysis with the localization of internalized nanoparticles using transmission electron microscopy. Environ Toxicol Chem 2017;36:1503-1509. © 2016 SETAC. © 2016 SETAC.

  10. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results.

    Science.gov (United States)

    Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S

    2013-10-01

    A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  11. Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles

    Science.gov (United States)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Imam, N. G.

    2018-01-01

    The effects of iron doping on the structural, optical, and electronic properties of doped alumina have been studied. Single-phase iron-doped alumina Al2- x Fe x O3 ( x = 0.00 to 0.30) nanoparticles were synthesized via citrate-precursor method. Formation of single-phase hexagonal corundum structure with no other separate phases was demonstrated by x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy. The effects of iron doping on the α-Al2O3 structural parameters, viz. atomic coordinates, lattice parameters, crystallite size, and microstrain, were estimated from XRD data by applying the Rietveld profile fitting method. Transmission electron microscopy further confirmed the nanosize nature of the prepared samples with size ranging from 12 nm to 83 nm. The electronic band structure was investigated using density functional theory calculations to explain the decrease in the energy gap of Al2- x Fe x O3 as the amount of Fe was increased. The colored emission peaks in the visible region (blue, red, violet) of the electromagnetic spectrum obtained for the Fe-doped α-Al2O3 nanoparticles suggest their potential application as ceramic nanopigments.

  12. Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy

    DEFF Research Database (Denmark)

    van den Berg, Roy; Elkjær, Christian Fink; Gommes, Cedric J.

    2016-01-01

    The understanding of processes leading to the formation of nanometer-sized particles is important for tailoring of their size, shape and location. The growth mechanisms and kinetics of nanoparticles from solid precursors are, however, often poorly described. Here we employ transmission electron...... microscopy (TEM) to examine the formation of copper nanoparticles on a silica support during the reduction by H2 of homogeneous copper phyllosilicate platelets, as a prototype precursor for a coprecipitated catalyst. Specifically, time-lapsed TEM image series acquired of the material during the reduction...... process provide a direct visualization of the growth dynamics of an ensemble of individual nanoparticles and enable a quantitative evaluation of the nucleation and growth of the nanoparticles. This quantitative information is compared with kinetic models and found to be best described by a nucleation...

  13. Synthesis of nanoparticles in helium droplets—A characterization comparing mass-spectra and electron microscopy data

    International Nuclear Information System (INIS)

    Thaler, Philipp; Volk, Alexander; Lackner, Florian; Steurer, Johannes; Schnedlitz, Martin; Ernst, Wolfgang E.; Knez, Daniel; Haberfehlner, Georg

    2015-01-01

    Micrometer sized helium droplets provide an extraordinary environment for the growth of nanoparticles. The method promises great potential for the preparation of core-shell particles as well as one-dimensional nanostructures, which agglomerate along quantum vortices, without involving solvents, ligands, or additives. Using a new apparatus, which enables us to record mass spectra of heavy dopant clusters (>10 4 amu) and to produce samples for transmission electron microscopy simultaneously, we synthesize bare and bimetallic nanoparticles consisting of various materials (Au, Ni, Cr, and Ag). We present a systematical study of the growth process of clusters and nanoparticles inside the helium droplets, which can be described with a simple theoretical model

  14. Synthesis of nanoparticles in helium droplets—A characterization comparing mass-spectra and electron microscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Philipp; Volk, Alexander; Lackner, Florian; Steurer, Johannes; Schnedlitz, Martin; Ernst, Wolfgang E., E-mail: wolfgang.ernst@tugraz.at [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria); Knez, Daniel; Haberfehlner, Georg [Institute for Electron Microscopy and Nanoanalysis & Graz Centre for Electron Microscopy, TU Graz, Steyrergasse 17, A-8010 Graz (Austria)

    2015-10-07

    Micrometer sized helium droplets provide an extraordinary environment for the growth of nanoparticles. The method promises great potential for the preparation of core-shell particles as well as one-dimensional nanostructures, which agglomerate along quantum vortices, without involving solvents, ligands, or additives. Using a new apparatus, which enables us to record mass spectra of heavy dopant clusters (>10{sup 4} amu) and to produce samples for transmission electron microscopy simultaneously, we synthesize bare and bimetallic nanoparticles consisting of various materials (Au, Ni, Cr, and Ag). We present a systematical study of the growth process of clusters and nanoparticles inside the helium droplets, which can be described with a simple theoretical model.

  15. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  16. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  17. Advantages of a monochromated transmission electron microscope for solid state physics

    International Nuclear Information System (INIS)

    Grogger, W.; Kothleitner, G.; Hofer, F.

    2006-01-01

    Full text: The characterization of nanostructured devices and functional materials at a nanometer scale is paramount for the understanding of their physical and chemical properties. Transmission electron microscopy (TEM) plays a central role, especially in terms of structural and chemical analysis on a nearly atomic scale. In particular, electron energy-loss spectrometry (EELS) can obtain information not only about the chemical composition of a thin sample, but also about chemical bonding and electronic structure (ionization edge fine structures) and optical properties (through valence loss EELS). Recent instrumental advances like monochromators for the electron gun in the TEM have made it possible to reduce the energy resolution to 0.15 eV at an acceleration voltage of 200 kV. Another strong point of the method lies in the combination with a fine electron probe (0.2 nm) which allows to record EELS spectra with high energy resolution and spatial resolution in the range of 1 nm. The improved energy resolution opens new possibilities for studying detailed electronic structure and bonding effects in solids such as transmission metal oxides. The experimental results will be compared with x-ray absorption spectroscopy and band structure calculations. A better energy-resolution is particularly important for measurements in the low loss region of the EELS spectrum which provides the information about the band gap and the dielectric function. We will highlight the potential of the method for studying metallic nanoparticles and semiconducting devices. Additionally, the influence of the intrinsic effects like core-hole and excited lifetime broadening and delocalization of the inelastically scattered electrons will be discussed. (author)

  18. Characterization of the electronic and magnetic structure of multifunctional NaREF{sub 4} (RE = rare earth) core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Lilli; Kuepper, Karsten [Physics Department, University of Osnabrueck (Germany); Rinkel, Thorben; Haase, Markus [Institute of Chemistry, University of Osnabrueck (Germany); Chrobak, Artur [Institute of Physics, University of Silesia (Poland)

    2014-07-01

    Rare earth (RE) based nanoparticles of type NaREF{sub 4} have attracted lot of attention in the last few years due to their upconverting luminescence. Here, we want to concentrate on electronic and magnetic properties of NaREF{sub 4}/NaGdF{sub 4} nanocrystals, since the magnetic behaviour of these fluorescent nanoparticles are of utmost importance from fundamental and applicative point of view as well. Hexagonal β-phase nanocrystals (3-22 nm) were prepared and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). A detailed study of the electronic structure and magnetic coupling phenomena of the different core-shell nanoparticles is performed using X-ray photoelectron spectroscopy (XPS), magnetometry (SQUID) and X-ray magnetic circular dichroism (XMCD). First SQUID measurements of NaEuF{sub 4}/NaGdF{sub 4} core-shell nanoparticles show butterfly shaped hysteresis loops at low temperature (2 K) in contrast to superparamagnetic behaviour observed for the corresponding ''pure'' NaEuF{sub 4} and NaGdF{sub 4} nanoparticles.

  19. Naked Gold Nanoparticles and hot Electrons in Water.

    Science.gov (United States)

    Ghandi, Khashayar; Wang, Furong; Landry, Cody; Mostafavi, Mehran

    2018-05-08

    The ionizing radiation in aqueous solutions of gold nanoparticles, stabilized by electrostatic non-covalent intermolecular forces and steric interactions, with antimicrobial compounds, are investigated with picosecond pulse radiolysis techniques. Upon pulse radiolysis of an aqueous solution containing very low concentrations of gold nanoparticles with naked surfaces available in water (not obstructed by chemical bonds), a change to Cerenkov spectrum over a large range of wavelengths are observed and pre-solvated electrons are captured by gold nanoparticles exclusively (not by ionic liquid surfactants used to stabilize the nanoparticles). The solvated electrons are also found to decay rapidly compared with the decay kinetics in water. These very fast reactions with electrons in water could provide an enhanced oxidizing zone around gold nanoparticles and this could be the reason for radio sensitizing behavior of gold nanoparticles in radiation therapy.

  20. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Abellan Baeza, Patricia; Parent, Lucas R.; Al Hasan, Naila M.; Park, Chiwoo; Arslan, Ilke; Karim, Ayman M.; Evans, James E.; Browning, Nigel D.

    2016-01-07

    Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale. In this work we synthesize Pd nanoparticles with well-controlled size using in situ liquid-stage scanning transmission electron microscopy (STEM) and demonstrate a match between the reaction kinetics and products of the radiolytic and chemical syntheses of size-stabilized Pd nanoparticles. We quantify the effect of electron dose on the nucleation kinetics, and compare these results with in situ small angle X-ray scattering (SAXS) experiments investigating the effect of temperature during chemical synthesis. This work introduces methods for precise control of nanoparticle synthesis in the STEM and provides a means to uncover the fundamental processes behind the size and shape stabilization of nanoparticles.

  1. In-situ environmental (scanning) transmission electron microscopy of catalysts at the atomic level

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2014-01-01

    Observing reacting single atoms on the solid catalyst surfaces under controlled reaction conditions is a key goal in understanding and controlling heterogeneous catalytic reactions. In-situ real time aberration corrected environmental (scanning) transmission electron microscopy (E(S)TEM permit the direct imaging of dynamic surface and sub-surface structures of reacting catalysts. In this paper in-situ AC ETEM and AC ESTEM studies under controlled reaction environments of oxide catalysts and supported metal nanocatalysts important in chemical industry are presented. They provide the direct evidence of dynamic processes at the oxide catalyst surface at the atomic scale and single atom dynamics in catalytic reactions. The ESTEM studies of single atom dynamics in controlled reaction environments show that nanoparticles act as reservoirs of ad-atoms. The results have important implications in catalysis and nanoparticle studies

  2. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  3. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    International Nuclear Information System (INIS)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R; Castillo, S J; Zavala, G

    2011-01-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  4. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  5. Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, Abul, E-mail: abul_k33@yahoo.com [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia); Al-Sehemi, Abdullah G.; Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia); Du Gaohui [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Ahmad, Tokeer [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2012-06-15

    Well dispersed nickel oxide nanoparticles have been synthesized successfully by direct calcination of nickel linoleate. The structure, morphology and properties of the nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and ultraviolet-visible spectroscopy. Transmission electron microscopic studies show that nickel oxide nanoparticles are uniform with an average size of 14-20 nm. The optical band gap of 3.8 eV is obtained using UV-Visible spectroscopy which exhibits the red shift compared with the bulk counterpart. - Highlights: Black-Right-Pointing-Pointer Synthesis of metal oxide nanoparticles by using metal complexes as precursors. Black-Right-Pointing-Pointer Characterization of isolated nanoparticles using XRD, FTIR, SEM, TEM and HRTEM data. Black-Right-Pointing-Pointer The expected optical properties of these nanoparticles are clarified.

  6. Preparation and structure of carbon encapsulated copper nanoparticles

    International Nuclear Information System (INIS)

    Hao Chuncheng; Xiao Feng; Cui Zuolin

    2008-01-01

    Carbon-encapsulated copper nanoparticles were synthesized by a modified arc plasma method using methane as carbon source. The particles were characterized in detail by transmission electron microscope, high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, thermogravimetric and differential scanning calorimetry. The encapsulated copper nanoparticles were about 30 nm in diameter with 3-5 nm graphitic carbon shells. The outside graphitic carbon layers effectively prevented unwanted oxidation of the copper inside. The effect of the ratio of He/CH 4 on the morphologies and the formation of the carbon shell were investigated

  7. Metal-nanoparticle single-electron transistors fabricated using electromigration

    DEFF Research Database (Denmark)

    Bolotin, K I; Kuemmeth, Ferdinand; Pasupathy, A N

    2004-01-01

    We have fabricated single-electron transistors from individual metal nanoparticles using a geometry that provides improved coupling between the particle and the gate electrode. This is accomplished by incorporating a nanoparticle into a gap created between two electrodes using electromigration, all...... on top of an oxidized aluminum gate. We achieve sufficient gate coupling to access more than ten charge states of individual gold nanoparticles (5–15 nm in diameter). The devices are sufficiently stable to permit spectroscopic studies of the electron-in-a-box level spectra within the nanoparticle as its...

  8. Not all that glitters is gold - Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artefacts

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Skjolding, Lars Michael; Thit, Amalie

    2017-01-01

    techniques are used to investigate internalization of 10 nm gold nanoparticles in Daphnia magna gut lumen and gut epithelial cells upon 24h exposure and outline potential artefacts, i.e. high contract precipitates from sample preparation related to these techniques. Light sheet microscopy confirmed...... accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut epithelium...

  9. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy.

    Science.gov (United States)

    Ribeiro, Ana R; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A; Granjeiro, José M

    2017-08-03

    While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.

  10. Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

    International Nuclear Information System (INIS)

    Francis, L D; Rivas, J; José-Yacamán, M

    2014-01-01

    Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic structure. A brief introduction to advanced electron microscopic techniques namely aberration corrected scanning transmission electron microscopy (Cs-STEM) is presented and subsequently two examples of nanocatalysts are considered in the present review. The first example will focus on the study of bimetallic/core-shell nanoalloys. In heterogeneous catalysis, catalysts containing two or more metals might show significantly different catalytic properties compared to the parent metals and thus are widely utilized in several catalytic reactions. Atom-by-atom insights of the nanoalloy based catalysts ex: Au-Pd will be described in the present review using a combination of advanced electron microscopic and spectroscopic techniques. A related example on the understanding of bimetallic clusters by HAADF-STEM will also be presented in addition to nanoparticles. In the second case understanding the structure of transition metal chalcogenide based nanocatalysts by HRTEM and aberration corrected STEM, for the case of MoS 2 will be discussed. MoS 2 -based catalysts serve as model catalysts and are employed in the hydrodesulphurisations (HDS) reactions in the removal of sulphur from gasoline and related petrochemical products. They have been studied in various forms including nanowires, nanotubes and nanoplates. Their structure, atomic insights and as a consequence elucidation of their corresponding catalytic activity are thus important

  11. Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Mohammed Mohammed; Möbus, Günter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2016-03-15

    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.

  12. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  13. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  14. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  15. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy

    KAUST Repository

    LAGROW, A.P.

    2017-08-29

    Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

  16. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy

    KAUST Repository

    LAGROW, A.P.; AlYami, Noktan; LLOYD, D.C.; Bakr, Osman; BOYES, E.D.; GAI, P.L.

    2017-01-01

    Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

  17. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    Science.gov (United States)

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  18. Understanding the formation and growth of Ag nanoparticles on silver chromate induced by electron irradiation in electron microscope: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Fabbro, Maria T.; Gracia, Lourdes; Silva, Gabriela S.; Santos, Luís P.S.; Andrés, Juan; Cordoncillo, Eloisa; Longo, E.

    2016-01-01

    Ag 2 CrO 4 microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag 2 CrO 4 microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of the optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO 6 ] and [AgO 4 ] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag 2 CrO 4 orthorhombic structure. Display Omitted - Highlights: • The Ag 2 CrO 4 microcrystals indicate an orthorhombic structure. • The formation of Ag 0 promotes Ag-nanoparticle growth on the surface of the Ag 2 CrO 4 . • Electron irradiation of the material induces the formation of Ag vacancies.

  19. Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes

    DEFF Research Database (Denmark)

    He, Maoshuai; Jin, Hua; Zhang, Lili

    2016-01-01

    electron microscopy, restructuring of the acorn-like Pt-Fe2O3 nanoparticles at reaction conditions is investigated. Upon heating to reaction temperature, ε-Fe2O3 is converted to β-Fe2O3, which can be subsequently reduced to metallic Fe once introducing CO. As Pt promotes the carburization of Fe, part...... of the metallic Fe reacts with active carbon atoms to form Fe2.5C instead of Fe3C, catalyzing the nucleation of carbon nanotubes. Nanobeam electron diffraction characterizations on SWCNTs grown under ambient pressure at 800 °C demonstrate that their chiral angle and diameter distributions are similar to those...

  20. Palladium nanoparticles produced by CW and pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310 (Spain); Lusquiños, F. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Riveiro, A. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Palladium nanoparticles are receiving important interest due to its application as catalyst. In this work Pd nanoparticles have been obtained by ablating a Pd target submerged in de-ionized using both, pulsed as well as continuous wave (CW) laser. The influence of laser parameters involved in the formation in nanoparticles has been studied. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by means of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV/vis absorption spectroscopy. The obtained colloidal suspensions consisted of pure Pd nanoparticles showing spherical shape with diameters ranging from few nanometers to 5–60 nm. The moderate irradiance delivered by the CW laser favours high production of uniform nanoparticles.

  1. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  2. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  3. In situ transmission electron microscopy of individual carbon nanotetrahedron/ribbon structures in bending

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, Hideo, E-mail: kohno.hideo@kochi-tech.ac.jp [School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Masuda, Yusuke [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2015-05-11

    When the direction of flattening of a carbon nanotube changes during growth mediated by a metal nanoparticle, a carbon nanotetrahedron is formed in the middle of the carbon nanoribbon. We report the bending properties of the carbon nanotetrahedron/nanoribbon structure using a micro-manipulator system in a transmission electron microscope. In many cases, bending occurs at an edge of the carbon nanotetrahedron. No significant change is observed in the tetrahedron's shape during bending, and the bending is reversible and repeatable. Our results show that the carbon nanotetrahedron/nanoribbon structure has good durability against mechanical bending.

  4. Luminescence induced by electrons outside zinc oxide nanoparticles driven by intense terahertz pulse trains

    International Nuclear Information System (INIS)

    Nagai, Masaya; Aono, Shingo; Ashida, Masaaki; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2017-01-01

    We investigated the behaviours of electrons from ZnO nanoparticles via a strong terahertz field. Luminescence from ZnO nanoparticles and surrounding nitrogen molecules was observed when the nanoparticles were irradiated with a terahertz free-electron laser (FEL). These excitations arose from the collision of electrons released via field electron emission with the ZnO nanoparticles and neighbouring nitrogen molecules. The strong excitation frequency dependence of the luminescence reflected the kinetic energy and trajectory of electrons outside the nanoparticles. We also observed spectral changes in the luminescence during macropulses of the FEL, even though the carrier lifetime of the nanoparticles was shorter than the interval between the micropulses. These changes were caused by the nanoparticles becoming charged due to electron emission, resulting in the electrons being re-emitted outside the nanoparticles. The electrons outside the nanoparticles were accelerated more efficiently by the terahertz field than the electrons inside the nanoparticles, and thus the motion of these exterior electrons provided a new excitation path. (paper)

  5. In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms. PMID:28122188

  6. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An In-Situ Electron Microscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Eskelsen, Jeremy R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Xu, Jie [Univ. of Texas, El Paso, TX (United States). Geological Sciences; Chiu, Michelle Y. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Wilkins, Branford O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Pierce, Eric M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2017-12-19

    The dissolution of metal sulfides, such as ZnS, plays an important role in the fate of metal contaminants in the environment. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, the biogenic ZnS nanoparticles were produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium, whereas the abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H2S-rich gas or Na2S solution. For biogenic synthesis, we prepared two types of samples, in the presence or absence of trace silver (Ag). The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were primarily examined using high-resolution transmission electron microscopy coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ~10 nm) than the abiogenic ones (i.e., ~3–5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ~3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell coupled to a transmission electron microscope (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m2) have

  7. In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solution

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Duchstein, Linus Daniel Leonhard; Sharafutdinov, Irek

    2014-01-01

    Metallic alloy nanoparticles (NPs) are synthesized in situ in an environmental transmission electron microscope. Atomic level characterization of the formed alloy NPs is carried out at synthesis conditions by use of high-resolution transmission electron microscopy, electron diffraction and electron...

  8. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    Science.gov (United States)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  9. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    Directory of Open Access Journals (Sweden)

    Thomas Kowoll

    2017-01-01

    Full Text Available This study is concerned with backscattered electron scanning electron microscopy (BSE SEM contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC- simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  10. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  11. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  12. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  13. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluczyk

    2018-06-01

    Full Text Available Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA and semi-classical (hydrodynamic theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  14. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  15. Preparation of transition metal sulfide nanoparticles via hydrothermal route

    International Nuclear Information System (INIS)

    Fei-Ling, P.; Chin-Hua, C.; Sarani Zakaria; Tze-Khong, L.; Mohd Ambar Yarmo; Nay-Ming, H.

    2010-01-01

    Nano sized copper sulfide, iron sulfide and molybdenum sulfide were successfully synthesised via a simple hydrothermal method. Sodium thiosulfate pentahydrate (Na 2 S 2 O 3 ·5H 2 O) and hydroxylamine sulfate ((H 3 NO) 2 ·H 2 SO 4 ) were used as the starting materials and reacted with the transition metal source at 200 degree Celsius for 90 min. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR). Spherical shape CuS and FeS 2 nanoparticles with high crystallinity were successfully produced. The transmission electron micrographs revealed the well-dispersibility of the produced nanoparticles. Scanning electron micrograph showed the MoS 2 nanoparticles possessed a spherical shape with sheet-like structure covering on the outer surface of the particles. (author)

  16. Synthesis of Thermally Spherical CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nittaya Tamaekong

    2014-01-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully synthesized by a thermal method. The CuO nanoparticles were further characterized by thermogravimetric analysis (TGA, differential thermal analysis (DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDS, and high resolution transmission electron microscopy (HRTEM, respectively. The specific surface area (SSABET of CuO nanoparticles was determined by nitrogen adsorption. The SSABET was found to be 99.67 m2/g (dBET of 9.5 nm. The average diameter of the spherical CuO nanoparticles was approximately 6–9 nm.

  17. Magnetic irone oxide nanoparticles in photosynthetic systems

    International Nuclear Information System (INIS)

    Khalilov, R.I.; Nasibova, A.N.; Khomutov, G.B.

    2014-01-01

    Full text : It was found and studied the effect of biogenic formation of magnetic inclusions in photosynthetic systems - in various higher plants under the influence of some external stress factors (radiation impact, moisture deficit) and in a model system - a suspension of chloroplasts. For registration and characterization of magnetic nanoparticles in the samples used EPR spectrometer because superparamagnetic and ferromagnetic nanoparticles have a chcracteristic signals of electron magnetic resonance. For direct visualization of magnetic nanoparticles it was used the method of transmission electron microscopy

  18. Effects of Uptake of Hydroxyapatite Nanoparticles into Hepatoma Cells on Cell Adhesion and Proliferation

    OpenAIRE

    Meizhen Yin; Yixia Yin; Yingchao Han; Honglian Dai; Shipu Li

    2014-01-01

    Hydroxyapatite nanoparticles (nano-HAPs) were prepared by homogeneous precipitation, and size distribution and morphology of these nanoparticles were determined by laser particle analysis and transmission electron microscopy, respectively. Nano-HAPs were uniformly distributed, with rod-like shapes sizes ranging from 44.6 to 86.8 nm. Attached overnight, suspended, and proliferating Bel-7402 cells were repeatedly incubated with nano-HAPs. Inverted microscopy, transmission electron microscopy, a...

  19. Synthesis and Characterization of Metal Sulfides Nanoparticles/Poly(methyl methacrylate) Nanocomposites

    OpenAIRE

    Ajibade, Peter A.; Mbese, Johannes Z.

    2014-01-01

    Metal sulfides nanoparticles in poly(methyl methacrylate) matrices were prepared and characterized by infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscope (SEM), and transmission electron microscope (TEM). The FTIR confirms the dispersion of the nanoparticles in PMMA matrices with the C=O and C–O–C bonds of the PMMA shifting slightly which may be attributed to the interactions between the nanoparticles and PMMA. The ZnS nanoparticles in PMM...

  20. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  1. Characterization of palladium nanoparticles anchored on graphene oxide obtained by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Sobrinho, Luiza F.; Garcia, Rafael H.L.; Silva, Flávia R.O.; Neto, Almir O.; Sakata, Solange K., E-mail: lunnaquimica@usp.br, E-mail: sksakata@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Fuel Cells (FCs) are devices that convert chemical energy directly in electrical and thermal energy. There are two disadvantages in the process that difficult the implementation of these new power supply. The fuel, hydrogen, is highly flammable and it is difficult to transport and the catalyst is costly. FCs have been attracting worldwide attention because they are environmental friendly and potential as clean and efficient power source. However, their durability and cost have being identified as important issues in this power supply. The objective of this work is to provide a new material based on incorporation of palladium graphene oxide as catalyst. Graphene Oxide (GO) was synthesized from graphite by the modified Hummers method, in water/alcohol medium. The one-step method to incorporate nanoparticles on this nanomaterial was developed using by electron beam (EB). Additionally, this method also reduces the Graphene Oxide (GO). This nanocomposite were characterized by thermogravimetry (TG), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), x-rays diffraction (XRD) and its potential for electro catalysis were performed by cyclic voltammetry (CV) and amperometry (CA). The results showed that the incorporation of Pd on reduced GO (rGO) by electron beam was 20-40 % in mass. The process using EB and Pd nanoparticles supported on graphene oxide as a support are an alternative, in substitution of conventional methods to the production of electrodes for fuel cells. (author)

  2. Characterization of palladium nanoparticles anchored on graphene oxide obtained by electron beam

    International Nuclear Information System (INIS)

    Sobrinho, Luiza F.; Garcia, Rafael H.L.; Silva, Flávia R.O.; Neto, Almir O.; Sakata, Solange K.

    2017-01-01

    Fuel Cells (FCs) are devices that convert chemical energy directly in electrical and thermal energy. There are two disadvantages in the process that difficult the implementation of these new power supply. The fuel, hydrogen, is highly flammable and it is difficult to transport and the catalyst is costly. FCs have been attracting worldwide attention because they are environmental friendly and potential as clean and efficient power source. However, their durability and cost have being identified as important issues in this power supply. The objective of this work is to provide a new material based on incorporation of palladium graphene oxide as catalyst. Graphene Oxide (GO) was synthesized from graphite by the modified Hummers method, in water/alcohol medium. The one-step method to incorporate nanoparticles on this nanomaterial was developed using by electron beam (EB). Additionally, this method also reduces the Graphene Oxide (GO). This nanocomposite were characterized by thermogravimetry (TG), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), x-rays diffraction (XRD) and its potential for electro catalysis were performed by cyclic voltammetry (CV) and amperometry (CA). The results showed that the incorporation of Pd on reduced GO (rGO) by electron beam was 20-40 % in mass. The process using EB and Pd nanoparticles supported on graphene oxide as a support are an alternative, in substitution of conventional methods to the production of electrodes for fuel cells. (author)

  3. Passive linear nanoscale optical and molecular electronics device synthesis from nanoparticles

    International Nuclear Information System (INIS)

    Yurke, Bernard; Kuang Wan

    2010-01-01

    Arrays of nanoparticles whose interactions can be characterized by hopping Hamiltonians can serve as excitation transmission lines. Here we show, that in addition suitable arrangements of nanoparticles can form beam splitters, phase shifters, and crossover splitters. With these elements, any discrete unitary transformation can be implemented on input modes via a network of nanoparticles in which all the components lie in the same plane. These nanoparticle networks can produce optical functionalities at a length scale much smaller than 1 μm.

  4. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

    Science.gov (United States)

    Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You

    2009-07-01

    An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in

  5. Kinetic Transition of Crystal Morphology from Nanoparticles to Dendrites during Electron Beam Induced Deposition of Gold

    Science.gov (United States)

    Park, Jeung Hun; Schneider, Nicholas; Bau, Haim; Kodambaka, Suneel; Ross, Frances

    2015-03-01

    We studied the kinetic transition from compact nanoparticle to dendritic morphology during electron beam-induced Au deposition using in situ liquid cell-based transmission electron microcopy. Radiolysis of water by electrons generates radicals and molecular species. Hydrated electrons and hydrogen and hydroxide radicals can act as reducing agents and initiate the reduction of the water-soluble precursor, HAuCl4, resulting in the precipitation of Au as nanostructures. We tracked nucleation, growth, and morphological transition of Au from movies recorded in situ, as a function of irradiated dose and liquid thickness. We identified several distinct regimes that depend on the irradiation time: (1) nucleation; (2) linear volumetric growth; (3) formation of dendritic structures; (4) coalescence and dissolution. A diffusion and reaction model for the radiolytic species and metal ions in the confined geometry of the irradiated volume is used to understand the nucleation sites and morphological transitions. We finally describe how nanoparticles can be made to grow in a stepwise manner by switching the supply of Au ions on and off electrochemically, and discuss possibilities for creating more complex nanostructures. This research was partially funded by the National Science Foundation (DMR-1310639, CMMI-1129722, and CBET-1066573).

  6. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    Science.gov (United States)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  7. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Harish, G.S.; Sreedhara Reddy, P.

    2015-01-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm −1 ) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping

  8. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined with ...

  9. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor, E-mail: tjwoehl@umd.edu; Keller, Robert

    2016-12-15

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30 kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150 mrad) and on thick substrates (>50 nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. - Highlights: • Developed a

  10. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization

    Institute of Scientific and Technical Information of China (English)

    Amir Hassanjani-Roshan; Mohammad Reza Vaezi; Ali Shokuhfar; Zohreh Rajabali

    2011-01-01

    Preparation of iron oxide (α-Fe2O3) nanoparticles was carried out via a sonochemical process. The process parameters such as temperature,sonication time and power of ultrasonication play important roles in the size and morphology of the final products. The iron oxide nanoparticles were characterized by transmission electron microscopy,X-ray powder diffraction,and thermogravimetric and differential thermal analyses. From transmission electron microscopy observations,the size of the iron oxide nanoparticles is estimated to be significantly smaller than 19 nm. X-ray diffraction data of the powder after annealing provide direct evidence that the iron oxide was formed during the sonochemical process.

  11. Size-controlled synthesis of nickel nanoparticles

    International Nuclear Information System (INIS)

    Hou, Y.; Kondoh, H.; Ohta, T.; Gao, S.

    2005-01-01

    A facile reduction approach with nickel acetylacetonate, Ni(acac) 2 , and sodium borohydride or superhydride leads to monodisperse nickel nanoparticles in the presence of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO). The combination of HDA and TOPO used in the conventional synthesis of semiconductor nanocrystals also provides better control over particle growth in the metal nanoparticle synthesis. The size of Ni nanoparticles can be readily tuned from 3 to 11 nm, depending on the ratio of HDA to TOPO in the reaction system. As-synthesized Ni nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), selected-area electron diffraction (SAED). Transmission electron microscopy (TEM) images show that Ni nanoparticles have narrow size distribution. SQUID magnetometry was also used in the characterization of Ni nanoparticles. The synthetic procedure can be extended to the preparation of high quality metal or alloy nanoparticles

  12. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

    International Nuclear Information System (INIS)

    Shin, Weon Gyu; Wang Jing; Mertler, Michael; Sachweh, Bernd; Fissan, Heinz; Pui, David Y. H.

    2009-01-01

    In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (d pa ) and the mobility diameter (d m ), i.e., d pa = 0.92 ± 0.03 d m for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) D f = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for d m = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (D fL ) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633; and (3) mass fractal-like dimension (D fm ) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260-271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633 is larger than that from using the relationship, d pa = 0.92 ± 0.03 d m or from using the mobility analysis.

  13. Electronic and magnetic properties of MnAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi 46000 (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O; El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-03-15

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles.

  14. Electronic and magnetic properties of MnAu nanoparticles

    International Nuclear Information System (INIS)

    Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O; El moussaoui, H.

    2014-01-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles

  15. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    International Nuclear Information System (INIS)

    Cao Ying; Wang Huajie; Cao Cui; Sun Yuanyuan; Yang Lin; Wang Baoqing; Zhou Jianguo

    2011-01-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  16. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  17. Production of silver nanoparticles by laser ablation in open air

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J.

    2015-01-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  18. Production of silver nanoparticles by laser ablation in open air

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo, 36310 (Spain); Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain)

    2015-05-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm.

  19. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Marta Agati

    2017-02-01

    Full Text Available Scanning transmission electron microscopy (STEM was successfully applied to the analysis of silicon nanowires (SiNWs that were self-assembled during an inductively coupled plasma (ICP process. The ICP-synthesized SiNWs were found to present a Si–SiO2 core–shell structure and length varying from ≈100 nm to 2–3 μm. The shorter SiNWs (maximum length ≈300 nm were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor–liquid–solid (VLS mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs.

  20. Synthesis of Copper nanoparticles through vesicle template using gamma irradiation

    International Nuclear Information System (INIS)

    Noor Ezzah Rahimah Ahmad Samsuri

    2012-01-01

    Nano technology has gained attention for its application in life. This study was conducted to produce copper (Cu) nanoparticles using gamma ray irradiation through template vesicles. Cu nanoparticle has a variety of applications such as capacitor materials, catalyst, conductive coating, high thermal conductivity materials as well as lubricant additives. this study used gamma radiation compared to other methods because the use of gamma rays in producing nanoparticle is safer and environmental friendly. The purpose of this study was to see the effects of radiation on the formation of Cu nanoparticles. The radiation dose used was 80 kGy and 100 kGy. The vesicles were formed by mixing water, sodium n-lauroyl sarcosinat hydrated, 1-decanol and polyethylene glycol with certain ratio (85 %: 5 %: 7 %: 3 %). Analysis from the transmission electron microscopy (TEM) showed the production of multilammelar vesicles in size between 30 nm-80 nm. The formation of nanoparticles was analyzed using UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Analysis of UV-Vis absorption spectroscopy showed no resonance peak around 600 nm. XRD analysis confirmed the presence of Cu, Cu 2 O and CuO. Analysis and characterisation using transmission electron microscopy (TEM) also confirmed that nanoparticles were produced with different sizes according to the radiation dose. At the radiation dose of 80 kGy, nanoparticles size is found vary between 30 nm to 90 nm. While at the radiation dose of 100 kGy, nanoparticles size is found vary between 3 nm to 7 nm. From this study it can be concluded that higher radiation dse will produce smaller nanoparticles. (author)

  1. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    Science.gov (United States)

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  2. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol; Park, Ji Hyun; Bae, Hyung Bin; Park, Changmoon

    2013-01-01

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances

  3. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  4. Transmission of electrons through Al2O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.J.; Víkor, Gy.

    2012-01-01

    We investigate transmission of low-energy electrons (250 eV) through insulating AlO nanocapillaries (270 nm diameter and 15 μm length). Kinetic energy distribution of electrons transmitted through the nanocapillaries in the straightforward direction, time dependence of the transmission rate both...

  5. The Effect of Stirring on the Morphology of Birnessite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Marcos A. Cheney

    2008-01-01

    Full Text Available The effect of mechanical stirring on the morphology of hexagonal layer-structure birnessite nanoparticles produced from decomposition of KMnO4 in dilute aqueous H2SO4 is investigated, with characterization by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, thermogravimetric analysis (TGA, and N2 adsorption (BET. Mechanical stirring during an initial stage of synthesis is shown to produce black birnessite containing nanofibers, whereas granular particulates of brown birnessite are produced without stirring. This is the first reduction synthesis of black birnessite nanoparticles with dendritic morphology without any use of organic reductant, and suggests that a particular morphology can arise from structural preferences of Mn in acidic conditions rather than particular organic reactants. These results enlighten the possibility of synthesizing nanoparticles with controlled size and morphology.

  6. Biosynthesis of silver nanoparticles and its antibacterial activity ...

    African Journals Online (AJOL)

    Dr.Rajasekar

    2012-07-19

    Jul 19, 2012 ... Available online at http://www.academicjournals.org/AJB ... Transmission Electron Microscopy (HRTEM) support the biosynthesis and characterization of silver nanoparticles. ... nanoparticle from seaweed is a green chemical method ... operating at a voltage of 80 kV and a current of 30 mA (Chandran.

  7. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Singh, M. N.; Sinha, A. K.; Rai, V. N.; Srivastava, A. K.; Bhartiya, S.; Mukherjee, C.

    2015-01-01

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating. The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure

  8. Quantitative transmission electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Forbes, B D; Findlay, S D; LeBeau, J M; Stemmer, S

    2012-01-01

    In scanning transmission electron microscopy (STEM) it is possible to operate the microscope in bright-field mode under conditions which, by the quantum mechanical principle of reciprocity, are equivalent to those in conventional transmission electron microscopy (CTEM). The results of such an experiment will be presented which are in excellent quantitative agreement with theory for specimens up to 25 nm thick. This is at variance with the large contrast mismatch (typically between two and five) noted in equivalent CTEM experiments. The implications of this will be discussed.

  9. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  10. Elemental mapping in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Lugg, N R; Findlay, S D; LeBeau, J M; Stemmer, S

    2010-01-01

    We discuss atomic resolution chemical mapping in scanning transmission electron microscopy (STEM) based on core-loss electron energy loss spectroscopy (EELS) and also on energy dispersive X-ray (EDX) imaging. Chemical mapping using EELS can yield counterintuitive results which, however, can be understood using first principles calculations. Experimental chemical maps based on EDX bear out the thesis that such maps are always likely to be directly interpretable. This can be explained in terms of the local nature of the effective optical potential for ionization under those imaging conditions. This is followed by an excursion into the complementary technique of elemental mapping using energy-filtered transmission electron microscopy (EFTEM) in a conventional transmission electron microscope. We will then consider the widely used technique of Z-contrast or high-angle annular dark field (HAADF) imaging, which is based on phonon excitation, where it has recently been shown that intensity variations can be placed on an absolute scale by normalizing the measured intensities to the incident beam. Results, showing excellent agreement between theory and experiment to within a few percent, are shown for Z-contrast imaging from a sample of PbWO 4 .

  11. Transmission Electron Microscopy of Minerals and Rocks

    Science.gov (United States)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  12. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae

    International Nuclear Information System (INIS)

    Banu, Afreen; Rathod, Vandana; Ranganath, E.

    2011-01-01

    Highlights: → Silver nanoparticle production by using Rhizopus stolonifer. → Antibacterial activity of silver nanoparticles against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae. → Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. → Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silver nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.

  13. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Afreen [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Ranganath, E. [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India)

    2011-09-15

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silver nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.

  14. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  15. Nanoparticle Metamorphosis: An in Situ High-Temperature Transmission Electron Microscopy Study of the Structural Evolution of Heterogeneous Au:Fe 2 O 3 Nanoparticles

    KAUST Repository

    Baumgardner, William J.

    2014-05-27

    High-temperature in situ electron microscopy and X-ray diffraction have revealed that Au and Fe2O3 particles fuse in a fluid fashion at temperatures far below their size-reduced melting points. With increasing temperature, the fused particles undergo a sequence of complex structural transformations from surface alloy to phase segregated and ultimately core-shell structures. The combination of in situ electron microscopy and spectroscopy provides insights into fundamental thermodynamic and kinetic aspects governing the formation of heterogeneous nanostructures. The observed structural transformations present an interesting analogy to thin film growth on the curved surface of a nanoparticle. Using single-particle observations, we constructed a phase diagram illustrating the complex relationships among composition, morphology, temperature, and particle size. © 2014 American Chemical Society.

  16. Nanoparticle Metamorphosis: An in Situ High-Temperature Transmission Electron Microscopy Study of the Structural Evolution of Heterogeneous Au:Fe 2 O 3 Nanoparticles

    KAUST Repository

    Baumgardner, William J.; Yu, Yingchao; Hovden, Robert; Honrao, Shreyas; Hennig, Richard G.; Abruñ a, Hé ctor D.; Muller, David; Hanrath, Tobias

    2014-01-01

    High-temperature in situ electron microscopy and X-ray diffraction have revealed that Au and Fe2O3 particles fuse in a fluid fashion at temperatures far below their size-reduced melting points. With increasing temperature, the fused particles undergo a sequence of complex structural transformations from surface alloy to phase segregated and ultimately core-shell structures. The combination of in situ electron microscopy and spectroscopy provides insights into fundamental thermodynamic and kinetic aspects governing the formation of heterogeneous nanostructures. The observed structural transformations present an interesting analogy to thin film growth on the curved surface of a nanoparticle. Using single-particle observations, we constructed a phase diagram illustrating the complex relationships among composition, morphology, temperature, and particle size. © 2014 American Chemical Society.

  17. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    International Nuclear Information System (INIS)

    Zhang, Dezhong; Tang, Yang; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-01-01

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  18. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dezhong; Tang, Yang, E-mail: tangyang@nicenergy.com; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-04-30

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  19. Interferometric detection of single gold nanoparticles calibrated against TEM size distributions

    DEFF Research Database (Denmark)

    Zhang, Lixue; Christensen, Sune; Bendix, Pól Martin

    2015-01-01

    Single nanoparticle analysis: An interferometric optical approach calibrates sizes of gold nanoparticles (AuNPs) from the interference intensities by calibrating their interferometric signals against the corresponding transmission electron microscopy measurements. This method is used to investigate...

  20. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Torres, S. K.; Campos, V. L., E-mail: vcampos@udec.cl; Leon, C. G. [Universidad de Concepcion, Laboratorio de Microbiologia Ambiental, Departamento de Microbiologia (Chile); Rodriguez-Llamazares, S. M. [Centro de Investigacion de Polimeros Avanzados (CIPA) (Chile); Rojas, S. M.; Gonzalez, M. [Universidad de Concepcion, Laboratorio de Fisiologia Vascular, Departamento de Fisiologia (Chile); Smith, C. [Universidad de Concepcion, Departamento de Microbiologia (Chile); Mondaca, M. A. [Universidad de Concepcion, Laboratorio de Microbiologia Ambiental, Departamento de Microbiologia (Chile)

    2012-11-15

    The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

  1. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

    International Nuclear Information System (INIS)

    Torres, S. K.; Campos, V. L.; León, C. G.; Rodríguez-Llamazares, S. M.; Rojas, S. M.; González, M.; Smith, C.; Mondaca, M. A.

    2012-01-01

    The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

  2. Low-energy electron irradiation assisted diffusion of gold nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Deore, Avinash V.; Bhoraskar, V.N.; Dhole, S.D.

    2014-01-01

    A simple and controllable method to synthesize nanoparticles in the surface region of polymers was used by low energy electron irradiation. Using this method, gold nanoparticles have been synthesized by irradiating gold coated PVA (Polyvinyl Alcohol) sheets. This method was easy in operation and even period of few minutes was sufficient to obtain the nanoparticles. The coatings (∼10 μm) made from a mixture of ethanol and HAuCl 4 on PVA sheets (∼150 μm) by simple drop cast method were irradiated with 30 keV electrons, at room temperature and 10 −6 mbar vacuum level. The electron fluence was varied from coating to coating in the range of 0 to 24×10 15 e/cm 2 . The irradiated samples were characterized by the UV–Vis, XRD, SEM and RBS techniques. The plasmon absorption peak at ∼539 nm in UV–Vis spectra was an evidence for the initiation of the growth of gold nanoparticles. The X-ray diffraction results and the blue shift in the plasmon absorption peak reveal that the size of nanoparticles could be tailored in the range from 58 to 40 nm by varying the electron fluence. The diffusion of gold in the PVA was confirmed by the Rutherford backscattering spectroscopy and scanning electron microscopy techniques. This method of synthesis of metal nanoparticles by low energy electron beam irradiation has the key importance in the development of new fabrication techniques for nanomaterials. - Highlights: • The results indicate that low energy electrons can effectively be used for the synthesis of nanoparticles of different sizes. • This study leads to a definite conclusion that gold nanoparticles have been synthesized in surface region of the PVA sheet. • The size of nanoparticles decreases with increasing electron fluence. • The depth of diffusion of Au atoms at maximum fluence was found to be ∼1.5 μm

  3. Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles

    Science.gov (United States)

    Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra

    2018-05-01

    Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.

  4. Electron and photon emissions from gold nanoparticles irradiated by X-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Casta, R., E-mail: castaromain@gmail.com, E-mail: romain.casta@irsamc.ups-tlse.fr; Champeaux, J.-P.; Moretto-Capelle, P.; Sence, M.; Cafarelli, P. [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, CNRS, UMR 5589 (France)

    2015-01-15

    In this paper, we develop a totally new probabilistic model for the electron and photon emission of gold nanoparticles irradiated by X-ray photons. This model allows direct applications to recent researches about the radiotherapy enhancement by gold nanoparticles in the context of cancer treatment. Our model uses, in a complete original way, simulated Auger cascade and stopping power to compute electron emission spectra, photon emission spectra and released energy inside the material of gold nanoparticles. It allows us to present new results about the electron and photon emission of gold nanoparticle irradiated by hard X-rays.

  5. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    Science.gov (United States)

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  6. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  7. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    Science.gov (United States)

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Observation of ionomer in catalyst ink of polymer electrolyte fuel cell using cryogenic transmission electron microscopy

    International Nuclear Information System (INIS)

    Takahashi, Shinichi; Shimanuki, Junichi; Mashio, Tetsuya; Ohma, Atsushi; Tohma, Hajime; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-01-01

    Optimizing the catalyst layer structure is one of the key issues for improving performance despite lower platinum loading. The catalyst ink, consisting of platinum-loaded carbon particles and ionomer dispersed in an aqueous solvent, is a key factor for controlling the structure of the catalyst layer because the catalyst layer is prepared in a wet coating process. For that purpose, we visualized the nanostructure of the ionomer in the catalyst ink by cryogenic electron microscopy, especially cryogenic transmission electron microscopy (cryo-TEM). By cryo-TEM, it was revealed that ionomer molecules formed rod-like aggregates macro-homogeneously in the solvent, and a similar morphology was observed in a carbon-particle-containing solvent. In contrast, ionomer aggregates in the catalyst ink containing platinum nanoparticles loaded on carbon particles were denser in the vicinity of the platinum-loaded carbon particles. That can be attributed to strong interaction between platinum nanoparticles and sulfonic acid groups in the ionomer. It also implies that a good understanding of ionomer morphology in the catalyst ink can play an important role in controlling the catalyst layer microstructure for reducing platinum loading.

  9. Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing

    International Nuclear Information System (INIS)

    Bose, Arumugam Chandra; Shimizu, Yoshiki; Mariotti, Davide; Sasaki, Takeshi; Terashima, Kazuo; Koshizaki, Naoto

    2006-01-01

    Nanoparticles of crystalline molybdenum oxide were prepared by changing the flow rate of plasma gas (2% oxygen balanced by Ar) using an atmospheric-pressure microplasma technique. The morphology and crystalline structure of the nanoparticles were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The FESEM results revealed that the shape of the deposited nanoparticles depended on the plasma gas flow rate. The TEM results supported the FESEM observations. The transmission electron diffraction (TED) pattern revealed that the obtained nanoparticles changed from MoO 2 to MoO 3 with the flow-rate increase, and correspondingly the nanoparticle size drastically decreased. A process mechanism is proposed from the observations of optical emission spectroscopy (OES) during the process and consumed wire surface analysis from x-ray photoelectron spectroscopy (XPS) and FESEM studies

  10. Transmission electron microscopy of amyloid fibrils.

    Science.gov (United States)

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  11. Aberration-corrected imaging of active sites on industrial catalyst nanoparticles

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Chang, L-Y; Hetherington, CJD

    2007-01-01

    Picture perfect: Information about the local topologies of active sites on commercial nanoparticles can be gained with atomic resolution through spherical-aberration-corrected transmission electron microscopy (TEM). A powder of Pt nanoparticles on carbon black was examined with two advanced TEM t...

  12. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wani, Irshad A.; Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmed, Jahangeer; Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmad, Tokeer, E-mail: tokeer.ch@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  13. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  14. Room temperature ferromagnetism in Mg-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Singh, Jaspal; Vashihth, A.; Gill, Pritampal Singh; Verma, N. K.

    2015-01-01

    Zn 1-x Mg x O (x = 0, 0,10) nanoparticles were successfully synthesized using sol-gel method. X-ray diffraction (XRD) confirms that the synthesized nanoparticles possess wurtzite phase having hexagonal structure. Morphological analysis was carried out using transmission electron microscopy (TEM) which depicts the spherical morphology of ZnO nanoparticles. Energy dispersive spectroscopy (EDS) showed the presence of Mg in ZnO nanoparticles. Electron spin resonance (ESR) signal was found to be decreasing with increasing of Mg-doping concentration. The room temperature ferromagnetism was observed in undoped and Mg-doped ZnO nanoparticles. The increase of Mg-doping concentration resulted in decrease of saturation magnetization value which could be attributed to decrease of oxygen vacancies present in host nanoparticles

  15. Laser induced synthesis of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Voronov, V.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru

    2006-04-30

    The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H{sub 2}O, C{sub 2}H{sub 5}OH, C{sub 2}H{sub 4}Cl{sub 2}, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.

  16. Synthesis and characterization of cobalt/gold bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Cheng, Guangjun; Hight Walker, Angela R.

    2007-01-01

    Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles

  17. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  18. Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review

    Directory of Open Access Journals (Sweden)

    Shu Xia Tao

    2016-12-01

    Full Text Available Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided.

  19. Formation of CdS nanoparticles using starch as capping agent

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, P. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion 11500, Mexico D.F. (Mexico); Munoz-Aguirre, N. [Seccion de Estudios de Posgrado e Investigacion, ESIME-IPN Azcapotzalco, Av. Las Granjas 682, Col. Santa Catarina, 02550 Mexico D.F. (Mexico); Martinez, E. San-Martin [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion 11500, Mexico D.F. (Mexico); Seccion de Estudios de Posgrado e Investigacion, ESIME-IPN Azcapotzalco, Av. Las Granjas 682, Col. Santa Catarina, 02550 Mexico D.F. (Mexico); Departamento de Fisica, CINVESTAV-IPN, Apartado Postal 14-740, 07000 Mexico D.F. (Mexico); Gonzalez, G. [Departamento de Fisica, CINVESTAV-IPN, Apartado Postal 14-740, 07000 Mexico D.F. (Mexico)], E-mail: bato@fis.cinvestav.mx; Zelaya, O.; Mendoza, J. [Departamento de Fisica, CINVESTAV-IPN, Apartado Postal 14-740, 07000 Mexico D.F. (Mexico)

    2008-11-30

    CdS nanoparticles have been synthesized using starch as capping agent in aqueous solution. The morphology and crystalline structure of such samples were measured by high-resolution transmission electron microscopy and X-ray diffraction, respectively. The average grain size of the nanoparticles determined by these techniques was of the order of 5 nm. Photoluminescence of CdS nanoparticles shows a strong emission peak below to the band gap bulk semiconductor attributed to center trap states, also the broadening peak was interpreted in terms of electron-phonon interaction.

  20. BiVO4 nanoparticles: Preparation, characterization and photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Venkataraman Sivakumar

    2015-12-01

    Full Text Available Bismuth vanadate (BiVO4 nanoparticles were synthesized by a simple thermal decomposition method. The synthesized bismuth vanadate nanoparticles were characterized by X-ray diffraction analysis, it is found that the synthesized sample belongs to monoclinic BiVO4. Fourier transform infrared spectroscopy confirms the formation of Bi-O bond in the sample. Ultraviolet–Visible (DRS-UV–Visible spectroscopy and photoluminescence spectroscopy reveal the optical property of the BiVO4 nanoparticles. The morphology was identified by both scanning electron microscopy and high-resolution transmission electron microscopy. Further, the photocatalytic activity of BiVO4 nanoparticles was investigated by photodegradation of methylene blue as a model organic pollutant.

  1. Capillary condensation onto titania (TiO2) nanoparticle agglomerates.

    Science.gov (United States)

    Kim, Seonmin; Ehrman, Sheryl H

    2007-02-27

    A capillary condensation process was developed for the purpose of forming interconnections between nanoparticles at low temperatures. The process was performed in a temperature-controlled flow chamber on nanoparticle agglomerates deposited at submonolayer coverage on a transmission electron microscope grid. The partial pressure of the condensing species, tetraethyl orthosilicate, and the temperature of the chamber were adjusted in order to obtain the various saturation conditions for capillary condensation. The modified samples were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, BET surface area method, and scanning transmission electron microscopy with electron energy-loss spectrometry. Experimental results show that bridge-shaped layers were dominantly formed in the neck region between particles and were composed of amorphous silica. The analysis of TEM micrographs verified that the coverage of the layers is strongly dependent on the saturation ratio. Image analysis of TEM micrographs shows that this dependency is qualitatively in agreement with theoretical predictions based on the classical Kelvin equation for the specific geometries in our system.

  2. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  3. Tin/Indium nanobundle formation from aggregation or growth of nanoparticles

    International Nuclear Information System (INIS)

    Jiang Hongjin; Moon, Kyoung-sik; Sun Yangyang; Wong, C. P.; Hua, Fay; Pal, Tarasankar; Pal, Anjali

    2008-01-01

    Shape and size controlled gram level synthesis of tin/indium (SnIn) alloy nanoparticles and nanobundles is reported. Poly(N-vinylpyrrolidone) (PVP) was employed as a capping agent, which could control the growth and structure of the alloy particles under varying conditions. Transmission electron microscopy showed that unique SnIn alloy nanobundles could be synthesized from the bulk materials above a certain concentration of PVP and below this concentration, discrete spherical nanoparticles of variable size were evolved. The morphology and the composition of the as-synthesized SnIn alloy nanobundles were investigated by high-resolution transmission electron microscopy (TEM). The possible mechanisms on the formation of these structures were discussed

  4. Practical Approaches to Mitigation of Specimen Charging in High-Resolution Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Young-Min Kim

    2010-09-01

    Full Text Available Specimen charging that is associated with the electron bombardment on the sample is a practical hindrance to high-resolution transmission electron microscopy (HRTEM analysis because it causes a severe loss of resolution in either diffraction or image data. Conductive thin film deposition on an insulating specimen has been proposed as an effective approach to the mitigation of the specimen charging; however, this method is generally not useful in HRTEM imaging of materials because the deposited film induces another artifact in the HRTEM image contrast. In this study, we propose practical methods to mitigate the specimen charging that takes place during the HRTEM of materials. For bulk-type specimens prepared by either an ion-thinning or focused-ion beam (FIB process, a plasma cleaning treatment is significantly effective in eliminating the charging phenomenon. In the case of low-dimensional nanomaterials such as nanowires and nanoparticles, the plasma cleaning is not feasible; however, the charging effect can be effectively eliminated by adjusting the electron illumination condition. The proposed methods facilitate a decrease in the buildup of specimen charging, thereby enhancing the quality of high-resolution images significantly.

  5. New developments in transmission electron microscopy for nanotechnology

    International Nuclear Information System (INIS)

    Wang, Z.L.

    2003-01-01

    High-resolution transmission electron microscopy (HRTEM) is one of the most powerful tools used for characterizing nanomaterials, and it is indispensable for nanotechnology. This paper reviews some of the most recent developments in electron microscopy techniques for characterizing nanomaterials. The review covers the following areas: in-situ microscopy for studying dynamic shape transformation of nanocrystals; in-situ nanoscale property measurements on the mechanical, electrical and field emission properties of nanotubes/nanowires; environmental microscopy for direct observation of surface reactions; aberration-free angstrom-resolution imaging of light elements (such as oxygen and lithium); high-angle annular-dark-field scanning transmission electron microscopy (STEM); imaging of atom clusters with atomic resolution chemical information; electron holography of magnetic materials; and high-spatial resolution electron energy-loss spectroscopy (EELS) for nanoscale electronic and chemical analysis. It is demonstrated that the picometer-scale science provided by HRTEM is the foundation of nanometer-scale technology. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  6. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water

    Science.gov (United States)

    Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad

    2017-12-01

    Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.

  7. Deterministic nanoparticle assemblies: from substrate to solution

    International Nuclear Information System (INIS)

    Barcelo, Steven J; Gibson, Gary A; Yamakawa, Mineo; Li, Zhiyong; Kim, Ansoon; Norris, Kate J

    2014-01-01

    The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process. (paper)

  8. Microwave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts

    Directory of Open Access Journals (Sweden)

    Meisam Hasanpoor

    2017-01-01

    Full Text Available In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed existence of Al-O band and bio-functional groups, originated from plant extract. Morphology and size of nanoparticles were investigated using scanning electron microscopy, transmission electron microscopy and atomic force microscopy techniques. It was observed that nanoparticles have near-spherical shape. Average size of clusters of nanoparticles varied with different routes from of 60 nm to 300 nm. AFM images showed that Individual nanoparticles were less than 10 nm.

  9. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    Science.gov (United States)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  10. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  11. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  12. The nanoaquarium: A nanofluidic platform for in situ transmission electron microscopy in liquid media

    Science.gov (United States)

    Grogan, Joseph M.

    There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions. Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ TEM has emerged as an exciting new experimental technique that hermetically seals a thin slice of liquid between two electron transparent membranes to enable TEM imaging of liquid-based processes. This work presents details of the fabrication of a custom-made liquid-cell in situ TEM device, dubbed the nanoaquarium. The nanoaquarium's highlights include an exceptionally thin sample cross section (10s to 100s of nm); wafer scale processing that enables high-yield mass production; robust hermetic sealing that provides leak-free operation without use of glue, epoxy, or any polymers; compatibility with lab-on-chip technology; and on-chip integrated electrodes for sensing and actuation. The fabrication process is described, with an emphasis on direct wafer bonding. Experimental results involving direct observation of colloid aggregation using an aqueous solution of gold nanoparticles are presented. Quantitative analysis of the growth process agrees with prior results and theory, indicating that the experimental technique does not radically alter the observed phenomenon. For the first time, in situ observations of nanoparticles at a contact line and in an evaporating thin film of liquid are reported, with applications for techniques such

  13. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    Science.gov (United States)

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  14. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.

    Science.gov (United States)

    Kim, Youngsoo; Smith, Jeremy G; Jain, Prashant K

    2018-05-07

    Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO 2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO 2 reduction to other challenging multi-electron, multi-proton transformations such as N 2 fixation.

  15. Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

    International Nuclear Information System (INIS)

    Hodoroaba, V-D; Rades, S; Mielke, J; Ortel, E; Salge, T; Schmidt, R

    2016-01-01

    Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. (paper)

  16. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation

    International Nuclear Information System (INIS)

    Dai Hong; Chen Yanling; Lin Yanyu; Xu Guifang; Yang Caiping; Tong Yuejin; Guo Longhua; Chen Guonan

    2012-01-01

    In this paper, we propose a facile approach for palladium nanoparticles load using silicon carbide nanoparticles as the new supported matrix and a familiar NaBH 4 as reducer. Detailed X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) analysis of the resultant products indicated that palladium nanoparticles are successfully immobilized onto the surface of the silicon carbide nanoparticles with uniform size distribution between 5 and 7 nm. The relative electrochemical characterization clearly demonstrated excellent electrocatalytic activity of this material toward alcohol in alkaline electrolytes. Investigation on the characteristics of the electrocatalytic activity of this material further indicated that the palladium nanoparticles supporting on SiC are very promising for direct alcohol fuel cells (DMFCs), biosensor and electronic devices. Moreover, it was proved that silicon carbide nanoparticles with outstanding properties as support for catalysis are of strong practical interest. And the silicon carbide could perform attractive role in adsorbents, electrodes, biomedical applications, etc.

  17. A study of growth and thermal dewetting behavior of ultra-thin gold films using transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Sudheer

    2017-07-01

    Full Text Available The growth and solid-state dewetting behavior of Au thin films (0.7 to 8.4 nm deposited on the formvar film (substrate by sputtering technique have been studied using transmission electron microscopy. The size and number density of the Au nanoparticles (NPs change with an increase in the film thickness (0.7 to 2.8 nm. Nearly spherical Au NPs are obtained for 6 nm show capability to be used as an irreversible temperature sensor with a sensitivity of ∼0.1 CAF/°C. It is observed that annealing affects the crystallinity of the Au grains in the films. The electron diffraction measurement also shows annealing induced morphological evolution in the percolated Au thin films (≥3 nm during solid-state dewetting and recrystallization of the grains.

  18. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    Science.gov (United States)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  19. Enzymes immobilization on Fe 3O 4-gold nanoparticles

    Science.gov (United States)

    Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K.

    2012-01-01

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  20. Functionalization of biosynthesized gold nanoparticle from aqueous ...

    African Journals Online (AJOL)

    The biosynthesized nanoparticles and formulated nanodrug were characterized using UV-Vis spectrophotometry, Zetasizer, Scanning and transmission Electron Microscopy (SEM; TEM), Energy Dispersive spectrophotometry (EDAX) and Fourier Transform Infra-red Spectroscopy. Polyethylene glycol and Lincomycin were ...

  1. Electron transport in disordered films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Mueller, K.H.; Wei, G.; Herrmann, J.; Raguse, B.; Baxter, G.

    2004-01-01

    Full text: We have investigated theoretically and experimentally the mechanism of electron transport in films made of ∼10 nm sized gold nanoparticles linked by alkanedithiol molecules. Conduction in these films is due to linker-molecule assisted single-electron tunnelling between neighbouring nanoparticles where electrons have to overcome the Coulomb blockade energy. Strong disorder in our films in the form of separation gap fluctuations between adjacent nanoparticles and variations in Coulomb blockade energies cause electron current percolation. We have found that the dependence of the conduction on the length of the alkanedithiol molecules is affected by the degree of disorder. In addition, we have observed that percolation leads to a non-Arrhenius-like temperature dependence of the conduction and to a film-thickness dependent conductivity. I-V characteristics at low temperatures reveal Coulomb blockade effects. The strong dependence of the electrical conduction on the separation gaps between adjacent nanoparticles can be utilized in strain gauge and gas sensor applications

  2. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Electron beam patterning for writing of positively charged gold colloidal nanoparticles

    Science.gov (United States)

    Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David

    2018-02-01

    Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.

  4. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  5. Transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms

    International Nuclear Information System (INIS)

    Shin, J.W.; Oh, D.H.; Kim, T.W.; Cho, W.J.

    2009-01-01

    Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si 1-x C x nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO 2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO 2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.

  6. Production of TiO2 crystalline nanoparticles by laser ablation in ethanol

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Rodriguez-Gonzalez, B.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2012-01-01

    Highlights: ► Nanoparticles of TiO 2 have been obtained by laser ablation of Ti submerged in ethanol using CW laser. ► The use of CW laser contributes to control the size distribution and to complete oxidation. ► The particles formation mechanism is the melting and rapid solidification. - Abstract: TiO 2 nanoparticles have received a special attention due to their applications in many different fields, such as catalysis, biomedical engineering, and energy conversion in solar cells. In this paper we report on the production of TiO 2 nanoparticles by means of a pulsed laser to ablate titanium metallic target submerged in ethanol. The results show that titanium crystalline dioxide nanoparticles can be obtained in a narrow size distribution. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV/vis absorption spectroscopy. The produced particles consisted mainly of titanium oxide crystalline nanoparticles showing spherical shape with most diameters ranging from 5 to 50 nm. Nanoparticles are polycrystalline exhibiting the coexistence of the three main phases with the predominance of brookite.

  7. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  8. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  9. Characterization of nanoparticles released during construction of photocatalytic pavements using engineered nanoparticles

    International Nuclear Information System (INIS)

    Dylla, Heather; Hassan, Marwa M.

    2012-01-01

    With the increasing use of titanium dioxide (TiO 2 ) nanoparticles in self-cleaning materials such as photocatalytic concrete pavements, the release of nanoparticles into the environment is inevitable. Nanoparticle concentration, particle size, surface area, elemental composition, and surface morphology are pertinent to determine the associated risks. In this study, the potential of exposure to synthetic nanoparticles released during construction activities for application of photocatalytic pavements was measured during laboratory-simulated construction activities of photocatalytic mortar overlays and in an actual field application of photocatalytic spray coat. A scanning mobility particle sizer system measured the size distribution of nanoparticles released during laboratory and field activities. Since incidental nanoparticles are released during construction activities, nanoparticle emissions were compared to those from similar activities without nano-TiO 2 . Nanoparticle counts and size distribution suggest that synthetic nanoparticles are released during application of photocatalytic pavements. In order to identify the nanoparticle source, nanoparticles were also collected for offline characterization using transmission electron microscopy. However, positive identification of synthetic nanoparticles was not possible due to difficulties in obtaining high-resolution images. As a result, further research is recommended to identify nanoparticle composition and sources.

  10. Low-energy electron transmission through high aspect ratio Al O nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.; Víkor, G.

    2009-01-01

    Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined with resp......Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined...

  11. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  12. Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions

    International Nuclear Information System (INIS)

    Zhang Qingbo; Lee, J Y; Yang Jun; Boothroyd, Chris; Zhang Jixuan

    2007-01-01

    Ag-Au alloy nanoparticles with tunable size and composition were prepared by a replacement reaction between Ag nanoparticles and HAuCl 4 at elevated temperatures. The formation of homogeneous alloy nanoparticles was confirmed by selected-area energy-dispersive x-ray spectroscopy (SAEDX), UV-visible absorption spectroscopy, high resolution transmission electron microscopy (HRTEM) and electron diffraction. This method leverages upon the rapid interdiffusion of Ag and Au atoms in the reduced dimension of a nanoparticle, elevated temperatures and the large number of vacancy defects created in the replacement reaction. This method of preparation has several notable advantages: (1) independent tuning of the size and composition of alloy nanoparticles; (2) production of alloy nanoparticles in high concentrations; (3) general utility in the synthesis of alloy nanoparticles that cannot be obtained by the co-reduction method

  13. Solvent-assisted in situ synthesis of cysteamine-capped silver nanoparticles

    Science.gov (United States)

    Oliva, José M.; Ríos de la Rosa, Julio M.; Sayagués, María J.; Sánchez-Alcázar, José A.; Merkling, Patrick J.; Zaderenko, Ana P.

    2018-03-01

    Silver nanoparticles offer a huge potential for biomedical applications owing to their exceptional properties and small size. Specifically, cysteamine-capped silver nanoparticles could form the basis for new anticancer therapies combining the cytotoxic effect of the silver core with the inherent antitumor activity of cysteamine, which inhibit cancer cell proliferation and suppress invasion and metastasis. In addition, the capability of the cysteamine coating monolayer to couple a variety of active principles and targeting (bio)molecules of interest proves key to the tailoring of this platform in order to exploit the pathophysiology of specific tumor types. Nevertheless, the chain length and conformational flexibility of cysteamine, together with its ability to attach to the surface of silver nanoparticles via both the thiol and the amine group, have made the in situ synthesis of these particles an especially challenging task. Herein we report a solvent-assisted in situ synthesis method that solves this problem. The obtained nanoparticles have been fully characterized by UV-visible absorption spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, electron diffraction measurement, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive x-ray spectroscopy nanoanalysis, and dynamic light scattering measurement. Our synthesis method achieves extremely high yield and surface coating ratio, and colloidal stability over a wide range of pH values including physiological pH. Additionally, we have demonstrated that cysteamine-capped nanoparticles obtained by this method can be conjugated to an antibody for active targeting of the epidermal growth factor receptor, which plays an important role in the pathogenesis and progression of a wide variety of tumors, and induce cell death in human squamous carcinoma cells. We believe this method can be readily extended to combinations of noble

  14. Electron scattering in graphene with adsorbed NaCl nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Wołoś, Agnieszka [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Pasternak, Iwona; Strupiński, Włodek [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  15. Electron scattering in graphene with adsorbed NaCl nanoparticles

    International Nuclear Information System (INIS)

    Drabińska, Aneta; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Pasternak, Iwona; Strupiński, Włodek; Krajewska, Aleksandra

    2015-01-01

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer

  16. Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS

    International Nuclear Information System (INIS)

    Schamm, S.; Bonafos, C.; Coffin, H.; Cherkashin, N.; Carrada, M.; Ben Assayag, G.; Claverie, A.; Tence, M.; Colliex, C.

    2008-01-01

    Fabrication of systems in which Si nanoparticles are embedded in a thin silica layer is today mature for non-volatile memory and opto-electronics applications. The control of the different parameters (position, size and density) of the nanoparticles population is a key point to optimize the properties of such systems. A review of dedicated transmission electron microscopy (TEM) methods, which can be used to measure these parameters, is presented with an emphasis on those relying on electron energy-loss spectroscopy (EELS). Defocused bright-field imaging can be used in order to determine topographic information of a whole assembly of nanoparticles, but it is not efficient for looking at individual nanoparticles. High-resolution electron imaging or dark-field imaging can be of help in the case of crystalline particles but they always provide underestimated values of the nanocrystals population. EELS imaging in the low-energy-loss domain around the Si plasmon peak, which gives rise to strong signals, is the only way to visualize all Si nanoparticles within a silica film and to perform reliable size and density measurements. Two complementary types of experiments are investigated and discussed more extensively: direct imaging with a transmission electron microscope equipped with an imaging filter (EFTEM) and indirect imaging from spectrum-imaging data acquired with a scanning transmission electron microscope equipped with a spectrometer (STEM-PEELS). The direct image (EFTEM) and indirect set of spectra (STEM-PEELS) are processed in order to deliver images where the contribution of the silica matrix is minimized. The contrast of the resulting images can be enhanced with adapted numerical filters for further morphometric analysis. The two methods give equivalent results, with an easier access for EFTEM and the possibility of a more detailed study of the EELS signatures in the case of STEM-PEELS. Irradiation damage in such systems is also discussed

  17. Electron transport in gold colloidal nanoparticle-based strain gauges

    Science.gov (United States)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  18. Photovoltage method for the research of CdS and ZnO nanoparticles and hybrid MEH-PPV/nanoparticle structures

    Czech Academy of Sciences Publication Activity Database

    Toušková, J.; Toušek, J.; Rohovec, Jan; Růžička, A.; Polonskyi, O.; Urbánek, P.; Kuřitka, I.

    2014-01-01

    Roč. 16, č. 3 (2014), Art. 2314 ISSN 1388-0764 Institutional support: RVO:67985831 Keywords : CdS * energy conversion * MEH-PPV * nanoparticles * photovoltage spectra * transmission electron microscopy * ZnO Subject RIV: DD - Geochemistry Impact factor: 2.184, year: 2014

  19. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    Science.gov (United States)

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Analysis on electronic control unit of continuously variable transmission

    Science.gov (United States)

    Cao, Shuanggui

    Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.

  1. Analysis of Ag nanoparticles synthesized by bioreduction.

    Science.gov (United States)

    Tavera-Davila, L; Liu, H B; Herrera-Becerra, R; Canizal, G; Balcazar, M; Ascencio, J A

    2009-03-01

    Based on a green chemistry mechanism, small silver clusters were obtained by using biosynthesis with alfalfa (medicago sativa), controlling the size of the nanoparticles base don different pH conditions. The analysis of the samples was made with help of transmission electron microscopy methods, mainly with high angle annular dark field and high resolution transmission electron microscopy. The optimal conditions were identified when the sample was obtained at pH10, which allowed obtaining an average size of 4.09 nm and a standard deviation of 1.59, mainly based on cubic like structures.

  2. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss; Sadaiyandi, Karuppasamy; Mahendran, Manickam; Sagadevan, Suresh

    2016-01-01

    Cerium oxide (CeO 2 ) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  3. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  4. Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures

    International Nuclear Information System (INIS)

    Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.

    1997-01-01

    The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society

  5. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    Science.gov (United States)

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  6. In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method

    International Nuclear Information System (INIS)

    Bera, Debasis; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Slane, Grady C.

    2004-01-01

    A unique, simple, inexpensive, and one-step synthesis route to produce carbon nanotubes (CNTs) decorated with palladium nanoparticles using a simplified dc arc-discharge in solution is reported. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. Such palladium nanoparticles form during the reduction of palladium tetra-chloro-square-planar complex. The deconvoluted x-ray photoelectron spectroscopy envelope shows the presence of palladium on the decorated CNTs. The energy dispersive spectroscopy suggests no functionalization of atomic chlorine to the sidewall of the CNTs. The presence of dislodged graphene sheets with wavy morphology supports the formation of CNTs through the 'scroll mechanism'

  7. Simulation of loss electron in vacuum magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Zhang Pengfei; Li Yongdong; Liu Chunliang; Wang Hongguang; Guo Fan; Yang Hailiang; Qiu Aici; Su Zhaofeng; Sun Jianfeng; Sun Jiang; Gao Yi

    2011-01-01

    In the beginning of magnetic insulated period, loss electron in coaxial vacuum magnetically insulated transmission line (MITL) strikes anode and the bremsstrahlung photons are generated in the mean time. Based on the self-limited flow model, velocity in direction of energy transport, energy spectrum and angular distribution of loss electron are simulated by PIC code, energy spectrum of bremsstrahlung photons as well calculated though Monte Carlo method. Computational results show that the velocity of loss electron is less than 2.998 x 108 m/s, the angular excursion of electron is not much in a board extent of energy spectrum. These results show an indirect diagnosis of vacuum insulted transmission line working status based on loss electron bremsstrahlung. (authors)

  8. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  9. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  10. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Chongad, L S; Sharma, A; Banerjee, M; Jain, A

    2016-01-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H 2 S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD. (paper)

  11. Effect of Interface energy and electron transfer on shape, plasmon resonance and SERS activity of supported surfactant-free gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Dastmalchi, Babak [Ames Laboratory; Suvorova, Alexandra [University of Western Australia; Bianco, Giuseppe V. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Hingerl, Kurt [Johannes Kepler University Linz; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP

    2014-01-01

    For device integration purposes plasmonic metal nanoparticles must be supported/deposited on substrates. Therefore, it is important to understand the interaction between surfactant-free plasmonic metal nanoparticles and different substrates, as well as to identify factors that drive nanoparticles nucleation and formation. Here we show that for nanoparticles grown directly on supports, the substrate/nanoparticle interfacial energy affects the equilibrium shape of nanoparticles. Therefore, oblate, spherical and prolate Au nanoparticles (NPs) with different shapes have been deposited by radiofrequency sputtering on substrates with different characteristics, namely a dielectric oxide Al2O3 (0001), a narrow bandgap semiconductor Si (100), and a polar piezoelectric wide bandgap semiconductor 4H–SiC (0001). We demonstrate that the higher the substrate surface energy, the higher the interaction with the substrate, resulting in flat prolate Au nanoparticles. The resulting localized surface plasmon resonance characteristics of Au NPs/Al2O3, Au NPs/Si and Au NPs/SiC have been determined by spectroscopic ellipsometry and correlated with their structure and shape studied by transmission electron microscopy. Finally, we have demonstrated the diverse response of the tailored plasmonic substrates as ultrasensitive SERS chemical sensors. Flat oblates Au NPs on SiC result in an enhanced and more stable SERS response. The experimental findings are validated by numerical simulations of electromagnetic fields.

  12. Ponderomotive phase plate for transmission electron microscopes

    Science.gov (United States)

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  13. The anti-cancer effect of octagon and spherical silver nanoparticles on MCF-7 breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2017-04-01

    Full Text Available Background: The modern science of nanotechnology is an interdisciplinary science that has contributed to advances in cancer treatment. This study was performed to evaluate the therapeutic effects of biosynthesized silver nanoparticles on breast cancer cell of line MCF-7 in vitro. Methods: This analytical study was performed in Kerman and Bam University of Medical Sciences, Bam City, Kerman Province, Iran from March 2015 to March 2016. Silver nanoparticles suspension was synthesized using palm kernel extract. The resulting silver nanoparticles were studied and characterized. The ultraviolet-visible spectroscopy and transmission electron microscopy used for screening of physicochemical properties. The average particle size of the biosynthesized silver nanoparticles was determined by transmission electron microscopy. The properties of different concentrations of synthesized silver nanoparticles (1 to 3 μg/ml and palm kernel extract (containing the same concentration of the extract was used for the synthesis of silver nanoparticles against MCF-7 human breast cancer cells were determined by MTT assay. MTT is used to assess cell viability as a function of redox potential. Actively respiring cells convert the water-soluble MTT to an insoluble purple formazan. Results: The ultraviolet-visible spectroscopy showed strong absorption peak at 429 nm. The X-ray diffraction (XRD and transmission electron microscopy (TEM images revealed the formation of silver nanoparticles with spherical and octagon shape and sizes in the range between 1-40 nm, with an average size approximately 17 nm. The anti-cancer effect of silver nanoparticles on cell viability was strongly depends on the concentration of silver nanoparticles and greatly decrease with increasing the concentration of silver nanoparticles. The IC50 amount of silver nanoparticle was 2 μg/ml. Conclusion: The biosynthesized silver nanoparticles showed a dose-dependent toxicity against MCF-7 human breast

  14. Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles

    International Nuclear Information System (INIS)

    Xia, Min; Yan, Qingzhi; Xu, Lei; Guo, Hongyan; Zhu, Lingxu; Ge, Changchun

    2013-01-01

    Graphical abstract: La 2 O 3 doped La 2 O 3 /W nanoparticles with high-purity and uniform diameters have been fabricated by a co-precipitation process. The as-prepared nanoparticles demonstrate the potential of this method for fabricating uniformly structured bulk tungsten materials. -- Abstract: We report the preparation of 1 wt% La 2 O 3 doped La 2 O 3 /W nanoparticles by a co-precipitation process, using ammonium metatungstate (AMT) and lanthanum nitrate as raw materials. The as-synthesized nanoparticles were characterized by X-ray diffraction, Filed-emission scanning electron microscopy, Transmission electron microscopy (TEM), energy dispersive spectroscopy. Our results reveal that the as-synthesized particles possess uniform diameters of about 70 nm, and are of high purity. The TEM and the corresponding fast Fourier transform images demonstrated that La 2 O 3 precipitates were homogeneously doped into the nano-sized tungsten particles. When the as-synthesized nanoparticles were sintered by spark plasma sintering, the electron backscatter diffraction images of the bulk material reveal that La 2 O 3 nanoparticles were homogenously distributed in both the tungsten grains and the grain boundaries, and the sample exhibit a narrow micro-hardness distribution

  15. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

    International Nuclear Information System (INIS)

    Abargues, R; Marques-Hueso, J; Canet-Ferrer, J; Pedrueza, E; Valdes, J L; Jimenez, E; MartInez-Pastor, J P

    2008-01-01

    Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry

  16. Optical Properties of Linoleic Acid Protected Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ratan Das

    2011-01-01

    Full Text Available Linoleic acid-protected gold nanoparticles have been synthesized through the chemical reduction of tetrachloroaurate ions by ethanol in presence of sodium linoleate. The structure of these nanoparticles is investigated using transmission electron microscopy, which shows that the Au nanoparticles are spherical in shape with a narrow size distribution which ranges from 8 to 15 nm. Colloidal dispersion of gold nanoparticles in cyclohexane exhibits absorption bands in the ultraviolet-visible range due to surface plasmon resonance, with absorption maximum at 530 nm. Fluorescence spectra of gold nanoparticles also show an emission peak at 610 nm when illuminated at 450 nm. UV-Vis spectroscopy reveals that these nanoparticles remain stable for 10 days.

  17. Scanning electron microscopy of individual nanoparticle bio-markers in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Liv, Nalan, E-mail: n.liv@tudelft.nl; Lazić, Ivan; Kruit, Pieter; Hoogenboom, Jacob P.

    2014-08-01

    We investigated SEM imaging of nanoparticle biomarkers suspended below a thin membrane, with the ultimate goal of integrating functional fluorescence and structural SEM measurements of samples kept at ambient or hydrated conditions. In particular, we investigated how resolving power in liquid SEM is affected by the interaction of the electron beam with the membrane. Simulations with the Geant4-based Monte Carlo scheme developed by Kieft and Bosch (2008) [1] are compared to experimental results with suspended nanoparticles. For 20 nm and 50 nm thin membranes, we found a beam broadening of 1.5 nm and 3 nm, respectively, with an excellent agreement between simulations and experiments. 15 nm Au nanoparticles and bio-functionalized core-shell quantum dots can be individually resolved in denser clusters. We demonstrated the imaging of single EGF-conjugated quantum dots docked at filopodia during cellular uptake with both fluorescence microscopy and SEM simultaneously. These results open novel opportunities for correlating live fluorescence microscopy with structural electron microscopy. - Highlights: • We investigate the achievable resolution in liquid scanning electron microscopy (SEM). • We demonstrate liquid SEM imaging of individual fluorescent nanoparticle bio-markers • We show imaging of cellular QDot uptake with simultaneous fluorescence microscopy and SEM. • The positions of individual QDots can be resolved with details on cellular structure.

  18. Scanning electron microscopy of individual nanoparticle bio-markers in liquid

    International Nuclear Information System (INIS)

    Liv, Nalan; Lazić, Ivan; Kruit, Pieter; Hoogenboom, Jacob P.

    2014-01-01

    We investigated SEM imaging of nanoparticle biomarkers suspended below a thin membrane, with the ultimate goal of integrating functional fluorescence and structural SEM measurements of samples kept at ambient or hydrated conditions. In particular, we investigated how resolving power in liquid SEM is affected by the interaction of the electron beam with the membrane. Simulations with the Geant4-based Monte Carlo scheme developed by Kieft and Bosch (2008) [1] are compared to experimental results with suspended nanoparticles. For 20 nm and 50 nm thin membranes, we found a beam broadening of 1.5 nm and 3 nm, respectively, with an excellent agreement between simulations and experiments. 15 nm Au nanoparticles and bio-functionalized core-shell quantum dots can be individually resolved in denser clusters. We demonstrated the imaging of single EGF-conjugated quantum dots docked at filopodia during cellular uptake with both fluorescence microscopy and SEM simultaneously. These results open novel opportunities for correlating live fluorescence microscopy with structural electron microscopy. - Highlights: • We investigate the achievable resolution in liquid scanning electron microscopy (SEM). • We demonstrate liquid SEM imaging of individual fluorescent nanoparticle bio-markers • We show imaging of cellular QDot uptake with simultaneous fluorescence microscopy and SEM. • The positions of individual QDots can be resolved with details on cellular structure

  19. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  20. Electronic Biometric Transmission Specification. Version 1.2

    Science.gov (United States)

    2006-11-08

    Prescribed by ANSI Std Z39-18 Electronic Biometric Transmission Specification DIN: DOD_BTF_TS_EBTS_ Nov06_01.02.00 i Revision History Revision...contains: • the ORI • a Greenwich Mean (a.k.a. Zulu or UTC) date/time stamp • a code for the software used at the point of collection/transmission...long names and would generally include the tribe name. Subfield 1 Item 1 Character Type AS Characters 1 to 50 Special Characters: Any 7-bit non

  1. A new route for obtaining Prussian blue nanoparticles

    International Nuclear Information System (INIS)

    Vo, Vien; Minh Nguyen Van; Lee, Hyung Ik; Kim, Ji Man; Kim, Youngmee; Kim, Sung Jin

    2008-01-01

    A new approach for the synthesis of Co-Fe Prussian blue nanoparticles with controlled size has been developed in the present work. Mixture of formamide and water was used as a reaction medium for the chemical synthesis of the nanoparticles at room temperature. It has been found that the size of nanoparticles can be controlled by varying the volume ratios between formamide and water. Powder X-ray diffraction, transmission electron microscopy, diffuse reflectance UV-vis absorption spectra, and nitrogen adsorption/desorption isotherms were employed to characterize the products. The optical properties of the nanoparticles depending on particle size were observed

  2. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  3. Transmission electron microscopy in micro-nanoelectronics

    CERN Document Server

    Claverie, Alain

    2013-01-01

    Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize sem

  4. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  5. Nanoporous metal film: An energy-dependent transmission device for electron waves

    International Nuclear Information System (INIS)

    Grech, S.; Degiovanni, A.; Lapena, L.; Morin, R.

    2011-01-01

    We measure electron transmission through free-standing ultrathin nanoporous gold films, using the coherent electron beam emitted by sharp field emission tips in a low energy electron projection microscope setup. Transmission coefficient versus electron wavelength plots show periodic oscillations between 75 and 850 eV. These oscillations result from the energy dependence of interference between paths through the gold and paths through the nanometer-sized pores of the film. We reveal that these films constitute high transmittance quantum devices acting on electron waves through a wavelength-dependent complex transmittance defined by the porosity and the thickness of the film.

  6. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Lucas R. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Bakalis, Evangelos [Dipartimento; Ramírez-Hernández, Abelardo [Materials; Institute; Kammeyer, Jacquelin K. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Park, Chiwoo [Department; de Pablo, Juan [Materials; Institute; Zerbetto, Francesco [Dipartimento; Patterson, Joseph P. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Laboratory; Gianneschi, Nathan C. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States

    2017-11-16

    Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.

  7. Magnetoelectric Coupling in CuO Nanoparticles for Spintronics Applications

    Science.gov (United States)

    Kaur, Mandeep; Tovstolytkin, Alexandr; Lotey, Gurmeet Singh

    2018-05-01

    Multiferroic copper oxide (CuO) nanoparticles have been synthesized by colloidal synthesis method. The morphological, structural, magnetic, dielectric and magnetodielectric property has been investigated. The structural study reveals the monoclinic structure of CuO nanoparticles. Transmission electron microscopy images disclose that the size of the CuO nanoparticles is 18 nm and the synthesized nanoparticles are uniform in size and dispersion. Magnetic study tells the weak ferromagnetic character of CuO nanoparticles with coercivity and retentivity value 206 Oe and 0.060 emu/g respectively. Dielectric study confirms that the dielectric constant of CuO nanoparticles is around 1091 at low frequency. The magnetoelectric coupling in the synthesized CuO nanoparticles has been calculated by measuring magnetodielectric coupling coefficient.

  8. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    of resolution. Using suitably clean gases, modified pumping schemes, and short pathways through dense gas regions, these issues are now circumvented. Here we provide an account of best practice using environmental transmission electron microscopy on catalytic systems illustrated using select examples from......Over time, there has been an increasing interest in observing catalysts in their operating environment at high spatial resolution and ultimately to determine the structure of a catalytically active surface. One tool with the potential to do exactly this in direct space is the transmission electron...

  9. Enzymes immobilization on Fe{sub 3}O{sub 4}-gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl [Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok (Poland); Rogowska, M.; Dubis, A. [Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok (Poland); Szymanski, K. [Department of Physics, University of Bialystok, Lipowa 41, 15-424 Bialystok (Poland)

    2012-01-15

    In the present study Fe{sub 3}O{sub 4} magnetic nanoparticles were synthesized by coprecipitation of Fe{sup 2+} and Fe{sup 3+} from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl{sub 4} using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Moessbauer spectroscopy and transmission electron microscopy.

  10. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  11. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  12. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    Science.gov (United States)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  13. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Ozsoy-Keskinbora, Cigdem, E-mail: c.ozsoy@fkf.mpg.de [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Aken, Peter A. van [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Koch, Christoph T. [Structure Research & Electron Microscopy group, Department of Physics, Humboldt University of Berlin, Newtonstraße 15, 12489 Berlin (Germany)

    2016-06-15

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  14. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    International Nuclear Information System (INIS)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.; Aken, Peter A. van; Koch, Christoph T.

    2016-01-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  15. Influence of severe plastic deformation on intermetallic particles in Mg-12 wt.%Zn alloy investigated using transmission electron microscopy

    International Nuclear Information System (INIS)

    Němec, M.; Gärtnerová, V.; Jäger, A.

    2016-01-01

    The in-depth microstructural characterization of intermetallic particles in an Mg-12 wt.%Zn binary alloy subjected to a severe plastic deformation is presented. The alloy was processed by four passes via equal channel angular pressing with an applied back pressure at a gradually decreasing temperature and analyzed using transmission electron microscopy techniques to observe the influence of processing on intermetallic particles. The results are compared with the initial state of the material prior to severe plastic deformation. The microstructural evolution of the α-Mg matrix and the Mg 21 Zn 25 , Mg 51 Zn 20 and MgZn 2 was analyzed using bright field imaging, selected area electron diffraction, high-resolution transmission electron microscopy and high-angle annular dark field imaging in scanning mode. The plastic deformation process influenced the α-Mg matrix and each type of intermetallic particle. The α-Mg matrix consisted of two types of areas. The first type of area had a highly deformed structure, and the second type of area had a partially recrystallized structure with an average grain size of approximately 250 nm. The Mg 21 Zn 25 microparticles exhibited distinct forms in the α-Mg matrix that were characterized as a single-crystalline form, a nano-crystalline form and a broken up form. No evidence of Mg 51 Zn 20 nanoparticles within the α-Mg matrix was found in the microstructure, which indicates their dissolution or phase transformation during the deformation process. MgZn 2 nanoparticles exhibited different behavior in both types of α-Mg matrix. Two orientation relationships toward the highly deformed α-Mg matrix were observed; however, there was no relationship toward the partially recrystallized α-Mg matrix. Additionally, the growth of the MgZn 2 nanoparticles was different in the two types of α-Mg matrix. The Mg 51 Zn 20 nanoparticles inside Mg 21 Zn 25 microparticles exhibited a distinct behavior within the single-crystalline or nano

  16. Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles

    Science.gov (United States)

    Reinholdt, A.; Pecenka, R.; Pinchuk, A.; Runte, S.; Stepanov, A. L.; Weirich, Th. E.; Kreibig, U.

    2004-10-01

    We present results of an investigation of TiN nanoparticles, which were produced by laser ablation/evaporation and adiabatic expansion with the nanoparticle beam apparatus LUCAS. Compositional and structural characterization, using secondary ion mass spectrometry (SIMS), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and selected area electron diffraction (SAED), revealed that crystalline and almost stoichiometric particles were formed and that they are susceptible to oxidation. Furthermore, transmission electron microscopy (TEM) analysis showed that TiN nanoparticles exhibit cuboid shapes. The size distributions were obtained using the edge length as parameter. They are fairly broad and the mean particle diameter depends on the seeding gas flow (the pressure) that is applied to the ablation chamber during production. In situ optical transmission spectra of the TiN nanoparticles deposited on a quartz substrate indicate a pronounced single Mie resonance at around 1.7 eV and an absorption flank starting at approximately 3.0 eV. The experimental optical extinction spectra of different samples were fitted using Mie theory calculations. The dielectric function of bulk TiN was modified to account for size and interface damping of the Mie resonance. Due to the distinct absorption band, TiN may be used as a color pigment. The dependence of the color stimulus on the extinction cross-section as well as on the product of the particle concentration and the sample thickness were examined. Chromaticity coordinates were derived according to the CIE 1976 (L^*a^*b^*) color space from the in situ optical transmission spectra.

  17. Using environmental transmission electron microscope to study the in-situ reduction of Co3O4 supported on α-Al2O3

    DEFF Research Database (Denmark)

    Dehghan-Niri, R.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    in specialized Transmission Electron Microscope (TEM) instruments with differentially pumped columns at pressures in the range up to 20 mbar. 1-3 The objective of this work is to study the reduction of Co3O4 nanoparticles directly and observe their morphology and crystallography. The catalysts were produced...... by dispersion of crushed powder directly on steel grids and gold grids. TEM analysis was performed with an FEI TITAN E-cell electron microscope operating at 300 kV. Reduction was done at 360°C and 3.4 mbar H2 flow. The samples were studied before and after reduction by High Resolution TEM (HRTEM) imaging, high...

  18. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  19. Magnetic properties of iron nanoparticles prepared by exploding wire technique

    OpenAIRE

    Alqudami, Abdullah; Annapoorni, S.; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2006-01-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to ...

  20. Physicochemical properties of nanoparticles titania from alcohol ...

    African Journals Online (AJOL)

    The synthesized TiO2 were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal analysis (thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC), and surface area Brunauer–Emmett–Teller (BET) method. The photocatalytic activity of TiO2 nanoparticles was ...

  1. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  2. A Study On Dispersion Stability Of Nickel Nanoparticles Synthesized By Wire Explosion In Liquid Media

    OpenAIRE

    Kim C.K.; Lee G.-J.; Lee M.K.; Rhee C.K.

    2015-01-01

    In this study, nickel nanoparticles were synthesized in ethanol using portable pulsed wire evaporation, which is a one-step physical method. From transmission electron microscopy images, it was found that the Ni nanoparticles exhibited a spherical shape with an average diameter of 7.3 nm. To prevent aggregation of the nickel nanoparticles, a polymer surfactant was added into the ethanol before the synthesis of nickel nanoparticles, and adsorbed on the freshly synthesized nickel nanoparticles ...

  3. Investigation of superthermal asymmetric electron distributions using electron cyclotron wave transmission in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Fidone, I.; Marcha, M.J.

    1991-01-01

    The asymmetric electron distribution generated during lower hybrid current drive has been computed using a 3-D Fokker-Planck code. The superthermal tail and the resulting current are generally a combination of two components streaming in opposite toroidal directions. An appropriate diagnostic method for experimental investigation of the two superthermal populations is wave transmission of two equivalent rays with equal and opposite values of the refractive index. These equivalent rays can be realized by launching the waves from symmetric positions with respect ot the equatorial plane at equal and opposite angles in the toroidal direction. Using an appropriate ray tracing code, the damping of the two rays is computed and it is shown that it results from electrons with opposite parallel velocities. The differential transmission is then a measure of the overall asymmetry of the electron momentum distribution. (author). 12 refs, 8 figs

  4. The core contribution of transmission electron microscopy to functional nanomaterials engineering.

    Science.gov (United States)

    Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu

    2016-01-21

    Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.

  5. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  6. Aging study of the powdered magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Umar Saeed, E-mail: omar_aps@yahoo.co.uk [Department of Physics, University of Peshawar (Pakistan); Rahim, Abdur, E-mail: rahimkhan533@gmail.com [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Nasrullah [Department of Physics, Kohat University of Science and Technology, Kohat (Pakistan); Muhammad, Nawshad; Rehman, Fozia [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmad, Khalid [Institute of Chemistry, State University of Campinas, PO Box 6154, 13083-970 Campinas, SP (Brazil); Iqbal, Jibran [College of Natural and Health Sciences, Zayed University, 144534 Abu Dhabi (United Arab Emirates)

    2017-03-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m{sup 2}/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  7. Aging study of the powdered magnetite nanoparticles

    International Nuclear Information System (INIS)

    Khan, Umar Saeed; Rahim, Abdur; Khan, Nasrullah; Muhammad, Nawshad; Rehman, Fozia; Ahmad, Khalid; Iqbal, Jibran

    2017-01-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m"2/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  8. Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties

    International Nuclear Information System (INIS)

    Chen Shuang; Liu Weimin

    2006-01-01

    Oleic acid (OA) capped PbS nanoparticles were chemically synthesized and characterized by means of Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray electron diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The triboligical properties of the capped PbS nanoparticles as additive in liquid paraffin was investigated using a four-ball machine. The lubricating mechanisms were discussed along with the analyses results of XPS and scanning electron microscope (SEM). Results show that OA-capped PbS nanoparticles, with an average diameter of about 8 nm, are able to prevent water adsorption, oxidation and are capable of being dispersed stably in organic solvents or mineral oil. OA-capped PbS nanoparticles as an additive in liquid paraffin perform good antiwear and friction-reduction properties owing to the formation of a boundary film

  9. Development of a secondary electron energy analyzer for a transmission electron microscope.

    Science.gov (United States)

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  10. Anti-friction performance of FeS nanoparticle synthesized by biological method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lu Hai, E-mail: lhzhou@t.shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Wei, Xi Cheng [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ma, Zi Jian [Pipe and Bar Division of Baoshan Iron & Steel Co., Ltd., Shanghai 200941 (China); Mei, Bin [Shanghai Medical Instrumentation College, Shanghai 200093 (China)

    2017-06-15

    Highlights: • FeS nanoparticles were successfully prepared by a biological method. • The anti-friction performance of prepared nanoparticle under oil lubricating and dry condition were analyzed. • The anti-friction mechanism of FeS nanoparticle was discussed. - Abstract: FeS nanoparticle is prepared by a biological method. The size, morphology and structure of the FeS nanoparticle are characterized by the means of X-ray diffraction and transmission electron microscopy. The anti-friction behavior of the FeS nanoparticle as a lubricating oil additive is evaluated in the engine oil by using a face-to-face contact mode. The worn surface is characterized by using the scanning electron microscopy and secondary ion mass spectroscopy in order to find the reasons resulting in the reduction of friction coefficient due to the addition of the FeS nanoparticle. The anti-friction mechanism of the FeS nanoparticle is elucidated based on the experimental results.

  11. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity

    Science.gov (United States)

    Zare, Elham; Pourseyedi, Shahram; Khatami, Mehrdad; Darezereshki, Esmaeel

    2017-10-01

    Nanoparticles with antimicrobial activity, especially as a new class of biomedical materials for use in increasing the level of public health in daily life have emerged. In this study, green synthesis of zinc oxide) ZnO(nanoparticles was studied by Cuminum cyminum (cumin) as novel natural source and zinc nitrate [Zn(NO3)2] as Zn2+ source. The results showed that parameters such as concentration, time, temperature and pH have a direct impact on the synthesis of zinc nanoparticles and change in any of the factors causing the change in the process of synthesis. The properties of synthesized nanoparticles were examined by UV-visible Spectrophotometer, X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The UV-visible spectroscopy presented the absorption peak in the range of 370 nm. Transmission electron microscopy images of synthesized nanoparticles are mainly spherical or oval with an average size of about 7 nm. The effect of antimicrobial nanoparticles calculated using disk diffusion method and broth MIC and MBC in different strains of bacteria, which showed that gram positive and negative were sensitive to zinc oxide nanoparticles. The sensitivity of gram-negative bacteria was more.

  12. Preparation of PbSe nanoparticles by electron beam irradiation

    Indian Academy of Sciences (India)

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and ...

  13. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  14. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  15. Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials

    Directory of Open Access Journals (Sweden)

    Francisco Michel

    2011-05-01

    Full Text Available Abstract Background Transmission electron microscopy (TEM remains an important technique to investigate the size, shape and surface characteristics of particles at the nanometer scale. Resulting micrographs are two dimensional projections of objects and their interpretation can be difficult. Recently, electron tomography (ET is increasingly used to reveal the morphology of nanomaterials (NM in 3D. In this study, we examined the feasibility to visualize and measure silica and gold NM in suspension using conventional bright field electron tomography. Results The general morphology of gold and silica NM was visualized in 3D by conventional TEM in bright field mode. In orthoslices of the examined NM the surface features of a NM could be seen and measured without interference of higher or lower lying structures inherent to conventional TEM. Segmentation by isosurface rendering allowed visualizing the 3D information of an electron tomographic reconstruction in greater detail than digital slicing. From the 3D reconstructions, the surface area and the volume of the examined NM could be estimated directly and the volume-specific surface area (VSSA was calculated. The mean VSSA of all examined NM was significantly larger than the threshold of 60 m2/cm3. The high correlation between the measured values of area and volume gold nanoparticles with a known spherical morphology and the areas and volumes calculated from the equivalent circle diameter (ECD of projected nanoparticles (NP indicates that the values measured from electron tomographic reconstructions are valid for these gold particles. Conclusion The characterization and definition of the examined gold and silica NM can benefit from application of conventional bright field electron tomography: the NM can be visualized in 3D, while surface features and the VSSA can be measured.

  16. Facile Synthesis of Calcium Carbonate Nanoparticles from Cockle Shells

    Directory of Open Access Journals (Sweden)

    Kh. Nurul Islam

    2012-01-01

    Full Text Available A simple and low-cost method for the synthesis of calcium carbonate nanoparticles from cockle shells was described. Polymorphically, the synthesized nanoparticles were aragonites which are biocompatible and thus frequently used in the repair of fractured bone and development of advanced drug delivery systems, tissue scaffolds and anticarcinogenic drugs. The rod-shaped and pure aragonite particles of 30±5 nm in diameter were reproducibly synthesized when micron-sized cockle shells powders were mechanically stirred for 90 min at room temperature in presence of a nontoxic and nonhazardous biomineralization catalyst, dodecyl dimethyl betaine (BS-12. The findings were verified using a combination of analytical techniques such as variable pressure scanning electron microscopy (VPSEM, transmission electron microscopy (TEM, Fourier transmission infrared spectroscopy (FT-IR, X-ray diffraction spectroscopy (XRD, and energy dispersive X-ray analyser (EDX. The reproducibility and low cost of the method suggested that it could be used in industry for the large scale synthesis of aragonite nanoparticles from cockle shells, a low cost and easily available natural resource.

  17. Optical investigations on indium oxide nano-particles prepared through precipitation method

    International Nuclear Information System (INIS)

    Seetha, M.; Bharathi, S.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.

    2009-01-01

    Visible light emitting indium oxide nanoparticles were synthesized by precipitation method. Sodium hydroxide dissolved in ethanol was used as a precipitating agent to obtain indium hydroxide precipitates. Precipitates, thus formed were calcined at 600 deg. C for 1 h to obtain indium oxide nanoparticles. The structure of the particles as determined from the X-Ray diffraction pattern was found to be body centered cubic. The phase transformation of the prepared nanoparticles was analyzed using thermogravimetry. Surface morphology of the prepared nanoparticles was analyzed using high resolution-scanning electron microscopy and transmission electron microscopy. The results of the analysis show cube-like aggregates of size around 50 nm. It was found that the nanoparticles have a strong emission at 427 nm and a weak emission at 530 nm. These emissions were due to the presence of singly ionized oxygen vacancies and the nature of the defect was confirmed through Electron paramagnetic resonance analysis.

  18. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  19. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik

    2011-01-01

    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  20. Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600°C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were...... diffusion of Ni2+ along NiO grain boundaries, self-diffusion of Ni2+ ions and vacancies, growth of NiO grains and nucleation of voids at Ni/NiO interfaces. We also observed the formation of transverse cracks in a growing NiO film in situ in the electron microscope....

  1. Synthesis of TiC/W core–shell nanoparticles by precipitate-coating process

    International Nuclear Information System (INIS)

    Xia Min; Yan Qingzhi; Xu Lei; Zhu Lingxu; Guo Hongyan; Ge Changchun

    2012-01-01

    Graphical abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores. Abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core–shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), Filed-emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM), energy dispersive spectrum (EDS). Results revealed that the as-synthesized nanoparticles possess uniform diameters about 100 nm, and high purity. TEM and the corresponding FFT images demonstrate that TiC nanoparticles were well-encapsulated by W shells. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core–shell nanoparticles with different cores.

  2. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  3. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rümenapp, Christine, E-mail: ruemenapp@tum.de [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Gleich, Bernhard [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Mannherz, Hans Georg [Abteilung für Anatomie und Molekulare Embryologie, Ruhr Universität Bochum, Bochum (Germany); Haase, Axel [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany)

    2015-04-15

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5–7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T{sub 2} relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T{sub 2} relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 10{sup 7} cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  4. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shibin [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shi Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: gshi@tsinghua.edu.cn

    2007-04-15

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles.

  5. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    International Nuclear Information System (INIS)

    Wang Shibin; Shi Gaoquan

    2007-01-01

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles

  6. Determination of the threshold of nanoparticle behavior: Structural and electronic properties study of nano-sized copper

    International Nuclear Information System (INIS)

    Torres-Vega, Juan J.; Medrano, L.R.; Landauro, C.V.; Rojas-Tapia, J.

    2014-01-01

    In the present work we determine the threshold of the nanoparticle behavior of copper nanoparticles by studying their structural and electronic properties. The studied nanoparticles contain from 13 to 8217 atoms and were obtained by molecular dynamics simulations using the Johnson potential for copper based on the embedded atom method. The results indicate that for small copper nanoparticles ( 2000atoms, ∼3.5 nm), with spherical-like external shape and large percentage of fcc-like local structure, this effect is negligible and their electronic character are similar to such expected in solid copper. Finally, it has also been shown that copper nanoparticles change their electronic character, from metallic to insulating, after increasing the strength of the chemical disorder

  7. Calcifying nanoparticles associated encrusted urinary bladder cystitis

    Directory of Open Access Journals (Sweden)

    Tomislav M Jelic

    2008-10-01

    Full Text Available Tomislav M Jelic1, Rod Roque1, Uzay Yasar2, Shayna B Tomchin1, Jose M Serrato2, Samuel G Deem3, James P Tierney3, Ho-Huang Chang11Department of Pathology Charleston Area Medical Center, Charleston WV, USA; 2Urology Center of Charleston, Charleston WV, USA; 3Urologic-Surgical Assoc. of Charleston, Charleston WV, USAAbstract: Encrusted cystitis is a subtype of chronic cystitis characterized by multiple calcifications in the form of plaques located in the interstitium of the urinary bladder mucosa and frequently associated with mucosal ulcers. It is a very rare disease of controversial etiology. Our transmission electron microscopy of the calcified plaques of encrusted cystitis has revealed that the smallest formed particles (elementary units of these calcifications are electron-dense shells surrounding an electron lucent core, diagnostic of calcifying nanoparticles (previously called nanobacteria. We pioneer the notion that calcifying nanoparticles are the causative agents of encrusted urinary bladder cystitis.Keywords: calcifying nanoparticles, nanobacteria, encrusted cystitis

  8. Pre-concentration of pesticide residues in environmental water samples using Silica nanoparticles and identification of residues By GC-MS method

    OpenAIRE

    Tentu. Nageswara Rao; A. Muralidhar Reddy; SNVS. Murthy; Prathipati Revathi; K. Suneel Kumar

    2016-01-01

    The silica nanoparticles prepared by stober’s mechanism by reaction of tetraethylorthosilicate (TEOS) with ammonia was tested for their adsorption capacity in the pre-concentration of residues of pesticides in water. The synthesized nanoparticles were characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The size of the silica nanoparticles were 50 to 250 nm. The solid phase extraction (SPE) cartridges were prepared by filling...

  9. Degradation of magnetite nanoparticles in biomimetic media

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah; Hernandez, Ana C.; Sojo, Juan [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Materiales, Centro de Ingeniería de Materiales y Nanotecnología (Venezuela, Bolivarian Republic of); Lascano, Luis [Dpto. Física, Escuela Politécnica Nacional (Ecuador); Gonzalez, Gema, E-mail: gemagonz@ivic.gob.ve, E-mail: gema.gonzalez@epn.edu.ec [Escuela Nacional Politécnica (Ecuador)

    2017-04-15

    Magnetic nanoparticles (NPs) of magnetite Fe{sub 3}O{sub 4} obtained by coprecipitation (COP), thermal decomposition (DT), and commercial sample (CM) have been degraded in similar conditions to physiological medium at pH 4.7 and in simulated body fluid (SBF) at pH 7.4. The formation of the nanoparticles was confirmed by FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering. The degradation processes were followed with atomic absorption spectroscopy (EAA) and TEM. Magnetic measurements were carried out using vibrating sample magnetometry (VSM). Our results revealed that the structural and magnetic properties of the remaining nanoparticles after the degradation process were significantly different to those of the initial suspension. The degradation kinetics is affected by the pH, the coating, and the average particle size of the nanoparticles.

  10. A comparative study of hydroxyapatite nanoparticles synthesized by different routes

    OpenAIRE

    Paz, Adrian; Guadarrama, Dainelys; López, Mónica; E. González, Jesús; Brizuela, Nayrim; Aragón, Javier

    2012-01-01

    In this study, bioactive hydroxyapatite nanoparticles were prepared by two different methods: wet chemical precipitation and biomimetic precipitation. The aim was to evaluate the morphology, particle-size, crystallinity and phases of the powders obtained by traditional wet chemical precipitation and the novel biomimetic precipitation using a supersaturated calcium solution. The nanoparticles were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy and X-r...

  11. Film Formation of Ag Nanoparticles at the Organic-Aqueous Liquid Interface

    Science.gov (United States)

    Vigorita, John

    2005-03-01

    A wet-chemical method to make films by spontaneous assembly of passivated Ag nanoparticles at the organic-aqueous liquid interface is presented. The interfacial films exhibit a blue opalescence, or in other cases a silvery color, and are characterized with transmission electron microscopy and UV-visible spectrophotometry. Measurements indicate that nanoparticles in the interfacial film can form superlattices and in some cases nanostructures.

  12. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    Science.gov (United States)

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Palladium nanoparticles supported on layered hydroxide salts and their use in carbon-carbon coupling organic reactions

    OpenAIRE

    Martínez,Maby; Ocampo,Rogelio; Rios,Luz Amalia; Ramírez,Alfonso; Giraldo,Oscar

    2011-01-01

    Palladium nanoparticles supported on zinc hydroxide salts were prepared by intercalation of [PdCl6]2- and its further reduction with ethanol under reflux. All the materials were completely characterized by atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG) analyses, scanning electron microscopy (SEM), UV-Visible spectrometry and transmission electron microscopy (TEM). TEM analysis confirmed that the palladium nanoparticles we...

  14. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    OpenAIRE

    O. Van Overschelde; G. Guisbiers; R. Snyders

    2013-01-01

    Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA) in de-ionized water. Excimer laser (248 nm) operating at low fluence (F ∼ 1 J/cm2) was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the cen...

  15. Application of some microorganisms for synthesis of gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Pavlov, S.S.; Zinicovscaia, I.I.; Kirkesali, E.I.; Kalabegishvili, T.; Murusidze, I.; Faanhof, A.

    2012-01-01

    In recent years, much attention has been paid to microbial technologies of nanoparticle production. Novel strains of actinomycetes Streptomyces glaucus 71 MD, Streptomyces spp. 211A, arthrobacter genera - Arthrobacter globiformis 151B and Arthrobacter oxydans 61B and blue-green microalga Spirulina platensis were used for synthesis of silver and gold nanoparticles. The studies were carried out using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic absorption spectrometry (AAS), and neutron activation analysis (NAA)

  16. Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties

    International Nuclear Information System (INIS)

    Grumezescu, A M; Ficai, A; Vasile, O R; Cristescu, R; Dorcioman, G; Socol, G; Mihailescu, I N; Chifiriuc, M C; Mihaiescu, D E; Enculescu, M; Chrisey, D B

    2015-01-01

    We report the fabrication of biofunctionalized magnetite core/sodium lauryl sulfate shell/antibiotic adsorption-shell nanoparticles assembled thin coatings by matrix assisted pulsed laser evaporation for antibacterial drug-targeted delivery. Magnetite nanoparticles have been synthesized and subsequently characterized by transmission electron microscopy and x-ray diffraction. The obtained thin coatings have been investigated by FTIR and scanning electron microscope, and tested by in vitro biological assays, for their influence on in vitro bacterial biofilm development and cytotoxicity on human epidermoid carcinoma (HEp2) cells. (paper)

  17. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    KAUST Repository

    Kshirsagar, Prakash

    2014-01-06

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles was about 3 and 4 nm, respectively. The nanoparticles were characterized using x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. Both silver and gold nanoparticles synthesized by this method exhibited fluorescence properties and their use for cell imaging applications has been demonstrated. © 2014 IOP Publishing Ltd.

  18. Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor

    International Nuclear Information System (INIS)

    He Shengtai; Liu Yulan; Maeda, Hideaki

    2008-01-01

    In this study, using a polytetrafluoroethylene (PTFE) capillary tube as a micro-flow reactor, well-dispersed colloidal silver nanoparticles were controllably synthesized with different flow rates of precursory solution. Scanning transmission electron microscopy images and UV-visible absorbance spectra showed that silver nanoparticles with large size can be prepared with slow flow rate in the PTFE capillary reactor. The effects of tube diameters on the growth of colloidal silver nanoparticles were investigated. Experiment results demonstrated that using tube with small diameter was more propitious for the controllable synthesis of silver nanoparticles with different sizes.

  19. Linear-chain assemblies of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, Prasanta; Kim, Min-Kwan; Lee, Jae Hyeok; Kim, Miyoung; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    2017-07-01

    Highlights: • Hydrothermal synthesis of pure phase 200 nm Fe{sub 3}O{sub 4} nanoparticles. • Studies of linear-chain assemblies of iron oxide nanosphere by FESEM. • Micromagnetic simulations showed the presence of 3D vortex states. • The B.E. for different numbers of particles in linear chain assemblies were calculated. - Abstract: We synthesized iron oxide nanoparticles using a simple hydrothermal approach and found several types of segments of their linear-chain self-assemblies as observed by field emission scanning electron microscopy. X-ray diffraction and transmission electron microscopy measurements confirm a well-defined single-phase FCC structure. Vibrating sample magnetometry measurements exhibit a ferromagnetic behavior. Micromagnetic numerical simulations show magnetic vortex states in the nanosphere model. Also, calculations of binding energies for different numbers of particles in the linear-chain assemblies explain a possible mechanism responsible for the self-assemblies of segments of the linear chains of nanoparticles. This work offers a step towards linear-chain self-assemblies of iron oxide nanoparticles and the effect of magnetic vortex states in individual nanoparticles on their binding energy.

  20. Toxicity of silver nanoparticles in zebrafish models

    Energy Technology Data Exchange (ETDEWEB)

    Asharani, P V; Valiyaveettil, Suresh [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu Yilian; Gong Zhiyuan [Department of Biological Sciences, National University of Singapore, Science Drive 4, 117543 (Singapore)], E-mail: chmsv@nus.edu.sg

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag{sup +} ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  1. Toxicity of silver nanoparticles in zebrafish models

    International Nuclear Information System (INIS)

    Asharani, P V; Valiyaveettil, Suresh; Wu Yilian; Gong Zhiyuan

    2008-01-01

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag + ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development

  2. Structure and morphology of platinum nanoparticles with critical new issues of low- and high-index facets

    DEFF Research Database (Denmark)

    Nguyen, Viet-Long; Ohtaki, Michitaka; Van Nong, Ngo

    2012-01-01

    In this paper, Pt nanoparticles were successfully prepared by modified polyol method using silver nitrate as an effective structure-modifying agent. The characterization of Pt nanoparticles was investigated by using UV-Vis-NIR spectroscopy, transmission electron microscopy (TEM) and high resolution...... (HR) TEM, and x-ray diffraction (XRD). The method of selected area electron diffraction (SEAD) was used to study the structure of Pt nanoparticles. The results showed that the as-prepared Pt nanoparticles exhibiting the complexity of surface structure and morphology could be used as efficient...... catalysts for polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs)....

  3. Characterization of Li-rich layered oxides by using transmission electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Zhao

    2017-07-01

    Full Text Available Lithium-rich layered oxides (LrLOs deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay. Keywords: Lithium-ion battery, Transmission electron microscope, Lithium-rich layered oxide, Cathode material

  4. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    Directory of Open Access Journals (Sweden)

    O. Van Overschelde

    2013-10-01

    Full Text Available Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA in de-ionized water. Excimer laser (248 nm operating at low fluence (F ∼ 1 J/cm2 was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the centrifugation method to isolate the smallest nanoparticles (∼60 nm in diameter.

  5. Electronic structure of thiolate-covered gold nanoparticles: Au102(MBA)44.

    Science.gov (United States)

    Li, Yan; Galli, Giulia; Gygi, François

    2008-09-23

    We present first principles, density functional theory (DFT) calculations of the structural and electronic properties of thiolate-protected gold nanoparticles [Au(102)(MBA)(44) ] that have been recently crystallized and measured by X-ray diffraction. Our calculations yield structural properties in very good agreement with experiment and reveal the impact of thiolate adsorption on both the surface geometry and the electronic structure of the gold core; in particular, within DFT we observe the emergence of an energy gap of about 0.5 eV, upon MBA adsorption. Using a localized orbital analysis, we characterize the electron distribution in the nanoparticle and provide insight into the bonding of thiolates on curved gold surfaces.

  6. Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method

    International Nuclear Information System (INIS)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.; Miron, I.; Sfirloaga, P.; Rusu, E.

    2015-01-01

    TiO 2 /ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO 2 . The obtained ZnO, TiO 2 and TiO 2 /ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO 2 and ZnO phases in TiO 2 /ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO 2 nanoparticles have a spherical shape, and TiO 2 /ZnO core–shell nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO 2 /ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO 2 /ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO 2 /ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO 2 /ZnO core–shell nanoparticles were investigated. • The activation energy of TiO 2 /ZnO core–shell nanoparticles was about E a = 101 meV

  7. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    Science.gov (United States)

    Voros, Marton; Brawand, Nicholas; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).

  8. Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Buschow, K.H.J.

    2005-01-01

    We have synthesized Cr nanoparticles by arc-discharge and Cr 2 O 3 nanoparticles by subsequent annealing the as-prepared Cr nanoparticles. The structure of these nanoparticles is studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscope. Most of the particles show a good crystal habit of well-defined cubic or orthorhombic shape, while some small particles show spherical shape. The as-prepared Cr nanoparticles have a BCC Cr core coated with a thin Cr 2 O 3 layer. Cr in the core of the particles heated at 873 K for 4 h is changed to Cr 2 O 3 . The results of magnetic measurements show that the Cr nanoparticles exhibit mainly antiferromagnetic properties, in addition to a weak-ferromagnetic component at lower fields. The weak-ferromagnetic component may be ascribed to uncompensated surface spins. For the field-cooled Cr 2 O 3 nanoparticles, an exchange bias is observed in the hysteresis loops, which can be interpreted as the exchange coupling between the uncompensated spins at the surface and the spins in the core of the Cr 2 O 3 nanoparticles

  9. Toward the direct deposition of L10 FePt nanoparticles

    International Nuclear Information System (INIS)

    Qiu Jiaoming; Judy, Jack H.; Weller, Dieter; Wang Jianping

    2005-01-01

    In this paper we report a technique that can directly fabricate L1 0 phase FePt nanoparticles. FePt nanoparticles were generated through gas-phase aggregation using a magnetron-sputtering-based nanocluster source. Following the source chamber, an online halogen-lamp heater was used for the L1 0 phase formation during the particles' flight in vacuum. Transmission electron microscopy and vibrating-sample magnetometer data verified the successful fabrication of the L1 0 phase FePt nanoparticles. The coercivity value at 300 K is 1100 Oe for the nanoparticles with online heating. Neon carrier gas was applied to manipulate FePt nanoparticle size and to enhance particle size uniformity. The size dependence of nanoparticle ordering was investigated

  10. Measurement of suprathermal electron confinement by cyclotron transmission

    International Nuclear Information System (INIS)

    Kirkwood, R.; Hutchinson, I.H.; Luckhardt, S.C.; Porkolab, M.; Squire, J.P.

    1990-01-01

    The confinement time of suprathermal electrons is determined experimentally from the distribution function determined via wave transmission measurements. Measurements of the lowest moment of the distribution perpendicular to the B field as a function of the parallel electron momentum as well as the global input power allow the suprathermal electron confinement time (τ se ) to be calculated during lower-hybrid and inductive current drive. Finite particle confinement is found to be the dominant energy loss term for the suprathermals and improves with plasma current and density

  11. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  12. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  13. Polymethacrylic acid as a new precursor of CuO nanoparticles

    Science.gov (United States)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  14. In-situ fabrication of hybrid polyoxometalate nanoparticles composite films

    International Nuclear Information System (INIS)

    Lan Yang; Mao Baodong; Wang Enbo; Song Yonghai; Kang Zhenhui; Wang Chunlei; Tian Chungui; Zhang Chao; Xu Lin; Li Zhuang

    2007-01-01

    Inorganic-organic hybrid nanoparticles multilayer films were fabricated by extending the method of nucleation and growth of particles in polymer assemblies. The polyelectrolyte matrix was constructed by layer-by-layer self-assembly method. Synthesis of polyoxometalate nanoparticles was achieved by alternately dipping the precursor polyelectrolyte matrix into AgNO 3 and H 4 SiW 12 O 40 aqueous solutions. Repeating the above synthesis process, Ag 4 SiW 12 O 40 nanoparticles with controllable diameters of 20 to 77 nm were synthesized in the multilayer films in-situ. UV-vis absorption spectra indicate that the nanoparticles grew gradually in the synthesis process. Transmission electron microscopy was used to observe the size and morphology of the nanoparticles

  15. Synthesis of parallel and antiparallel core-shell triangular nanoparticles

    Science.gov (United States)

    Bhattacharjee, Gourab; Satpati, Biswarup

    2018-04-01

    Core-shell triangular nanoparticles were synthesized by seed mediated growth. Using triangular gold (Au) nanoparticle as template, we have grown silver (Ag) shellto get core-shell nanoparticle. Here by changing the chemistry we have grown two types of core-shell structures where core and shell is having same symmetry and also having opposite symmetry. Both core and core-shell nanoparticles were characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) to know the crystal structure and composition of these synthesized core-shell nanoparticles. From diffraction pattern analysis and energy filtered TEM (EFTEM) we have confirmed the crystal facet in core is responsible for such two dimensional growth of core-shell nanostructures.

  16. Graphene Edges Dictate the Morphology of Nanoparticles during Catalytic Channeling

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Vanin, Marco; Kling, Jens

    2014-01-01

    We perform in-situ transmission electron microscopy (TEM) experiments of silver nanoparticles channeling on mono-, bi-, and few-layer graphene and discover that the interactions in the one-dimensional particle–graphene contact line are sufficiently strong so as to dictate the three-dimensional sh......We perform in-situ transmission electron microscopy (TEM) experiments of silver nanoparticles channeling on mono-, bi-, and few-layer graphene and discover that the interactions in the one-dimensional particle–graphene contact line are sufficiently strong so as to dictate the three......-dimensional shape of the nanoparticles. We find a characteristic faceted shape in particles channeling along graphene ⟨100⟩ directions that is lost during turning and thus represents a dynamic equilibrium state of the graphene–particle system. We propose a model for the mechanism of zigzag edge formation...... and an explanation of the rate-limiting step for this process, supported by density functional theory (DFT) calculations, and obtain a good agreement between the DFT-predicted and experimentally obtained activation energies of 0.39 and 0.56 eV, respectively. Understanding the origin of the channels' orientation...

  17. CoPt nanoparticles deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Castaldi, L.; Giannakopoulos, K.; Travlos, A.; Niarchos, D.; Boukari, S.; Beaurepaire, E.

    2005-01-01

    Co 50 Pt 50 nanoparticles were co-deposited on thermally oxidized Si substrates by electron beam evaporation at 750 deg C. The mean particle sizes are between ∼5 and ∼20 nm and depend on the nominal thickness of the layer. Different processing conditions resulted in different structural and morphological properties of the samples which led to superparamagnetic and ferromagnetic behaviors. The post-annealing treatment of the CoPt nanograins resulted in the crystallization of the L1 0 ordered phase and in the magnetic hardening of nanoparticles with a maximum coercivity of ∼7.4 kOe

  18. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors

    OpenAIRE

    Onwudiwe, Damian C.; Ajibade, Peter A.

    2011-01-01

    The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescen...

  19. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  1. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  2. Rapid synthesis of silver nanoparticles from Polylthia longifolia leaves

    Directory of Open Access Journals (Sweden)

    Tollamadugu Nagavenkata

    2012-10-01

    Full Text Available Objective: Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this research article we present a simple and eco-friendly biosynthesis of silver nanoparticles using P. longifolia leaf extract as reducing agent. Methods: Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM was performed. Results: TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions: P. longifolia demonstrated strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0. Biological methods are a good competent for the chemical procedures, which are enviro- friendly and convenient.

  3. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes

    International Nuclear Information System (INIS)

    Ueno, N.; Sugita, K.; Seki, K.; Inokuchi, H.

    1986-01-01

    This paper describes the results of low-energy electron transmission and secondary-electron emission experiments on thin films of long-chain alkanes deposited on metal substrates. The spectral changes due to crystal-melt phase transition were measured in situ in both experiments. The ground-state energy V 0 of the quasifree electron in crystalline state was determined to be 0.5 +- 0.1 eV. The value of V 0 for the molten state was found to be negative. Further, in the crystalline state evidence is found for a direct correspondence between the transmission maxima and the high value of the density of states in the conduction bands

  4. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    Science.gov (United States)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  5. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    KAUST Repository

    Zhang, Daliang

    2018-01-18

    High-resolution imaging of electron beam-sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  6. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  7. Investigation of magnetic nanoparticles in acrylonitrile-methyl methacrylate-divinylbenzene mesoporous template

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, D. E-mail: denilson@quimica.ufg.br; Lima, E.C.D.; Barbosa, D.P.; Silva, V.J.; Silva, O.; Azevedo, R.B.; Silva, L.P.; Lemos, A.P.C.; Morais, P.C

    2002-11-01

    Preparation and characterization of nanosized magnetic particles using alkaline oxidation of ferrous ion retained in acrylonitrile-methyl methacrylate-divinylbenzene (AN-MMA-DVB) spherical micron-sized polymer template is described. Atomic absorption, transmission electron microscopy and magnetic resonance were used to investigate chemically cycled nanoparticle-based composites. The resonance field shifts towards higher values as the nanoparticle concentration reduces in the polymeric template, following two very distinct regimes.

  8. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    International Nuclear Information System (INIS)

    Kshirsagar, Prakash; Brunetti, Virgilio; Malvindi, Maria Ada; Pompa, Pier Paolo; Sangaru, Shiv Shankar

    2014-01-01

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles was about 3 and 4 nm, respectively. The nanoparticles were characterized using x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. Both silver and gold nanoparticles synthesized by this method exhibited fluorescence properties and their use for cell imaging applications has been demonstrated. (paper)

  10. Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis

    International Nuclear Information System (INIS)

    Tsibakhashvili, N.Ya.; Kirkesali, E.I.; Pataraya, D.T.

    2011-01-01

    For the first time in Georgia a novel actinomycete strain Streptomyces glaucus 71 MD isolated from a soy rhizosphere has been used for microbial synthesis of silver nanoparticles. The Transmission Electron Microscopy (TEM) images revealed that most of the particles produced by these microorganisms from AgNO 3 are spherical-like in shape with an average size of 13 nm. The Scanning Electron Microscope (SEM) allowed one to observe extracellular synthesis of nanoparticles, which has many advantages from the point of view of applications. Production of silver nanoparticles proceeds extracellularly with the participation of another microorganism, blue-green microalgae Spirulina platensis. It is shown that the production rate of the nanoparticles depends not only on the initial concentration of AgNO 3 but also varies with time in a no monotonic way

  11. Laser-fabricated castor oil-capped silver nanoparticles.

    Science.gov (United States)

    Zamiri, Reza; Zakaria, Azmi; Abbastabar, Hossein; Darroudi, Majid; Husin, Mohd Shahril; Mahdi, Mohd Adzir

    2011-01-01

    Silver nanoparticles were fabricated by ablation of a pure silver plate immersed in castor oil. A Nd:YAG-pulsed Q-switch laser with 1064-nm wavelength and 10-Hz frequency was used to ablate the plate for 10 minutes. The sample was characterized by ultraviolet-visible, atomic absorption, Fourier transform-infrared spectroscopies, and transmission electron microscopy. The results of the fabricated sample showed that the nanoparticles in castor oil were about 5-nm in diameter, well dispersed, and showed stability for a long period of time.

  12. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    OpenAIRE

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD r...

  13. Selfassembly of gold nanoparticles onto the surface of multiwall carbon nanotubes functionalized with mercaptobenzene moieties

    International Nuclear Information System (INIS)

    Shi Jin; Wang Zhe; Li Hulin

    2006-01-01

    We have developed a new and effective method to robustly self-assemble gold nanoparticles onto the surface of multiwall carbon nanotubes (MWNTs) functionalized with mercaptobenzene moieties. Fourier transform infrared and electron diffraction spectroscopy were used to verify whether or not the mercaptobenzene moieties have been attached to the π-conjugated body of MWNTs. Transmission electron microscope images give direct evidences for the success of selfassembly of gold nanoparticles onto the functionalized MWNTs

  14. Preparation of copper nanoparticles by radiation

    International Nuclear Information System (INIS)

    Liu Yajian; Guo Xiongbin; Li Zhaolong; Fu Junjie; Tan Yuanyuan; Zhou Xinyao; Xu Furong

    2013-01-01

    Copper nanoparticles were successfully synthesized by 60 Co-γ radiation with aqueous solution of cupric sulfate under inert nitrogen-purged conditions. Cu nanoparticles were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), laser particle size distribution analyzer (LSPSDA) and differential scanning calorimeter (DSC) techniques, respectively. The effects of solution system, pH, additive of surfactant and absorbed doses on the particle size and its distribution as well as stored stability of Cu naoparticles were investigated. High resolution TEM pictures showed the formation of homogeneous cubic-structured copper nanoparticles with different sizes depends on the synthetic conditions. This new kind of synthesis method shows the excellent stability, which may provide an efficient way to improve the fine tuning of the structure and size of copper nanoparticles. (authors)

  15. Path-separated electron interferometry in a scanning transmission electron microscope

    Science.gov (United States)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  16. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    KAUST Repository

    Lemine, O. M.; Omri, Karim; Zhang, Bei; El Mir, Lassaad; Sajieddine, Mohammed; Alyamani, Ahmed Y.; Bououdina, M.

    2012-01-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  17. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    KAUST Repository

    Lemine, O. M.

    2012-10-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  18. Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin

    Science.gov (United States)

    Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.

    2013-04-01

    This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.

  19. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides

    International Nuclear Information System (INIS)

    Silva, V.A.J.; Andrade, P.L.; Silva, M.P.C.; Bustamante D, A.; De Los Santos Valladares, Luis; Albino Aguiar, J.

    2013-01-01

    In this work we report the preparation of fucan-coated magnetite (Fe 3 O 4 ) nanoparticles by the co-precipitation method. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Mössbauer spectroscopy and magnetic measurements. The nanoparticles showed quasi-spherical morphology with mean sizes around 10 nm. XRD and FT-IR confirmed the functionalization of the Fe 3 O 4 nanoparticles with the fucan polysaccharide. Room temperature magnetization measurements and Mössbauer spectroscopy showed that the nanoparticles exhibited superparamagnetic behavior at 300 K and the magnetic properties of the Fe 3 O 4 are partly screened by the coating preventing aggregation. - Highlights: • Syntheses of fucan-coated Fe 3 O 4 nanoparticles were made by co-precipitation method. • The efficiency of polysaccharide coated was analyzed by XRD and FT-IR. • The magnetic nanoparticles mean size was 10–20 nm. • The fucan-coated magnetite nanoparticles showed superparamagnetic behavior

  20. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis

    Science.gov (United States)

    Philip, Daizy

    2010-03-01

    Biological synthesis of gold and silver nanoparticles of various shapes using the leaf extract of Hibiscus rosa sinensis is reported. This is a simple, cost-effective, stable for long time and reproducible aqueous room temperature synthesis method to obtain a self-assembly of Au and Ag nanoparticles. The size and shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Variation of pH of the reaction medium gives silver nanoparticles of different shapes. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR spectroscopy. Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. From FTIR spectra it is found that the Au nanoparticles are bound to amine groups and the Ag nanoparticles to carboxylate ion groups.

  1. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    Science.gov (United States)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  2. Thermally assisted nanosecond laser generation of ferric nanoparticles

    Science.gov (United States)

    Kurselis, K.; Kozheshkurt, V.; Kiyan, R.; Chichkov, B.; Sajti, L.

    2018-03-01

    A technique to increase nanosecond laser based production of ferric nanoparticles by elevating temperature of the iron target and controlling its surface exposure to oxygen is reported. High power near-infrared laser ablation of the iron target heated up to 600 °C enhances the particle generation efficiency by more than tenfold exceeding 6 μg/J. Temporal and thermal dependencies of the particle generation process indicate correlation of this enhancement with the oxidative processes that take place on the iron surface during the per spot interpulse delay. Nanoparticles, produced using the heat-assisted ablation technique, are examined using scanning electron and transmission electron microscopy confirming the presence of 1-100 nm nanoparticles with an exponential size distribution that contain multiple randomly oriented magnetite nanocrystallites. The described process enables the application of high power lasers and facilitates precise, uniform, and controllable direct deposition of ferric nanoparticle coatings at the industry-relevant rates.

  3. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    Science.gov (United States)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  4. The point-defect of carbon nanotubes anchoring Au nanoparticles

    DEFF Research Database (Denmark)

    Lv, Y. A.; Cui, Y. H.; Li, X. N.

    2010-01-01

    The understanding of the interaction between Au and carbon nanotubes (CNTs) is very important since Au/CNTs composites have wide applications in many fields. In this study, we investigated the dispersion of Au nanoparticles on the CNTs by transmission electron microscopy and the bonding mechanism...

  5. Structural characterization and properties of YCrO3 nanoparticles ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... C. As-prepared YCrO3 nanoparticles were characterized by various sophisticated techniques like. X-ray diffraction (XRD), transmission electron microscope, Brunauer–Emmett–Teller surface area analyzer, high frequency. LCR-meter, superconducting quantum interface device magnetometer and P–E loop ...

  6. Electronic control of a 4-speed automatic transmission with lock-up clutch

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, M.

    1984-01-01

    The paper describes the electronic control of an automatic 4-speed transmission with lock-up clutch. As compared to purely hydraulically controlled transmissions, this control offers a clearly improved quality of shifting and the possibility of achieving improvements in fuel consumption thanks to a special economy program. The electronic control unit is a Bosch MOTRONIC which has been expanded to include the functions of transmission control. A special feature is the engine torque control which is implemented by way of retarding the ignition when shifting. This opens up an additional degree of freedom for optimizing a transmission in terms of shift comfort, life of the friction elements and the power which can be transmitted.

  7. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: miao2@illinois.edu [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Cui, Bai [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Chen, Wei-Ying [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Miller, Michael K.; Powers, Kathy A. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); McCreary, Virginia; Gross, David [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Robertson, Ian M. [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WA 53706 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.

  8. Evaluation of the Antitumor Activity by Ni Nanoparticles with Verbascoside

    Directory of Open Access Journals (Sweden)

    Mingyue Chen

    2013-01-01

    Full Text Available Verbascoside (VB has attracted a great deal of attention due to ITS pharmacological properties. In our study, we synthesized a multifunctional verbascoside coated Ni nanoparticles (VB-Ni. Transmission electron microscopy (TEM and high performance liquid chromatography (HPLC display the characteristics of VB-Ni nanoparticles. Compared with VB, VB-Ni has been proven to induce apoptosis and resist the growth of doxorubicin-resistant K562 cells in vitro and in vivo. Thus, VB-Ni nanoparticles can be thought of as an ideal mode of cancer treatment.

  9. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol

    International Nuclear Information System (INIS)

    Adekoya, Joseph Adeyemi; Dare, Enock Olugbenga; Mesubi, Michael Adediran

    2014-01-01

    A robust polymer based and polyol mediated procedure to synthesize nanobimetallic particles has been modified to produce core–shell and alloy Ag/Pt nanoparticles with tunable properties. Novel three-dimensional (3D) quasi nanocubes entangled in nanowebs were produced by rapid solution phase transformation with hot addition of absolute ethanol. The optical characterization showed extinction of plasmon resonance band occurring with incremental feeding ratio of Pt source in all cases. Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) images revealed that the shape, size and size distribution of as-prepared silver platinum nanoparticles depended on the stabilizer or capping agent, mole ratio of metal ion sources, temperature and time of reaction. Meanwhile, catalytic activity was highest in the reduction of p-nitrophenol in the presence of polyvinylpyrrolidone/diethylene glycol stabilized Ag/Pt nanoparticles. (paper)

  10. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol

    Science.gov (United States)

    Adeyemi Adekoya, Joseph; Olugbenga Dare, Enock; Adediran Mesubi, Michael

    2014-09-01

    A robust polymer based and polyol mediated procedure to synthesize nanobimetallic particles has been modified to produce core-shell and alloy Ag/Pt nanoparticles with tunable properties. Novel three-dimensional (3D) quasi nanocubes entangled in nanowebs were produced by rapid solution phase transformation with hot addition of absolute ethanol. The optical characterization showed extinction of plasmon resonance band occurring with incremental feeding ratio of Pt source in all cases. Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) images revealed that the shape, size and size distribution of as-prepared silver platinum nanoparticles depended on the stabilizer or capping agent, mole ratio of metal ion sources, temperature and time of reaction. Meanwhile, catalytic activity was highest in the reduction of p-nitrophenol in the presence of polyvinylpyrrolidone/diethylene glycol stabilized Ag/Pt nanoparticles.

  11. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    Science.gov (United States)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  12. Quantifying the blue shift in the light absorption of small gold nanoparticles

    International Nuclear Information System (INIS)

    Tsekov, Roumen; Georgiev, Peter; Simeonova, Silviya; Balashev, Konstantin

    2017-01-01

    The dependence of the surface plasmons resonance (SPR) frequency on the size of gold nanoparticles (GNPs) is experimentally studied. The measured data for the SPR frequency by UV-Vis spectroscopy and GNPs diameter by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) are collected in the course of classical citrate GNPs synthesis. The relationship between the GNPs size and the blue shift of the light absorption is presented. They are fitted by an equation with a single free parameter, the dielectric permittivity of the surrounding media. Thus, the refractive index of the surrounding media is determined, which characterizes the GNPs surface shell. Key words: Gold nanoparticles (GNPs), Surface plasmon resonance (SPR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM)

  13. Optical and Luminescence Properties of β-NaFeO2 Nanoparticles

    Science.gov (United States)

    Singh, Sarbjit; Tangra, Ankush Kumar; Lotey, Gurmeet Singh

    2018-05-01

    β-NaFeO2 nanoparticles have been synthesized by sol-gel method and their morphological, structural and optical properties investigated. Transmission electron microscope study reveals that the size of the synthesis nanoparticles is 37 nm and they are possessing spherical symmetry. X-ray diffraction pattern shows the orthorhombic crystal structure of nanoparticles with space group Pn21 a. UV-visible spectra of β-NaFeO2 divulges that these nanoparticles have direct band gap 2.35 eV. The observed Fourier transform infrared spectroscopy spectra confirms the presence of Fe-Na bonding at 1074 cm-1. The photoluminescence study of these nanoparticles shows that these nanoparticles possesses various transition in the visible spectrum.

  14. Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Muller, K.H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally the temperature dependence of the conductance of films of Au nanoparticles linked by alkane dithiol molecules in the temperature range between 5 K and 300 K. Conduction in these films is due to tunneling of single electrons between neighbouring metal nanoparticles. During tunnelling an electron has to overcome the Coulomb charging energy. We find that the observed temperature dependence of the conductance is non-Arrhenius like and can be described in terms of a percolation theory which takes account of disorder in the system. Disorder in our nanoparticle films is caused by variations in the nanoparticle size, fluctuations in the separation gaps between adjacent nanoparticles and by offset charges. To explain in detail our experimental data, a wide distribution of separation gaps and charging energies is needed. We find that a wide Coulomb charging energy distribution can arise from random offset charges even if the nanoparticle size distribution is narrow

  15. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    Science.gov (United States)

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  16. Preparation of EuSe nanoparticles from Eu(III) complex containing selenides

    International Nuclear Information System (INIS)

    Adachi, Taka-aki; Tanaka, Atsushi; Hasegawa, Yasuchika; Kawai, Tsuyoshi

    2008-01-01

    The EuSe nanoparticles were prepared by the thermal reduction of Europium nitrate with new organic selenium compound, tetraphenylphosphonium diphenylphosphinediselenide (PPh 4 )(Se 2 P(C 6 H 5 ) 2 ), for the first time. EuSe nanoparticles were identified by the X-ray diffraction (XRD), the transmission electron microscope (TEM) and the energy dispersive X-ray spectroscopy (EDX) measurements. The average size of the EuSe nanoparticles was found to be 19 nm. The energy gap in EuSe nanoparticles of 19 nm was estimated by edge of absorption band, giving the energy gap of 1.86 eV

  17. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    Science.gov (United States)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  18. Nanoparticle dispersion effect of laser-surface melting in ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida; Chao, Yuhjin; Luo, Zhen, E-mail: lz-tju@163.com [Tianjin University, School of Material Science and Engineering (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (China)

    2017-04-15

    Zirconium diboride (ZrB{sub 2p}, 15 vol%)/6061 aluminum (Al) composites were fabricated via in situ reaction. The existence, morphologies, and dispersion degree of the in situ ZrB{sub 2} particles with size from tens to hundreds of nanometers were studied by X-ray diffractometry, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. As the particle-settlement effect becomes dominant during the composite fabrication process, ZrB{sub 2} nanoparticles agglomerate to a certain extent in some areas of the as-cast composites. A laser-surface melting (LSM) strategy was applied to disperse agglomerated ZrB{sub 2} nanoparticles in as-cast composites, and the ZrB{sub 2} nanoparticle dispersion is affected visibly by LSM. After LSM, nanoparticles tend to distribute along the grain boundary. Particle clusters were dispersed in an explosive orientation and the particle diffusion distance varied in terms of its radius and melt-viscosity vicinity. High-resolution transmission electron microscopy showed the existence of a subgrain structure near the ZrB{sub 2}–Al interface after LSM. This may increase the yield strength when a dislocation tangle forms.

  19. Lyotropic liquid crystal based on zinc oxide nanoparticles obtained by microwave solvothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, M.M., E-mail: momelchenko@chem.uw.edu.pl [Department of Chemistry, Warsaw University, Al. Zwirki i Wigury 101, 02-089, Warsaw (Poland); Wojnarowicz, J. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, Warsaw, 01-142 (Poland); Salamonczyk, M. [Department of Chemistry, Warsaw University, Al. Zwirki i Wigury 101, 02-089, Warsaw (Poland); Lojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, Warsaw, 01-142 (Poland)

    2017-05-01

    Abstract: The ZnO nanoparticles, obtained by microwave solvothermal synthesis, were used for the liquid crystal phase preparation. The structure of the material was investigated by X-ray diffraction (XRD), helium pycnometry, specific surface area (SSA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). The stability of aqueous suspensions was monitored by Multiple Light Scattering (MLS) technique and the average agglomerate size in suspensions was obtained by dynamic light scattering (DLS) technique. The lyotropic columnar hexagonal phase was formed by doping ZnO nanoparticles into the cetylpiridinium chloride/water/hexanol system. The structure of this phase was confirmed by x-ray diffraction. The luminescent properties of the LC phase were compared with properties of ZnO nanoparticles isolated in solution and analogues lyotropic system without nanoparticles.

  20. Superparamagnetism in AFM Cr2O3 nanoparticles

    International Nuclear Information System (INIS)

    Tobia, D.; Winkler, E.L.; Zysler, R.D.; Granada, M.; Troiani, H.E.

    2010-01-01

    In this work we report the size effects on the magnetic properties of AFM Cr 2 O 3 nanoparticles. From transmission electron microscopy we determined that the system presents high crystallinity and narrow lognormal size distribution centred at = 7.8 nm with σ = 0.3. The magnetic properties of the nanoparticles were studied by magnetization and electron paramagnetic resonance (EPR) experiments. By EPR spectroscopy we established that the AFM order temperature, T N , shifted to ∼270 K when the size is reduced (T N (Bulk) ∼ 308 K). From the zero-field-cooling and the field-cooling magnetization curves we determined the blocking temperature T B = 28 K. Below T B the system presents exchange bias effect. We discuss the results by using recent models in terms of the internal magnetic structures of the nanoparticles.

  1. In situ Electrical measurements in Transmission Electron Microscopy

    NARCIS (Netherlands)

    Rudneva, M.

    2013-01-01

    In the present thesis the combination of real-time electricalmeasurements on nano-sampleswith simultaneous examination by transmission electron microscope (TEM) is discussed. Application of an electrical current may lead to changes in the samples thus the possibility to correlate such changes with

  2. Size control synthesis of starch capped-gold nanoparticles

    International Nuclear Information System (INIS)

    Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.

    2009-01-01

    Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl 4 ] - solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl 4 ] - anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.

  3. Growth of ZnO nanoparticles from nanowhisker precursor with a simple solvothermal route

    International Nuclear Information System (INIS)

    Wang Chunlei; Wang Enbo; Shen Enhong; Gao Lei; Kang Zhenhui; Tian Chungui; Zhang Chao; Lan Yang

    2006-01-01

    Methods of preparing nanoparticles have long been a topic experiencing extensive investigation. Among those methods developed, using template or polymer and surfactant as capping reagents were often effective. However, obtaining nanoparticles in high amounts and high purity still remains an unresolved challenge. Here, a simple two-step solvothermal method without using any surfactant or coating reactant to prepare ZnO nanoparticles with high purity in large scale was developed. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-prepared ZnO nanoparticles, and the formation process of the nanoparticles was discussed finally

  4. Aquatic Fern (Azolla Sp.) Assisted Synthesis of Gold Nanoparticles

    Science.gov (United States)

    Jha, Anal K.; Prasad, K.

    2016-02-01

    Aquatic pteridophyte (Azolla sp.) was taken to assess its potential to synthesize the metal (Au) nanoparticles. The synthesized particles were characterized using X-ray, UV-visible, scanning and transmission electron microscopy analyses. Nanoparticles almost spherical in shape having the sizes of 5-17nm are found. UV-visible study revealed the surface plasmon resonance at 538nm. Responsible phytochemicals for the transformation were principally phenolics, tannins, anthraquinone glycosides and sugars present abundantly in the plant thereby bestowing it adaptive prodigality. Also, the use of Azolla sp. for the synthesis of gold nanoparticles offers the benefit of eco-friendliness.

  5. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    International Nuclear Information System (INIS)

    Zhang Xifeng; Yin Hengbo; Cheng Xiaonong; Hu Huifeng; Yu Qi; Wang Aili

    2006-01-01

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweens on Cu nanoparticles was different from those arising from the individuals

  6. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  7. Pulsed Power for a Dynamic Transmission Electron Microscope

    International Nuclear Information System (INIS)

    DeHope, W.J.; Browning, N.; Campbell, G.; Cook, E.; King, W.; Lagrange, T.; Reed, B.; Stuart, B.; Shuttlesworth, R.; Pyke, B.

    2009-01-01

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM

  8. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    Science.gov (United States)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  9. Synthesis of Stabilized Myrrh-Capped Hydrocolloidal Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM, and X-ray diffraction (XRD was used to examine the crystal structure of the produced magnetite nanoparticles.

  10. Synthesis, Characterization, and Cytotoxicity of Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Kanagesan

    2013-01-01

    Full Text Available In order to study the response of human breast cancer cells' exposure to nanoparticle, iron oxide (α-Fe2O3 nanoparticles were synthesized by a simple low temperature combustion method using Fe(NO33·9H2O as raw material. X-ray diffraction studies confirmed that the resultant powders are pure α-Fe2O3. Transmission electron microscopy study revealed the spherical shape of the primary particles, and the size of the iron oxide nanoparticles is in the range of 19 nm. The magnetic hysteresis loops demonstrated that the sample exposed ferromagnetic behaviors with a relatively low coercivity. The cytotoxicity of α-Fe2O3 nanoparticle was also evaluated on human breast cancer cells to address the current deficient knowledge of cellular response to nanoparticle exposure.

  11. Direct observation of two-step crystallization in nanoparticle superlattice formation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul; Geissler, Phillip L.; Rabani, Eran; Alivisatos, A. Paul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.

  12. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    Science.gov (United States)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  13. Addressing preservation of elastic contrast in energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G.; D' Alfonso, A.J.; Forbes, B.D.; Allen, L.J., E-mail: lja@unimelb.edu.au

    2016-01-15

    Energy-filtered transmission electron microscopy (EFTEM) images with resolutions of the order of an Ångström can be obtained using modern microscopes corrected for chromatic aberration. However, the delocalized nature of the transition potentials for atomic ionization often confounds direct interpretation of EFTEM images, leading to what is known as “preservation of elastic contrast”. In this paper we demonstrate how more interpretable images might be obtained by scanning with a focused coherent probe and incoherently averaging the energy-filtered images over probe position. We dub this new imaging technique energy-filtered imaging scanning transmission electron microscopy (EFISTEM). We develop a theoretical framework for EFISTEM and show that it is in fact equivalent to precession EFTEM, where the plane wave illumination is precessed through a range of tilts spanning the same range of angles as the probe forming aperture in EFISTEM. It is demonstrated that EFISTEM delivers similar results to scanning transmission electron microscopy with an electron energy-loss spectrometer but has the advantage that it is immune to coherent aberrations and spatial incoherence of the probe and is also more resilient to scan distortions. - Highlights: • Interpretation of EFTEM images is complicated by preservation of elastic contrast. • More direct images obtained by scanning with a focused coherent probe and averaging. • This is equivalent to precession EFTEM through the solid angle defined by the probe. • Also yields similar results to energy-loss scanning transmission electron microscopy. • Scanning approach immune to probe aberrations and resilient to scan distortions.

  14. On the role of Pb0 atoms on the nucleation and growth of PbSe and PbTe nanoparticles

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, Domingo I.; Leon-Covian, Lina M. De; Garcia-Gutierrez, Diana F.; Treviño-Gonzalez, M.; Garza-Navarro, M. A.; Sepulveda-Guzman, S.

    2013-01-01

    In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb 2+ ions to Pb 0 atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb 0 atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

  15. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles

    International Nuclear Information System (INIS)

    Whang, Thou-Jen; Hsieh, Mu-Tao; Chen, Huang-Han

    2012-01-01

    The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO 3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).

  16. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    Science.gov (United States)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  17. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    Science.gov (United States)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  18. Synthesis of Aluminium Nanoparticles in A Water/Polyethylene Glycol Mixed Solvent using μ-EDM

    Science.gov (United States)

    Sahu, R. K.; Hiremath, Somashekhar S.

    2017-08-01

    Nanoparticles present a practical way of retaining the results of the property at the atomic or molecular level. Due to the recent use of nanoparticles in scientific, industrial and medical applications, synthesis of nanoparticles and their characterization have become considerably important. Currently, aluminium nanoparticles have attracted significant research attention because of their reasonable cost, unique properties and interdisciplinary emerging applications. The present paper reports the synthesis of aluminium nanoparticles in the mixture of Deionized water (DI water) and Polyethylene Glycol (PEG) using a developed micro-Electrical Discharge Machining (μ-EDM) method. PEG was used as a stabilizer to prevent nanoparticles from agglomeration produced during the μ -EDM process. The synthesized aluminium nanoparticles were examined by Transmission Electron Microscopy (TEM), Energy Dispersive Analysis by X-rays (EDAX) and Selected Area Electron Diffraction (SAED) pattern to determine their size, shape, chemical nature and crystal structure. The average size of the polyhedral aluminium nanoparticles is found to be 196 nm.

  19. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  20. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles

    International Nuclear Information System (INIS)

    Wu Wei; He Quanguo; Chen Hong; Tang Jianxin; Nie Libo

    2007-01-01

    Air-stable nanoparticles of Fe 3 O 4 /Au were prepared via sonolysis of a solution mixture of hydrogen tetrachloroaureate(III) trihydrate (HAuCl 4 ) and (3-aminopropyl)triethoxysilane (APTES)-coated Fe 3 O 4 nanoparticles with further drop-addition of sodium citrate. The Fe 3 O 4 /Au nanoparticles were characterized by x-ray powder diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID) magnetometry. Nanoparticles of Fe 3 O 4 /Au obtained under appropriate conditions possess a very high saturation magnetization of about 63 emu g -1 and their average diameter is about 30 nm

  1. Electrical sintering of silver nanoparticle ink studied by in-situ TEM probing.

    Directory of Open Access Journals (Sweden)

    Magnus Hummelgård

    Full Text Available Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1-10 mW/μm³. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 10⁵ Sm⁻¹.

  2. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

    Directory of Open Access Journals (Sweden)

    Shi S

    2012-10-01

    Full Text Available Si-Feng Shi,1 Jing-Fu Jia,2 Xiao-Kui Guo,3 Ya-Ping Zhao,2 De-Sheng Chen,1 Yong-Yuan Guo,1 Tao Cheng,1 Xian-Long Zhang11Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, School of Medicine, 2School of Chemistry and Chemical Technology, 3Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University Shanghai, ChinaBackground: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.Methods: Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.Results: Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.Conclusion: Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease

  3. Synthesis of oxidation resistant lead nanoparticle films by modified pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eunsung; Murray, P. Terrence; Subramanyam, Guru; Malik, Hans K.; Schwartz, Kenneth L. [Research Institute, University of Dayton, Dayton, OH 45469-0170 (United States); Research Institute, University of Dayton, Dayton, OH 45469-0170, USA and Graduate Materials Engineering, University of Dayton, Dayton, OH 45469-0240 (United States); Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469-0232 (United States); Northrop Grumman Electronic Systems, Linthicum, MD 21090 (United States)

    2012-07-30

    Thin layers of lead nanoparticles have been produced by a modified pulsed laser ablation (PLA) process in which smaller nanoparticles were swept out of the ablation chamber by a stream of flowing Ar. Large ({mu}m-sized) particles, which are usually deposited during the standard PLA process, were successfully eliminated from the deposit. The nanoparticles deposited on room temperature substrates were well distributed, and the most probable particle diameter was in the order of 30 nm. Since lead is highly reactive, the nanoparticles formed in Ar were quickly oxidized upon exposure to air. A small partial pressure of H{sub 2}S gas was subsequently added to the effluent, downstream from the ablation chamber, and this resulted in the formation of nanoparticle deposits that were surprisingly oxidation resistant. The properties of the nanoparticle films (as determined by transmission electron microscopy, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and conductivity measurements) are reported, and the mechanism of the oxidation retardation process is discussed.

  4. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  5. A novel method for the functionalization of aminoacids L-glycine, L-glutamic acid and L-arginine on maghemite/magnetite nanoparticles

    Science.gov (United States)

    Bruno, A. J.; Correa, J. R.; Peláez-Abellán, E.; Urones-Garrote, E.

    2018-06-01

    Nanoparticles of maghemite/magnetite functionalized with L-glycine, L-glutamic acid and L-arginine were synthesized by a novel method. The novel procedure consists in an alternative of that reported by Massart for the precipitation of magnetite in which the aminoacid is added in the carboxylate form. The amounts of aminoacid in the initial molar concentrations were 35%, 45% and 65% with respect to the ferrophase. The obtained nanoparticles were characterized by several techniques: X-ray diffraction (XRD), Fourier transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), Electron energy-loss spectroscopy (EELS) and magnetometry. The IR spectroscopy confirmed that the selected aminoacids were functionalized on the surface of iron oxide. XRD and EELS confirm that iron oxide consists of a maghemite-magnetite intermediate phase with an average particle size about 6 nm, which was measured by transmission electron microscopy. The superparamagnetic character of the nanoparticles was evaluated by magnetometry.

  6. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    Science.gov (United States)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  7. Detection limits for nanoparticles in solution with classical turbidity spectra

    Science.gov (United States)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  8. DNA nanoparticles with core-shell morphology.

    Science.gov (United States)

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  9. Synthesis and Characterization of V2O5/SiO2 Nanoparticles as Efficient Catalyst for Aromatization 1,4 Dihydropyridines

    International Nuclear Information System (INIS)

    Farzaneh, F.; Zamanifar, E.; Jafari Foruzin, L.; Ghandi, M.

    2012-01-01

    V 2 O 5 /SiO 2 nanoparticles was prepared via an one-pot sol gel method from vanadyl- acetylacetonate and tetraethyl orthosilicate in refluxing MeOH, followed by calcination at 700 °C for 2 hours. The resultant nanoparticles was characterized by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, TGA and FTIR techniques. Rapid and efficient aromatization of 1,4-dihydropyridines catalyzed by V 2 O 5 /SiO 2 nanoparticles is described in this presentation.

  10. Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns

    Science.gov (United States)

    Ionin, Andrey; Ivanova, Anastasia; Khmel'nitskii, Roman; Klevkov, Yury; Kudryashov, Sergey; Mel'nik, Nikolay; Nastulyavichus, Alena; Rudenko, Andrey; Saraeva, Irina; Smirnov, Nikita; Zayarny, Dmitry; Baranov, Anatoly; Kirilenko, Demid; Brunkov, Pavel; Shakhmin, Alexander

    2018-04-01

    Milligram-per-second production of selenium nanoparticles in water sols was realized through 7-W, 2 MHz-rate femtosecond laser ablation of a crystalline trigonal selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of the corresponding crater depths and topographies. Deposited selenium particles were inspected by scanning and transmission electron microscopy, while their hydrosols (nanoinks) were characterized by optical transmission, Raman and dynamic light scattering spectroscopy. 2D patterns and coatings were ink-jet printed on thin supported silver films and their bare silica glass substrates, as well as on IR-transparent CaF2 substrates, and characterized by electron microscopy, energy-dispersive x-ray spectroscopy, and broadband (vis-mid IR) transmission spectroscopy, exhibiting crystalline selenium nanoparticles with high refractive index as promising all-dielectric sensing building nanoblocks in nanophotonics.

  11. Synthesis of superparamagnetic δ-FeOOH nanoparticles by a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Amagasa, Shota [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kobayashi, Yoshio [Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamada, Yasuhiro [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-11-30

    Highlights: • The spherical δ-FeOOH nanoparticles were synthesized by a chemical reaction of FeCl{sub 2}. • The δ-FeOOH nanoparticles showed superparamagnetic behavior. • A mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2} were rapidly oxidized into δ-FeOOH nanoparticles. - Abstract: δ-FeOOH nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} in the presence of sodium tartrate and gelatin in an alkaline condition. These δ-FeOOH particles were subsequently examined using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), Mössbauer spectroscopy, and superconducting quantum interference device (SQUID) assessment. The average size of the δ-FeOOH nanoparticles was below 10 nm, and these particles exhibited superparamagnetic behavior as a result of this small size. The precursors of the δ-FeOOH nanoparticles were also characterized as a means of elucidating the reaction mechanism. Precipitates prior to oxidation upon rinsing with water and ethanol were analyzed by obtaining XRD patterns and Mössbauer spectra of wet and frozen samples, respectively. The precipitates obtained by the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} were found to consist of a mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2}, and it is believed that these species then rapidly oxidized into δ-FeOOH nanoparticles.

  12. Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method

    International Nuclear Information System (INIS)

    Tabatabaei, S; Shukohfar, A; Aghababazadeh, R; Mirhabibi, A

    2006-01-01

    Silica nano-particles were synthesised by chemical methods from tetraethylorthosilicate (TEOS), ethanol (C 2 H 5 OH) and deionized water in the presence of ammonia as catalyst at room temperature. The morphology and structure of colloidal silica particles formed depend on the molar ratio of reagents. The formation of silica particles has been investigated using different solvents: ethanol and ethanol-glycerol. The nature and morphology of particles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD)

  13. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Scarangella, A. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Amiard, G.; Boninelli, S., E-mail: simona.boninelli@ct.infn.it; Miritello, M. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Reitano, R. [Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Priolo, F. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania (Italy)

    2016-08-08

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O{sub 2} or N{sub 2} environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy–energy dispersive X-ray and scanning transmission electron microscopy–electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N{sub 2} environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O{sub 2}, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  14. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  15. Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity

    Science.gov (United States)

    Bhattacharjee, Sukla; Debnath, Gopal; Das, Aparajita Roy; Krishna Saha, Ajay; Das, Panna

    2017-12-01

    The aim of the present study was to test the efficacy of the extracellular mycelium extract of Penicillium oxalicum isolated from Phlogacanthus thyrsiflorus to biosynthesize silver nanoparticles. It was characterized using ultraviolet-visible absorption spectroscopy, atomic force microscopy, transmission electron microscopy and Fourier transforms infrared spectroscopy. The silver nanoparticles were evaluated for antimicrobial activity. The characterization confirms the synthesis of silver nanoparticles. Both silver nanoparticles and combination of silver nanoparticles with streptomycin showed activity against the four bacteria. The results suggested that P. oxalicum offers eco-friendly production of silver nanoparticles and the antibacterial activity may find application in biomedicine.

  16. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    International Nuclear Information System (INIS)

    Reznickova, A.; Orendac, M.; Kolska, Z.; Cizmar, E.; Dendisova, M.; Svorcik, V.

    2016-01-01

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  17. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Orendac, M., E-mail: martin.orendac@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Kolska, Z., E-mail: zdenka.kolska@seznam.cz [Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Cizmar, E., E-mail: erik.cizmar@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Dendisova, M., E-mail: vyskovsm@vscht.cz [Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, V., E-mail: vaclav.svorcik@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-12-30

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  18. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  19. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  20. Chemical synthesis of Cu2Se nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Rong, Fengxia; Bai, Yan; Chen, Tianfeng; Zheng, Wenjie

    2012-01-01

    Graphical abstract: The Cu 2 Se nanoparticles were synthesized by a simple and rapid method at room temperature. The TEM and SEM images show that the Cu 2 Se nanoparticles were spherical. Highlights: ► Cu 2 Se nanoparticles were synthesized by the reaction of nanoSe 0 sol with Cu + ions. ► The Cu 2 Se nanoparticles were spherical with cubic structure and well crystallized. ► Optical and electrochemical properties of Cu 2 Se nanoparticles were observed. ► The formation mechanism of Cu 2 Se nanoparticles was proposed. -- Abstract: A simple and rapid method has been developed to synthesize cuprous selenide (Cu 2 Se) nanoparticles by the reaction of selenium nanoparticles sol with copper sulfate solution containing ascorbic acid at room temperature. Cu 2 Se nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray analysis (EDX). The results indicated that Cu 2 Se nanoparticles were cubic crystal structure and spherical with the diameter about 75 nm. The ultraviolet–visible absorption spectrum (UV–vis) and cyclic voltammetry of Cu 2 Se nanoparticles were also investigated. The optical band gap energy of Cu 2 Se nanoparticles was 1.94 eV. On the basis of a series of experiments and characterizations, the formation mechanism of Cu 2 Se nanoparticles was discussed.

  1. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  2. Transmission electron microscope studies of crystalline LiNbO3

    International Nuclear Information System (INIS)

    Pareja, R.; Gonzalez, R.; Chen, Y.

    1984-01-01

    Transmission electron microscope investigations in both as-grown and hydrogen-reduced LiNbO 3 reveal that niobium oxide precipitates can be produced by in situ irradiations in the electron microscope. The precipitation process is produced by a combined effect of ionizing electrons and the thermal heating of the specimens during irradiation. It is proposed that the composition of the precipitates is primarily Nb 2 O 5

  3. On the role of Pb{sup 0} atoms on the nucleation and growth of PbSe and PbTe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, Domingo I., E-mail: domingo.garciagt@uanl.edu.mx; Leon-Covian, Lina M. De; Garcia-Gutierrez, Diana F. [Universidad Autonoma de Nuevo Leon, UANL, Facultad de Ingenieria Mecanica y Electrica, FIME (Mexico); Trevino-Gonzalez, M. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, CIIDIT, Universidad Autonoma de Nuevo Leon, UANL (Mexico); Garza-Navarro, M. A.; Sepulveda-Guzman, S. [Universidad Autonoma de Nuevo Leon, UANL, Facultad de Ingenieria Mecanica y Electrica, FIME (Mexico)

    2013-05-15

    In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb{sup 2+} ions to Pb{sup 0} atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb{sup 0} atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

  4. Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study

    DEFF Research Database (Denmark)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian

    2012-01-01

    Porous platinum nanoparticles provide a route for the development of catalysts that use less platinum without sacrificing catalytic performance. Here, we examine porous platinum nanoparticles using a combination of in situ transmission electron microscopy and calculations based on a first-principles......-parametrized thermodynamic model. Our experimental observations show that the initially irregular morphologies of the as-sythesized porous nanoparticles undergo changes at high temperatures to morphologies having faceted external surfaces with voids present in the interior of the particles. The increasing size of stable...

  5. Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials

    International Nuclear Information System (INIS)

    Sardar, R; Shem, P M; Pecchia-Bekkum, C; Bjorge, N S; Shumaker-Parry, J S

    2010-01-01

    We report a simple route to produce fluorophore-encapsulated gold nanoparticles (AuNPs) in a single step under aqueous conditions using the fluorophore 1-pyrenemethylamine (PMA). Different amounts of PMA were used and the resulting core-shell gold nanoparticles were analyzed using UV-visible absorption spectroscopy, fluorescence spectroscopy, and transmission and scanning electron microscopy. Electron microscopy analysis shows nanoparticles consisting of a gold nanoparticle core which is encapsulated with a lower contrast shell. In the UV-visible spectra, we observed a significant red shift (37 nm) of the localized surface plasmon resonance (LSPR) absorption maximum (λ max ) compared to citrate-stabilized AuNPs of a similar size. We attribute the prominent LSPR wavelength shift for PMA-AuNP conjugates to the increase in the local dielectric environment near the gold nanoparticles due to the shell formation. This simple, aqueous-based synthesis is a new approach to the production of fluorophore-encapsulated AuNPs that could be applicable in biological sensing systems and photonic device fabrication.

  6. Study of electron transmission through thin metallic films by the electron moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Babikova, Yu.F.; Vakar, O.M.; Gruzin, O.M.; Petrikin, Yu.V.

    1983-01-01

    Results of the experimental study of the transmission of conversion electrons through aluminium, iron, tin and gold films are presented. Absorption of resonance electrons of the Moessbauer nuclide 57 Fe, formed during target irradiation with γ-quanta of 57 Co source in chromium matrix has been studied. It is asserted that absorption of conversion electrons in films of different elements is similar; at that, like in the case of β-particles, the law of absorption of resonance electrons, emitted from the flat layer, is exponential For conversion electrons of the Moessbauer nuclide 57 Fe the absorption coefficient is (0.025+-0.002) cm 2 /μg, which in the case of iron absorbing film corresponds to (20.0+-1.0)x10 4 cm -1

  7. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  8. 'Green' synthesis of starch capped CdSe nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Li Jinhua; Ren Cuiling; Liu Xiaoyan; Hu Zhide; Xue Desheng

    2007-01-01

    The nearly monodisperse starch capped CdSe nanoparticles were successfully synthesized by a simple and 'green' route at room temperature. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption and photoluminescence (PL) spectra. The XRD analysis showed that the starch capped CdSe nanoparticles were of the cubic structure, the average particle size was calculated to be about 3 nm according to the Debye-Scherrer equation. TEM micrographs exhibited that the starch capped CdSe nanoparticles were well dispersed than the uncapped CdSe nanoparticles, the mean particles size of the capped CdSe was about 3 nm in the TEM image, which was in good agreement with the XRD

  9. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2016-01-01

    The coarsening of supported palladium nanoparticles in an oxidizing atmosphere was studied in situ by means of transmission electron microscopy (TEM). Specifically, the Pd nanoparticles were dispersed on a planar and amorphous Al2O3 support and were observed during the exposure to 10 mbar technical...... for the Ostwald ripening process indicates that the observed change in the particle size distribution can be accounted for by wetting of the Al2O3 support by the larger Pd nanoparticles....

  10. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography.

    Science.gov (United States)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; van Aken, Peter A; Koch, Christoph T

    2016-06-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Diatomite silica nanoparticles for drug delivery

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  13. Diatomite silica nanoparticles for drug delivery.

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. 87.85.J81.05.Rm; 61.46. + w.

  14. Study the effect of calcination temperature on physical and magnetic properties of bare Cobalt nanoparticles and that coated with silica shell

    International Nuclear Information System (INIS)

    Arabi, H.; Pourarian, F.; Chahkandinejad, R.

    2012-01-01

    In this paper, in order to investigate the effect of calcination temperature on the structural and magnetic properties of cobalt nanoparticles, samples have been prepared by Co-precipitation method at different calcination temperature. Cobalt nanoparticles have been prepared by Co-precipitation method at room temperature using hydrazine as reducing in ethanol hydrazine alkaline environment. This agent reduces cobalt salts to Cobalt nanoparticles in FCC and HCP phases. Phase analysis and investigation of Structural properties of the samples using X-ray diffraction patterns (XRD) confirm the formation of hexagonal phases of Co nanoparticles. Transmission electron microscopy was used for determining the size and shape morphology of nanoparticles. Magnetic properties of these nanoparticles have been investigated using a Vibrating sample magnetometer. The results indicate that these nanoparticles are ferromagnetic at room temperature. In addition, in this paper Co nanoparticles coated with silica shell have been prepared by the wet chemical method. Transmission electron microscopy images showed the cobalt core with average diameter of 17-20 nm coated by a silica shell with thickness of 5-7 nm. Hysteresis Loop of these Co nanoparticles coated by silica shell illustrates 16.9 emu/gr for saturation magnetization at 10000 (Oe), which is much less than that of Cobalt nanoparticles

  15. Structural characterization of copolymer embedded magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, G.G., E-mail: ggnedelcu@yahoo.com [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania); Nastro, A.; Filippelli, L. [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Cazacu, M.; Iacob, M. [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Rossi, C. Oliviero [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Popa, A.; Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca 5 (Romania); Dobromir, M.; Iacomi, F. [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania)

    2015-10-15

    Highlights: • The emulsion polymerization method was used to synthesize three samples of poly(methyl methacrylate-co-acrylic acid) coated magnetite obtained before through co-precipitation technique. • Poly(methyl methacrylate-co-acrylic acid) coated magnetite nanoparticles were prepared having spherical shape and dimensions between 13 and 16 nm without agglomerations. • Fourier transform infrared spectra have found that the magnetite was pure and spectral characteristics of PMMA-co-AAc were present. • The electron spin resonance spectra revealed that interactions between nanoparticles are very weak due to the fact that the nanoparticles have been individually embedded in polymer. • The resonance field values as function of temperature demonstrate that the presence of polymer has not modified essentially its magnetic properties, except that at temperatures below 140 K there was a change due to decreasing of the magnetic anisotropy. - Abstract: Small magnetic nanoparticles (Fe{sub 3}O{sub 4}) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  16. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    International Nuclear Information System (INIS)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge; Huang Jinfeng; Chen Yuxin; Lan Shi

    2011-01-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  17. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  18. Recent advances in cryo-TEM imaging of soft lipid nanoparticles

    DEFF Research Database (Denmark)

    Helvig, Shen Yu; Mat Azmi, Intan Diana Binti; Moghimi, Seyed Moien

    2015-01-01

    Cryo-transmission electron microscopy (Cryo-TEM), and its technological variations thereof, have become a powerful tool for detailed morphological characterization and 3D tomography of soft lipid and polymeric nanoparticles as well as biological materials such as viruses and DNA without chemical...... fixation. Here, we review and discuss recent advances in Cryo-TEM analysis of lipid-based drug nanocarriers with particular emphasis on morphological and internal nanostructure characterization of lyotropic liquid crystalline nanoparticles such as cubosomes and hexosomes....

  19. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    Science.gov (United States)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  20. Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles.

    Science.gov (United States)

    Ghandi, Khashayar; Findlater, Alexander D; Mahimwalla, Zahid; MacNeil, Connor S; Awoonor-Williams, Ernest; Zahariev, Federico; Gordon, Mark S

    2015-07-21

    Ultra-fast pre-solvated electron capture has been observed for aqueous solutions of room-temperature ionic liquid (RTIL) surface-stabilized gold nanoparticles (AuNPs; ∼9 nm). The extraordinarily large inverse temperature dependent rate constants (k(e)∼ 5 × 10(14) M(-1) s(-1)) measured for the capture of electrons in solution suggest electron capture by the AuNP surface that is on the timescale of, and therefore in competition with, electron solvation and electron-cation recombination reactions. The observed electron transfer rates challenge the conventional notion that radiation induced biological damage would be enhanced in the presence of AuNPs. On the contrary, AuNPs stabilized by non-covalently bonded ligands demonstrate the potential to quench radiation-induced electrons, indicating potential applications in fields ranging from radiation therapy to heterogeneous catalysis.

  1. Poly(vinylpyrrolidone)/silver nanoparticles: preparation and characterization; Nanoparticulas de prata/poli(vinilpirrolidona): obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, P.F.; Goncalves, M.C. [Instituto de Quimica - UNICAMP, Campinas, SP (Brazil)], e-mail: patandrade@iqm.unicamp.br

    2010-07-01

    In this work silver nanoparticles were prepared by chemical reduction method using PVP as dispersant agent. The formation of silver nanoparticles was investigated by UV-vis optical spectroscopy and X-ray diffraction. FT-IR spectroscopy confirmed the formation of Ag/PVP complex. The transmission electron microscopy images indicated that the concentration of Ag{sup +} precursor influenced the nanoparticles dispersion and size distribution significantly. The results indicated that dispersed nanoparticles with uniform size distribution can be prepared by this methodology to obtain polymeric nano composites. (author)

  2. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyoshi, Yoshifumi; Nemoto, Takashi; Kurata, Hiroki, E-mail: kurata@eels.kuicr.kyoto-u.ac.jp

    2017-04-15

    In this study, electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM) was used to investigate surface plasmons in a single silver nanoparticle (NP) on a magnesium oxide substrate, employing an incident electron trajectory parallel to the substrate surface. This parallel irradiation allowed a direct exploration of the substrate effects on localized surface plasmon (LSP) excitations as a function of the distance from the substrate. The presence of the substrate was found to lower the symmetry of the system, such that the resonance energies of LSPs were dependent on the polarization direction relative to the substrate surface. The resulting mode splitting could be detected by applying different electron trajectories, providing results similar to those previously obtained from optical studies using polarized light. However, the LSP maps obtained by STEM-EELS analysis show an asymmetric intensity distribution with the highest intensity at the top surface of the NP (that is, far from the substrate), a result that is not predicted by optical simulations. We show that modifications of the applied electric field by the substrate cause this asymmetric intensity distribution in the LSP maps.

  3. Solvothermal synthesis and analysis of Bi1-xSbx nanoparticles

    International Nuclear Information System (INIS)

    Sumithra, S.; Misra, D.K.; Wei, C.; Gabrisch, H.; Poudeu, P.F.P.; Stokes, K.L.

    2011-01-01

    Bismuth-antimony alloy nanoparticles have been synthesized by a facile solvothermal method using N,N-dimethylformamide and ethylene glycol as solvent/reducing agent; BiCl 3 , SbCl 3 and Bi(NO 3 ) 3 as precursors; and citric acid as a surface modifier/stabilizing agent. The particle size and size distribution of Bi nanoparticles were analyzed as a function of the synthesis conditions: molar ratio of precursor to surfactant, precursor concentration and reducing agent. Synthesis of Sb and Bi 0.88 Sb 0.12 under similar conditions was also investigated. The phase purity of nanoparticles was confirmed from X-ray diffraction and thermogravimetry and the nanoparticle morphology was investigated by transmission electron microscopy. A case study of Bi nanoparticles with detailed analysis of the particle morphology and size distribution of the nanoparticles is reported.

  4. Interactions in γ-Fe2O3 and Fe3O4 nanoparticle systems

    International Nuclear Information System (INIS)

    Laha, S.S.; Tackett, R.J.; Lawes, G.

    2014-01-01

    We have investigated interaction effects in two different systems of iron oxide nanoparticles. Samples of γ-Fe 2 O 3 and Fe 3 O 4 nanoparticles were synthesized using a matrix-mediated precipitation reaction and a chemical co-precipitation technique respectively. The structural properties of these nanoparticles were studied using x-ray diffraction and transmission electron microscopy. We also used temperature dependent ac magnetic susceptibility measurements to carefully investigate the interactions among these nanoparticles. Our analysis showed that the characteristic interaction energy does not depend simply on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution

  5. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane.

    Science.gov (United States)

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-06-07

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.

  6. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria José dos S. Soares

    2013-03-01

    Full Text Available The present study describes the development of a green synthesis of silver nanoparticles reduced and stabilized by exuded gum from Anacardium occidentale L. and evaluates in vitro their antibacterial and cytotoxic activities. Characterization of cashew gum-based silver nanoparticles (AgNPs was carried out based on UV–Vis spectroscopy, transmission electron microscopy and dynamic light scattering analysis which revealed that the synthesized silver nanoparticles were spherical in shape, measuring about 4 nm in size with a uniform dispersal. AgNPs presented antibacterial activity, especially against Gram-negative bacteria, in concentrations where no significant cytotoxicity was observed.

  7. High-Yield Synthesis of Zinc Oxide Nanoparticles from Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    S. López-Cuenca

    2011-01-01

    Full Text Available The high-yield synthesis of zinc oxide (ZnO primary nanoparticles with high purity and with diameters between 6 and 22 nm using bicontinuous microemulsions is reported in this work. The ZnO nanoparticles were made by hydrolysis of Zn(NO32 with NaOH aqueous solution and precipitation, followed by calcination of the precipitate. Higher yields and productivities of ZnO nanoparticles were obtained compared to values produced with w/o micremulsions reported in the literature. Particles were characterized by transmission electronic microscopy (TEM, X-ray diffraction, and atomic absorption spectroscopy.

  8. Microwave assisted synthesis of CdS nanoparticles and their size evolution

    International Nuclear Information System (INIS)

    Lopez, I. A.; Vazquez, A.; Gomez, I.

    2013-01-01

    The study of the size evolution of CdS nanoparticles in aqueous dispersion is presented in this paper. The sodium citrate was employed as stabilizer of CdS nanoparticles synthesized by microwave assisted synthesis. Analysis of this study was carried out by UV-Vis spectrophotometry, by comparison of the band gap energy using theoretical and empirical models. Results obtained show that the synthesis conditions produce CdS nanoparticles with diameters below of 6 nm, which remains stabilized by at least 14 days. These characteristics were confirmed by transmission electron microscopy. The X-ray diffraction pattern confirms cubic phase of the CdS nanoparticles. (Author)

  9. Microwave assisted synthesis of CdS nanoparticles and their size evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, I. A.; Vazquez, A.; Gomez, I., E-mail: idaliagomezmx@yahoo.com.mx [Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria, 66451 San Nicolas de los Garza, Nuevo Leon (Mexico)

    2013-05-01

    The study of the size evolution of CdS nanoparticles in aqueous dispersion is presented in this paper. The sodium citrate was employed as stabilizer of CdS nanoparticles synthesized by microwave assisted synthesis. Analysis of this study was carried out by UV-Vis spectrophotometry, by comparison of the band gap energy using theoretical and empirical models. Results obtained show that the synthesis conditions produce CdS nanoparticles with diameters below of 6 nm, which remains stabilized by at least 14 days. These characteristics were confirmed by transmission electron microscopy. The X-ray diffraction pattern confirms cubic phase of the CdS nanoparticles. (Author)

  10. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  11. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    International Nuclear Information System (INIS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-01-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N,N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA–Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA–Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus (S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli (E.coli) by the disc diffusion susceptibility test. The HA–Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  12. Multistage linear electron acceleration using pulsed transmission lines

    International Nuclear Information System (INIS)

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Epstein, B.G.; Freeman, J.R.; Sharpe, A.W.; Tucker, W.K.; Shope, S.L.

    1981-01-01

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  13. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    Science.gov (United States)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  14. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope.

    Science.gov (United States)

    Hata, S; Miyazaki, S; Gondo, T; Kawamoto, K; Horii, N; Sato, K; Furukawa, H; Kudo, H; Miyazaki, H; Murayama, M

    2017-04-01

    This paper reports the preliminary results of a new in-situ three-dimensional (3D) imaging system for observing plastic deformation behavior in a transmission electron microscope (TEM) as a directly relevant development of the recently reported straining-and-tomography holder [Sato K et al. (2015) Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Microsc. 64: 369-375]. We designed an integrated system using the holder and newly developed straining and image-acquisition software and then developed an experimental procedure for in-situ straining and time-resolved electron tomography (ET) data acquisition. The software for image acquisition and 3D visualization was developed based on the commercially available ET software TEMographyTM. We achieved time-resolved 3D visualization of nanometer-scale plastic deformation behavior in a Pb-Sn alloy sample, thus demonstrating the capability of this system for potential applications in materials science. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope.

    Science.gov (United States)

    Börrnert, Felix; Renner, Julian; Kaiser, Ute

    2018-05-21

    The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).

  16. Nano-structured thin films : a Lorentz transmission electron microscopy and electron holography study

    NARCIS (Netherlands)

    Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  17. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-01-01

    Highlights: • Fe 3 O 4 nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe 3 O 4 NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe 3 O 4 nanoparticles and Fe 3 O 4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl 2 ·4H 2 O and FeCl 3 ·6H 2 O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe 3 O 4 MNPs consisting of Fe 2+ and Fe 3+ ions with 543.3-mM −1 s −1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  18. Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jose R., E-mail: correa@fq.uh.cu [Department of General Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Bordallo, Eduardo [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Canetti, Dora [Department of Inorganic Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Leon, Vivian [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Otero-Diaz, Luis C. [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain); Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Negro, Carlos [Chemical Engineering Department, Complutense University of Madrid, Madrid 28040 (Spain); Gomez, Adrian [Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Saez-Puche, Regino [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain)

    2010-08-15

    Superparamagnetic magnetite nanoparticles were obtained starting from a mixture of iron(II) and iron(III) solutions in a preset total iron concentration from 0.04 to 0.8 mol l{sup -1} with ammonia at 25 and 70 {sup o}C. The regeneration of cellulose from viscose produces micrometrical spherical cellulose beads in which synthetic magnetite were embedded. The characterization of cellulose-magnetite beads by X-ray diffraction, Scanning and Transmission Electron Microscopy and magnetic measurement is reported. X-ray diffraction patterns indicate that the higher is the total iron concentration and temperature the higher is the crystal size of the magnetite obtained. Transmission Electron Microscopy studies of cellulose-magnetite beads revealed the distribution of magnetite nanoparticles inside pores of hundred nanometers. Magnetite as well as the cellulose-magnetite composites exhibit superparamagnetic characteristics. Field cooling and zero field cooling magnetic susceptibility measurements confirm the superparamagnetic behaviour and the blocking temperature for the magnetite with a mean size of 12.5 nm, which is 200 K.

  19. Expeditious Synthesis of Noble Metal Nanoparticles Using Vitamin B12 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Changseok Han

    2015-08-01

    Full Text Available A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized Ag, Au, and Pd samples were thoroughly characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission microscopy, and UV-visible spectrophotometry, confirming that metallic Ag, Au, and Pd were synthesized by the green chemistry method.

  20. Electron-hole pairs generated in ZrO2 nanoparticle resist upon exposure to extreme ultraviolet radiation

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-02-01

    Metal oxide nanoparticle resists have attracted much attention as the next-generation resist used for the high-volume production of semiconductor devices. However, the sensitization mechanism of the metal oxide nanoparticle resists is unknown. Understanding the sensitization mechanism is important for the efficient development of resist materials. In this study, the energy deposition in a zirconium oxide (ZrO2) nanoparticle resist was investigated. The numbers of electron-hole pairs generated in a ZrO2 core and an methacrylic acid (MAA) ligand shell upon exposure to 1 mJ cm-2 (exposure dose) extreme ultraviolet (EUV) radiations were theoretically estimated to be 0.16 at most and 0.04-0.17 cm2 mJ-1, respectively. By comparing the calculated distribution of electron-hole pairs with the line-and-space patterns of the ZrO2 nanoparticle resist fabricated by an EUV exposure tool, the number of electron-hole pairs required for the solubility change of the resist films was estimated to be 1.3-2.2 per NP. NP denotes a nanoparticle consisting of a metal oxide core with a ligand shell. In the material design of metal oxide nanoparticle resists, it is important to efficiently use the electron-hole pairs generated in the metal oxide core for the chemical change of ligand molecules.

  1. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Peter A., E-mail: crozier@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States); Aoki, Toshihiro [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704 (United States); Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States)

    2016-10-15

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. - Highlights: • High spatial resolution spectroscopic detection of water related species in nanoparticles. • Detection of OH stretch modes with vibrational EELS. • Differentiation between hydrate and hydroxide species on or on nanoparticles. • Detection of hydrate on a single 60 nm oxide nanoparticle of MgO. • Use of aloof beam EELS to minimize radiation damage.

  2. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  3. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Roshmi Thomas

    2014-12-01

    Full Text Available Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM and scanning electron microscope (SEM. The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  4. Origin of spin-dependent asymmetries in electron transmission through ultrathin ferromagnetic films

    International Nuclear Information System (INIS)

    Gokhale, M.P.; Mills, D.L.

    1991-01-01

    We present theoretical calculations of exchange asymmetries in the transmission of electrons through ultrathin films of ferromagnetic Fe. The results account nicely for the magnitude of the asymmetries observed by Pappas et al. in photoemission studies of Cu covered by an ultrathin film of Fe. We argue that exchange asymmetry in the transmissivity of the Fe film, rather than the spin dependence of the electron mean free path, is responsible for the effects reported by these authors

  5. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  6. Transmission electron microscopy of mercury metal

    KAUST Repository

    Anjum, Dalaver H.

    2016-03-28

    Summary: Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. © 2016 Royal Microscopical Society.

  7. Investigation on structural, surface morphological and dielectric properties of Zn-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sagadevan, Suresh [Department of Physics, AMET University, Chennai (India); Podder, Jiban, E-mail: sureshsagadevan@gmail.com [Department of Chemical and Biological Engineering, University of Saskatchewan (Canada)

    2016-03-15

    Zinc doped Tin oxide (SnO{sub 2}) nanoparticles were prepared by co-precipitation method. The average crystallite size of pure and Zn-doped SnO{sub 2} nanoparticles was calculated from the X-ray diffraction (XRD) pattern. The FT-IR spectrum indicated the strong presence of SnO{sub 2} nanoparticles. The morphology and the particle size were studied using the scanning electron microscope (SEM) and transmission electron microscope (TEM). The particle size of the Zn-doped SnO{sub 2} nanoparticles was also analyzed, using the Dynamic Light Scattering (DLS) experiment. The optical properties were studied by the UV-Visible absorption spectrum. The dielectric properties of Zn-doped SnO{sub 2} nanoparticles were studied at different frequencies and temperatures. The ac conductivity of Zn-doped SnO{sub 2} nanoparticles was also studied. (author)

  8. Vibrational properties of gold nanoparticles obtained by green synthesis

    Science.gov (United States)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  9. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Cai Yan; Shen Yuhua; Xie Anjian; Li Shikuo; Wang Xiufang

    2010-01-01

    Superparamagnetic Fe 3 O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3 O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3 O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3 O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (T B ) of 150 K and saturation magnetization of 37.1 emu/g.

  10. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O 4 nanoparticles

    Science.gov (United States)

    Cai, Yan; Shen, Yuhua; Xie, Anjian; Li, Shikuo; Wang, Xiufang

    2010-10-01

    Superparamagnetic Fe 3O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature ( TB) of 150 K and saturation magnetization of 37.1 emu/g.

  11. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats

    Science.gov (United States)

    Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin

    2014-01-01

    Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict

  12. Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)

    2016-06-30

    Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.

  13. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  14. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    Science.gov (United States)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  15. Biological synthesis of metallic nanoparticles using algae.

    Science.gov (United States)

    Castro, Laura; Blázquez, María Luisa; Muñoz, Jesus Angel; González, Felisa; Ballester, Antonio

    2013-09-01

    The increasing demand and limited natural resources of noble metals make its recovery from dilute industrial wastes attractive, especially when using environmentally friendly methods. Nowadays, the high impact that nanotechnology is having in both science and society offers new research possibilities. Gold and silver nanoparticles were biosynthesised by a simple method using different algae as reducing agent. The authors explored the application of dead algae in an eco-friendly procedure. The nanoparticle formation was followed by UV-vis absorption spectroscopy and transmission electron microscopy. The functional groups involved in the bioreduction were studied by Fourier transform infrared spectroscopy.

  16. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  17. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  18. Efficient electronic structure methods applied to metal nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth

    of efficient approaches to density functional theory and the application of these methods to metal nanoparticles. We describe the formalism and implementation of localized atom-centered basis sets within the projector augmented wave method. Basis sets allow for a dramatic increase in performance compared....... The basis set method is used to study the electronic effects for the contiguous range of clusters up to several hundred atoms. The s-electrons hybridize to form electronic shells consistent with the jellium model, leading to electronic magic numbers for clusters with full shells. Large electronic gaps...... and jumps in Fermi level near magic numbers can lead to alkali-like or halogen-like behaviour when main-group atoms adsorb onto gold clusters. A non-self-consistent NewnsAnderson model is used to more closely study the chemisorption of main-group atoms on magic-number Au clusters. The behaviour at magic...

  19. Dendritic functionalization of monolayer-protected gold nanoparticles

    International Nuclear Information System (INIS)

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok

    2007-01-01

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. 1 H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles

  20. Green biosynthesis of silver nanoparticles using pomegranate peel and inhibitory effects of the nanoparticles on aflatoxin production

    International Nuclear Information System (INIS)

    Monira, A.O.; Mohammad, M.A.; Ashraf, H.A.

    2017-01-01

    In this work, pomegranate peel has been used as a natural and safe method for biosynthesis of silver nanoparticles. The synthesis of silver nanoparticles was confirmed using UV spectroscopy, which showed a peak around a wavelength of 437 nm. The morphology showed spherical and monodispersed nanoparticles with a size range between 5-50 nm. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD) experiments revealed their crystalline nature. Active functional groups in the synthesized silver nanoparticles were determined using Fourier transform infrared (FTIR) spectrometers contained four bands at 3281.21 cm/sup -1/, possibly indicating the participationof O-H functional group. The peak take place at 1,636.22 cm/sup -1/ may be pointed to C = N bending in the amide group or C = O stretching in carboxyl. Transfer in this peak (from 1,641 to 1,643 cm/sup -1/) shown the possible role of amino groups or carboxyl in nanoparticle synthesis. The peaks at 431.95 and 421.28 cm/sup -1/ be related to AgNPs bonding with oxygen from hydroxyl groups which confirm the role of pomegranate peel as a reducing agent. Furthermore, we investigated effects of these nanoparticles on aflatoxin B1 production by the fungus Aspergillus flavus, isolated from hazelnut. The results found that aflatoxin production in all A. flavus isolates decreased with an increase in the concentration of silver nanoparticles. Maximum suppression of aflatoxin production was recorded at a nanoparticle concentration of 150 ppm. (author)

  1. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy.

    Science.gov (United States)

    Kolodziejczyk, Agnieszka; Jakubowska, Aleksandra; Kucinska, Magdalena; Wasiak, Tomasz; Komorowski, Piotr; Makowski, Krzysztof; Walkowiak, Bogdan

    2018-05-10

    Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.hy926), when exposed to silver nanoparticles, as measured using force spectroscopy, could be effectively used as a bio-indicator of the physiological state of the cells. Silver nanoparticles were characterized with transmission electron microscopy and dynamic light scattering techniques. Tetrazolium salt reduction test was used to determine cell viability after treatment with silver nanoparticles. An elasticity of native cells was examined in the Hanks' buffer whereas fixed cells were softly fixed with formaldehyde. Additional aspect of the work is the comparative force spectroscopy utilizing AFM probes of ball-shape and conical geometries, in order to understand what changes in cell elasticity, caused by SNPs, were detectable with each probe. As a supplement to elasticity studies, cell morphology observation by atomic force microscopy and detection of silver nanoparticles inside cells using transmission electron microscopy were also performed. Cells exposed to silver nanoparticles at the highest selected concentrations (3.6 μg/mL, 16 μg/mL) are less elastic. It may be associated with the reorganization of the cellular cytoskeleton and the "strengthening" of the cell cortex caused by presence of silver nanoparticles. This observation does not depend on cell fixation. Agglomerates of silver nanoparticles were observed on the cell membrane as well as inside the cells. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    Science.gov (United States)

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  3. Cross-sectional transmission electron microscopy of semiconductors

    International Nuclear Information System (INIS)

    Sadana, D.K.

    1982-10-01

    A method to prepare cross-sectional (X) semiconductor specimens for transmission electron microscopy (TEM) has been described. The power and utility of XTEM has been demonstrated. It has been shown that accuracy and interpretation of indirect structural-defects profiling techniques, namely, MeV He + channeling and secondary ion mass spectrometry (SIMS) can be greatly enhanced by comparing their results with those obtained by XTEM from the same set of samples

  4. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  5. Tunable shapes in supported metal nanoparticles: From nanoflowers to nanocubes

    International Nuclear Information System (INIS)

    Luque, Rafael; Balu, Alina Mariana; Campelo, Juan Manuel; Gonzalez-Arellano, Camino; Gracia, Maria Jose; Luna, Diego; Marinas, Jose Maria; Romero, Antonio Angel

    2009-01-01

    The facile preparation of a range of supported nanoparticles on porous materials was successfully accomplished through the use of a range of environmentally friendly protocols including a modified impregnation/reduction methodology, ultrasounds and microwave irradiation. Materials were characterised by transmission electron microscopy (TEM) and XPS. Different morphologies including conventional nanospheres, nanoflower aggregates, nanorod-like structures and nanocubes were achieved under different conditions. The reported supported nanoparticles are envisaged to have interesting applications in various areas including catalysis, optics and sensors.

  6. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  7. Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging

    International Nuclear Information System (INIS)

    Shah, Prasanna; Gavrin, A.

    2006-01-01

    We have developed a modified sputtering gun for direct synthesis of metallic nanoparticles, and used this system to produce magnetic domain images using high-resolution Bitter microscopy (HRBM). The nanoparticles are produced at 900 mTorr inside the gun and transported to the main vacuum chamber by the pressure difference between the chamber and the gun interior. Fe particles synthesized using the particle gun have been characterized using X-ray diffraction, atomic force microscopy, and transmission electron microscopy techniques. The particles are 15-30 nm in size with a pure BCC phase. Further, we have deposited these Fe nanoparticles on magnetic recording media and observed the domain patterns using optical microscopy, scanning electron microscopy, and atomic force microscopy. We achieve a spatial resolution of at most 80 nm

  8. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Raja Naika, H. [Dept. of Biotechnology, University College of Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur (India); Ramakrishnappa, T.; Balakrishna, Geetha R. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Dept. of Chemistry, Siddaganga Institute of Technology, Tumkur (India)

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  9. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  10. Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens.

    Science.gov (United States)

    Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J; Burke, M Grace

    2016-12-01

    In recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.

  11. Monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Rechberger, W.; Kothleitner, G.; Hofer, F.

    2006-01-01

    Full text: Electron energy-loss spectroscopy (EELS) has developed into an established technique for chemical and structural analysis of thin specimens in the (scanning) transmission electron microscope (S)TEM. The energy resolution in EELS is largely limited by the stability of the high voltage supply, by the resolution of the spectrometer and by the energy spread of the source. To overcome this limitation a Wien filter monochromator was recently introduced with commercially available STEMs, offering the advantage to better resolve EELS fine structures, which contain valuable bonding information. The method of atomic resolution Z-contrast imaging within an STEM, utilizing a high-angle annular dark-field (HAADF) detector can perfectly complement the excellent energy resolution, since EELS spectra can be collected simultaneously. In combination with a monochromator microscope not only high spatial resolution images can be recorded but also high energy resolution EELS spectra are attainable. In this work we investigated the STEM performance of a 200 kV monochromated Tecnai F20 with a high resolution Gatan Imaging Filter (HR-GIF). (author)

  12. Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles

    International Nuclear Information System (INIS)

    Bauer, Christophe; Abid, Jean-Pierre; Girault, Hubert H.

    2005-01-01

    The size dependence of electron-phonon coupling rate has been investigated by femtosecond transient absorption spectroscopy for gold nanoparticles (NPs) wrapped in a shell of sulfate with diameter varying from 1.7 to 9.2 nm. Broad-band spectroscopy gives an overview of the complex dynamics of nonequilibrium electrons and permits the choice of an appropriate probe wavelength for studying the electron-phonon coupling dynamics. Ultrafast experiments were performed in the weak perturbation regime (less than one photon in average per nanoparticle), which allows the direct extraction of the hot electron cooling rates in order to compare different NPs sizes under the same conditions. Spectroscopic data reveals a decrease of hot electron energy loss rates with metal/adsorbates nanosystem sizes. Electron-phonon coupling time constants obtained for 9.2 nm NPs are similar to gold bulk materials (∼1 ps) whereas an increase of hot electron cooling time up to 1.9 ps is observed for sizes of 1.7 nm. This is rationalized by the domination of surface effects over size (bulk) effects. The slow hot electron cooling is attributed to the adsorbates-induced long-lived nonthermal regime, which significantly reduces the electron-phonon coupling strength (average rate of phonon emission)

  13. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  14. Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis

    Science.gov (United States)

    Nava, O. J.; Luque, P. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Mota-González, M. L.; Olivas, A.

    2017-04-01

    This work addresses low cost, non-toxic green synthesis of Zinc Oxide nanoparticles prepared using different amounts of Camellia sinensis extract. The Synthesized material was studied and characterized through Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM). The Zinc Oxide nanoparticles presented the desired Znsbnd O bond at 618 cm-1, demonstrated growth in a purely hexagonal Wurtzite crystal structure, and, depending on the amount of extract used, they presented different size and shape homogeneity. The photocatalytic activity of the obtained Zinc Oxide nanoparticles was studied. The photocatalytic degradation studies were done at a 1:1 M ratio of methylene blue to Zinc Oxide nanoparticles under UV light. The obtained results presented a better degradation rate than commercially available Zinc Oxide nanoparticles.

  15. Radiation Synthesis of PVA/ Chitosan Membranes Containing Silver Nanoparticles for Biomedical Applications

    International Nuclear Information System (INIS)

    Elbarbary, A.M.; El-Sawy, N.M.

    2015-01-01

    Silver Nanoparticles (AgNPs) were synthesized by γ-rays of polyvinyl alcohol/ chitosan (PVA/ CS) membranes containing silver nitrate (AgNO ) with promising antimicrobial and biomedical applications. The synthesized silver nanoparticles characterized by Ultra Violet spectroscopy (UV), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV studies showed a strong peak around λmax at 420 nm. A uniform distribution of silver nanoparticles inside PVA/ CS membranes was achieved by TEM investigation. The prepared silver nanoparticles showed good antimicrobial activity. The membranes containing AgNPs showed non-thrombogenicity effect and slightly haemolytic potential. The prepared membranes containing AgNPs had promising use in biomedical applications.

  16. Electron transmission through a periodically driven graphene magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, R., E-mail: rbiswas.pkc@gmail.com [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Maiti, S. [Ajodhya Hills G.S.A.T High School, Ajodhya, Purulia, West Bengal – 723152 (India); Mukhopadhyay, S. [Purulia Zilla School, Dulmi Nadiha, Purulia, West Bengal – 723102 (India); Sinha, C. [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur – 700032 (India)

    2017-05-10

    Electronic transport through graphene magnetic barriers is studied theoretically in presence of an external time harmonic scalar potential in the framework of non-perturbative Landau–Floquet Formalism. The oscillating field mostly suppresses the transmission for rectangular magnetic barrier structure and exhibits the Fano resonance for multiphoton processes due to the presence of bound state inside the barrier. While, for a pair of delta function barriers of larger separation, the oscillating potential suppresses the usual Fabry–Perot oscillations in the transmission and a new type of asymmetric Fano resonance is noted for smaller separation, occurring due to extended states between the barriers. - Highlights: • Tunnelling of the Dirac Fermions through oscillating pure magnetic barriers is reported for the first time. • The high energy transmission through a graphene magnetic barrier is suppressed by the application of time periodic modulation. • Suppression of the Fabry Perot transmission is noted due to the application of an external time harmonic potential. • Two kinds of the Fano resonances are noted in transmission through a pair of modulated δ-function magnetic barriers.

  17. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  18. Optical and surface morphological properties of triethylamine passivated lead sulphide nanoparticles

    International Nuclear Information System (INIS)

    Navaneethan, M.; Nisha, K.D.; Ponnusamy, S.; Muthamizhchelvan, C.

    2009-01-01

    The triethylamine capped lead sulphide (PbS) nanoparticles were successfully synthesized by simple wet chemical method. The synthesized product has been characterized by powder X-ray diffraction (XRD), UV-vis spectrophotometry, FTIR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence studies. The size of the PbS nanoparticles was determined from AFM, TEM, XRD and from these studies it is found that the size of the particles of the order of 10-15 nm. Significant 'blue shift' from bulk material was observed on the PbS nanoparticles using UV-vis and photoluminescence spectrum.

  19. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  20. Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang, Congmin; Wu, Yurong; Wang, Xin; Zou, Liangliang; Zou, Zhiqing; Yang, Hui

    2016-01-01

    Many intermetallic compounds have a predictable structure, interesting electronic effects, and useful catalytic properties. In this work, a low temperature, surfactant-free, and one-pot method is used to synthesize carbon supported Pd 2 Sn intermetallic nanoparticles. The superlattice of the product was then characterized using X-ray diffraction and transmission electron microscopy. These synthesized intermetallic nanoparticles were found to exhibit a higher activity and stability for electrocatalysis of the ethanol oxidation reaction in an alkaline media than has been achieved using a traditional Pd/C catalyst, which could be attributed to the structural and compositional stabilities of ordered Pd 2 Sn intermetallic nanoparticles.

  1. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions.

    Science.gov (United States)

    Love, Sara A; Haynes, Christy L

    2010-09-01

    Using two of the most commonly synthesized noble metal nanoparticle preparations, citrate-reduced Au and Ag, the impacts of short-term accidental nanoparticle exposure are examined in primary culture murine adrenal medullary chromaffin cells. Transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Alamar Blue viability studies revealed that nanoparticles are taken up by cells but do not decrease cell viability within 48 hours of exposure. Carbon-fiber microelectrode amperometry (CFMA) examination of exocytosis in nanoparticle-exposed cells revealed that nanoparticle exposure does lead to decreased secretion of chemical messenger molecules, of up to 32.5% at 48 hours of Au exposure. The kinetics of intravesicular species liberation also slows after nanoparticle exposure, between 30 and 50% for Au and Ag, respectively. Repeated stimulation of exocytosis demonstrated that these effects persisted during subsequent stimulations, meaning that nanoparticles do not interfere directly with the vesicle recycling machinery but also that cellular function is unable to recover following vesicle content expulsion. By comparing these trends with parallel studies done using mast cells, it is clear that similar exocytosis perturbations occur across cell types following noble metal nanoparticle exposure, supporting a generalizable effect of nanoparticle-vesicle interactions.

  2. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-01-17

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  3. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2011-01-01

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  4. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Investigating the growth mechanism and optical properties of carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Anjum, Dalaver H.; Memon, Nasir; Chung, Suk-Ho

    2013-01-01

    TiO2 nanoparticles (NPs) were prepared using flame synthesis and then characterized using transmission electron microscopy. We found that the flame method yields both crystalline TiO2 and amorphous TiO 2 NPs. TEM analysis revealed that only

  6. Exploring the phase space of time of flight mass selected PtxY nanoparticles

    DEFF Research Database (Denmark)

    Masini, Federico; Hernandez-Fernandez, Patricia; Deiana, Davide

    2014-01-01

    the importance of transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) for verifying the morphology, size distribution and chemical composition of the nanoparticles. Furthermore, we correlate the morphology and the composition of the Ptx...

  7. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M. -C.; Berthelot, T.; Baudin, C.; Déléris, G., E-mail: giancarlo.rizza@polytechnique.edu [Commissariat à l' énergie atomique (CEA), Institut Rayonnement Matière de Saclay (IRaMIS), B.P. 52, 91191 Gif Sur Yvette Cedex (France)

    2010-07-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy.

  8. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M.-C.; Berthelot, T.; Baudin, C.; Déléris, G.

    2010-01-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy

  9. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  10. Three-Dimensional Orientation Mapping in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Liu, Haihua; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D orientation mapping in the transmission electron microscope of mono- and multiphase nanocrystalline materials with a spatial resolution reaching 1 nm. We demonstrate the technique by an experimental study...

  11. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  12. Nanometer-resolution electron microscopy through micrometers-thick water layers

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Niels de, E-mail: niels.de.jonge@vanderbilt.edu [Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615 (United States); Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); Poirier-Demers, Nicolas; Demers, Hendrix [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada); Peckys, Diana B. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN 37996-1605 (United States); Drouin, Dominique [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada)

    2010-08-15

    Scanning transmission electron microscopy (STEM) was used to image gold nanoparticles on top of and below saline water layers of several micrometers thickness. The smallest gold nanoparticles studied had diameters of 1.4 nm and were visible for a liquid thickness of up to 3.3 {mu}m. The imaging of gold nanoparticles below several micrometers of liquid was limited by broadening of the electron probe caused by scattering of the electron beam in the liquid. The experimental data corresponded to analytical models of the resolution and of the electron probe broadening as function of the liquid thickness. The results were also compared with Monte Carlo simulations of the STEM imaging on modeled specimens of similar geometry and composition as used for the experiments. Applications of STEM imaging in liquid can be found in cell biology, e.g., to study tagged proteins in whole eukaryotic cells in liquid and in materials science to study the interaction of solid:liquid interfaces at the nanoscale.

  13. Foucault imaging by using non-dedicated transmission electron microscope

    International Nuclear Information System (INIS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-01-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  14. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  15. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  16. Green and Rapid Synthesis of Anticancerous Silver Nanoparticles by Saccharomyces boulardii and Insight into Mechanism of Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Kaler

    2013-01-01

    Full Text Available Rapidly developing field of nanobiotechnology dealing with metallic nanoparticle (MNP synthesis is primarily lacking control over size, shape, dispersity, yield, and reaction time. Present work describes an ecofriendly method for the synthesis of silver nanoparticles (AgNPs by cell free extract (CFE of Saccharomyces boulardii. Parameters such as culture age (stationary phase growth, cell mass concentration (400 mg/mL, temperature (35°C, and reaction time (4 h, have been optimized to exercise a control over the yield of nanoparticles and their properties. Nanoparticle (NP formation was confirmed by UV-Vis spectroscopy, elemental composition by EDX (energy dispersive X-rays analysis, and size and shape by transmission electron microscopy. Synthesized nanoparticles had the size range of 3–10 nm with high negative zeta potential (−31 mV indicating excellent stability. Role of proteins/peptides in NP formation and their stability were also elucidated. Finally, anticancer activity of silver nanoparticles as compared to silver ions was determined on breast cancer cell lines.

  17. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol

    Science.gov (United States)

    Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.

    2018-04-01

    Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.

  18. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Science.gov (United States)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-06-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  19. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, A; Kumar, G Vijaya; Priya, A R Sathiya; Vasudevan, T [Advanced Materials Research Lab, Department of Industrial Chemistry, Alagappa University, Karaikudi-630 003 (India)

    2007-06-06

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively.

  20. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    Science.gov (United States)

    Subramania, A.; Vijaya Kumar, G.; Sathiya Priya, A. R.; Vasudevan, T.

    2007-06-01

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively.