WorldWideScience

Sample records for nanoparticles transfection study

  1. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  2. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    International Nuclear Information System (INIS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnuerch, Andreas Bernkop

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy

  3. Transfection Agent Induced Nanoparticle Cell Loading

    Directory of Open Access Journals (Sweden)

    Karin Montet-Abou

    2005-07-01

    Full Text Available Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent assisted loading with the Feridex IV® nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV® and three internalization agents protamine (PRO, polylysine (PLL, and lipofectamine (LFA. Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 μg/mL Feridex and 3 μg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.

  4. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  5. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  6. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Murua Escobar, Hugo; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  7. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  8. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  9. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mannosylated Chitosan Nanoparticles Based Macrophage-Targeting Gene Delivery System Enhanced Cellular Uptake and Improved Transfection Efficiency.

    Science.gov (United States)

    Peng, Yixing; Yao, Wenjun; Wang, Bo; Zong, Li

    2015-04-01

    Gene transfer mediated by mannosylated chitosan (MCS) is a safe and promising approach for gene and vaccine delivery. MCS nanoparticles based gene delivery system showed high in vivo delivery efficiency and elicited strong immune responses in mice. However, little knowledge about the cell binding, transfection efficiency and intracellular trafficking of MCS nanoparticles had been acquired. In this study, using gastrin-releasing peptide as a model plasmid (pGRP), the binding of MCS/pGRP nanoparticles to macrophages and the intracellular trafficking of MCS/pGRP nanoparticles in macrophages were investigated. MCS-mediated transfection efficiency in macrophages was also evaluated using pGL-3 as a reporter gene. The results showed that the binding and transfection efficiency of MCS nanoparticles in macrophages was higher than that of CS, which was attributed to the interaction between mannose ligands in MCS and mannose receptors on the surface of macrophages. Observation with a confocal laser scanning microscope indicated the cellular uptake of MCS/pGRP nanoparticles were more than that of CS/pGRP nanoparticles in macrophages. MCS/pGRP nanoparticles were taken up by macrophages and most of them were entrapped in endosomal/lysosomal compartments. After the nanoparticles escaping from endosomal/lysosomal compartments, naked pGRP entered the nucleus, and a few MCS might enter the nucleus in terms of nanoparticles. Overall, MCS has the potential to be an excellent macrophage-targeting gene delivery carrier.

  11. Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate core-shell magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Tencomnao T

    2012-06-01

    Full Text Available Tewin Tencomnao,1,* Kewalin Klangthong,2,* Nuttaporn Pimpha,3 Saowaluk Chaleawlert-umpon,3 Somsak Saesoo,3 Noppawan Woramongkolchai,3 Nattika Saengkrit,31Center for Excellence in Omics-Nano Medical Technology Development Project, 2Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 3National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand*Both authors contributed equally to this workBackground: The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate (PMMA core/polyethyleneimine (PEI shell (mag-PEI nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2 gene was also investigated in cultured neuronal LAN-5 cells.Methods: The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the

  12. In vitro studies of magnetically enhanced transfection in COS-7 cells

    International Nuclear Information System (INIS)

    Ang, D.; Tay, C.Y.; Tan, L.P.; Preiser, P.R.; Ramanujan, R.V.

    2011-01-01

    In the magnetically enhanced gene delivery technique, DNA complexed with polymer coated aggregated magnetic nanoparticles (AMNPs) is used for effecting transfection. The aim of this study is to examine the relationship between transfection efficiency and the physical characteristics of the polymer coated AMNPs. In vitro studies of transfection efficiency in COS-7 cells were carried out using pEGFP-N1 and pMIR-REPORT complexed polyethylenimine (PEI) coated iron oxide magnetic nanoparticles. PEI coated AMNPs (PEI-AMNPs) with average individual particle diameters in the range of 8 nm to 30 nm were studied and characterized by transmission electron microscopy, vibrating sample magnetometry, X-ray diffractometry, thermal gravimetric analysis and photon correlation spectroscopy methods. PEI-A8MNP and PEI-A30MNP yielded higher transfection efficiency compared to commercial polyMAG particles as well as PEI of equivalent molar ratio of nitrogen/phosphorous (N/P ratio). The transfection efficiency was related to the physical characteristics of the PEI-AMNPs and its complexes: transfection efficiency was strongly positively correlated with saturation magnetization (Ms) and susceptibility (χ), strongly negatively correlated with N/P ratio, moderately positively correlated to zeta potential and moderately negatively correlated to hydrodynamic diameter of the complex. PEI-A8MNP and PEI-A30MNP possessing higher Ms, χ, lower N/P ratio and smaller complex size exhibited higher transfection efficiency compared to PEI-A16MNP which have weaker magnetic properties, higher N/P ratio and larger complex size. We have demonstrated that optimization of the physical properties of PEI-AMNPs is needed to maximize transfection efficiency. - Research highlights: →The transfection efficiency in magnetically enhanced gene delivery was studied. →Transfection efficiency was strongly positively correlated to magnetic properties. →Transfection efficiency was strongly negatively correlated with

  13. Inorganic nanoparticles for transfection of mammalian cells and removal of viruses from aqueous solutions.

    Science.gov (United States)

    Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin

    2007-12-01

    Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.

  14. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  15. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA

    NARCIS (Netherlands)

    Olbrich, C; Bakowsky, U; Muller, RH; Kneuer, C

    2001-01-01

    The suitability of cationically modified solid-lipid nanoparticles (SLN) as a novel transfection agent was investigated. SLN were produced by hot homogenisation using either Compritol ATO 888 or paraffin as matrix lipid, a mixture of Tween 80 and Span 85 as tenside and either EQ1

  16. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    International Nuclear Information System (INIS)

    Wu Xuewen; Ding Dalian; Jiang Haiyan; XingXiaowei; Huang, Suping; Liu Hong; Chen Zhedong; Sun Hong

    2012-01-01

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI–nHAT, diameter = 73.09 ± 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2–NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector–gene complex (PEI–nHAT–pEGFPC2–NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector–gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector–gene complexes. Considering the high transfection efficiency in the vestibular system, PEI–nHAT may be a potential vector for

  17. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuewen; Ding Dalian [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Jiang Haiyan [State University of New York at Buffalo, Center for Hearing and Deafness (United States); XingXiaowei [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Huang, Suping [Central South University, State Key Laboratory of Powder Metallurgy (China); Liu Hong [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Chen Zhedong [Central South University, State Key Laboratory of Powder Metallurgy (China); Sun Hong, E-mail: shjhaj@vip.163.com [Central South University, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital (China)

    2012-01-15

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI-nHAT, diameter = 73.09 {+-} 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2-NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector-gene complex (PEI-nHAT-pEGFPC2-NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector-gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector-gene complexes. Considering the high transfection efficiency in the vestibular system, PEI-nHAT may be a potential vector for gene therapy of

  18. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  19. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    Science.gov (United States)

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  20. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.

    Directory of Open Access Journals (Sweden)

    Juan Ramón Vanegas Sáenz

    Full Text Available Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP, the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8, which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC and human osteoblasts (hOB in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.

  1. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  2. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  3. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira

    2013-01-01

    Full Text Available Objective: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. Materials and Methods: Chitosan and thiolated chitosan nanoparticles (NPs were prepared in order to obtain a NH3 + :PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. Results: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. Conclusion: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery.

  4. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  5. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro.

    Science.gov (United States)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H; Schmidt, H; Lehr, C M

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection complexes. In analogy to the terms lipoplex and polyplex, we propose to describe the nanoparticle-DNA complexes by the term "nanoplex". Three batches, Si10E, Si100E, and Si26H, sized between 10 and 100 nm and with zeta potentials ranging from +7 to +31 mV at pH 7.4 were evaluated. The galactosidase expression plasmid DNA pCMVbeta was immobilized on the particle surface and efficiently transfected Cos-1 cells. The transfection activity was accompanied by very low cytotoxicity, with LD(50) values in the milligrams per milliliter range. The most active batch, Si26H, was produced by modification of commercially available silica particles with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, yielding spherical nanoparticles with a mean diameter of 26 nm and a zeta potential of +31 mV at pH 7.4. Complexes of Si26H and pCMVbeta plasmid DNA formed at w/w ratios of 10 were most effective in promoting transfection of Cos-1 cells in the absence of serum. At this ratio, >90% of the DNA was associated with the particles, yielding nanoplexes with a net negative surface charge. When the transfection medium was supplemented with 10% serum, maximum gene expression was observed at a w/w ratio of 30, at which the resulting particle-DNA complexes possessed a positive surface charge. Transfection was strongly increased in the presence of 100 microM chloroquine in the incubation medium and reached approximately 30% of the efficiency of a 60 kDa polyethylenimine. In contrast to polyethylenimine, no toxicity was observed at the concentrations required. Atomic force microscopy of Si26H-DNA complexes revealed a spaghetti-meatball-like structure. The surface of complexes prepared at a w/w ratio of

  6. Transfection in perfused microfluidic cell culture devices: A case study.

    Science.gov (United States)

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  7. Nonviral transfection of adipose tissue stromal cells: an experimental study.

    Science.gov (United States)

    Lopatina, T V; Kalinina, N I; Parfyonova, E V

    2009-04-01

    Delivery of plasmid DNA and interfering RNA into adipose tissue stromal cells was carried out by the methods of lipofection, calcium phosphate method, and by electroporation. The percent of transfected cells after delivery of plasmid DNA by the calcium phosphate method and lipofection was 0 and 15%, respectively, vs. more than 50% after electroporation. Similar results were obtained for delivery of short-strand RNA into cells. These data indicate that electroporation is the most effective method of nonviral transfection of adipose tissue stromal cells.

  8. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    Energy Technology Data Exchange (ETDEWEB)

    Steitz, Benedikt [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Kamau, Sarah W. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hassa, Paul O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann-Amtenbrink, Magarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Petri-Fink, Alke [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)]. E-mail: alke.fink@epfl.ch

    2007-04-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, {zeta}-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency.

  9. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    International Nuclear Information System (INIS)

    Steitz, Benedikt; Hofmann, Heinrich; Kamau, Sarah W.; Hassa, Paul O.; Hottiger, Michael O.; Rechenberg, Brigitte von; Hofmann-Amtenbrink, Magarethe; Petri-Fink, Alke

    2007-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, ζ-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency

  10. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  11. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.

    Science.gov (United States)

    Khan, Mohammed A; Wu, Victoria M; Ghosh, Shreya; Uskoković, Vuk

    2016-06-01

    Despite the long history of nanoparticulate calcium phosphate (CaP) as a non-viral transfection agent, there has been limited success in attempts to optimize its properties for transfection comparable in efficiency to that of viral vectors. Here we focus on the optimization of: (a) CaP nanoparticle precipitation conditions, predominantly supersaturation and Ca/P molar ratios; (b) transfection conditions, mainly the concentrations of the carrier and plasmid DNA; (c) the presence of surface additives, including citrate anion and cationic poly(l-lysine) (PLL). CaP nanoparticles significantly improved transfection with plasmid DNA encoding enhanced green fluorescent protein (eGFP) in pre-osteoblastic MC3T3-E1 cells compared to a commercial non-viral carrier. At the same time they elicited significantly lesser cytotoxicity than the commercial carrier. Plasmid DNA acted as a nucleation promoter, decreasing the nucleation lag time of metastable CaP solutions and leading to a higher rate of nucleation and a lower size of the precipitated particles. The degree of supersaturation (DS) of 15 was found to be more optimal for transfection than that of 12.5 or 17.5 and higher. Because CaP particles precipitated at DS 15 were spherical, while DS 17.5 and 21 yielded acicular particles, it was concluded that spherical particle morphologies were more conducive to transfection than the anisotropic ones. Even though the yield at DS 15 was 10 and 100 times lower than that at DS 17.5 and 21, respectively, transfection rates were higher using CaP nanoparticle colloids prepared at DS 15 than using those made at higher or lower DS, indicating that the right particle morphology can outweigh the difference in the amount of the carrier, even when this difference is close to 100×. In contrast to the commercial carrier, the concentration of CaP-pDNA delivered to the cells was directly proportional to the transfection rate. Osteosarcoma K7M2 cells were four times more easily transfectable with

  12. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    NARCIS (Netherlands)

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that

  13. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems

    Science.gov (United States)

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  14. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro

    NARCIS (Netherlands)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection

  15. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies

    Directory of Open Access Journals (Sweden)

    Morral Núria

    2011-01-01

    Full Text Available Abstract Background Primary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA or microRNA (miRNA. New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity. Findings We have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells as well as double stranded RNA (>90% with siRNA or microRNA. In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA. Conclusions We have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.

  16. Gene expression profiles in primary duodenal chick cells following transfection with avian influenza virus H5 DNA plasmid encapsulated in silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Jazayeri SD

    2013-02-01

    Full Text Available Seyed Davoud Jazayeri,1 Aini Ideris,1,2 Kamyar Shameli,3 Hassan Moeini,1 Abdul Rahman Omar1,21Institute of Bioscience, 2Faculty of Veterinary Medicine, 3Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: In order to develop a systemically administered safe and effective nonviral gene delivery system against avian influenza virus (AIV that induced cytokine expression, the hemagglutinin (H5 gene of AIV, A/Ck/Malaysia/5858/04 (H5N1 and green fluorescent protein were cloned into a coexpression vector pIRES (pIREGFP-H5 and formulated using green synthesis of silver nanoparticles (AgNPs with poly(ethylene glycol and transfected into primary duodenal cells taken from 18-day-old specific-pathogen-free chick embryos. The AgNPs were prepared using moderated temperature and characterized for particle size, surface charge, ultraviolet-visible spectra, DNA loading, and stability. AgNPs and AgNP-pIREGFP-H5 were prepared in the size range of 13.9 nm and 25 nm with a positive charge of +78 ± 0.6 mV and +40 ± 6.2 mV, respectively. AgNPs with a positive surface charge could encapsulate pIREGFP-H5 efficiently. The ultraviolet-visible spectra for AgNP-pIREGFP-H5 treated with DNase I showed that the AgNPs were able to encapsulate pIREGFP-H5 efficiently. Polymerase chain reaction showed that AgNP-pIREGFP-H5 entered into primary duodenal cells rapidly, as early as one hour after transfection. Green fluorescent protein expression was observed after 36 hours, peaked at 48 hours, and remained stable for up to 60 hours. In addition, green fluorescent protein expression generally increased with increasing DNA concentration and time. Cells were transfected using Lipocurax in vitro transfection reagent as a positive control. A multiplex quantitative mRNA gene expression assay in the transfected primary duodenal cells via the transfection reagent and AgNPs with pIREGFP-H5 revealed expression of interleukin (IL-18, IL-15, and IL-12

  17. Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines, primary- and stem cells using fs laser pulses.

    Science.gov (United States)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Heinemann, Dag; Kalies, Stefan; Ngezahayo, Anaclet; Nolte, Ingo; Ripken, Tammo; Junghanß, Christian; Meyer, Heiko; Murua Escobar, Hugo; Heisterkamp, Alexander

    2015-08-01

    Gold nanoparticle mediated (GNOME) laser transfection is a powerful technique to deliver small biologically relevant molecules into cells. However, the transfection of larger and especially negatively charged DNA remains challenging. The efficiency for pDNA was 0.57% using parameter that does not influence the endo- and exogenous DNA. In order to gain a deeper understanding of the actual molecule uptake process, the uptake efficiency was determined using molecules of different sizes. It was evaluated that uncharged dextran molecules (2000 kDa) were delivered with an efficiency of 68%. The intracellular distribution of injected molecules was visualized and larger molecules were primary found in the cytoplasm. Patch clamp measurements suggested a permeabilization time up to 15 minutes. The uptake efficiency depended on the size and charge of the molecule to deliver as well as the cell size. A minor role for transfection plays the cell type since primary stem cells were successfully transfected. The perforation efficiency of semi-adherent and suspension cells is influenced by the cell and molecule size. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. RNA processing and ribonucleoprotein assembly studied in vivo by RNA transfection

    International Nuclear Information System (INIS)

    Kleinschmidt, A.M.; Pederson, T.

    1990-01-01

    The authors present a method for studying RNA processing and ribonucleoprotein assembly in vivo, by using RNA synthesized in vitro. SP6-transcribed 32 P-labeled U2 small nuclear RNA precursor molecules were introduced into cultured human 293 cells by calcium phosphate-mediated uptake, as in standard DNA transfection experiments. RNase protection mapping demonstrated that the introduced pre-U2 RNA underwent accurate 3' end processing. The introduced U2 RNA was assembled into ribonucleoprotein particles that reacted with an antibody specific for proteins known to be associated with the U2 small nuclear ribonucleoprotein particle. The 3' end-processed, ribonucleoprotein-assembled U2 RNA accumulated in the nuclear fraction. When pre-U2 RNA with a 7-methylguanosine group at the 5' end was introduced into cells, it underwent conversion to a 2,2,7-trimethylguanosine cap structure, a characteristic feature of the U-small nuclear RNAs. Pre-U2 RNA introduced with an adenosine cap (Ap-ppG) also underwent processing, small nuclear ribonucleoprotein assembly, and nuclear accumulation, establishing that a methylated guanosine cap structure is not required for these steps in U2 small nuclear ribonucleprotein biosynthesis. Beyond its demonstrated usefulness in the study of small nuclear ribonucleoprotein biosynthesis, RNA transfection may be of general applicability to the investigation of eukaryotic RNA processing in vivo and may also offer opportunities for introducing therapeutically targeted RNAs (ribozymes or antisense RNA) into cells

  20. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement

    Directory of Open Access Journals (Sweden)

    Ji J

    2012-06-01

    Full Text Available Ji Jun, Ji Shang-Yi, Yang Jian-An, He Xia, Yang Xiao-Han, Ling Wen-Ping, Chen Xiao-LingDepartment of Pathology and Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, Guangdong, People's Republic of ChinaBackground: There are more than 300,000 prosthetic heart valve replacements each year worldwide. These patients are faced with a higher risk of thromboembolic events after heart valve surgery and long-term or even life-long anticoagulative and antiplatelet therapies are necessary. Some severe complications such as hemorrhaging or rebound thrombosis can occur when the therapy ceases. Tissue-type plasminogen activator (t-PA is a thrombolytic agent. One of the best strategies is gene therapy, which offers a local high expression of t-PA over a prolonged time period to avoid both systemic hemorrhaging and local rebound thrombosis. There are some issues with t-PA that need to be addressed: currently, there is no up-to-date report on how the t-PA gene targets the heart in vivo and the gene vector for t-PA needs to be determined.Aims: To fabricate an albumin nano-t-PA gene ultrasound-targeted agent and investigate its targeting effect on prevention of thrombosis after heart mechanic valve replacement under therapeutic ultrasound.Methods: A dog model of mechanical tricuspid valve replacement was constructed. A highly expressive t-PA gene plasmid was constructed and packaged by nanoparticles prepared with bovine serum albumin. This nanopackaged t-PA gene plasmid was further cross-linked to ultrasonic microbubbles prepared with sucrose and bovine serum albumin to form the ultrasonic-targeted agent for t-PA gene transfection. The agent was given intravenously followed by a therapeutic ultrasound treatment (1 MHz, 1.5 w/cm2, 10 minutes of the heart soon after valve replacement had been performed. The expression of t-PA in myocardium was detected with multiclonal antibodies to t-PA by the indirect immunohistochemical method

  1. [Experimental study on human periodontal ligament cells transfected with human amelogenin gene].

    Science.gov (United States)

    Yu, Guang; Shu, Rong; Sun, Ying; Cheng, Lan; Song, Zhong-Chen; Zhang, Xiu-Li

    2008-02-01

    To construct the recombinant lentiviral vector of human amelogenin gene, infect human periodontal ligament cells with the recombinant lentivirus, and evaluate the feasibility of applying modified PDLCs as seeds for a further periodontal reconstruction. The mature peptide of hAm cDNA was cloned and linked into the vector plasmid, the recombinant plasmid FUAmW was confirmed by double enzyme digestion and sequence analysis. Recombinant lentivirus was prepared from 293T cells by polytheylenimine (PEI)-mediated transient cotransfection. The hPDLCs and 293T cells were infected with the generated lentivirus. The infection efficiency was analysed by detection of green fluorescence protein (GFP) with fluorescent microscope and flow cytometer 72 hours later. The expression of hAm gene was detected by reverse transcription polymerase chain reaction (RT-PCR). The sequence of inserted fragment in recombinant plasmid was identical to the hAm sequence reported in Genebank. Green fluorescence was visible under fluorescent microscope, FCM assay showed that positive percentage was 69.46% and 33.99% in 293T and hPDLCs, respectively. The targeted gene was obtained in the experimental groups by RT-PCR. The recombinan lentiviral vector of hAm gene is constructed successfully and it could be transfected into cultured hPDLCs. hAm gene and seed cells may be used for further study in the fields periodontal tissue engineering. Supported by National Natural Science Foundation of China (Grant No. 30672315).

  2. The influence of physicochemical parameters on the efficacy of non-viral DNA transfection complexes : A comparative study

    NARCIS (Netherlands)

    Kneuer, Carsten; Ehrhardt, Carsten; Bakowsky, Heike; Kumar, M. N. V. Ravi; Oberle, Volker; Lehr, Claus M.; Hoekstra, Dick; Bakowsky, Udo

    2006-01-01

    Various polycationic vehicles have been developed to facilitate the transfer of foreign DNA into mammalian cells. Structure-activity studies suggested that biophysical properties, such as size, charge, and morphology of the resulting DNA complexes determine transfection efficiency within one class

  3. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA-21-loaded chitosan/hyaluronic acid nanoparticles via reverse transfection

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zhongshan Wang,1 Guangsheng Wu,2,3 Mengying Wei,4 Qian Liu,1 Jian Zhou,1 Tian Qin,1 Xiaoke Feng,1 Huan Liu,1 Zhihong Feng,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, 2State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, 4Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, People’s Republic of China Abstract: Cell sheet engineering has emerged as a novel approach to effectively deliver seeding cells for tissue regeneration, and developing human bone marrow mesenchymal stem cell (hBMMSC sheets with high osteogenic ability is a constant requirement from clinics for faster and higher-quality bone formation. In this work, we fabricated biocompatible and safe chitosan (CS/hyaluronic acid (HA nanoparticles (NPs to deliver microRNA-21 (miR-21, which has been proved to accelerate osteogenesis in hBMMSCs; then, the CS/HA/miR-21 NPs were cross-linked onto the surfaces of culture plates with 0.2% gel solution to fabricate miR-21-functionalized culture plates for reverse transfection. hBMMSC sheets were induced continuously for 14 days using a vitamin C-rich method on the miR-21-functionalized culture plates. For the characterization of CS/HA/miR-21 NPs, the particle size, zeta potential, surface morphology, and gel retardation were sequentially investigated. Then, the biological effects of hBMMSC sheets on the miR-21-functionalized culture plates were evaluated. The assay results demonstrated that the hBMMSC sheets could be successfully induced via the novel

  4. Study of ferritin nanoparticles

    International Nuclear Information System (INIS)

    Lancok, A.; Kohout, J.; Volfova, L.; Miglierini, M.

    2015-01-01

    Moessbauer spectrometry confirms the presence of hematite, ferrihydrite and maghemite/magnetite in ferritin derived from human spleen tissues. The minerals are present in a form of small (about 4-5 nm in size) grains with highly disordered structure. Consequently, at room temperature all agglomerates of ferritin nanoparticles show non-magnetic behaviour. Magnetic states are revealed at low enough temperatures below the so-called blocking temperature. Employing Moessbauer effect measurements, the latter was determined to be of 16 K for the human spleen. Structural features of these tissues were studied by TEM technique. Employing 57 Fe nuclei as local probes both structural and magnetic features of the biological materials were investigated by Moessbauer spectrometry. It was possible to identify iron atoms and their neighbours. (authors)

  5. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency.

    Science.gov (United States)

    Sato, Toshinori; Nakata, Mitsuhiro; Yang, Zhihong; Torizuka, Yu; Kishimoto, Satoko; Ishihara, Masayuki

    2017-08-01

    Lyophilization is an effective method for preserving nonviral gene vectors. To improve the stability and transgene expression of lyophilized plasmid DNA (pDNA) complexes, we coated the surfaces of pDNA/chitosan complexes with hyaluronic acid (HA) of varying molecular masses. The transgene expression of pDNA/chitosan/HA ternary complexes was characterized in vitro and in vivo. pDNA complexes were lyophilized overnight and the resultant products with spongy, porous consistencies were stored at -30, 4 or 25°C for 2 weeks. Rehydrated complexes were characterized using gel retardation assays, aiming to confirm complex formation, measure particle size and evaluate zeta potential, as well as conduct luciferase gene reporter assays. The anti-tumor effects of pDNA ternary complexes were evaluated using suicide gene (pTK) coding thymidine kinase in Huh7-implanted mice. Transfection efficiencies of pDNA/chitosan/HA ternary complexes were dependent on the average molecular masses of HA. The coating of pDNA/chitosan complexes with HA maintained the cellular transfection efficiencies of lyophilized pDNA ternary complexes. Furthermore, intratumoral injection of lyophilized, rehydrated pDNA ternary complexes into tumor-bearing mice showed a significant suppression of tumor growth. The coating of pDNA/chitosan complexes with high-molecular-weight HA augmented the stability and cellular transfection ability of the complexes after lyophilization-rehydration. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI

    DEFF Research Database (Denmark)

    Dai, Zhuojun; Gjetting, Torben; Mattebjerg, Maria Ahlm

    2011-01-01

    In the present study we compare LPEI and BPEI characteristics related to DNA condensation and their role as free polycation chains in gene transfection. Using radioactive 32P labeled DNA, we investigated the effect of free PEI chains on the cellular uptake of polyplexes. Our investigations show d...

  8. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection.

    Directory of Open Access Journals (Sweden)

    Lin-Lin Liu

    Full Text Available Reverse transcription-quantitative polymerase chain reaction (RT-qPCR is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct, and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2 expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.

  9. Enhanced delivery of PEAL nanoparticles with ultrasound targeted microbubble destruction mediated siRNA transfection in human MCF-7/S and MCF-7/ADR cells in vitro

    Directory of Open Access Journals (Sweden)

    Teng Y

    2015-08-01

    Full Text Available Yanwei Teng,1,2,* Min Bai,3,* Ying Sun,2 Qi Wang,1,2 Fan Li,3 Jinfang Xing,3 Lianfang Du,3 Tao Gong,1 Yourong Duan2 1Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 3Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The gene knockdown activity of small interfering RNA (siRNA has led to their use as potential therapeutics for a variety of diseases. However, successful gene therapy requires safe and efficient delivery systems. In this study, we choose mPEG-PLGA-PLL nanoparticles (PEAL NPs with ultrasound targeted microbubble destruction (UTMD to efficiently deliver siRNA into cells. An emulsification-solvent evaporation method was used to prepare siRNA-loaded PEAL NPs. The NPs possessed an average size of 132.6±10.3 nm (n=5, with a uniform spherical shape, and had an encapsulation efficiency (EE of more than 98%. As demonstrated by MTT assay, neither PEAL NPs nor siRNA-loaded PEAL NPs showed cytotoxicity even at high concentrations. The results of cellular uptake showed, with the assistance of UTMD, the siRNA-loaded PEAL NPs can be effectively internalized and can subsequently release siRNA in cells. Taken together, PEAL NPs with UTMD may be highly promising for siRNA delivery, making it possible to fully exploit the potential of siRNA-based therapeutics. Keywords: gene delivery, mPEG-PLGA-PLL, UTMD, emulsification-solvent evaporation method, orthogonal design

  10. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells.

    Science.gov (United States)

    Baumgart, Judith; Humbert, Laure; Boulais, Étienne; Lachaine, Rémi; Lebrun, Jean-Jaques; Meunier, Michel

    2012-03-01

    A femtosecond laser based transfection method using off-resonance plasmonic gold nanoparticles is described. For human cancer melanoma cells, the treatment leads to a very high perforation rate of 70%, transfection efficiency three times higher than for conventional lipofection, and very low toxicity (transfection for skin cancer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    Science.gov (United States)

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  12. Pentablock copolymers of pluronic F127 and modified poly(2-dimethyl aminoethyl methacrylate for internalization mechanism and gene transfection studies

    Directory of Open Access Journals (Sweden)

    Huang SJ

    2013-05-01

    Full Text Available Shih-Jer Huang,1 Tzu-Pin Wang,1 Sheng-I Lue,2 Li-Fang Wang11Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan; 2Department of Physiology, Kaohsiung Medical University, Kaohsiung, TaiwanAbstract: Cationic polymers are one of the major nonviral gene delivery vectors investigated in the past decade. In this study, we synthesized several cationic copolymers using atom transfer radical polymerization (ATRP for gene delivery vectors: pluronic F127-poly(dimethylaminoethyl methacrylate (PF127-pDMAEMA, pluronic F127-poly (dimethylaminoethyl methacrylate-tert-butyl acrylate (PF127-p(DMAEMA-tBA, and pluronic F127-poly(dimethylaminoethyl methacrylate-acrylic acid (PF127-p(DMAEMA-AA. The copolymers showed high buffering capacity and efficiently complexed with plasmid deoxyribonucleic acid (pDNA to form nanoparticles 80–180 nm in diameter and with positive zeta potentials. In the absence of 10% fetal bovine serum, PF127-p(DMAEMA-AA showed the highest gene expression and the lowest cytotoxicity in 293T cells. After acrylic acid groups had been linked with a fluorescent dye, the confocal laser scanning microscopic image showed that PF127-p(DMAEMA-AA/pDNA could efficiently enter the cells. Both clathrin-mediated and caveolae-mediated endocytosis mechanisms were involved. Our results showed that PF127-p(DMAEMA-AA has great potential to be a gene delivery vector.Keywords: nonviral vector, pluronic F127, dimethylaminoethyl methacrylate, copolymer, atom transfer radical polymerization

  13. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  14. Transfection of Platyhelminthes

    Directory of Open Access Journals (Sweden)

    Bárbara Moguel

    2015-01-01

    Full Text Available Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.

  15. Studies on the biodistribution of dextrin nanoparticles

    International Nuclear Information System (INIS)

    Goncalves, C; Gama, F M; Ferreira, M F M; Martins, J A; Santos, A C; Prata, M I M; Geraldes, C F G C

    2010-01-01

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a γ-emitting 153 Sm 3+ radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  16. Studies on the biodistribution of dextrin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, C; Gama, F M [IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Minho University, Campus de Gualtar, 4710-057 Braga (Portugal); Ferreira, M F M; Martins, J A [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Santos, A C; Prata, M I M [IBILI, Faculty of Medicine of the University of Coimbra, Coimbra (Portugal); Geraldes, C F G C, E-mail: fmgama@deb.uminho.pt [Departamento de Ciencias da Vida, Faculdade de Ciencia e Tecnologia e Centro de Neurociencias e Biologia Celular, Universidade de Coimbra (Portugal)

    2010-07-23

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a {gamma}-emitting {sup 153}Sm{sup 3+} radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  17. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Helena Sork

    2016-01-01

    Full Text Available The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

  18. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  19. Two skin cell lines from wild-type and albino Japanese flounder (Paralichthys olivaceus): establishment, characterization, virus susceptibility, efficient transfection, and application to albinism study.

    Science.gov (United States)

    Wang, Ruoqing; Zhang, Nianwei; Wang, Renkai; Wang, Shengpeng; Wang, Na

    2017-12-01

    In order to provide an applicable cell platform to study fish pathology and skin pigmentation, two cell lines derived from skin tissues of wild-type and albino Japanese flounder were established and named JFSK_wt and JFSK_alb, respectively. These two cell lines were cultured for 45 passages within approximately 300 days. JFSK_wt and JFSK_alb cells were maintained in Dulbecco's Modified Eagle's Medium and Ham's F-12 Nutrient Mixture (DMEM/F12) supplemented with antibiotics, fetal bovine serum (FBS), 2-mercaptoethanol (2-Me), N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), and basic fibroblast growth factor (bFGF). The optimal growth temperature for JFSK_wt and JFSK_alb cells was 24 °C, and microscopically, the two cell lines were composed of fibroblast-like cells. Chromosomal analysis revealed that JFSK_wt and JFSK_alb cells had an identical diploid karyotype with 2n = 48t. Results of viral inoculation assays revealed that both cell lines shared similar patterns of viral susceptibility to nervous necrosis virus (NNV). High transfection efficiency was observed in JFSK_wt and JFSK_alb cells transfected with a pEGFP-N3 reporter plasmid and Cy3-siRNA. The detection of dermal marker Dermo-1 showed that these two cells were both derived from the dermis. Finally, three genes involved in the melanogenesis pathway, including adenylate cyclase type 5 (adcy5), microphthalmia-associated transcription factor (mitf), and endothelin B receptor (ednrb), were downregulated in JFSK_alb versus JFSK_wt cells. Thus, the two cell lines, sampled from skin tissue of wild-type and albino Japanese flounder will be not only helpful for fish pathogen research but also beneficial for albinism-related gene function studies.

  20. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

    Science.gov (United States)

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-01-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  1. Multiscale study of metal nanoparticles

    Science.gov (United States)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  2. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Virginia [Hospital Universitario La Paz-IdiPAZ (Spain); Yaguee, Clara; Arruebo, Manuel, E-mail: arruebom@unizar.es [University of Zaragoza, Aragon Nanoscience Institute (INA), C/Mariano Esquillor, Edif. I-D (Spain); Martin-Saavedra, Francisco M. [Hospital Universitario La Paz-IdiPAZ (Spain); Santamaria, Jesus [CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ (Spain)

    2011-09-15

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle-plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  3. Octaarginine-modified chitosan as a nonviral gene delivery vector: properties and in vitro transfection efficiency

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Zhaoyang; Liu Wenguang; Lam, Wingmoon; Sun Peng; Kao, Richard Y. T.; Luk, Keith D. K.; Lu, William W.

    2011-01-01

    Protein transduction domains (PTD) have been identified to have the capacity to facilitate molecular cargo to translocate through cell membrane. This study aims to utilize the cell membrane penetrating ability of octaarginine oligopeptide, a simplified prototype of the PTD, to enhance the transfection efficiency of chitosan. Octaarginine-modified chitosan (R 8 -CS) was synthesized as a gene transfer carrier by carbodiimide chemistry. The structure and composition of R 8 -CSs were characterized using FTIR and 1 H NMR. Agarose gel electrophoresis assay showed that R 8 -CS could efficiently condense the DNA. The particle size of R 8 -CS/DNA complexes were determined to be around 100–200 nm. The nanoparticle complexes exhibited a spherical and compact morphology. R 8 -CS demonstrated higher transfection activity and lower cytotoxicity as compared to the unmodified chitosan and also showed good serum resistance.

  4. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Science.gov (United States)

    Fouriki, A.; Farrow, N.; Clements, M.A.; Dobson, J.

    2010-01-01

    The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency. Methods non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™. PMID:22110859

  5. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Directory of Open Access Journals (Sweden)

    A. Fouriki

    2010-07-01

    Full Text Available The objective of this work was to examine the effects of magnet distance (and by proxy, field strength on nanomagnetic transfection efficiency. Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results: Fluorescence intensity (firefly luciferase of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.

  6. Pharmaceutical studies for gene therapy: expression of human Cu, Zn-superoxide dismutase gene transfected by lipofection in rat skin fibroblasts.

    Science.gov (United States)

    Nishiguchi, K; Ishida, K; Nakajima, M; Maeda, T; Komada, F; Iwakawa, S; Tanigawara, Y; Okumura, K

    1996-08-01

    To evaluate whether lipofection using Lipofectin is suitable for delivering foreign genes into skin fibroblasts as target cells, we performed experiments using human superoxide dismutase (hSOD) and neomycin-resistance (Neo) genes as models in rat skin fibroblasts (FR and primary cells) in vitro. The amounts of DNA used in the lipofection procedure significantly affected the transfection efficiencies, and the optimal amounts were determined for all cells used. However, the efficiencies in rat skin fibroblasts were about 20-fold higher than that in rat lung epithelial-like cells (L2 cells). The differences in plasmid vectors (pRc/RSV-SOD and pRc/CMV-SOD) hardly affected the transfection efficiencies. The amounts of Lipofectin significantly affected the transfection efficiencies, and the optimal amounts were determined for both types of skin fibroblasts. However, cytotoxic effects in both skin fibroblasts were observed with high doses of Lipofectin. On the other hand, with optimal amounts of DNA and Lipofectin, the reporter gene (NeoT) introduced into cells was mainly integrated into the host cell chromosome. Western blot analysis showed the continuous expression of hSOD protein for at least 45 d in skin fibroblasts transfected with the expression plasmid for hSOD by Lipofectin under the optimal conditions, and the cellular SOD activity fluctuated in parallel with the expression of hSOD protein. Differences in the type of cells also affected the expression of hSOD. These results indicate that it is necessary to set up optimal conditions for transfection using Lipofectin for each cell type, and that transfection with Lipofectin under optimal conditions may be an efficient method for introduction of foreign genes into skin fibroblasts for use as a clinical delivery system of therapeutic protein.

  7. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K, E-mail: Jamboor.vishwanatha@unthsc.edu [Department of Molecular Biology and Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-11-04

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high ({approx}97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  8. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Science.gov (United States)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  9. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    International Nuclear Information System (INIS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K

    2011-01-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (∼97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  10. Agonist/antagonist interactions with cloned human 5-HT(1A) receptors: Variations in intrinsic activity studied in transfected HeLa cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Fargin, A.; Raymond, J.R.; Schoeffter, P.; Hoyer, D.

    1992-01-01

    The characteristics of 5-HT(1A)-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT(1A) receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond

  11. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    International Nuclear Information System (INIS)

    Cebrián, Virginia; Yagüe, Clara; Arruebo, Manuel; Martín-Saavedra, Francisco M.; Santamaría, Jesus; Vilaboa, Nuria

    2011-01-01

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle–plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  12. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  13. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    OpenAIRE

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize deliver...

  14. Enhancement of DNA-transfection frequency by X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi [Okayama University Medical School (Japan). Institute of Cellular and Molecular Biology

    1997-02-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  15. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  16. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Acuña, Melissa [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States); Maldonado-Camargo, Lorena [University of Florida, Department of Chemical Engineering (United States); Dobson, Jon; Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2016-09-15

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle–cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  17. Efficient production of retroviruses using PLGA/bPEI-DNA nanoparticles and application for reprogramming somatic cells.

    Directory of Open Access Journals (Sweden)

    Eun Jin Seo

    Full Text Available Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to evaluate the efficiency of PLGA/ bPEI nanoparticles in transfection and virus production. Using a modified method of producing PLGA nanoparticles, PLGA/bPEI-DNA nanoparticles were examined for transfection efficiency and virus production yield in comparison with PLGA-DNA, bPEI-DNA nanoparticles or liposome-DNA complexes. After testing various ratios of PLGA, bPEI, and DNA, the ratio of 6:3:1 (PLGA:bPEI:DNA, w/w/w was determined to be optimal, with acceptable cellular toxicity. PLGA/bPEI-DNA (6:3:1 nanoparticles showed superior transfection efficiency, especially in multiple gene transfection, and viral yield when compared with liposome-DNA complexes. The culture supernatants of HEK293FT cells transfected with PLGA/bPEI-DNA of viral constructs containing reprogramming factors (Oct4, Sox2, Klf4, or c-Myc successfully and more efficiently generated induced pluripotent stem cell colonies from mouse embryonic fibroblasts. These results strongly suggest that PLGA/bPEI-DNA nanoparticles can provide significant advantages in studying the effect of multiple factor delivery such as in reprogramming or direct conversion of cell fate.

  18. Transfection efficiency and uptake process of polyplexes in human lung endothelial cells: a comparative study in non-polarized and polarized cells.

    Science.gov (United States)

    Mennesson, Eric; Erbacher, Patrick; Piller, Véronique; Kieda, Claudine; Midoux, Patrick; Pichon, Chantal

    2005-06-01

    Following systemic administration, polyplexes must cross the endothelium barrier to deliver genes to the target cells underneath. To design an efficient gene delivery system into lung epithelium, we evaluated capture and transfection efficiencies of DNA complexed with either Jet-PEI (PEI-polyplexes) or histidylated polylysine (His-polyplexes) in human lung microvascular endothelial cells (HLMEC) and tracheal epithelial cells. After optimizing growth conditions to obtain a tight HLMEC monolayer, we characterized uptake of polyplexes by flow cytometry and evaluated their transfection efficiency. Polyplexes were formulated as small particles. YOYO-labelled plasmid fluorescence intensity and luciferase activity were used as readouts for uptake and gene expression, respectively. PEI-polyplexes were more efficiently taken up than His-polyplexes by both non-polarized (2-fold) and polarized HLMEC (10-fold). They were mainly internalized by a clathrin-dependent pathway whatever the cell state. In non-polarized cells, His-polyplexes entered also mainly via a clathrin-dependent pathway but with an involvement of cholesterol. The cell polarization decreased this way and a clathrin-independent pathway became predominant. PEI-polyplexes transfected more efficiently HLMEC than His-polyplexes (10(7) vs. 10(5) relative light units (RLU)/mg of proteins) with a more pronounced difference in polarized cells. In contrast, no negative effect of the cell polarization was observed with tracheal epithelial cells in which both polyplexes had comparable efficiency. We show that the efficiency of polyplex uptake by HLMEC and their internalization mechanism are polymer-dependent. By contrast with His-polyplexes, the HLMEC polarization has little influence on the uptake process and on the transfection efficiency of PEI-polyplexes. Copyright (c) 2005 John Wiley & Sons, Ltd.

  19. Optical and structural studies of silver nanoparticles

    International Nuclear Information System (INIS)

    Temgire, M.K.; Joshi, S.S.

    2004-01-01

    Gamma radiolysis method was used to prepare polyvinyl alcohol (PVA) capped silver nanoparticles by optimizing various conditions like metal ion concentration and polymer (PVA) of different molecular weights. The role of different scavengers was also studied. The decrease in particle size was observed with increase in the molecular weight of capping agent. γ-radiolytic method provides silver nanoparticles in fully reduced and highly pure state. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. Optical studies were done using UV-visible spectrophotometer to see the variation of electronic structure of the metal sol. Transmission Electron Microscopic (TEM) studies reveal the fcc geometry. The TEM show clearly split Debye-Scherrer rings. The d values calculated from the diffraction ring pattern are in perfect agreement with the ASTM data. Ag particles less than 10 nm are spherical in shape, whereas the particles above 30 nm have structure of pentagonal biprisms or decahedra, referred to as multiply twinned particles

  20. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles

    Directory of Open Access Journals (Sweden)

    Lummis Sarah CR

    2011-06-01

    Full Text Available Abstract Background Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles - nanoparticles - in biolistic transfections to determine if they are a suitable alternative to microparticles. Results Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. Conclusions We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.

  1. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  2. Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.

    Science.gov (United States)

    Zorzi, Giovanni K; Párraga, Jenny E; Seijo, Begoña; Sanchez, Alejandro

    2015-11-01

    Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization. The most promising systems are nanoparticles based on intermediate molecular weight gelatin cationized with the endogenous amine spermine, which exhibit an adequate toxicological profile, as well as effective association and protection of pDNA or siRNA molecules, thereby resulting in higher transfection efficiency and gene silencing than the other studied formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hydrophobically modified chitosan/gold nanoparticles for DNA delivery

    International Nuclear Information System (INIS)

    Bhattarai, Shanta Raj; Remant Bahadur, K.C.; Aryal, Santosh; Bhattarai, Narayan; Kim, Sun Young; Yi, Ho Keun; Hwang, Pyoung Han; Kim, Hak Yong

    2008-01-01

    Present study dealt an application of modified chitosan gold nanoparticles (Nac-6-Au) for the immobilization of necked plasmid DNA. Gold nanoparticles stabilized with N-acylated chitosan were prepared by graft-onto approach. The stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-vis, TEM, ELS and DLS. MTT assay was used for in vitro cytotoxicity of the nanoparticles into three different cell lines (NIH 3T3, CT-26 and MCF-7). The formulation of plasmid DNA with the nanoparticles corresponds to the complex forming capacity and in-vitro/in-vivo transfection efficiency was studied via gel electrophoresis and transfection methods, respectively. Results showed the modified chitosan gold nanoparticles were well-dispersed and spherical in shape with average size around 10∼12 nm in triple distilled water at pH 7.4, and showed relatively no cytotoxicity at low concentration. Addition of plasmid DNA on the aqueous solution of the nanoparticles markedly reduced surface potential (50.0∼66.6%) as well as resulted in a 13.33% increase in hydrodynamic diameters of the formulated nanoparticles. Transfection efficiency of Nac-6-Au/DNA was dependent on cell type, and higher β-galactosidase activity was observed on MCF-7 breast cancer cell. Typically, this activity was 5 times higher in 4.5 mg/ml nanoparticles concentration than that achieved by the nanoparticles of other concentrations (and/or control). However, this activity was lower in in-vitro and dramatically higher in in-vivo than that of commercially available transfection kit (Lipofectin (registered) ) and DNA. From these results, it can be expected to develop alternative new vectors for gene delivery

  4. Pathological study on the testis of mice irradiated by γ-rays after transfecting pprI gene by in vivo electroporation

    International Nuclear Information System (INIS)

    Lian Lixia; Chen Tingting; Zhang Yongqin; Wang Xiuzhen; Yang Zhanshan

    2011-01-01

    To investigate the effects of pprI gene from Deinococcus radiodurans transferred by in vivo electroporation on γ-ray injury of mice, the morphological changes of testis in the mice were observed. The pCMV-HA-pprI plasmid containing pprI gene was injected into the muscle of mice. The pprI gene was transfected into the cells by in vivo gene electroporation technology. Then the control group and the transferred pCMV-HA-pprI group were exposed to γ-ray radiation of 6 Gy. The muscle tissue at the site of the injection and the testis tissue were taken on days 1, 7, 14, 28 and 35 after radiation. Then total protein was extracted and used to test the expression of PprI with western blotting technology. The testis specimen prepared by hematoxylin-eosin staining was then examined by light microscopy. The expression of PprI is remarkable on the 1 st day after irradiation to prove that the pprI gene was successfully transfected into the mice. On the 1 st day after irradiation there was no obvious pathological change of the testis tissue of the control group. On the 7th day there was degeneration and necrosis of some spermatogonia and spermatocytes in sections of tubules. On the 14th day, the reduction of spermatogonia was generally marked, and there was considerable reduction in the number of primary spermatocytes associated with atrophy of the seminiferous tubules. On the 28th day there was complete depletion of spermatogenic epithelium when spermatocytes and spermatids had largely disappeared, with no regeneration of spermatogonia and only sertoli cells nuclei remaining along the basement membrane. On the 35th day, spermatogonia were actively regenerating in some of the tubules. Compared with the control group, there was also no significant difference on the 1 st after irradiation in the transgenic animal. On the 7th day the degeneration and necrosis of some spermatogonia and spermatocytes in sections of tubules was less than that of the control group. On the 14th day the

  5. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery.

    Science.gov (United States)

    Look, Jennifer; Wilhelm, Nadine; von Briesen, Hagen; Noske, Nadja; Günther, Christine; Langer, Klaus; Gorjup, Erwin

    2015-09-08

    The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.

  6. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  7. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  8. Physical properties of Cu nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.

    2014-01-01

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index

  9. Progesterone lipid nanoparticles: Scaling up and in vivo human study.

    Science.gov (United States)

    Esposito, Elisabetta; Sguizzato, Maddalena; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Nastruzzi, Claudio; Cortesi, Rita

    2017-10-01

    This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Tris(2-aminoethyl)amine-based α-branched fatty acid amides - Synthesis of lipids and comparative study of transfection efficiency of their lipid formulations.

    Science.gov (United States)

    Erdmann, Nicole; Wölk, Christian; Schulze, Ingo; Janich, Christopher; Folz, Manuela; Drescher, Simon; Dittrich, Matthias; Meister, Annette; Vogel, Jürgen; Groth, Thomas; Dobner, Bodo; Langner, Andreas

    2015-10-01

    The synthesis of a new class of cationic lipids, tris(2-aminoethyl)amine-based α-branched fatty acid amides, is described resulting in a series of lipids with specific variations in the lipophilic as well as the hydrophilic part of the lipids. In-vitro structure/transfection relationships were established by application of complexes of these lipids with plasmid DNA (pDNA) to different cell lines. The α-branched fatty acid amide bearing two tetradecyl chains and two lysine molecules (T14diLys) in mixture with the co-lipid 1,2-di-[(9Z)-octadec-9-enoyl]-sn-glycero-3-phosphoethanolamine (DOPE) (1/2, n/n) exhibits effective pDNA transfer in three different cell lines, namely Hep-G2, A549, and COS-7. The presence of 10% serum during lipoplex incubation of the cells did not affect the transfection efficiency. Based on that, detailed investigations of the complexation of pDNA with the lipid formulation T14diLys/DOPE 1/2 (n/n) were carried out with respect to particle size and charge using dynamic light scattering (DLS), ζ-potential measurements, and transmission electron microscopy (TEM). Additionally, the lipoplex uptake was investigated by confocal laser scanning microscopy (CLSM). Overall, lipoplexes prepared from T14diLys/DOPE 1/2 (n/n) offer large potential as lipid-based polynucleotide carriers and further justify advanced examinations. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Transfection in Primary Cultured Neuronal Cells.

    Science.gov (United States)

    Marwick, Katie F M; Hardingham, Giles E

    2017-01-01

    Transfection allows the introduction of foreign nucleic acid into eukaryotic cells. It is an important tool in understanding the roles of NMDARs in neurons. Here, we describe using lipofection-mediated transfection to introduce cDNA encoding NMDAR subunits into postmitotic rodent primary cortical neurons maintained in culture.

  12. Improved transfection of HUVEC and MEF cells using DNA ...

    Indian Academy of Sciences (India)

    in stem cell research and endothelial cell physiology and pathology studies are ... gene delivery technique, which uses magnetic nanoparticles under the influence of an ..... The generation of iPS cells using non-viral magnetic nanoparticle.

  13. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  14. Transfection of bovine spermatogonial stem cells in vitro.

    Science.gov (United States)

    Tajik, P; Hoseini Pajooh, Kh; Fazle Elahi, Z; Javdani Shahedin, G; Ghasemzadeh-Nava, H

    2017-01-01

    Spermatogonial stem cells (SSCs) are the only stem cells in adults that can transfer genetic information to the future generations. Considering the fact that a single SSC gives rise to a vast number of spermatozoa, genetic manipulation of these cells is a potential novel technology with feasible application to various animal species. The aim of this study was to evaluate enhanced green fluorescent protein (EGFP) gene transfection into bovine SSCs via liposome carrier and assess the best incubation day in uptake exogenous gene by SSCs. Transfection efficiency of EGFP gene with lipofectamine 2000 was determined in days following each three day of transfection (day 4, 6 and 8 of the culture) by fluorescent microscope. Results showed that the transfected cells through lipofection increased significantly (Ptransfection in comparison with those of the control groups. The transfected SSCs were higher in comparison with those of the free exogenous gene carrier groups (Ptransfection proceeds at day four. It was concluded that lipofectamine can be used safely for direct loading exogenous DNA to SSCs particularly during the fourth day of culture.

  15. Unexpected transcellular protein crossover occurs during canonical DNA transfection.

    Science.gov (United States)

    Arsenault, Jason; Cuijpers, Sabine A G; Niranjan, Dhevahi; Davletov, Bazbek

    2014-12-01

    Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30-50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection. © 2014 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  16. A molecular dynamics study of helium bombardments on tungsten nanoparticles

    Science.gov (United States)

    Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun

    2018-06-01

    Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.

  17. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  18. Moessbauer studies of superparamagnetic ferrite nanoparticles for functional application

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, K., E-mail: kestas@ar.fi.lt; Jagminas, A.; Kurtinaitiene, M. [SSRI Center for Physical Sciences and Technology (Lithuania)

    2013-04-15

    Nanoparticles of CoFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} prepared for functional applications in nanomedicine were studied using Moessbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Moessbauer spectra.

  19. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    Science.gov (United States)

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  20. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  1. Efficient transfection of DNA into primarily cultured rat sertoli cells by electroporation.

    Science.gov (United States)

    Li, Fuping; Yamaguchi, Kohei; Okada, Keisuke; Matsushita, Kei; Enatsu, Noritoshi; Chiba, Koji; Yue, Huanxun; Fujisawa, Masato

    2013-03-01

    The expression of exogenous DNA in Sertoli cells is essential for studying its functional genomics, pathway analysis, and medical applications. Electroporation is a valuable tool for nucleic acid delivery, even in primarily cultured cells, which are considered difficult to transfect. In this study, we developed an optimized protocol for electroporation-based transfection of Sertoli cells and compared its efficiency with conventional lipofection. Sertoli cells were transfected with pCMV-GFP plasmid by square-wave electroporation under different conditions. After transfection of plasmid into Sertoli cells, enhanced green fluorescent protein (EGFP) expression could be easily detected by fluorescent microscopy, and cell survival was evaluated by dye exclusion assay using Trypan blue. In terms of both cell survival and the percentage expressing EGFP, 250 V was determined to produce the greatest number of transiently transfected cells. Keeping the voltage constant (250 V), relatively high cell survival (76.5% ± 3.4%) and transfection efficiency (30.6% ± 5.6%) were observed with a pulse length of 20 μm. The number of pulses significantly affected cell survival and EGFP expression (P transfection methods, the transfection efficiency of electroporation (21.5% ± 5.7%) was significantly higher than those of Lipofectamine 2000 (2.9% ± 1.0%) and Effectene (1.9% ± 0.8%) in this experiment (P transfection of Sertoli cells.

  2. Optimization of in vitro culture and transfection condition of bovine ...

    African Journals Online (AJOL)

    The present study aimed to optimize the in vitro culture and transfection efficiency of bovine primary spermatogonial stem cells (SSCs). To this end, SSCs were obtained from newborn Holstein bull calves by two-step enzymatic digestion. After enrichment and culture, SSCs were characterized by using alkaline phosphatase ...

  3. Epizone: Interlaboratory Ring Trial to Compare Dna Transfection Efficiencies

    DEFF Research Database (Denmark)

    Dory, Daniel; Albina, Emmanuel; Kwiatek, Olivier

    Chemical-based transfection of DNA into cultured cells is routinely used to study for example viral or cellular gene functions involved in virus replication, to analyse cellular defence mechanisms or develop specific strategies to interfere with virus replication. Other applications include rescu...

  4. Thermal decomposition study of manganese sulfide (MnS) nanoparticles

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.; Deshpande, M. P.

    2018-05-01

    The as-synthesized manganese sulfide (MnS) nanoparticles were used for the thermal study. The nanoparticles were synthesized by simple wet chemical route at ambient temperature. The photoelectron binding energy and chemical composition of MnS nanoparticles was analyzed by X-ray photoelectron spectroscopy (XPS). The thermogravimetric (TG), differential thermogravimetric (DTG) and differential thermal analysis (DTA) were carried out on the as-synthesized MnS nanoparticles. The thermocurves were recorded in inert N2 atmosphere in the temperature range of ambient to 1173 K. The heating rates employed were 5, 10, 15 and 20 K/min. The thermodynamic parameters like activation energy (Ea), enthalpy change (ΔH), entropy change (ΔS) and change in Gibbs free energy (ΔG) of as-synthesized MnS nanoparticles were determined using Kissinger method. The obtained XPS and thermal results are discussed.

  5. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  6. The use of computerized video time lapse to study cell death in rat embryo cells transfected with c-ha-ras or c-myc

    International Nuclear Information System (INIS)

    Forrester, H.B.; Vidair, C.A.; Dewey, W.C.; Ling, C.C.

    1998-01-01

    Full text: Individual rat embryo fibroblasts that had been transfected with the c-myc (REC:myc) or c-Ha ras (REC:ras) oncogene were followed after irradiation using a computer video time lapse (CVTL) system in order to quantify the lethal events that resulted in loss of clonogenic survival after irradiation. By followed the cells for 2 to 3 generations before irradiation we were able to determine where they were in the cell cycle at the time of irradiation for cell cycle analysis. After irradiation, the individual cells and their progeny were followed in multiple fields for 5-6 days Then, pedigrees for individual irradiated cells were determined by noting the times of divisions fusions, and cell death. After X-irradiation, the clonogenic survival values for these two cell lines are similar. However, by using computerized video time lapse (CVTL) to follow individual cells we found that the loss of clonogenic survival was due to two different processes, cell death and a senescent-like process. The loss of clonogenic survival of x-irradiated (9.5 and 4 Gy) REC:myc cells was attributed almost entirely to the cells dying by apoptosis (∼99 and 90%). In contrast, approximately 60% of the x-irradiated (9.5 Gy) non-clonogenic REC:ras cells died by apoptosis (with a very small amount of necrosis), and the other 40% underwent a senescent-type process in which some of the cells and their progeny stopped dividing but remained as viable cells throughout 140 hours of observation. Both processes usually occurred after the cells had divided and continued to occur in the cells' progeny for up to five divisions after irradiation. The mode of cell death in the progeny of a non-clonogenic cell can be determined only by using CVTL and can not be determined by conventional clonogenic survival experiments. Also, only by following the individual cells and their progeny can the true amount of apoptosis be determined. The cumulative percentage of apoptosis scored in whole populations

  7. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway.

    Science.gov (United States)

    Delgado, Diego; del Pozo-Rodríguez, Ana; Solinís, Maria Ángeles; Rodríguez-Gascón, Alicia

    2011-11-01

    The aim of our study was to evaluate the effect of protamine on the transfection capacity of solid lipid nanoparticles (SLNs) by correlating it to the internalization mechanisms and intracellular trafficking of the vectors. Vectors were prepared with SLN, DNA, and protamine. ARPE-19 and HEK-293 cells were used for the evaluation of the formulations. Protamine induced a 6-fold increase in the transfection of SLNs in retinal cells due to the presence of nuclear localization signals (NLS), its protection capacity, and a shift in the internalization mechanism from caveolae/raft-mediated to clathrin-mediated endocytosis. However, protamine produced an almost complete inhibition of transfection in HEK-293 cells. In spite of the high DNA condensation capacity of protamine and its content in NLS, this does not always lead to an improvement in cell transfection since it may impair some of the limiting steps of the transfection processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  9. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a

  10. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175

  11. Non-viral transfection methods optimized for gene delivery to a lung cancer cell line.

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-04-01

    Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods.

  12. Aging study of the powdered magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Umar Saeed, E-mail: omar_aps@yahoo.co.uk [Department of Physics, University of Peshawar (Pakistan); Rahim, Abdur, E-mail: rahimkhan533@gmail.com [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Nasrullah [Department of Physics, Kohat University of Science and Technology, Kohat (Pakistan); Muhammad, Nawshad; Rehman, Fozia [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmad, Khalid [Institute of Chemistry, State University of Campinas, PO Box 6154, 13083-970 Campinas, SP (Brazil); Iqbal, Jibran [College of Natural and Health Sciences, Zayed University, 144534 Abu Dhabi (United Arab Emirates)

    2017-03-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m{sup 2}/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  13. Aging study of the powdered magnetite nanoparticles

    International Nuclear Information System (INIS)

    Khan, Umar Saeed; Rahim, Abdur; Khan, Nasrullah; Muhammad, Nawshad; Rehman, Fozia; Ahmad, Khalid; Iqbal, Jibran

    2017-01-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m"2/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  14. In vitro study revealed different size behavior of different nanoparticles

    International Nuclear Information System (INIS)

    Schaudien, Dirk; Knebel, Jan; Creutzenberg, Otto

    2012-01-01

    Toxicity of nanoparticles is depending not only on the size of the primary particles but on the size of their agglomerates. Therefore, further studies are needed to examine the behavior of nanoparticles after they have gotten in contact with cells. The presented study investigated the change of size of different commercially available nanoparticles after applying them to different cell lines such as A549, Calu-3, 16HBE14o and LK004 representative for the different parts of the human lung. The different nanoparticles exhibited differences in behavior of size. TiO 2 P25 showed a tendency to increase, whereas TiO 2 T805 and Printex ® 90 remained more or less at the same size. In contrast, ZnO < 50 nm particles showed a significant decrease of size.

  15. A comparative study of hydroxyapatite nanoparticles synthesized by different routes

    OpenAIRE

    Paz, Adrian; Guadarrama, Dainelys; López, Mónica; E. González, Jesús; Brizuela, Nayrim; Aragón, Javier

    2012-01-01

    In this study, bioactive hydroxyapatite nanoparticles were prepared by two different methods: wet chemical precipitation and biomimetic precipitation. The aim was to evaluate the morphology, particle-size, crystallinity and phases of the powders obtained by traditional wet chemical precipitation and the novel biomimetic precipitation using a supersaturated calcium solution. The nanoparticles were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy and X-r...

  16. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324

  17. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  18. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Directory of Open Access Journals (Sweden)

    Kamel Chettab

    Full Text Available Sonoporation using low-frequency high-pressure ultrasound (US is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1 in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%, as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  19. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  20. Polymeric nanoparticles stabilized by surfactants: kinetic studies

    Czech Academy of Sciences Publication Activity Database

    Pánek, Jiří; Filippov, Sergey K.; Koňák, Čestmír; Steinhart, Miloš; Štěpánek, Petr

    2011-01-01

    Roč. 32, č. 8 (2011), s. 1105-1110 ISSN 0193-2691 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanoparticles * solvent shifting * time-resolved SAXS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.560, year: 2011

  1. Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo.

    Science.gov (United States)

    Browning, Richard J; Mulvana, Helen; Tang, Meng-Xing; Hajnal, Jo V; Wells, Dominic J; Eckersley, Robert J

    2012-06-01

    Ultrasound and microbubble mediated gene transfection has great potential for site-selective, safe gene delivery. Albumin-based microbubbles have shown the greatest transfection efficiency but have not been optimised specifically for this purpose. Additionally, few studies have highlighted desirable properties for transfection specific microbubbles. In this article, microbubbles were made with 2% or 5% (w/v) albumin and 20% or 40% (w/v) dextrose solutions, yielding four distinct bubble types. These were acoustically characterised and their efficiency in transfecting a luciferase plasmid (pGL4.13) into female, CD1 mice myocardia was measured. For either albumin concentration, increasing the dextrose concentration increased scattering, attenuation and resistance to ultrasound, resulting in significantly increased transfection. A significant interaction was noted between albumin and dextrose; 2% albumin bubbles made with 20% dextrose showed the least transfection but the most transfection with 40% dextrose. This trend was seen for both nonlinear scattering and attenuation behaviour but not for resistance to ultrasound or total scatter. We have determined that the attenuation behaviour is an important microbubble characteristic for effective gene transfection using ultrasound. Microbubble behaviour can also be simply controlled by altering the initial ingredients used during manufacture. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    DEFF Research Database (Denmark)

    Wu, Kaimin; Xu, Jie; Liu, Mingzhe

    2013-01-01

    MicroRNA (miRNA) regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes...... of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection...... formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing...

  3. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells.

    Science.gov (United States)

    Kim, Jayoung; Sunshine, Joel C; Green, Jordan J

    2014-01-15

    Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.

  4. Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes

    Science.gov (United States)

    Pozzi, Daniela; Cardarelli, Francesco; Salomone, Fabrizio; Marchini, Cristina; Amenitsch, Heinz; Barbera, Giorgia La; Caracciolo, Giulio

    2014-08-01

    Most lipid formulations need cholesterol for efficient transfection, but the precise motivation remains unclear. Here, we have investigated the effect of cholesterol on the transfection efficiency (TE) of cationic liposomes made of 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphocholine in Chinese hamster ovary cells. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by TE, synchrotron small angle X-ray scattering, and laser scanning confocal microscopy experiments. We prove that cholesterol-containing lipoplexes enter the cells using different endocytosis pathways. Formulations with high cholesterol content efficiently escape from endosomes and exhibit a lamellar-nonlamellar phase transition in mixture with biomembrane mimicking lipid formulations. This might explain both the DNA release ability and the high transfection efficiency. These studies highlight the enrichment in cholesterol as a decisive factor for transfection and will contribute to the rational design of lipid nanocarriers with superior TE.

  5. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    International Nuclear Information System (INIS)

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong; Wan, Min; Li, Yong-Qiang; Zhang, Rong-Ying; Zhao, Yuan-Di

    2012-01-01

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  6. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Wan, Min [Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Li, Yong-Qiang [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Zhang, Rong-Ying [Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Zhao, Yuan-Di, E-mail: zydi@mail.hust.edu.cn [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China)

    2012-11-15

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  7. Chitosan/Hyaluronic Acid Nanoparticles: Rational Design Revisited for RNA Delivery.

    Science.gov (United States)

    Lallana, Enrique; Rios de la Rosa, Julio M; Tirella, Annalisa; Pelliccia, Maria; Gennari, Arianna; Stratford, Ian J; Puri, Sanyogitta; Ashford, Marianne; Tirelli, Nicola

    2017-07-03

    Chitosan/hyaluronic acid (HA) nanoparticles can be used to deliver an RNA/DNA cargo to cells overexpressing HA receptors such as CD44. For these systems, unequivocal links have not been established yet between chitosan macromolecular (molecular weight; degree of deacetylation, i.e., charge density) and nanoparticle variables (complexation strength, i.e., stability; nucleic acid protection; internalization rate) on one hand, and transfection efficiency on the other hand. Here, we have focused on the role of avidity on transfection efficiency in the CD44-expressing HCT-116 as a cellular model; we have employed two differently sized payloads (a large luciferase-encoding mRNA and a much smaller anti-Luc siRNA), and a small library of chitosans (variable molecular weight and degree of deactylation). The RNA avidity for chitosan showed-as expected-an inverse relationship: higher avidity-higher polyplex stability-lower transfection efficiency. The avidity of chitosan for RNA appears to lead to opposite effects: higher avidity-higher polyplex stability but also higher transfection efficiency. Surprisingly, the best transfecting particles were those with the lowest propensity for RNA release, although this might be a misleading relationship: for example, the same macromolecular parameters that increase avidity can also boost chitosan's endosomolytic activity, with a strong enhancement in transfection. The performance of these nonviral vectors appears therefore difficult to predict simply on the basis of carrier- or payload-related variables, and a more holistic consideration of the journey of the nanoparticle, from cell uptake to cytosolic bioavailability of payload, is needed. It is also noteworthy that the nanoparticles used in this study showed optimal performance under slightly acidic conditions (pH 6.4), which is promising for applications in a tumoral extracellular environment. It is also worth pointing out that under these conditions we have for the first time

  8. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  9. A Study On Dispersion Stability Of Nickel Nanoparticles Synthesized By Wire Explosion In Liquid Media

    OpenAIRE

    Kim C.K.; Lee G.-J.; Lee M.K.; Rhee C.K.

    2015-01-01

    In this study, nickel nanoparticles were synthesized in ethanol using portable pulsed wire evaporation, which is a one-step physical method. From transmission electron microscopy images, it was found that the Ni nanoparticles exhibited a spherical shape with an average diameter of 7.3 nm. To prevent aggregation of the nickel nanoparticles, a polymer surfactant was added into the ethanol before the synthesis of nickel nanoparticles, and adsorbed on the freshly synthesized nickel nanoparticles ...

  10. Towards gene therapy based on femtosecond optical transfection

    Science.gov (United States)

    Antkowiak, M.; Torres-Mapa, M. L.; McGinty, J.; Chahine, M.; Bugeon, L.; Rose, A.; Finn, A.; Moleirinho, S.; Okuse, K.; Dallman, M.; French, P.; Harding, S. E.; Reynolds, P.; Gunn-Moore, F.; Dholakia, K.

    2012-06-01

    Gene therapy poses a great promise in treatment and prevention of a variety of diseases. However, crucial to studying and the development of this therapeutic approach is a reliable and efficient technique of gene and drug delivery into primary cell types. These cells, freshly derived from an organ or tissue, mimic more closely the in vivo state and present more physiologically relevant information compared to cultured cell lines. However, primary cells are known to be difficult to transfect and are typically transfected using viral methods, which are not only questionable in the context of an in vivo application but rely on time consuming vector construction and may also result in cell de-differentiation and loss of functionality. At the same time, well established non-viral methods do not guarantee satisfactory efficiency and viability. Recently, optical laser mediated poration of cell membrane has received interest as a viable gene and drug delivery technique. It has been shown to deliver a variety of biomolecules and genes into cultured mammalian cells; however, its applicability to primary cells remains to be proven. We demonstrate how optical transfection can be an enabling technique in research areas, such as neuropathic pain, neurodegenerative diseases, heart failure and immune or inflammatory-related diseases. Several primary cell types are used in this study, namely cardiomyocytes, dendritic cells, and neurons. We present our recent progress in optimizing this technique's efficiency and post-treatment cell viability for these types of cells and discuss future directions towards in vivo applications.

  11. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Science.gov (United States)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  12. Mouse Retinal Pigmented Epithelial Cell Lines retain their phenotypic characteristics after transfection with Human Papilloma Virus: A new tool to further the study of RPE biology

    Science.gov (United States)

    Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.

    2009-01-01

    Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153

  13. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  14. Magnetic nanoparticles studied by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Oliveira, Cristiano Luis Pinto; Antonel, Soledad; Negri, Martin

    2011-01-01

    Full text: Magnetic nanoparticles have attracted much attention in the past decades because of their potential applications in high-density magnetic recording, magnetic fluids, data storage, spin-tronics, solar cells, sensors and catalysis. Among the magnetic nanoparticles, cobalt ferrite (CoFe 2 O 4 ) has been widely studied due to high electromagnetic performance, excellent chemical stability, mechanical hardness, and high cubic magnetocrystalline anisotropy. These properties make it a promising candidate for many applications in commercial electronics such as video, audio tapes, high-density digital recording media, and magnetic fluids. Other interesting application is the use of magnetic nanocompounds in the design of magneto elastomers. Magnetoelastomers are dispersions of magnetic particles into an elastomer polymer matrix. These materials are highly promising for applications in the development of sensors and actuators, mainly because of the possibility to optimize the quality parameters of the devices by systematically changing the chemical nature of both the inorganic particles and the organic polymeric matrix, with the consequent modification of the magnetic, electric and elastic properties. Moreover, nanoparticles of cobalt-iron oxides (cobalt ferrite, CoFe 2 O 4 ) appears as very interesting compounds for magnetoelasticity, not only because present magnetic anisotropy, moderate-high magnetization and high coercitivity at room temperature, but also because the possibility to modulate its magnetic properties by chemical synthesis, that is by synthesizing nanoparticles of different sizes having thus not only different magnetic parameters but also different magnetic behavior (superparamagnetism or ferromagnetism). That means that most of the magnetic properties of CoFe 2 O 4 ferrite strongly depend on the size and shape of the nanoparticles, which are closely related to the method of preparation. On the other hand, nickel nanoparticles are very interesting

  15. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    Full text: Magnetic nanoparticles have attracted much attention in the past decades because of their potential applications in high-density magnetic recording, magnetic fluids, data storage, spin-tronics, solar cells, sensors and catalysis. Among the magnetic nanoparticles, cobalt ferrite (CoFe{sub 2}O{sub 4}) has been widely studied due to high electromagnetic performance, excellent chemical stability, mechanical hardness, and high cubic magnetocrystalline anisotropy. These properties make it a promising candidate for many applications in commercial electronics such as video, audio tapes, high-density digital recording media, and magnetic fluids. Other interesting application is the use of magnetic nanocompounds in the design of magneto elastomers. Magnetoelastomers are dispersions of magnetic particles into an elastomer polymer matrix. These materials are highly promising for applications in the development of sensors and actuators, mainly because of the possibility to optimize the quality parameters of the devices by systematically changing the chemical nature of both the inorganic particles and the organic polymeric matrix, with the consequent modification of the magnetic, electric and elastic properties. Moreover, nanoparticles of cobalt-iron oxides (cobalt ferrite, CoFe{sub 2}O{sub 4}) appears as very interesting compounds for magnetoelasticity, not only because present magnetic anisotropy, moderate-high magnetization and high coercitivity at room temperature, but also because the possibility to modulate its magnetic properties by chemical synthesis, that is by synthesizing nanoparticles of different sizes having thus not only different magnetic parameters but also different magnetic behavior (superparamagnetism or ferromagnetism). That means that most of the magnetic properties of CoFe{sub 2}O{sub 4} ferrite strongly depend on the size and shape of the nanoparticles, which are closely related to the method of preparation. On the other hand, nickel

  16. Metallic nanoparticles in dielectrics: A comparative study

    KAUST Repository

    Agambayev, Agamyrat; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.

    2017-01-01

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  17. Metallic nanoparticles in dielectrics: A comparative study

    KAUST Repository

    Agambayev, Agamyrat

    2017-10-25

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  18. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  19. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  20. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  1. Nanoparticles carrying neurotrophin-3-modified Schwann cells promote repair of sciatic nerve defects.

    Science.gov (United States)

    Zong, Haibin; Zhao, Hongxing; Zhao, Yilei; Jia, Jingling; Yang, Libin; Ma, Chao; Zhang, Yang; Dong, Yuzhen

    2013-05-15

    Schwann cells and neurotrophin-3 play an important role in neural regeneration, but the secretion of neurotrophin-3 from Schwann cells is limited, and exogenous neurotrophin-3 is inactived easily in vivo. In this study, we have transfected neurotrophin-3 into Schwann cells cultured in vitro using nanoparticle liposomes. Results showed that neurotrophin-3 was successfully transfected into Schwann cells, where it was expressed effectively and steadily. A composite of Schwann cells transfected with neurotrophin-3 and poly(lactic-co-glycolic acid) biodegradable conduits was transplanted into rats to repair 10-mm sciatic nerve defects. Transplantation of the composite scaffold could restore the myoelectricity and wave amplitude of the sciatic nerve by electrophysiological examination, promote nerve axonal and myelin regeneration, and delay apoptosis of spinal motor neurons. Experimental findings indicate that neurotrophin-3 transfected Schwann cells combined with bridge grafting can promote neural regeneration and functional recovery after nerve injury.

  2. Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies

    Science.gov (United States)

    Misra, S.K.; Dybowska, A.; Berhanu, D.; Croteau, M.-N.; Luoma, S.N.; Boccaccini, A.R.; Valsami-Jones, E.

    2012-01-01

    This work presents results on synthesis of isotopically enriched (99% 65Cu) copper oxide nanoparticles and its application in ecotoxicological studies. 65CuO nanoparticles were synthesized as spheres (7 nm) and rods (7 ?? 40 nm). Significant differences were observed between the reactivity and dissolution of spherical and rod shaped nanoparticles. The extreme sensitivity of the stable isotope tracing technique developed in this study allowed determining Cu uptake at exposure concentrations equivalent to background Cu concentrations in freshwater systems (0.2-30 ??g/L). Without a tracer, detection of newly accumulated Cu was impossible, even at exposure concentrations surpassing some of the most contaminated water systems (>1 mg/L). ?? 2011 American Chemical Society.

  3. Cationic Polybutyl Cyanoacrylate Nanoparticles for DNA Delivery

    Directory of Open Access Journals (Sweden)

    Jinghua Duan

    2009-01-01

    Full Text Available To enhance the intracellular delivery potential of plasmid DNA using nonviral vectors, we used polybutyl cyanoacrylate (PBCA and chitosan to prepare PBCA nanoparticles (NPs by emulsion polymerization and prepared NP/DNA complexes through the complex coacervation of nanoparticles with the DNA. The object of our work is to evaluate the characterization and transfection efficiency of PBCA-NPs. The NPs have a zeta potential of 25.53 mV at pH 7.4 and size about 200 nm. Electrophoretic analysis suggested that the NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed that the NPs exhibit a low cytotoxicity to human hepatocellular carcinoma (HepG2 cells. Qualitative and quantitative analysis of transfection in HepG2 cells by the nanoparticles carrying plasmid DNA encoding for enhanced green fluorescent protein (EGFP-N1 was done by digital fluorescence imaging microscopy system and fluorescence-activated cell sorting (FACS. Qualitative results showed highly efficient expression of GFP that remained stable for up to 96 hours. Quantitative results from FACS showed that PBCA-NPs were significantly more effective in transfecting HepG2 cells after 72 hours postincubation. The results of this study suggested that PBCA-NPs have favorable properties for nonviral delivery.

  4. In vitro toxicological nanoparticle studies under flow exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sambale, Franziska, E-mail: sambale@iftc.uni-hannover.de; Stahl, Frank; Bahnemann, Detlef; Scheper, Thomas [Gottfried Wilhelm Leibniz University Hanover, Institute for Technical Chemistry (Germany)

    2015-07-15

    The use of nanoparticles is becoming increasingly common in industry and everyday objects. Thus, extensive risk management concerning the potential health risk of nanoparticles is important. Currently, in vitro nanoparticle testing is mainly performed under static culture conditions without any shear stress. However, shear stress is an important biomechanical parameter. Therefore, in this study, a defined physiological flow to different mammalian cell lines such as A549 cells and NIH-3T3 cells has been applied. The effects of zinc oxide and titanium dioxide nanoparticles (TiO{sub 2}-NP), respectively, were investigated under both static and dynamic conditions. Cell viability, cell morphology, and adhesion were proven and compared to the static cell culture. Flow exposure had an impact on the cellular morphology of the cells. NIH-3T3 cells were elongated in the direction of flow and A549 cells exhibited vesicles inside the cells. Zinc oxide nanoparticles reduced the cell viability in the static and in the dynamic culture; however, the dynamic cultures were more sensitive. In the static culture and in the dynamic culture, TiO{sub 2}-NP did not affect cell viability. In conclusion, dynamic culture conditions are important for further in vitro investigations and provide more relevant results than static culture conditions.

  5. In vitro toxicological nanoparticle studies under flow exposure

    International Nuclear Information System (INIS)

    Sambale, Franziska; Stahl, Frank; Bahnemann, Detlef; Scheper, Thomas

    2015-01-01

    The use of nanoparticles is becoming increasingly common in industry and everyday objects. Thus, extensive risk management concerning the potential health risk of nanoparticles is important. Currently, in vitro nanoparticle testing is mainly performed under static culture conditions without any shear stress. However, shear stress is an important biomechanical parameter. Therefore, in this study, a defined physiological flow to different mammalian cell lines such as A549 cells and NIH-3T3 cells has been applied. The effects of zinc oxide and titanium dioxide nanoparticles (TiO 2 -NP), respectively, were investigated under both static and dynamic conditions. Cell viability, cell morphology, and adhesion were proven and compared to the static cell culture. Flow exposure had an impact on the cellular morphology of the cells. NIH-3T3 cells were elongated in the direction of flow and A549 cells exhibited vesicles inside the cells. Zinc oxide nanoparticles reduced the cell viability in the static and in the dynamic culture; however, the dynamic cultures were more sensitive. In the static culture and in the dynamic culture, TiO 2 -NP did not affect cell viability. In conclusion, dynamic culture conditions are important for further in vitro investigations and provide more relevant results than static culture conditions

  6. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  7. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  8. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  9. Critical Parametric Study on Final Size of Magnetite Nanoparticles

    Science.gov (United States)

    Yusoff, A. H. M.; Salimi, M. N.; Jamlos, M. F.

    2018-03-01

    The great performance of magnetite nanoparticle in varsity field are mainly depended on their size since size determine the saturation magnetisation and also the phase purity. Magnetite nanoparticles were prepared using a simple co-precipitation method in order to study the influence of synthesis condition on the final size. Variable parameters include stirring rate, reaction temperature and pH of the solution can finely tuned the size of the resulting nanoparticles. Generally, any increase in these parameters had a gently reduction on particle size. But, the size was promoted to increase back at certain point due to the specific reason. Nucleation and growth processes are involved to clarify the impact of synthesis condition on the particle sizes. The result obtained give the correct conditions for pure magnetite synthesis at nanoscale size of dimensions less than 100 nm.

  10. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  11. In vitro placental model optimization for nanoparticle transport studies

    Directory of Open Access Journals (Sweden)

    Cartwright L

    2012-01-01

    Full Text Available Laura Cartwright1, Marie Sønnegaard Poulsen2, Hanne Mørck Nielsen3, Giulio Pojana4, Lisbeth E Knudsen2, Margaret Saunders1, Erik Rytting2,51Bristol Initiative for Research of Child Health (BIRCH, Biophysics Research Unit, St Michael's Hospital, UH Bristol NHS Foundation Trust, Bristol, UK; 2University of Copenhagen, Faculty of Health Sciences, Department of Public Health, 3University of Copenhagen, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, Copenhagen, Denmark; 4Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy; 5Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USABackground: Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman's exposure to nanoparticles could have significant effects on the fetus developing in the womb. Therefore, the purpose of this study is to optimize an in vitro model for characterizing the transport of nanoparticles across human placental trophoblast cells.Methods: The growth of BeWo (clone b30 human placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium transport. Following the determination of nontoxic concentrations of fluorescent polystyrene nanoparticles, the cellular uptake and transport of 50 nm and 100 nm diameter particles was measured using the in vitro BeWo cell model.Results: Particle size measurements, fluorescence readings, and confocal microscopy indicated both cellular uptake of

  12. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  13. Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles.

    Science.gov (United States)

    Yu, Qingtong; Cao, Jin; Chen, Baoding; Deng, Wenwen; Cao, Xia; Chen, Jingjing; Wang, Yan; Wang, Shicheng; Yu, Jiangnan; Xu, Ximing; Gao, Xiangdong

    2015-01-01

    This study centered on an innovative application of Porphyra yezoensis polysaccharide (PPS) with cationic modification as a safe and efficient nonviral gene vector to deliver a plasmid encoding human Wnt3a (pWnt3a) into human umbilical cord mesenchymal stem cells (HUMSCs). After modification with branched low-molecular-weight (1,200 Da) polyethylenimine, the cationized PPS (CPPS) was combined with pWnt3a to form spherical nanoscale particles (CPPS-pWnt3a nanoparticles). Particle size and distribution indicated that the CPPS-pWnt3a nanoparticles at a CPPS:pWnt3a weight ratio of 40:1 might be a potential candidate for DNA plasmid transfection. A cytotoxicity assay demonstrated that the nanoparticles prepared at a CPPS:pWnt3a weight ratio of 40:1 were nontoxic to HUMSCs compared to those of Lipofectamine 2000 and polyethylenimine (25 kDa). These nanoparticles were further transfected to HUMSCs. Western blotting demonstrated that the nanoparticles (CPPS:pWnt3a weight ratio 40:1) had the greatest transfection efficiency in HUMSCs, which was significantly higher than that of Lipofectamine 2000; however, when the CPPS:pWnt3a weight ratio was increased to 80:1, the nanoparticle-treated group showed no obvious improvement in translation efficiency over Lipofectamine 2000. Therefore, CPPS, a novel cationic polysaccharide derived from P. yezoensis, could be developed into a safe, efficient, nonviral gene vector in a gene-delivery system.

  14. Transfer Study of Silver Nanoparticles in Poultry Production

    NARCIS (Netherlands)

    Gallocchio, F.; Biancotto, G.; Cibin, V.; Losasso, C.; Belluco, S.; Peters, R.; Bemmel, G. van; Cascio, C.; Weigel, S.; Tromp, P.; Gobbo, F.; Catania, S.; Ricci, A.

    2017-01-01

    Silver nanoparticles (AgNPs) are of interest due to their antimicrobial activity and are seen as potential candidates to replace antibiotics in animal husbandry. A few studies have focused on this new application, but they lack any considerations about residual accumulation of AgNPs in edible animal

  15. Transfer Study of Silver Nanoparticles in Poultry Production

    NARCIS (Netherlands)

    Gallocchio, Federica; Biancotto, Giancarlo; Cibin, Veronica; Losasso, Carmen; Belluco, Simone; Peters, Ruud; Bemmel, van Greet; Cascio, Claudia; Weigel, Stefan; Tromp, Peter C.; Gobbo, Federica; Catania, Salvatore; Ricci, Antonia

    2017-01-01

    Silver nanoparticles (AgNPs) are of interest due to their antimicrobial activity and are seen as potential candidates to replace antibiotics in animal husbandry. A few studies have focused on this new application, but they lack any considerations about residual accumulation of AgNPs in edible

  16. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: A first-principles study

    KAUST Repository

    Liu, Xin; Yao, Kexin; Meng, Changgong; Han, Yu

    2012-01-01

    The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru 13 nanoparticle on a single

  17. Protocol for Lipid-Mediated Transient Transfection in A549 Epithelial Lung Cell Line.

    Science.gov (United States)

    Marcos-Vadillo, Elena; García-Sánchez, Asunción

    2016-01-01

    Trials of transfection in eukaryotic cells are essential tools for the study of gene and protein function. They have been used in a wide range of research fields. In this chapter, a method of transient transfection of the A549 cell line, human lung cells of alveolar epithelium, with an expression plasmid is described. In addition, the fundamental characteristics of this experimental procedure are addressed.

  18. Silicalite nanoparticles that promote transgene expression

    International Nuclear Information System (INIS)

    Pearce, Megan E; Mai, Hoang Q; Salem, Aliasger K; Lee, Namhoon; Larsen, Sarah C

    2008-01-01

    Here, we report on a new zeolite-based silicalite nanoparticle that can enhance the transfection efficiencies generated by poly ethylene imine-plasmid DNA (PEI-pDNA) complexes via a sedimentation mechanism and can enhance the transfection efficiencies of pDNA alone when surface functionalized with amine groups. The silicalite nanoparticles have a mean size of 55 nm. Functionalizing the silicalite nanoparticles with amine groups results in a clear transition in zeta potential from -25.9 ± 2.3 mV (pH 7.4) for unfunctionalized silicalite nanoparticles to 4.9 ± 0.7 mV (pH 7.4) for amine functionalized silicalite nanoparticles. We identify that silicalite nanoparticles used to promote non-viral vector acceleration to the cell surface are found in acidic vesicles or the cytoplasm but not the nucleus. An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay showed that the silicalite nanoparticles were non-toxic at the concentrations tested for transfection. We show that surface functionalization of silicalite nanoparticles with amine groups results in a significant (230%) increase in transfection efficiency of pDNA when compared to unfunctionalized silicalite nanoparticles. Silicalite nanoparticles enhanced pDNA-PEI induced transfection of human embryonic kidney (HEK-293) cells by over 150%

  19. Study of optical phonon modes of CdS nanoparticles using Raman

    Indian Academy of Sciences (India)

    In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time ...

  20. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  1. Exploring the Correlation Between Lipid Packaging in Lipoplexes and Their Transfection Efficacy

    Science.gov (United States)

    Moghaddam, Behfar; McNeil, Sarah E.; Zheng, Qinguo; Mohammed, Afzal R.; Perrie, Yvonne

    2011-01-01

    Whilst there is a large body of evidence looking at the design of cationic liposomes as transfection agents, correlates of formulation to function remain elusive. In this research, we investigate if lipid packaging can give further insights into transfection efficacy. DNA lipoplexes composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method. Each of the formulations was prepared by hydration in dH2O or phosphate buffer saline (PBS) to investigate the effect of buffer salts on lipoplex physicochemical characteristics and in vitro transfection. In addition, Langmuir monolayer studies were performed to investigate any possible correlation between lipid packaging and liposome attributes. Using PBS, rather than dH2O, to prepare the lipoplexes increased the size of vesicles in most of formulations and resulted in variation in transfection efficacies. However, one combination of lipids (DSPE:DOTAP) could not form liposomes in PBS, whilst the DSPE:DSTAP combination could not form liposomes in either aqueous media. Monolayer studies demonstrated saturated lipid combinations offered dramatically closer molecular packing compared to the other combinations which could suggest why this lipid combination could not form vesicles. Of the lipoplexes prepared, those formulated with DSTAP showed higher transfection efficacy, however, the effect of buffer on transfection efficiency was formulation dependent. PMID:24309311

  2. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.; He, L.-S.; Wong, Y. H.; Yu, L.; Qian, P.-Y.

    2015-01-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  3. Uptake of DNA by cancer cells without a transfection reagent

    Directory of Open Access Journals (Sweden)

    Yanping Kong

    Full Text Available Abstract Background Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. Methods A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer and THLE3 (normal liver cells after incubation overnight by counting radioactivity of the cells’ genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of “label it fluorescence in situ hybridization (FISH” from Mirus (USA. Results The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA’s size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. Conclusions In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA

  4. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  5. In vitro placental model optimization for nanoparticle transport studies

    DEFF Research Database (Denmark)

    Cartwright, Laura; Poulsen, Marie Sønnegaard; Nielsen, Hanne Mørck

    2012-01-01

    Background: Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman...... placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium...

  6. Chitosan-Graft-Polyethylenimine/DNA Nanoparticles as Novel Non-Viral Gene Delivery Vectors Targeting Osteoarthritis

    Science.gov (United States)

    Lv, Lulu; Zhao, Huiqing

    2014-01-01

    The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes. PMID:24392152

  7. Photoluminescence studies on Eu doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ningthoujam, R.S.; Sudarsan, V.; Vatsa, R.K.; Kadam, R.M.; Jagannath; Gupta, A.

    2009-01-01

    Eu 3+ doped TiO 2 nanoparticles were prepared by urea hydrolysis in ethylene glycol medium at low temperature of 150 deg. C. X-ray diffraction study showed that anatase phase of tetragonal structure was formed below 500 deg. C; and above this temperature, additional peaks due to rutile phase were also observed. From luminescence study, it was found that as prepared nanoparticles showed the enhanced luminescence intensity due to energy transfer from host to europium ions. However, photoluminescence from these nanoparticles was found to disappear when the samples were heated above 900 deg. C. We established the origin of the reduction in the luminescence intensity from Eu 3+ when doped in TiO 2 and heated at 900 deg. C. Based on detailed studies at different heat-treatment temperatures using techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, electron paramagnetic resonance, Raman spectroscopy, and Moessbauer spectroscopy, it has been established that formation of Eu 2 Ti 2 O 7 phase, wherein Eu 3+ ions occupy high symmetric environment (D 3d ) and also reduced distance between Eu 3+ and Eu 3+ ions is responsible for the decrease/loss in the luminescence intensity.

  8. Molecular genetic transfection of the coccidian parasite Sarcocystis neurona.

    Science.gov (United States)

    Gaji, Rajshekhar Y; Zhang, Deqing; Breathnach, Cormac C; Vaishnava, Shipra; Striepen, Boris; Howe, Daniel K

    2006-11-01

    Sarcocystis neurona is an apicomplexan parasite that is the major cause of equine protozoal myeloencephalitis (EPM). The biology of this pathogen remains poorly understood in part due to unavailability of molecular genetic tools. Hence, with an objective to develop DNA transfection capabilities for S. neurona, the 5' flanking region of the SnSAG1 gene was isolated from a genomic library and used to construct expression plasmids. In transient assays, the reporter molecules beta-galactosidase (beta-gal) and yellow fluorescent protein (YFP) could be detected in electroporated S. neurona, thereby confirming the feasibility of transgene expression in this organism. Stable transformation of S. neurona was achieved using a mutant dihydrofolate reductase thymidylate synthase (DHFR-TS) gene of Toxoplasma gondii that confers resistance to pyrimethamine. This selection system was used to create transgenic S. neurona that stably express beta-gal and YFP. As shown in this study, these transgenic clones can be useful for analyzing growth rate of parasites in vitro and for assessing drug sensitivities. More importantly, the DNA transfection methods described herein should greatly facilitate studies examining intracellular parasitism by this important coccidian pathogen.

  9. Positron annihilation studies in ZnO nanoparticles

    Science.gov (United States)

    Sharma, S. K.; Pujari, P. K.; Sudarshan, K.; Dutta, D.; Mahapatra, M.; Godbole, S. V.; Jayakumar, O. D.; Tyagi, A. K.

    2009-04-01

    We report results on positron annihilation spectroscopic (PAS) studies using lifetime and coincidence Doppler broadening techniques in zinc oxide (ZnO) nanoparticles (4 to 40 nm) synthesized by solid state pyrolytic reaction followed by annealing in the temperature range of 200 ∘C to 800 ∘C. Positron lifetime in the nanoparticles are observed to be higher than bulk lifetime in all the cases. Theoretical calculation of lifetime indicates the presence of either Zn or (Zn, O) vacancy clusters which migrate and anneal out at high temperature. Comparison of ratio spectra from coincidence Doppler broadening measurement and calculated electron momentum distribution indicates the presence of either Zn or (Zn, O) vacancies. In addition, photoluminescence (PL) measurements have been carried out to examine the role of defects on the intensity of emission in the visible region.

  10. Apertureless SNOM study on gold nanoparticles: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizhe; Kimel, Alexey; Kirilyuk, Andrei; Rasing, Theo [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2010-08-15

    Gold nanoparticles (about 10 nm in diameter) are investigated by an apertureless (or scattering-type) scanning near-field optical microscope (aSNOM) at 633 nm and a negative optical amplitude signal contrast is observed. To understand the size effect and the interactions between light, tip, and sample, an analytical solution is obtained by adopting a model considering the tip as a point dipole. This model successfully shows the contrast reversal measured in experiments. Some important aspects, however, are neglected by the quasistatic dipole model. Thus, three-dimensional (3D) numerical calculations by a finite integration technique are applied to study the interactions between tip apex, gold nanoparticle, and the substrate surface. The simulated near-field and far-field results help us not only to understand the experimentally acquired aSNOM images but also to investigate the complicated tip-particle-surface interactions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  12. Transfection of genetically encoded photoswitchable probes for STORM imaging.

    Science.gov (United States)

    Bates, Mark; Jones, Sara A; Zhuang, Xiaowei

    2013-06-01

    Conventional fluorescence microscopy is limited by its spatial resolution, leaving many biological structures too small to be studied in detail. Stochastic optical reconstruction microscopy (STORM) is a method for superresolution fluorescence imaging based on the high accuracy localization of individual fluorophores. It uses optically switchable fluorophores: molecules that can be switched between a nonfluorescent and a fluorescent state by exposure to light. This protocol describes the transfection of genetically encoded photoswitchable probes for STORM imaging. It includes a discussion of how to choose a photoswitchable fluorescent protein; standard molecular biology techniques should be used to generate a plasmid containing the sequence of the photoswitchable protein linked to the gene of interest. Once the plasmid has been generated and has been verified, it can be introduced into cells via any standard means of gene delivery, such as lipofection or electroporation. Optimal conditions will vary considerably for different cell lines and plasmids. Here, we present an example protocol for the transfection of BS-C-1 cells with an mEos2-vimentin plasmid using the lipid-based reagent FuGENE6.

  13. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  14. Study on magnetite nanoparticles synthesized by chemical method

    International Nuclear Information System (INIS)

    Pei Wenli; Kumada, H.; Natusme, T.; Saito, H.; Ishio, S.

    2007-01-01

    Magnetite nanoparticles with controlled size were synthesized by chemical method. Higher deposition temperature and a rapid-raising temperature procedure are favorable to particle size distribution and fabrication of monodisperse nanoparticles. The larger nanoparticles can be synthesized by the two-step method. The large nanoparticle (up to 25 nm) without agglomeration was successfully produced. The saturation magnetization of 11 nm magnetite particles was 45 emu/g at room temperature, which is smaller than that of bulk magnetite due to surface effect. Hysteresis of the magnetite nanoparticle was very small, indicating superparamagnetic behavior. The magnetic domains of the 11 nm magnetite nanoparticles were successfully observed by MFM

  15. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  16. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    International Nuclear Information System (INIS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Elbaum, Danek; Koper, Kamil; Stępień, Piotr; Szewczyk, Sebastian; Paterczyk, Bohdan

    2013-01-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er 3+ and Yb 3+ doped NaYF 4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF 4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics. (paper)

  17. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Szewczyk, Sebastian; Paterczyk, Bohdan; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Stępień, Piotr; Elbaum, Danek

    2013-06-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er3+ and Yb3+ doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics.

  18. Studies on polyethylene glycol coating on NiFe2O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Phadatare, M.R.; Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Pawar, S.H.

    2012-01-01

    The NiFe 2 O 4 nanoparticles were prepared by the combustion method and these nanoparticles were successfully coated with polyethylene glycol (PEG) for the possible biomedical applications such as magnetic resonance imaging, drug delivery, tissue repair, magnetic fluid hyperthermia etc. The structural and magnetic characterizations of NiFe 2 O 4 nanoparticles were carried out by x-ray diffraction and vibrating sample magnetometry techniques, respectively. The morphology of the uncoated and coated nanoparticles was studied by scanning electron microscopy. The existence of PEG layer on NiFe 2 O 4 nanoparticles was confirmed by fourier transform infrared spectroscopy technique. - Highlights: ► Synthesis of nanocrystalline NiFe 2 O 4 by the combustion method. ► Magnetic properties of the NiFe 2 O 4 nanoparticles at room temperature. ► Coating of NiFe 2 O 4 nanoparticles by Polyethylene glycol (PEG).

  19. Chitosan nanoparticles-trypsin interactions: Bio-physicochemical and molecular dynamics simulation studies.

    Science.gov (United States)

    Salar, Safoura; Mehrnejad, Faramarz; Sajedi, Reza H; Arough, Javad Mohammadnejad

    2017-10-01

    Herein, we investigated the effect of the chitosan nanoparticles (CsNP) on the structure, dynamics, and activity of trypsin. The enzyme activity in complex with the nanoparticles slightly increased, which represents the interactions between the nanoparticles and the enzyme. The kinetic parameters of the enzyme, K m and k cat , increased after adding the nanoparticles, resulting in a slight increase in the catalytic efficiency (k cat /K m ). However, the effect of the nanoparticles on the kinetic stability of trypsin has not exhibited significant variations. Fluorescence spectroscopy did not show remarkable changes in the trypsin conformation in the presence of the nanoparticles. The circular dichroism (CD) spectroscopy results also revealed the secondary structure of trypsin attached to the nanoparticles slightly changed. Furthermore, we used molecular dynamics (MD) simulation to find more information about the interaction mechanisms between the nanoparticles and trypsin. The root mean square deviation (RMSD) of Cα atoms results have shown that in the presence of the nanoparticles, trypsin was stable. The simulation and the calculation of the binding free energy demonstrate that the nonpolar interactions are the most important forces for the formation of stable nanoparticle-trypsin complex. This study has explicitly elucidated that the nanoparticles have not considerable effect on the trypsin. Copyright © 2017. Published by Elsevier B.V.

  20. Synthesis of Manganese Tetroxide Nanoparticles Using Precipitation and Study of Its Structure and Optical Characteristics

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2016-12-01

    Full Text Available Considering extensive applications of manganese tetroxide nanoparticles in various industries due to its special properties, conducting studies on how to achieve more suitable ways to produce smaller nanoparticles is of great importance. In this study, nanoparticles of manganese tetroxide (Mn3O4 were synthesized by a co-precipitation method. In order to determine the characteristics of the structure, size, and specific surface of the resulting nanoparticles, techniques such as XRD, BET, BJH, FESEM, and FTIR were employed. Also, the nanoparticles were quantified with EDS and their colony size was examined using DLS experiments. The findings revealed a production of crystalline manganese tetroxide nanoparticles with a space group of 141/amd (S.G. (141 and a molecular weight of 228.81 with the international code of ICSD Card # 89 - 4837. The specific surface area was 32.147 m2/g with a pore volume of 0.1041 cm3/g. The XRD and EDX analyses verify the production of the Mn3O4 nanoparticles. The size of the nanostructures is approximately 19 nm. The method used in this study could produce the Mn3O4 nanoparticles in a much easier way without the need for surfactants. Compared to the nanoparticles produced in other studies, the size of the nanoparticles produced in the present study is remarkably smaller. Moreover, less amount of the metal salt was used.

  1. Comparative study of synthesized silver and gold nanoparticles ...

    Indian Academy of Sciences (India)

    The present investigation aimed at comparing the synthesis, characterization and in vitro anticancer ... Bauhinia tomentosa Linn; silver nanoparticles; gold nanoparticles; A-549; HEp-2; MCF-7. 1. Introduction ..... Methods 65 55. [33] Singh A K ...

  2. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  3. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  4. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  5. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  6. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    Science.gov (United States)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  7. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    Science.gov (United States)

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  8. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  9. Green Synthesis of Silver Nanoparticles and the Study of Optical Properties

    OpenAIRE

    Vasireddy, Ramakrishna; Paul, Rima; Mitra, Apurba Krishna

    2012-01-01

    The synthesis of silver nanoparticles of varying size has been achieved using different molar concentrations of NaOH while the effect of changing the temperature has been studied. AgNO3, gelatine, glucose and NaOH are used as a silver precursor, stabilizer, reducing agent and accelerator respectively. The synthesized nanoparticles have been characterized by a FESEM study, X‐ray diffractometry, Raman spectroscopy and UV‐vis spectroscopy. The colloidal sols of the silver nanoparticles in a biop...

  10. Nanoparticles as conjugated delivery agents for therapeutic applications

    Science.gov (United States)

    Muroski, Megan Elizabeth

    This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as

  11. A quantitative study of nanoparticle skin penetration with interactive segmentation.

    Science.gov (United States)

    Lee, Onseok; Lee, See Hyun; Jeong, Sang Hoon; Kim, Jaeyoung; Ryu, Hwa Jung; Oh, Chilhwan; Son, Sang Wook

    2016-10-01

    In the last decade, the application of nanotechnology techniques has expanded within diverse areas such as pharmacology, medicine, and optical science. Despite such wide-ranging possibilities for implementation into practice, the mechanisms behind nanoparticle skin absorption remain unknown. Moreover, the main mode of investigation has been qualitative analysis. Using interactive segmentation, this study suggests a method of objectively and quantitatively analyzing the mechanisms underlying the skin absorption of nanoparticles. Silica nanoparticles (SNPs) were assessed using transmission electron microscopy and applied to the human skin equivalent model. Captured fluorescence images of this model were used to evaluate degrees of skin penetration. These images underwent interactive segmentation and image processing in addition to statistical quantitative analyses of calculated image parameters including the mean, integrated density, skewness, kurtosis, and area fraction. In images from both groups, the distribution area and intensity of fluorescent silica gradually increased in proportion to time. Since statistical significance was achieved after 2 days in the negative charge group and after 4 days in the positive charge group, there is a periodic difference. Furthermore, the quantity of silica per unit area showed a dramatic change after 6 days in the negative charge group. Although this quantitative result is identical to results obtained by qualitative assessment, it is meaningful in that it was proven by statistical analysis with quantitation by using image processing. The present study suggests that the surface charge of SNPs could play an important role in the percutaneous absorption of NPs. These findings can help achieve a better understanding of the percutaneous transport of NPs. In addition, these results provide important guidance for the design of NPs for biomedical applications.

  12. Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells

    Science.gov (United States)

    Jiwaji, Meesbah; Sandison, Mairi E.; Reboud, Julien; Stevenson, Ross; Daly, Rónán; Barkess, Gráinne; Faulds, Karen; Kolch, Walter; Graham, Duncan; Girolami, Mark A.; Cooper, Jonathan M.; Pitt, Andrew R.

    2014-01-01

    Introduction Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. PMID:24926959

  13. Guanidinylated polyethyleneimine-polyoxypropylene-polyoxyethylene conjugates as gene transfection agents.

    Science.gov (United States)

    Bromberg, Lev; Raduyk, Svetlana; Hatton, T Alan; Concheiro, Angel; Rodriguez-Valencia, Cosme; Silva, Maite; Alvarez-Lorenzo, Carmen

    2009-05-20

    Conjugates of linear and branched polyethyleneimine (PEI) and monoamine polyether Jeffamine M-2070 (PO/EO mol ratio 10/31, 2000 Da) were synthesized through polyether activation by cyanuric chloride followed by attachment to PEI and guanidinylation by 1H-pyrazole-carboxamidine hydrochloride. The resulting guanidinylated PEI-polyether conjugates (termed gPEI-Jeffamine) efficiently complexed plasmid DNA, and their polyplexes possessed enhanced colloidal stability in the presence of serum proteins. In vitro studies with mammalian CHO-1, 3T3, and Cos-7 cell lines demonstrated improved transfection efficiency of the pCMVbeta-gal plasmid/gPEI-Jeffamine polyplexes. The guanidinylation of the amino groups of PEI and the conjugation of PEI with the Jeffamine polyether enhanced the conjugates' interaction with genetic material and reduced the cytotoxicity of the polyplexes in experiments with the L929 cell line.

  14. Study of Ag and Au Nanoparticles Synthesized by Arc Discharge in Deionized Water

    Directory of Open Access Journals (Sweden)

    Der-Chi Tien

    2010-01-01

    Full Text Available The paper presents a study of Ag and Au nanofluids synthesized by the arc discharge method (ADM in deionized water. The metallic Ag nanoparticle (Ag0 and ionic Ag (Ag+ have played an important role in the battle against germs which are becoming more drug-resistant every year. Our study indicates that Ag nanoparticle suspension (SNPS fabricated by using ADM without added surfactants exclusively contains the metallic Ag nanoparticle and ionic Ag. Besides that, the ADM in deionized water has also been employed for the fabrication process of Au nanoparticles. The experimental results indicate that the prepared Ag nanoparticles can react with the dissolved H2CO3 in deionized water, leading to the formation of Ag2CO3. Significantly different to Ag, the prepared Au nanoparticles with their surfaces bonded by oxygen are suspended in deionized water by the formation of hydrogen bonded with the neighboring water molecules.

  15. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; Chen Yiru; He Wenjie; Hong Poda; Yu, Dah-Shyong; Domb, Abraham J.

    2013-01-01

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe 2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  16. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@yahoo.com [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Chen Yiru [National Yang-Ming University, Department of Biomedical Engineering (China); He Wenjie; Hong Poda [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem (Israel)

    2013-01-15

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe{sup 2+} solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  17. Transfection of bone marrow derived cells with immunoregulatory proteins.

    Science.gov (United States)

    Khantakova, Julia N; Silkov, Alexander N; Tereshchenko, Valeriy P; Gavrilova, Elena V; Maksyutov, Rinat A; Sennikov, Sergey V

    2018-03-23

    In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Jourabian, Mahmoud [University of Trieste, Piazzale (Italy); Farhadi, Mousa [Babol Noshirvani University of Technology, Shariati Avenue (Iran, Islamic Republic of)

    2015-09-15

    Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

  19. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

    International Nuclear Information System (INIS)

    Jourabian, Mahmoud; Farhadi, Mousa

    2015-01-01

    Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

  20. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth

    DEFF Research Database (Denmark)

    Georgiev, P.; Bojinova, A.; Kostova, B.

    2013-01-01

    In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during...... the synthesis process the nanoparticle s' sizes were obtained. To demonstrate the applicability and the reliability of the proposed experimental approach we studied the nanoparticles growth at two different temperatures by spectrophotometric measurements and compared them with the results from AFM experimental...

  1. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2016-01-01

    The coarsening of supported palladium nanoparticles in an oxidizing atmosphere was studied in situ by means of transmission electron microscopy (TEM). Specifically, the Pd nanoparticles were dispersed on a planar and amorphous Al2O3 support and were observed during the exposure to 10 mbar technical...... for the Ostwald ripening process indicates that the observed change in the particle size distribution can be accounted for by wetting of the Al2O3 support by the larger Pd nanoparticles....

  2. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  3. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  5. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Samiei, Mohammad [Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); School of Advanced Medicine, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Farjami, Afsaneh; Dizaj, Solmaz Maleki [Hematology & Oncology Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Lotfipour, Farzaneh, E-mail: lotfipoor@tbzmed.ac.ir [School of Advanced Medicine, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Hematology & Oncology Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2016-01-01

    Introduction: Antimicrobial nanoparticles with enhanced physiochemical properties have attracted attention as modern antimicrobials, especially in the complicated oral cavity environment. The goal of the present article is to review the current state of nanoparticles used for antimicrobial purposes in root canal infections. Methods: A review was conducted in electronic databases using MeSH keywords to identify relevant published literature in English. The analysis and eligibility criteria were documented according to the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA-guidelines). No restrictions on publication date were imposed. Data regarding root canal disinfections, general antimicrobial mechanisms of nanoparticles, type of nanoparticles as antimicrobial agent and antimicrobial effect of nanoparticles in endodontics were collected and subjected to descriptive data analysis. Results: The literature search in electronic databases according to the inclusion criteria provided 83 titles and abstracts. Among them 15 papers were related to antimicrobial effect of nanoparticles in Endodontics. Silver nanoparticles with sustainable activity were the most studied agent for its antimicrobial behavior in root canal infection. Aided polymeric nanoparticles with photo or ultrasound, glass bioactive nanoparticles as well as Calcium derivative based nanoparticles, with improved activity in comparison with the non-nano counterparts, are of importance in infection control of dental root canal. Bioactive Non-organic nanoparticles with structural capabilities present enhanced antimicrobial activity in root canal infections. Discussion: All included studies showed an enhanced or at least equal effect of nanoparticulate systems to combat dental root canal infections compared to conventional antimicrobial procedures. However, it is crucial to understand their shortcomings and their probable cellular effects and toxicity as well as environmental effects

  6. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  7. Silver Nanoparticles and Studies on Using in Poultry Nutrition

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Özcan

    2015-02-01

    Full Text Available The use of colloidal silver as an antibiotic was becoming widespread until the 1940s. However, with the discovery of antibiotics, usage of colloidal silver had been reduced because of being expensive. The fact that bacteria develop resistance to antibiotics lead to prohibiton the usage of antibiotics in poultry diets as growth promoters. Based on these developments reuse of colloidal silver has been raised as an alternative to antibiotics. Without prejudice to the beneficial enzymes, colloidal silver disables certain enzymes needed by bacteria, viruses, yeasts, and fungus resulting in the destruction of these enzymes. It is reported that increase in surface area of nano-particles of silver increase antibacterial activity. The most important limitation on the widespread use of silver nanoparticles as feed additives is uncertainty about the possible toxic effects. In this review, studies for the use of colloidal silver particles in poultry feed were evaluated and tried to seek answer the question “may be a new resource that can be used as an alternative to antibiotics?

  8. Spectroscopic ellipsometry study of FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [School of Materials Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2006-12-15

    The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library.

    Science.gov (United States)

    Wang, Hao; Liu, Kan; Chen, Kuan-Ju; Lu, Yujie; Wang, Shutao; Lin, Wei-Yu; Guo, Feng; Kamei, Ken-ichiro; Chen, Yi-Chun; Ohashi, Minori; Wang, Mingwei; Garcia, Mitch André; Zhao, Xing-Zhong; Shen, Clifton K-F; Tseng, Hsian-Rong

    2010-10-26

    Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into a specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance. Here we have demonstrated a rapid developmental pathway toward highly efficient gene delivery systems by leveraging the powers of a supramolecular synthetic approach and a custom-designed digital microreactor. Using the digital microreactor, broad structural/functional diversity can be programmed into a library of DNA-encapsulated supramolecular nanoparticles (DNA⊂SNPs) by systematically altering the mixing ratios of molecular building blocks and a DNA plasmid. In vitro transfection studies with DNA⊂SNPs library identified the DNA⊂SNPs with the highest gene transfection efficiency, which can be attributed to cooperative effects of structures and surface chemistry of DNA⊂SNPs. We envision such a rapid developmental pathway can be adopted for generating nanoparticle-based vectors for delivery of a variety of loads.

  10. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    This thesis presents a fundamental study of the sintering of supported nanoparticles in relation to diesel oxidation catalysts. The sintering of supported nanoparticles is an important challenge in relation to this catalyst, as well as many other catalyst systems, and a fundamental understanding...... of Pt, Pd and bimetallic Pt-Pd nanoparticles supported on a flat and homogeneous Al2O3 or SiO2 surface. By using in situ TEM on the planar model catalysts it was possible to directly monitor the detailed dynamical changes of the individual nanoparticles during exposure to oxidizing conditions...

  11. Studies on L-histidine capped Ag and Au nanoparticles for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Nivedhini Iswarya, Chandrasekaran; Kiruba Daniel, S.C.G. [Division of Nanoscience and Technology, Anna University-BIT Campus, Tiruchirappalli 620024 (India); Sivakumar, Muthusamy, E-mail: muthusiva@gmail.com [Division of Nanoscience and Technology, Anna University-BIT Campus, Tiruchirappalli 620024 (India); Department of Chemistry, Anna University-BIT Campus, Tiruchirappalli 620024 (India)

    2017-06-01

    This work demonstrates the effective surface functionalization of Ag, Au and bimetallic Ag-Au nanoparticles using L-histidine for colorimetric detection of dopamine (DA) which plays majorly in recognizing the neurological disorder. L-Histidine (L-His) capped Ag, Au, and bimetallic Ag-Au nanoparticles are characterized using physico-chemical techniques. The optical behaviour of nanoparticles has been analysed at various time intervals using UV–Vis absorption spectroscopy. FT-IR results provide the evidence of chemical bonding between L-histidine and metal nanoparticles. Its structure with the capping of L-His was clearly shown in HR-TEM images. The average size of nanoparticles has calculated from TEM image fringes are 11 nm, 5 nm and 6.5 nm respectively, matches with crystals size calculated from X-ray diffraction pattern. Enhanced optical nature of nanoparticles provides the best platform to develop a colorimetric-based biosensor for DA detection. After addition of DA, a rapid colour change has been noted in colloids of nanoparticles. The substantial changes in absorbance and λ{sub max} in metal nanoparticles respect to DA concentration have been observed and formulated. This is one of the successive methods for trace level determination of DA and will be going to a significant material for designing biosensor to determine DA in real extracellular body fluids. - Highlights: • L-His functionalized Ag, Au and bimetallic Ag-Au nanoparticles were prepared and its properties were studied. • L-His based Ag, Au, Ag-Au nanoparticles have characterized by spectroscopy, XRD and microscopic studies. • Enhanced optical nature of nanoparticles delivers the best platform to develop a biosensor for DA detection. • For qualitative determination of dopamine, SPR of metal nanoparticles plays a major role in dopamine determination. • This basic finding can be utilized for further identification of imbalanced DA concentration in body fluids.

  12. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)]. E-mail: shinjit@fmsrsa.fukui-med.ac.jp; Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)

    2005-11-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16{alpha}-[{sup 18}F]-fluoro-17{beta}-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [{sup 3}H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [{sup 3}H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES.

  13. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [ 3 H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [ 3 H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES

  14. Comparative study of gum arabic and PVP as stabilizing agents for synthesis of gold nanoparticles

    International Nuclear Information System (INIS)

    Silva, Andressa A.; Leal, Jessica; Geraldes, Adriana N.; Lugao, Ademar B.

    2015-01-01

    Use Colloidal metallic nanoparticles such as gold nanoparticles have received a great attention, due in part to their specific properties and potential applications. Control of size and uniformity of nanoparticles is important to prevent aggregation. High-molecular-weight polymers were used as stabilizer agents. Natural polymers, such as gum Arabic, are used as stabilizer because of capping nanoparticles behavior and present advantages such as solubility, non- toxicity and its compatibility for pharmaceutical and biomedical applications. Previous studies showed that the hydrophilic group of Poly(vinyl pyrrolidone) (PVP) caused repulsion on gold nanoparticles surface because steric interactions with polymer, for this reason this kind of polymers could be used as stabilizer agent. The aim of this work is to study the synthesis and stabilization of gold nanoparticles with PVP and gum Arabic using gamma radiation. The results obtained by samples analysis using UV-Visible showed that the gamma irradiation doses influenced the nanoparticles formation by PVP but that is not the case with the GA, because for smaller quantity of Arabic gum in different doses produced and stabilized nanoparticles. The samples were observed for 20 days and showed stability. We have obtained preliminary results showed that the use of radiation is applicable to the formation of gold nanoparticles. (author)

  15. Comparative study of gum arabic and PVP as stabilizing agents for synthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andressa A.; Leal, Jessica; Geraldes, Adriana N.; Lugao, Ademar B., E-mail: andressa_alvess@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Use Colloidal metallic nanoparticles such as gold nanoparticles have received a great attention, due in part to their specific properties and potential applications. Control of size and uniformity of nanoparticles is important to prevent aggregation. High-molecular-weight polymers were used as stabilizer agents. Natural polymers, such as gum Arabic, are used as stabilizer because of capping nanoparticles behavior and present advantages such as solubility, non- toxicity and its compatibility for pharmaceutical and biomedical applications. Previous studies showed that the hydrophilic group of Poly(vinyl pyrrolidone) (PVP) caused repulsion on gold nanoparticles surface because steric interactions with polymer, for this reason this kind of polymers could be used as stabilizer agent. The aim of this work is to study the synthesis and stabilization of gold nanoparticles with PVP and gum Arabic using gamma radiation. The results obtained by samples analysis using UV-Visible showed that the gamma irradiation doses influenced the nanoparticles formation by PVP but that is not the case with the GA, because for smaller quantity of Arabic gum in different doses produced and stabilized nanoparticles. The samples were observed for 20 days and showed stability. We have obtained preliminary results showed that the use of radiation is applicable to the formation of gold nanoparticles. (author)

  16. Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study

    International Nuclear Information System (INIS)

    Naveenraj, Selvaraj; Asiri, Abdullah M.; Anandan, Sambandam

    2013-01-01

    Cadmium Sulphide nanoparticles approximately 5–10 nm in size range were synthesized by sonochemical technique, which follows acoustic cavitation phenomenon and generates nanoparticles with a smaller size range and higher surface area. The in vitro binding interaction of these sonochemically synthesized CdS nanoparticles with serum albumins (SA) were investigated using UV–Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques since CdS nanoparticles has biological applications such as cellular labelling and deep-tissue imaging. UV–Vis absorption and fluorescence studies confirm that CdS nanoparticles bind with SA through ground state complex formation (static quenching mechanism). The results suggest that sonochemically synthesized CdS nanoparticles interact with HSA more than that of BSA and these nanoparticles can be easily transported and rapidly released to the targets by serum albumins. CD studies confirmed the conformational change of serum albumins on the interaction of CdS nanoparticles.Graphical AbstractThis paper investigates the in vitro binding interaction of Cadmium Sulphide (CdS) nanoparticles with serum albumins (HSA and BSA) using the UV-vis, steady-state fluorescence, time-resolved fluorescence, synchronous fluorescence and circular dichroism (CD) spectral techniques.

  17. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

    Directory of Open Access Journals (Sweden)

    Zhang L

    2011-10-01

    Full Text Available Ling Zhang1,*, Xiang Gao1,2,*, Ke Men1, BiLan Wang1, Shuang Zhang1, Jinfeng Qiu1, Meijuan Huang1, MaLing Gou1, Ning Huang2, ZhiYong Qian1, Xia Zhao1, YuQuan Wei11State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China*These authors contributed equally to this workBackground: Gene therapy provides a novel method for the prevention and treatment of cancer, but the clinical application of gene therapy is restricted, mainly because of the absence of an efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, ie, heparin-polyethyleneimine (HPEI nanoparticles for this purpose.Methods and results: HPEI nanoparticles were used to deliver plasmid-expressing mouse survivin-T34A (ms-T34A to treat C-26 carcinoma in vitro and in vivo. According to the in vitro studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of angiogenesis.Conclusion: This research suggests that HPEI nanoparticle-mediated ms-T34A may have a promising role in C-26 colon carcinoma therapy.Keywords: gene therapy, mouse survivin-T34A, colon cancer, polyethyleneimine, nanoparticles, cancer therapy

  18. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    Science.gov (United States)

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  19. A study on the distribution of adsorbed nanoparticles

    Science.gov (United States)

    Li, Ding

    2008-02-01

    We use Monte Carlo simulation to calculate the distributions of particles under adsorption force near planar and cylindrical surfaces, respectively. Both hard sphere interaction and repulsive Yukawa (screened coulomb) interaction are employed in our simulations. We study the influence of the inter-particle potentials. The difference between the MC simulation results and the analytical results of ideal gas model shows that the interaction between particles plays an important role in the density distribution under external fields. Moreover, the 2-dimensional constructions of particles close to the surface are studied and show relations of the interaction between particles. These results may indicate us how to improve the methods of building nanoparticle coatings and nano-scale patterns. Supported by 100 Persons Project of Chinese Academy of Sciences, National Natural Science Foundation of China (10474109, 10674146) and Major State Research Development Programme of China (2006CB933000, 2006CB708612)

  20. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    Science.gov (United States)

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into

  1. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Science.gov (United States)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  2. In vivo toxicologic study of larger silica nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Chan WT

    2017-04-01

    Full Text Available Wai-Tao Chan,1–3 Cheng-Che Liu,4 Jen-Shiu Chiang Chiau,5 Shang-Ting Tsai,6 Chih-Kai Liang,6 Mei-Lien Cheng,5 Hung-Chang Lee,7,8 Chun-Yun Yeung,1,3,9 Shao-Yi Hou2,6 1Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children’s Hospital, 2Graduate Institute of Engineering Technology, National Taipei University of Technology, 3Mackay Medicine, Nursing, and Management College, 4Institute of Preventive Medicine, National Defense Medical Center, Taipei, 5Department of Medical Research, MacKay Memorial Hospital, Hsinchu, 6Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 7Department of Pediatrics, MacKay Memorial Hospital, Hsinchu, 8Department of Pediatrics, Taipei Medical University, Taipei, 9Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China Abstract: Silica nanoparticles (SiNPs are being studied and used for medical purposes. As nanotechnology grows rapidly, its biosafety and toxicity have frequently raised concerns. However, diverse results have been reported about the safety of SiNPs; several studies reported that smaller particles might exhibit toxic effects to some cell lines, and larger particles of 100 nm were reported to be genotoxic to the cocultured cells. Here, we investigated the in vivo toxicity of SiNPs of 150 nm in various dosages via intravenous administration in mice. The mice were observed for 14 days before blood examination and histopathological assay. All the mice survived and behaved normally after the administration of nanoparticles. No significant weight change was noted. Blood examinations showed no definite systemic dysfunction of organ systems. Histopathological studies of vital organs confirmed no SiNP-related adverse effects. We concluded that 150 nm SiNPs were biocompatible and safe for in vivo use in mice. Keywords: in vivo, mice, silica nanoparticle, nanotoxicity

  3. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    Science.gov (United States)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  4. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  5. Mössbauer studies of superparamagnetic ferrite nanoparticles for functional application

    International Nuclear Information System (INIS)

    Mažeika, K.; Jagminas, A.; Kurtinaitienė, M.

    2013-01-01

    Nanoparticles of CoFe 2 O 4 and MnFe 2 O 4 prepared for functional applications in nanomedicine were studied using Mössbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Mössbauer spectra.

  6. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine

    2007-01-01

    The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles, the co...

  7. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous catalysis...... and electrocatalysis, in which single crystal models are combined with Wulff construction-based ideas to produce descriptions of average nanocatalyst behavior. Then, I will proceed to describe explicitly DFT-based descriptions of catalysis on truly nanosized particles (

  8. Correlated structure-optical properties studies of plasmonic nanoparticles

    International Nuclear Information System (INIS)

    Ringe, Emilie; Duyne, Richard P Van; Marks, Laurence D

    2014-01-01

    Interest in nanotechnology is driven by unprecedented means to tailor the physical behaviour via structure and composition. Unlike bulk materials, minute changes in size and shape can affect the optical properties of nanoparticles. Characterization, understanding, and prediction of such structure-function relationships is crucial to the development of novel applications such as plasmonic sensors, devices, and drug delivery systems. Such knowledge has been recently vastly expanded through systematic, high throughput correlated measurements, where the localized surface plasmon resonance (LSPR) is probed optically and the particle shape investigated with electron microscopy. This paper will address some of the recent experimental advances in single particle studies that provide new insight not only on the effects of size, composition, and shape on plasmonic properties but also their interrelation. Plasmon resonance frequency and decay, substrate effects, size, shape, and composition will be explored for a variety of plasmonic systems

  9. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    International Nuclear Information System (INIS)

    Ye Jiesheng; Liu Chunxi; Chen Zhijin; Zhang Na; Wang Aihua

    2008-01-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (≤20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14 mV to -17.16 ± 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo

  10. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies.

    Science.gov (United States)

    Samiei, Mohammad; Farjami, Afsaneh; Dizaj, Solmaz Maleki; Lotfipour, Farzaneh

    2016-01-01

    Antimicrobial nanoparticles with enhanced physiochemical properties have attracted attention as modern antimicrobials, especially in the complicated oral cavity environment. The goal of the present article is to review the current state of nanoparticles used for antimicrobial purposes in root canal infections. A review was conducted in electronic databases using MeSH keywords to identify relevant published literature in English. The analysis and eligibility criteria were documented according to the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA-guidelines). No restrictions on publication date were imposed. Data regarding root canal disinfections, general antimicrobial mechanisms of nanoparticles, type of nanoparticles as antimicrobial agent and antimicrobial effect of nanoparticles in endodontics were collected and subjected to descriptive data analysis. The literature search in electronic databases according to the inclusion criteria provided 83 titles and abstracts. Among them 15 papers were related to antimicrobial effect of nanoparticles in Endodontics. Silver nanoparticles with sustainable activity were the most studied agent for its antimicrobial behavior in root canal infection. Aided polymeric nanoparticles with photo or ultrasound, glass bioactive nanoparticles as well as Calcium derivative based nanoparticles, with improved activity in comparison with the non-nano counterparts, are of importance in infection control of dental root canal. Bioactive Non-organic nanoparticles with structural capabilities present enhanced antimicrobial activity in root canal infections. All included studies showed an enhanced or at least equal effect of nanoparticulate systems to combat dental root canal infections compared to conventional antimicrobial procedures. However, it is crucial to understand their shortcomings and their probable cellular effects and toxicity as well as environmental effects. Copyright © 2015 Elsevier B.V. All rights

  11. Development of a Novel Lipophilic, Magnetic Nanoparticle for in Vivo Drug Delivery

    Directory of Open Access Journals (Sweden)

    Torben Moos

    2013-04-01

    Full Text Available The aim of the present study was to evaluate the transfection potential of chitosan-coated, green-fluorescent magnetic nanoparticles (MNPs (chi-MNPs after encapsulation inside polyethylglycol (PEGylated liposomes that produced lipid-encapsulated chitosan-coated MNPs (lip-MNPs, and also to evaluate how these particles would distribute in vivo after systemic injection. The transfection potential of both chi-MNPs and lip-MNPs was evaluated in vitro in rat brain endothelial 4 (RBE4 cells with and without applying a magnetic field. Subsequently, the MNPs were evaluated in vivo in young rats. The in vitro investigations revealed that the application of a magnetic field resulted in an increased cellular uptake of the particles. The lip-MNPs were able to transfect the RBE4 cells with an incidence of approximately 20% of a commercial transfection agent. The in vivo distribution studies revealed that lip-MNPs had superior pharmacokinetic properties due to evasion of the RES, including hepatic Kuppfer cells and macrophages in the spleen. In conclusion, we were able to design a novel lipid-encapsulated MNP with the ability to carry genetic material, with favorable pharmacokinetic properties, and under the influence of a magnetic field with the capability to mediate transfection in vitro.

  12. Development of a Novel Lipophilic, Magnetic Nanoparticle for in Vivo Drug Delivery

    Science.gov (United States)

    Linemann, Thomas; Thomsen, Louiza B.; Du Jardin, Kristian G.; Laursen, Jens C.; Jensen, Jesper B.; Lichota, Jacek; Moos, Torben

    2013-01-01

    The aim of the present study was to evaluate the transfection potential of chitosan-coated, green-fluorescent magnetic nanoparticles (MNPs) (chi-MNPs) after encapsulation inside polyethylglycol (PEG)ylated liposomes that produced lipid-encapsulated chitosan-coated MNPs (lip-MNPs), and also to evaluate how these particles would distribute in vivo after systemic injection. The transfection potential of both chi-MNPs and lip-MNPs was evaluated in vitro in rat brain endothelial 4 (RBE4) cells with and without applying a magnetic field. Subsequently, the MNPs were evaluated in vivo in young rats. The in vitro investigations revealed that the application of a magnetic field resulted in an increased cellular uptake of the particles. The lip-MNPs were able to transfect the RBE4 cells with an incidence of approximately 20% of a commercial transfection agent. The in vivo distribution studies revealed that lip-MNPs had superior pharmacokinetic properties due to evasion of the RES, including hepatic Kuppfer cells and macrophages in the spleen. In conclusion, we were able to design a novel lipid-encapsulated MNP with the ability to carry genetic material, with favorable pharmacokinetic properties, and under the influence of a magnetic field with the capability to mediate transfection in vitro. PMID:24300449

  13. Proton NMR studies of functionalized nanoparticles in aqueous environments

    Science.gov (United States)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  14. Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

    Directory of Open Access Journals (Sweden)

    Cornelia Loos

    2014-12-01

    Full Text Available Nanoparticles of various shapes, sizes, and materials carrying different surface modifications have numerous technological and biomedical applications. Yet, the mechanisms by which nanoparticles interact with biological structures as well as their biological impact and hazards remain poorly investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and biodistribution. Polystyrene does not degrade in the cellular environment and exhibits no short-term cytotoxicity. Because polystyrene nanoparticles can be easily synthesized in a wide range of sizes with distinct surface functionalizations, they are perfectly suited as model particles to study the effects of the particle surface characteristics on various biological parameters. Therefore, we have exploited polystyrene nanoparticles as a convenient platform to study bio–nano interactions. This review summarizes studies on positively and negatively charged polystyrene nanoparticles and compares them with clinically used superparamagnetic iron oxide nanoparticles.

  15. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    Science.gov (United States)

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  16. Combined TEM and NC-AFM study of Al2O3-supported Pt nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Simonsen, Søren Bredmose; Chorkendorff, Ib

    Sintering, the growth of large particles at the expense of smaller ones, is one of the main causes of catalysts deactivation, since the physicochemical properties of a nanoparticle may depend strongly on its size, shape and composition. For application as heterogeneous catalysts, the nanoparticle...... kinks and edges often play an important role for the catalytic activity. In order to preserve these sites, it is important to stabilize the supported nanoparticles with sizes of a few nanometers during operational conditions at often high temperatures and in the relevant gas environments. A prototypical...... nanocatalyst system for studying coarsening consists of Pt nanoparticles supported on an Al2O3 material which is relevant as an oxidation catalyst in diesel and lean-burn engine exhaust after-treatment technologies. In this study we address the effect on sintering of the shape of Pt nanoparticles supported...

  17. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study

    Science.gov (United States)

    Shaikh, S.; Lafdi, K.; Ponnappan, R.

    2007-03-01

    The present work involves a study on the thermal conductivity of nanoparticle-oil suspensions for three types of nanoparticles, namely, carbon nanotubes (CNTs), exfoliated graphite (EXG), and heat treated nanofibers (HTT) with PAO oil as the base fluid. To accomplish the above task, an experimental analysis is performed using a modern light flash technique (LFA 447) for measuring the thermal conductivity of the three types of nanofluids, for different loading of nanoparticles. The experimental results show a similar trend as observed in literature for nanofluids with a maximum enhancement of approximately 161% obtained for the CNT-PAO oil suspension. The overall percent enhancements for different volume fractions of the nanoparticles are highest for the CNT-based nanofluid, followed by the EXG and the HTT. The findings from this study for the three different types of carbon nanoparticles can have great potential in the field of thermal management.

  18. A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites

    International Nuclear Information System (INIS)

    Saravanan, P.; Padmanabha Raju, M.; Alam, Sarfaraz

    2007-01-01

    Synthesis of Ag nanoparticles containing polyacrylamide (PAm) hydrogel composites was performed by free-radical cross-linking polymerization of acrylamide monomer in an aqueous medium containing Ag + ions. The Ag nanoparticle/PAm composites exhibit faint yellow colour and are found to stable under ambient conditions, without undergoing oxidation. TEM micrographs reveal the presence of nearly spherical and well-separated Ag nanoparticles with diameters in the range of 4-7 nm. UV-vis studies apparently show the characteristic surface plasmon band at ∼415 nm, for the existence of Ag nanoparticles within the hydrogel matrix. The effect of varying Ag + ion concentration within the PAm hydrogels on the amount of formation of Ag nanoparticles, as well as on the bulk properties of hydrogel nanocomposites such as equilibrium swelling, optical and electrical properties are studied. The Ag/PAm hydrogel nanocomposites have higher swelling ratio and lower electron transfer resistance than its corresponding conventional hydrogel

  19. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  20. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues.

    Science.gov (United States)

    Kumar, Ajay; Yellepeddi, Venkata K; Vangara, Kiran K; Strychar, Kevin B; Palakurthi, Srinath

    2011-11-01

    The aim of this study was to prepare and investigate the mechanism of uptake of the dendriplexes prepared with ornithine-conjugated polyamidoamine (PAMAM) G4 dendrimers. Ornithine-conjugated PAMAMG4 dendrimers were prepared by Fmoc synthesis. A comparative transfection study in NCI H157G cells and polyamine transport-deficient cell line NCI H157R was performed to confirm the role of the polyamine transporter system (PAT) in the dendriplex uptake. Transfection efficiency significantly increased with increase in generation number and extent of ornithine conjugation. Transfection efficiency of the PAMAMG4-ORN60 dendrimers significantly decreased in presence of excess of ornithine (P dendrimers. Transfection efficiency of PAMAMG4-ORN60 was significantly low in NCI H157R (31.66 ± 3.95%, RFU: 17.87 ± 1.34) as compared to NCI H157G cell line (63.07 ± 6.8%, relative fluorescence units (RFU): 23.28 ± 0.66). Results indicate the role of PAT in addition to charge-mediated endocytosis in the internalization of ornithine-conjugated PAMAMG4 dendrimers. Cytotoxicity analysis (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay) in human embryonic kidney cell line (HEK) 293T cells showed that the dendriplexes were non-toxic at N/P 10.

  1. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Betzaida Castillo

    2012-01-01

    Full Text Available The siRNA transfection efficiency of nanoparticles (NPs, composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide or branched polyethyleneimine, were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI. In general, the external magnetic field did not alter the cell’s viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.

  2. DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells.

    Science.gov (United States)

    Silva, J P Neves; Oliveira, A C N; Casal, M P P A; Gomes, A C; Coutinho, P J G; Coutinho, O P; Oliveira, M E C D Real

    2011-10-01

    DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine™ LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the

  3. Multi-lipofection efficiently transfected genes into astrocytes in primary culture.

    Science.gov (United States)

    Wu, B Y; Liu, R Y; So, K L; Yu, A C

    2000-10-30

    This study demonstrated that liposome-mediated transfection - lipofection - is suitable for delivering genes into astrocytes. By repeatedly lipofecting the same astrocyte cultures, a process we call multi-lipofection, the transfection efficiency of the beta-galactosidase (beta-gal) gene was improved from 2.6+/-0.6 to 17. 4+/-1.1%. This is the highest efficiency ever reported in gene-transfer with Lipofectin(R) in a primary culture of mouse cerebral cortical astrocytes. Furthermore, multi-lipofection did not cause observable disturbance to astrocytes as indicated by insignificant changes in the glial fibrillary acidic protein content in the cultures. In order to demonstrate that the transfected gene achieved a physiologically relevant expression level, a plasmid containing the pEF-hsp70 protein gene was lipofected into astrocytes. This produced colonies of astrocytes showing an increased resistance to heat-induced cell death. A similar experiment was performed with the glial-derived neurotrophic factor (GDNF) gene. Control astrocytes had no detectable GDNF. In the transfected astrocytes, the GDNF protein could be identified intracellularly by immunocytochemistry. Western blot analysis revealed, as compared to astrocytes with one lipofection, a 2.9-fold increase of GDNF with four lipofections. GDNF remained detectable in astrocytes 2 weeks after four lipofections. Thus, multi-lipofection provides a mild and efficient means of delivering foreign genes into astrocytes in a primary culture, making astrocytes good candidate vehicle cells for gene/cell therapy in the CNS.

  4. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system.

    Science.gov (United States)

    Nakayama, Asuka; Sato, Masahiro; Shinohara, Mariko; Matsubara, Shyuichiro; Yokomine, Takaaki; Akasaka, Eri; Yoshida, Mitsutoshi; Takao, Sonshin

    2007-01-01

    Porcine embryonic fibroblasts (PEF) are important as donor cells for nuclear transfer for generation of genetically modified pigs. In this study, we determined an optimal protocol for transfection of PEF with the Amaxa Nucleofection system, which directly transfers DNA into the nucleus of cells, and compared its efficiency with conventional lipofection and electroporation. Cell survival and transfection efficiency were assessed using dye-exclusion assay and a green fluorescent protein (GFP) reporter construct, respectively. Our optimized nucleofection parameters yielded survival rates above 60%. Under these conditions, FACS analysis demonstrated that 79% of surviving cells exhibited transgene expression 48 h after nucleofection when program U23 was used. This efficiency was higher than that of transfection of PEFs with electroporation (ca. 3-53%) or lipofection (ca. 3-8%). Transfected cells could be expanded as stably transgene-expressing clones over a month. When porcine nuclear transfer (NT) was performed using stable transformant expressing GFP as a donor cell, 5-6% of reconstituted embryos developed to blastocysts, from which 30-50% of embryos exhibited NT-embryo-derived green fluorescence. Under the conditions evaluated, nucleofection exhibited higher efficiency than conventional electroporation and lipofection, and may be a useful alternative for generation of genetically engineered pigs through nuclear transfer.

  5. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  7. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications

    International Nuclear Information System (INIS)

    Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Phadatare, M.R.; Pawar, S.H.

    2013-01-01

    The structural, magnetic and ac magnetically induced heating characteristics of combustion synthesized MgFe 2 O 4 nanoparticles have been investigated for application in magnetic particle hyperthermia. As prepared nanoparticles showed ferrimagnetic behavior at room temperature with magnetization of about 33.83 emu/g at ±15 kOe. The solid state MgFe 2 O 4 nanoparticles exhibited specific absorption rate (SAR) of about 297 W/g at physiological safe range of frequency and amplitude. The increase in SAR and heating temperature in ac magnetic field was thought to be due to enhancement in magnetic hysteresis loss caused by dipole–dipole interactions in combustion synthesized MgFe 2 O 4 nanoparticles. - Highlights: ► Highly crystalline pure MgFe 2 O 4 nanoparticles were synthesized by low temperature combustion. ► Effect of ac magnetic field and nanoparticles concentration on heating characteristics of MgFe 2 O 4 nanoparticles was studied. ► Combustion synthesized MgFe 2 O 4 nanoparticles show highest specific absorption rate of 297 Wg −1 . ► The reported high value of specific absorption rate is advantageous for its use in magnetic particle hyperthermia

  8. Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Otanicar, Todd, E-mail: todd-otanicar@utulsa.edu; Hoyt, Jordan; Fahar, Maryam [University of Tulsa, Department of Mechanical Engineering (United States); Jiang, Xuchuan [University of New South Wales, School of Materials Science and Engineering (Australia); Taylor, Robert A. [University of New South Wales, School of Mechanical and Manufacturing Engineering (Australia)

    2013-11-15

    Nanoparticles have garnered significant interest because of their ability to enhance greatly the optical properties of the base fluid in which they are suspended. The optical properties of nanoparticles are sensitive to the materials used, as well as to the host medium. Most fluids exhibit refractive indices that are highly temperature-dependent, resulting in nanoparticle suspensions which also exhibit temperature-dependent optical properties. Previous work has shown that temperature increases result in decreased absorption in nanoparticle suspensions. Here, we expand previous work to include core–shell particles due to the potential spectral shifts in optical properties that will arise from the base fluid with temperature changes and the role of agglomeration under temperature cycling through both experimental and numerical efforts. Thermal cycling tests for silica and gold, the constituents of the core–shell nanoparticles used in this study, were tested to determine the extent of particle agglomeration resulting from up to 200 accelerated heating cycles. Optical properties were recorded after heating two base fluids (water and ethylene glycol) with multiple surfactants for silver nanospheres and silica–gold core–shell nanoparticles. It was found that the temperature results in a small increase in the transmittance for both particle types and a blue shift in the spectral transmittance for core–shell nanoparticles. Further, the coupling effect of temperature and agglomeration played a significant role in determining both the spectral properties—particularly the resulting transmittance—of the silver nanoparticle suspensions.

  9. Experimental study of mutagenous and mitosis modifying activity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    B. S. Kirbik

    2015-01-01

    Full Text Available Mutagenous and mitosis modifying impact of silver nanoparticles has been studied on outbred mice. Nanoparticles were of round shape with dimensions of 5-50 nm, size of generated organic shell of 2-5 nm, the quantity in 1 mcm3 makes 120-270. Metaphasic analysis of mice bone marrow cells was used as a testing technique. The frequency of chromosome aberrations and mitotic index of preparations were accounted. During single intraperitoneal administration of the agent in the dose of 250 mcg/kg the silver nanoparticles demonstrated mitosis stimulating activity. No mutagenous effect of silver nanoparticles by daily administration for 4 days of 25 mcg/kg and single administration in the dose of 250 mcg/kg has been registered, but there is statistically insignificant tendency of aberrant metaphases increase. Consequently silver nanoparticles in the investigated doses demonstrated no mutagenous activity and can be considered safe for mammalian cells.

  10. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study

    Science.gov (United States)

    Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata

    2017-11-01

    In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.

  11. A Study On Dispersion Stability Of Nickel Nanoparticles Synthesized By Wire Explosion In Liquid Media

    Directory of Open Access Journals (Sweden)

    Kim C.K.

    2015-06-01

    Full Text Available In this study, nickel nanoparticles were synthesized in ethanol using portable pulsed wire evaporation, which is a one-step physical method. From transmission electron microscopy images, it was found that the Ni nanoparticles exhibited a spherical shape with an average diameter of 7.3 nm. To prevent aggregation of the nickel nanoparticles, a polymer surfactant was added into the ethanol before the synthesis of nickel nanoparticles, and adsorbed on the freshly synthesized nickel nanoparticles during the wire explosion. The dispersion stability of the prepared nickel nanofluids was investigated by zeta-potential analyzer and Turbiscan optical analyzer. As a result, the optimum concentration of polymer surfactant to be added was suggested for the maximized dispersion stability of the nickel nanofluids.

  12. Density function theory study of the adsorption and dissociation of carbon monoxide on tungsten nanoparticles.

    Science.gov (United States)

    Weng, Meng-Hsiung; Ju, Shin-Pon; Chen, Hsin-Tsung; Chen, Hui-Lung; Lu, Jian-Ming; Lin, Ken-Huang; Lin, Jenn-Sen; Hsieh, Jin-Yuan; Yang, Hsi-Wen

    2013-02-01

    The adsorption and dissociation properties of carbon monoxide (CO) molecule on tungsten W(n) (n = 10-15) nanoparticles have been investigated by density-functional theory (DFT) calculations. The lowest-energy structures for W(n) (n = 10-15) nanoparticles are found by the basin-hopping method and big-bang method with the modified tight-binding many-body potential. We calculated the corresponding adsorption energies, C-O bond lengths and dissociation barriers for adsorption of CO on nanoparticles. The electronic properties of CO on nanoparticles are studied by the analysis of density of state and charge density. The characteristic of CO on W(n) nanoparticles are also compared with that of W bulk.

  13. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    Science.gov (United States)

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  14. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

    Science.gov (United States)

    Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin

    2013-01-01

    In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008

  15. Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix.

    Science.gov (United States)

    Villa-Diaz, Luis G; Garcia-Perez, Jose L; Krebsbach, Paul H

    2010-12-01

    Because human embryonic stem (hES) cells can differentiate into virtually any cell type in the human body, these cells hold promise for regenerative medicine. The genetic manipulation of hES cells will enhance our understanding of genes involved in early development and will accelerate their potential use and application for regenerative medicine. The objective of this study was to increase the transfection efficiency of plasmid DNA into hES cells by modifying a standard reverse transfection (RT) protocol of lipofection. We hypothesized that immobilization of plasmid DNA in extracellular matrix would be a more efficient method for plasmid transfer due to the affinity of hES cells for substrates such as Matrigel and to the prolonged exposure of cells to plasmid DNA. Our results demonstrate that this modification doubled the transfection efficiency of hES cells and the generation of clonal cell lines containing a piece of foreign DNA stably inserted in their genomes compared to results obtained with standard forward transfection. In addition, treatment with dimethyl sulfoxide further increased the transfection efficiency of hES cells. In conclusion, modifications to the RT protocol of lipofection result in a significant and robust increase in the transfection efficiency of hES cells.

  16. Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease.

    Science.gov (United States)

    Ye, Lei; Haider, Husnain Kh; Esa, Wahidah Bte; Su, Liping; Law, Peter K; Zhang, Wei; Lim, Yeanteng; Poh, Kian Keong; Sim, Eugene K W

    2010-01-01

    The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.

  17. Spectroscopic studies of nanoparticle-sensitised photorefractive polymers

    Science.gov (United States)

    Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul

    2005-09-01

    We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly( N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs.

  18. Spectroscopic studies of nanoparticle-sensitised photorefractive polymers

    International Nuclear Information System (INIS)

    Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul

    2005-01-01

    We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly(N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs

  19. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles — Efficient calcium phosphate based non-viral gene delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Sudhanshu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); McGowan Institute of Regenerative Medicine, University of Pittsburgh, PA 15261 (United States); Roy, Abhijit; Hong, Daeho [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); McGowan Institute of Regenerative Medicine, University of Pittsburgh, PA 15261 (United States)

    2016-12-01

    Nanostructured ceramic particles, particularly, nanoparticles of calcium phosphate (CaP) remain an attractive option among the various types of non-viral gene delivery vectors studied because of their safety, biocompatibility, biodegradability, and ease of handling as well as their adsorptive capacity for DNA. We have accordingly developed an enhanced version of nanostructured calcium phosphates (NanoCaPs), by substituting known amounts of silicate for phosphate in the hydroxyapatite (HA) lattice (NanoSiCaPs). Results indicate that in addition to the excellent transfection levels exhibited by un-substituted NanoCaPs alone in vitro, an additional 20–50% increase in transfection is observed for NanoCaPs containing 8.3–50 mol% silicate aptly called NanoSiCaPs, owing to its rapid dissolution properties enabling nanoparticles escaping the lysosomal degradation. However, high silicate substitution (> 50 mol%) resulted in a drastic decline in transfection as the synthesized NanoCaPs deviated far from the characteristic hydroxyapatite phase formed as evidenced by the materials characterization results. - Highlights: • Successful demonstration of nanostructured NanoSiCaPs formation • Demonstration of superior transfection of NanoSiCaPs contrasted to NanoCaPs • Silicate substitution leads to smaller aggregates of nanoparticle complexes. • Enhanced dissolution of NanoSiCaPs demonstrated • Faster NanoSiCaPs dissolution leads to escape of pDNA from lysosomal degradation.

  20. Tumor transfection after systemic injection of DNA lipid nanocapsules.

    Science.gov (United States)

    Morille, Marie; Passirani, Catherine; Dufort, Sandrine; Bastiat, Guillaume; Pitard, Bruno; Coll, Jean-Luc; Benoit, Jean-Pierre

    2011-03-01

    With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. An Inelastic Neutron Scattering Study of Confined Surface Water on Rutile Nanoparticles

    International Nuclear Information System (INIS)

    Spencer, Elinor; Levchenko, Andrey; Ross, Nancy; Kolesnikov, Alexander I.; Boerio-Goates, Juliana; Woodfield, Brian; Navrotsky, Alexandra; Li, Guangshe

    2009-01-01

    The vibrational density of states (VDOS) for water confined on the surface of rutile-TiO2 nanoparticles has been extracted from low temperature inelastic neutron scattering spectra. Two rutile-TiO2 nanoparticle samples that differ in their respective levels of hydration, namely TiO2 0.37H2O (1) and TiO2 0.22H2O (2) have been studied. The temperature dependency of the heat capacities for the two samples has been quantified from the VDOS. The results from this study are compared with previously reported data for water confined on anatase-TiO2 nanoparticles.

  2. Prenatal development toxicity study of zinc oxide nanoparticles in rats

    Directory of Open Access Journals (Sweden)

    Hong JS

    2014-12-01

    Full Text Available Jeong-Sup Hong,1,2 Myeong-Kyu Park,1 Min-Seok Kim,1 Jeong-Hyeon Lim,1 Gil-Jong Park,1 Eun-Ho Maeng,1 Jae-Ho Shin,3 Meyoung-Kon Kim,4 Jayoung Jeong,5 Jin-A Park,2 Jong-Choon Kim,6 Ho-Chul Shin2 1Health Care Research Laboratory, Korea Testing and Research Institute, Gimpo, South Korea; 2College of Veterinary Medicine, Konkuk University, Seoul, South Korea; 3Department of Biomedical Laboratory Science, Eulji University, Seongnam-si, South Korea; 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea; 5Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungcheongbuk-do, South Korea; 6College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea Abstract: This study investigated the potential adverse effects of zinc oxide nanoparticles ([ZnOSM20(+ NPs] zinc oxide nanoparticles, positively charged, 20 nm on pregnant dams and embryo–fetal development after maternal exposure over the period of gestational days 5–19 with Sprague-Dawley rats. ZnOSM20(+ NPs were administered to pregnant rats by gavage at 0, 100, 200, and 400 mg/kg/day. All dams were subjected to a cesarean section on gestational day 20, and all of the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight after administration of 400 mg/kg/day NPs; reduced food consumption after administration of 200 and 400 mg/kg/day NPs; and decreased liver weight and increased adrenal glands weight after administration of 400 mg/kg/day NPs. However, no treatment-related difference in: number of corpora lutea; number of implantation sites; implantation rate (%; resorption; dead fetuses; litter size; fetal deaths and placental weights; and sex ratio were observed between the groups. On the other hand, significant decreases between treatment groups and controls were seen for fetal weights after

  3. Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles

    Science.gov (United States)

    Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh

    2017-07-01

    In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.

  4. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  5. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies

    International Nuclear Information System (INIS)

    Misra, Superb K.; Dybowska, Agnieszka; Berhanu, Deborah; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2012-01-01

    Dissolution of nanoparticles (NPs) is an important property that alters their abundance and is often a critical step in determining safety of nanoparticles. The dissolution status of the NPs in exposure media (i.e. whether they remain in particulate form or dissolve — and to what extent), strongly affects the uptake pathway, toxicity mechanisms and the environmental compartment in which NPs will have the highest potential impact. A review of available dissolution data on NPs demonstrates there is a range of potential outcomes depending on the NPs and the exposure media. For example two nominally identical nanoparticles, in terms of size and composition, could have totally different dissolution behaviours, subject to different surface modifications. Therefore, it is imperative that toxicological studies are conducted in conjunction with dissolution of NPs to establish the true biological effect of NPs and hence, assist in their regulation. -- Graphical abstract: Various physicochemical factors affecting dissolution of nanoparticles. Highlights: ► In this study we discuss dissolution of nanoparticles. ► Physicochemical properties of nanoparticles influence dissolution. ► Measuring dissolution of nanoparticles can help to understand their biological response.

  6. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies.

    Science.gov (United States)

    Fornaguera, Cristina; Calderó, Gabriela; Mitjans, Montserrat; Vinardell, Maria Pilar; Solans, Conxita; Vauthier, Christine

    2015-04-14

    The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising alternative for delivery of drugs to specific cells. However, studies on their interaction with diverse blood components using different techniques are still lacking. Therefore, in the present work, the interaction of PLGA nanoparticles with blood components was described using different complementary techniques. The influence of different encapsulated compounds/functionalizing agents on these interactions was also reported. It is worth noting that all these techniques can be simply performed, without the need for highly sophisticated apparatus or skills. Moreover, their transference to industries and application of quality control could be easily performed. Serum albumin was adsorbed onto all types of tested nanoparticles. The saturation concentration was dependent on the nanoparticle size. In contrast, fibrinogen aggregation was dependent on nanoparticle surface charge. The complement activation was also influenced by the nanoparticle functionalization; the presence of a functionalizing agent increased complement activation, while the addition of an encapsulated compound only caused a slight increase. None of the nanoparticles influenced the coagulation cascade at low concentrations. However, at high concentrations, cationized nanoparticles did activate the coagulation cascade. Interactions of nanoparticles with erythrocytes did not reveal any hemolysis. Interactions of PLGA nanoparticles with blood proteins depended both on the nanoparticle properties and the protein studied. Independent of their loading/surface functionalization, PLGA nanoparticles did not influence the coagulation cascade and did not induce hemolysis of erythrocytes; they could be defined as safe concerning induction of embolization and cell lysis.

  7. Raman and fluorescence microscopy to study the internalization and dissolution of photosensitizer nanoparticles into living cells

    Science.gov (United States)

    Scalfi-Happ, Claudia; Steiner, Rudolf; Wittig, Rainer; Graefe, Susanna; Ryabova, Anastasia; Loschenov, Victor

    2015-07-01

    In this present study we applied Raman and fluorescence microscopy to investigate the internalisation, cellular distribution and effects on cell metabolism of photosensitizer nanoparticles for photodynamic therapy in fibroblasts and macrophages.

  8. Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Hu, Wei; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2012-01-01

    The fine structure of zinc substituted hydroxyapatite was studied using experimental analysis and first-principles calculations. The synthetic hydroxyapatite nanoparticles containing low Zn concentration show rod-like morphology. The crystallite sizes and unit-cell volumes tended to decrease with the increased Zn concentration according to X-ray diffraction patterns. The Zn K-edge X-ray absorption spectra and fitting results suggest that the hydroxyapatite doped with 0.1 mole% zinc is different in the zinc coordination environments compared with that containing more zinc. The density function theory calculations were performed on zinc substituted hydroxyapatite. Two mechanisms included replacing calcium by zinc and inserting zinc along the hydroxyl column and were investigated, and the related substitution energies were calculated separately. It is found that the substitution energies are negative and lowest for inserting zinc between the two oxygen atoms along the hydroxyl column (c-axis). Combined with the spectral analysis, it is suggested that the inserting mechanism is favored for low concentration zinc substituted hydroxyapatite. Highlights: ► We investigate the fine structure of hydroxyapatite with low content of Zn. ► XANES spectra are similar but a little different at low zinc content. ► Zinc ions influence hydroxyapatite crystal formation and lattice parameters. ► Formation energies are calculated according to plane-wave density function theory. ► Low content of zinc prefers to locate at hydroxyl column in hydroxyapatite lattice.

  9. A study of porosity of synthetic polymer nanoparticles using PALS

    Energy Technology Data Exchange (ETDEWEB)

    Pham, B; Smith, S V [Centre for Antimatter-Matter Studies, Australian Nuclear Science and Technology Organisation (ANSTO) NSW 2232 (Australia); Guagliardo, P; Williams, J; Samarin, S, E-mail: binh.pham@ansto.gov.au, E-mail: svs@ansto.gov.au [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, WA 6009 (Australia)

    2011-01-01

    Positron annihilation lifetime spectroscopy (PALS) has been used to study the free volume in dry synthetic polymer nanoparticles of various sizes. A series of poly(styrene/divinyl benzene) particles with diameters in the range of 100 to 500 nm were synthesized and then carefully chemically treated using the sulfonation process, to increase their porosity. The particles were characterised by Scanning Electron Microscopy (SEM), light scattering and PALS. Light scattering gave larger size for the treated particles, reflecting the hydration effect and therefore the increase in porosity. PALS spectra of untreated and treated particles gave four and three life-time components, respectively. Analysis by PAScual version 1.3.0 program indicated there was a reduction in the intensity and the type of the micropores in the treated particles. The data suggest PALS is a sensitive tool for detecting changes in microporosity in particles. The conflicting results obtained for light scattering compared to PALS for chemically treated particles is difficult to resolve and suggests sample preparation of polymeric materials for PALS is the critical factor.

  10. Silver nanoparticles fabricated hybrid microgels for optical and catalytic study

    International Nuclear Information System (INIS)

    Siddiq, M.; Shah, L.A.; Ambreen, J.; Sayed, M.

    2016-01-01

    In this work different compositions of smart poly(N-isopropylacrylamide-vinylacetic acid-acrylamide) poly(NIPAM-VAA-AAm) microgels with different vinyl acetic acid (VAA) contents have been synthesized successfully by conventional free radical emulsion polymerization. Silver metal nanoparticles (NPs) were fabricated inside the microgels network by insitu reduction method using sodium borohydride (NaBH/sub 4/) as reducing agent. The confirmation of polymerization and entrapment of metal NPs were carried out by FT-IR spectroscopy. Dynamic laser light scattering (DLLS) technique was used for calculating average hydrodynamic diameter of microgel particles. The optical properties of silver NPs were studied by UV-Visible spectroscopy at various conditions of pH and temperature. The hybrid microgels show red shift and increase in intensity of surface plasmon resonance (SPR) band with the increase in temperature and decrease in pH of the medium. The synthesized materials were used as catalysts in the reduction process and it was found that the catalyst composed of high amount of VAA shows enhanced catalytic activity. The apparent rate constant (k/sub app/) for catalyst composed of 12 percent VAA was doubled (5.6*10/sup -3/ sec/sup -1/) as compared to 4 percent VAA containing catalyst (2.8*10/sup -3/ sec/sup -1/). (author)

  11. A study of the conjugation of CdSe nanoparticles with functional polyoxometalates involving aminoacids

    International Nuclear Information System (INIS)

    Gutul, T.

    2013-01-01

    CdSe nanoparticles (CdSe NPs) are regarded as nano markers and an important component for biomedical applications. In this study, CdSe NPs and polyoxometalates were synthesized; surface modification with 1-thioglycerol and (β-Ala) was carried out. Polyoxometalates, which cause an inhibitory effect on cancer cells, were conjugated to the nanoparticles. UV- VIS, IR, XRD, and TEM studies were performed to characterize the resulting CdSe NPs, polyoxometalates, and conjugates. (author)

  12. A DFT study of Cu nanoparticles adsorbed on defective graphene

    International Nuclear Information System (INIS)

    García-Rodríguez, D.E.; Mendoza-Huizar, L.H.; Díaz, C.

    2017-01-01

    Highlights: • Cu_n supported on graphene may be a promising electrode material for DBFC's cells. • Cu_n/graphene interaction is rather local and size independent. • Cu_1_3 anchors strongly to defects in graphene, while keeping its gas-phase properties. - Abstract: Metal nanoparticles adsorbed on graphene are systems of interest for processes relative to catalytic reactions and alternative energy production. Graphene decorated with Cu-nanoparticles, in particular, could be a good alternative material for electrodes in direct borohydride fuel cells. However our knowledge of this system is still very limited. Based on density functional theory, we have analyzed the interaction of Cu_n nanoparticles (n = 4, 5, 6, 7, 13) with pristine and defective-graphene. We have considered two types of defects, a single vacancy (SV), and an extended lineal structural defect (ELSD), formed by heptagon-pentagon pairs. Our analysis has revealed the covalent character of the Cu_n-graphene interaction for pristine- and ELSD-graphene, and a more ionic-like interaction for SV-graphene. Furthermore, our analysis shows that the interaction between the nanoparticles and the graphene is rather local, i.e., only the nanoparticle atoms close to the contact region are involved in the interaction, being the electronic contact region much higher for defective-graphene than for pristine-graphene. Thus, the higher the particle the lower its average electronic and structural distortion.

  13. A DFT study of Cu nanoparticles adsorbed on defective graphene

    Energy Technology Data Exchange (ETDEWEB)

    García-Rodríguez, D.E. [Universidad Politécnica de Aguascalientes, Calle Paseo San Gerardo No. 297 Fracc. San Gerardo, 20342 Aguascalientes, Ags. (Mexico); Mendoza-Huizar, L.H. [Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento. Carretera Pachuca-Tulancigo Km. 4.5 Mineral de la Reforma, 42186 Hidalgo (Mexico); Díaz, C., E-mail: cristina.diaz@uam.es [Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2017-08-01

    Highlights: • Cu{sub n} supported on graphene may be a promising electrode material for DBFC's cells. • Cu{sub n}/graphene interaction is rather local and size independent. • Cu{sub 13} anchors strongly to defects in graphene, while keeping its gas-phase properties. - Abstract: Metal nanoparticles adsorbed on graphene are systems of interest for processes relative to catalytic reactions and alternative energy production. Graphene decorated with Cu-nanoparticles, in particular, could be a good alternative material for electrodes in direct borohydride fuel cells. However our knowledge of this system is still very limited. Based on density functional theory, we have analyzed the interaction of Cu{sub n} nanoparticles (n = 4, 5, 6, 7, 13) with pristine and defective-graphene. We have considered two types of defects, a single vacancy (SV), and an extended lineal structural defect (ELSD), formed by heptagon-pentagon pairs. Our analysis has revealed the covalent character of the Cu{sub n}-graphene interaction for pristine- and ELSD-graphene, and a more ionic-like interaction for SV-graphene. Furthermore, our analysis shows that the interaction between the nanoparticles and the graphene is rather local, i.e., only the nanoparticle atoms close to the contact region are involved in the interaction, being the electronic contact region much higher for defective-graphene than for pristine-graphene. Thus, the higher the particle the lower its average electronic and structural distortion.

  14. Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.

    Science.gov (United States)

    Pattani, Varun P; Tunnell, James W

    2012-10-01

    Near-infrared (NIR) absorbing plasmonic nanoparticles enhance photothermal therapy of tumors. In this procedure, systemically delivered gold nanoparticles preferentially accumulate at the tumor site and when irradiated using laser light, produce localized heat sufficient to damage tumor cells. Gold nanoshells and nanorods have been widely studied for this purpose, and while both exhibit strong NIR absorption, their overall absorption and scattering properties differ widely due to their geometry. In this paper, we compared the photothermal response of both nanoparticle types including the heat generation and photothermal efficiency. Tissue simulating phantoms, with varying concentrations of gold nanoparticles, were irradiated with a near-infrared diode laser while concurrently monitoring the surface temperature with an infrared camera. We calculated nanoshell and nanorod optical properties using the Mie solution and the discrete dipole approximation, respectively. In addition, we measured the heat generation of nanoshells and nanorods at the same optical density to determine the photothermal transduction efficiency for both nanoparticle types. We found that the gold nanoshells produced more heat than gold nanorods at equivalent number densities (# of nanoparticles/ml), whereas the nanorods generated more heat than nanoshells at equivalent extinction values at the irradiance wavelength. To reach an equivalent heat generation, we found that it was necessary to have ∼36× more nanorods than nanoshells. However, the gold nanorods were found to have two times the photothermal transduction efficiency than the gold nanoshells. For the nanoparticles tested, the nanoshells generated more heat, per nanoparticle, than nanorods, primarily due to their overall larger geometric cross-section. Conversely, we found that the gold nanorods had a higher photothermal efficiency than the gold nanoshells. In conclusion, the ideal choice of plasmonic nanoparticle requires not only per

  15. Effects of iron oxide contrast agent in combination with various transfection agents during mesenchymal stem cells labelling: An in vitro toxicological evaluation.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Khushu, Subash; Gangenahalli, Gurudutta

    2018-03-22

    The use of iron oxide nanoparticles for different biomedical applications, hold immense promise to develop negative tissue contrast in magnetic resonance imaging (MRI). Previously, we have optimized the labelling of mesenchymal stem cells (MSCs) with iron oxide nanoparticles complexed to different transfection agents like poly-l-lysine (IO-PLL) and protamine sulfate (Fe-Pro) on the basis of relaxation behaviour and its biological expressions. However, there is a distinct need to investigate the biocompatibility and biosafety concerns coupled with its cytotoxicity and genotoxicity. This study was prepared to evaluate the viability of cells, generation of ROS, changes in actin cytoskeleton, investigation of cell death, level of GSH and TAC, activities of SOD and GPx, and stability of DNA in MSCs after labelling. Results demonstrated a marginal alteration in toxicological parameters like ROS generation, cell length, actin cytoskeleton, total apoptosis and DNA damage was detected after stem cell labelling. Insignificant depletion of GSH and SOD level, and increase in GPx and TAC level in MSCs were measured after labelling with IO-PLL and Fe-Pro complexes, which later on recovered and normalized to its baseline. This MSCs labelling could provide a reference guideline for toxicological analysis and relaxometry based in vivo MRI detection. Copyright © 2018. Published by Elsevier Ltd.

  16. Recovery of Acrylic Acid Using Calcium Peroxide Nanoparticles: Synthesis, Characterisation, Batch Study, Equilibrium, and Kinetics

    Directory of Open Access Journals (Sweden)

    B. S. De

    2018-03-01

    Full Text Available Recovery of acrylic acid from aqueous solution using low-cost CaO2 nanoparticles was investigated. CaO2 nanoparticles were synthesized by co-precipitation technique and characterised using XRD and FTIR. A mechanism was proposed for adsorption of acrylic acid onto CaO2 nanoparticles based on FTIR analysis. Acrylic acid recovery is highly dependent on contact time, CaO2 nanoparticle dosage, initial acrylic concentration, and temperature. Langmuir, Freundlich, Dubinin-Radushkevich, Tempkin, Hill, Redlich-Peterson, Sips and Toth isotherms were used and well represented by Redlich-Peterson isotherm (R2 = 0.9998 as compared to other isotherms. Kinetic studies revealed pseudo-second-order kinetics (k2 = 1.962·10–4 g mg–1 min–1 for adsorption of acrylic acid onto CaO2 nanoparticles. CaO2 nanoparticles exhibited high acrylic acid recovery over varied concentration ranges. The acrylic acid can be regenerated by desorption from the surface of adsorbent and utilised for numerous applications. The presented results may be useful for the design of adsorption system using nanoparticles, which can be extended to other systems.

  17. Comparative studies on structural properties and antimicrobial potential of spinel ferrite nanoparticles synthesized using various methods

    Science.gov (United States)

    Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.

    2017-05-01

    In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.

  18. Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles

    Science.gov (United States)

    Kamzin, A. S.; Valiullin, A. A.; Khurshid, H.; Nemati, Z.; Srikanth, H.; Phan, M. H.

    2018-02-01

    FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical shape with an average size of 20 nm. It was found that the obtained FeO/Fe3O4 nanoparticles had exchange coupling. The effect of anisotropy on the efficiency of heating (hyperthermic effect) of FeO/Fe3O4 nanoparticles by an external alternating magnetic field was examined. The specific absorption rate (SAR) of the studied nanoparticles was 135 W/g in the experiment with an external alternating magnetic field with a strength of 600 Oe and a frequency of 310 kHz. These data led to an important insight: the saturation magnetization is not the only factor governing the SAR, and the efficiency of heating of magnetic FeO/Fe3O4 nanoparticles may be increased by enhancing the effective anisotropy. Mössbauer spectroscopy of the phase composition of the synthesized nanoparticles clearly revealed the simultaneous presence of three phases: magnetite Fe3O4, maghemite γ-Fe2O3, and wustite FeO.

  19. Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Cichomski, M.; Tomaszewska, E.; Kosla, K.; Kozlowski, W.; Kowalczyk, P.J.; Grobelny, J.

    2011-01-01

    Self-assembled monolayer of dithiol molecules, deposited on polycrystalline Au (111), prepared at room atmosphere, was studied using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Dithiols were used as interface, which chemically bonds to the deposited gold nanoparticles through strong covalent bonds. The size and size distribution of the deposited nanoparticles were measured using dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The AFM results showed that nanoparticles are immobilized and stable during scanning procedure and do not contaminate the AFM tip. The size of monodisperse nanoparticles obtained from the DLS measurements is slightly higher than that obtained from the AFM and SEM measurements. This is due to the fact that the DLS measures the hydrodynamic radius, dependent on the protective chemical layer on nanoparticles. - Research Highlights: → Dithiols molecules create chemically bounded layers on a Au (111) surface. → Gold nanoparticles can be chemically bounded to a self-assembled monolayer. → Nanoparticles are stable during AFM probe interactions.

  20. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles.

    Science.gov (United States)

    Biao, Linhai; Tan, Shengnan; Wang, Yuanlin; Guo, Ximin; Fu, Yujie; Xu, Fengjie; Zu, Yuangang; Liu, Zhiguo

    2017-07-01

    This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study on the interaction between gold nanoparticles and papain by spectroscopic methods

    International Nuclear Information System (INIS)

    Wang, Gongke; Chen, Ye; Yan, Changling; Lu, Yan

    2015-01-01

    The interaction between gold nanoparticles and papain was studied by fluorescence, UV–vis absorption and synchronous fluorescence spectroscopic techniques under the physiological conditions. The results showed that the binding of gold nanoparticles to papain was a spontaneous binding process. The fluorescence of papain was strongly quenched by gold nanoparticles. The quenching mechanism was probably a static quenching type with the formation of a ground state complex. The Stern–Volmer quenching constants, the binding constants and the number of binding sites in different temperatures were calculated. The corresponding thermodynamic parameters ΔH,ΔS and ΔG indicated that hydrogen bonding and Van der Waals forces played a key role in the interaction process. Additionally, the conformational change of papain induced by gold nanoparticles was analyzed by UV–vis absorption and synchronous fluorescence spectra. - Highlights: • Spherical and monodispersed gold nanoparticles are synthesized. • The fluorescence of papain is quenched by gold nanoparticles under physiological conditions. • Hydrogen bonding and Van der Waals forces may play an essential role in the binding of gold nanoparticles with papain. • This binding interaction is predominantly enthalpy driven

  2. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    Science.gov (United States)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  3. Study of BSA protein adsorption/release on hydroxyapatite nanoparticles

    Science.gov (United States)

    Swain, Sanjaya Kumar; Sarkar, Debasish

    2013-12-01

    Three different spherical, rod and fibrous morphologies of hydroxyapatite (HA) nanoparticles have been prepared through control over the processing parameters like temperature, pH and Ca:P ratio. Protein adsorption/release with respect to HA nanoparticle morphologies are investigated using model protein bovine serum albumin (BSA). BSA adsorption on HA nanoparticles follows Langmuir adsorption isotherm. Thermal analysis and FT-IR spectrum confirms the BSA adhesion and retention of their secondary structure. High surface area with high Ca:P ratio nanorod adsorbs relatively more amount (28 mg BSA/gm of nanorod HA) of BSA within 48 h in comparison with counterpart fibroid and spherical morphologies. Slow and steady BSA release (75 wt% of adsorbed BSA in 96 h) from nanorod HA is found as futuristic drug delivery media.

  4. Studying the mechanism of hybrid nanoparticle EUV photoresists

    KAUST Repository

    Zhang, Ben

    2015-03-23

    This work focuses on the investigation of dual tone patterning mechanism with hybrid inorganic/organic photoresists. Hafnium oxide (HfO2) modified with acrylic acid was prepared and the influence of electrolyte solutions as well as pH on its particle size change was investigated. The average particle size and zeta potential of the nanoparticles in different electrolyte solutions were measured. The results show that addition of different concentrations of electrolytes changed the hydrodynamic diameter of nanoparticles in water. Increased concentration of tetramethyl ammonium hydroxide (TMAH) caused the zeta potential of nanoparticles to change from positive to negative and its hydrodynamic diameter to increase from 40 nm to 165 nm. In addition, increasing concentration of triflic acid led to the decrease of particle size and zeta potential. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  5. Studying the mechanism of hybrid nanoparticle EUV photoresists

    KAUST Repository

    Zhang, Ben; Li, Li; Jiang, Jing; Neisser, Mark; Chun, Jun Sung; Ober, Christopher K.; Giannelis, Emmanuel P.

    2015-01-01

    This work focuses on the investigation of dual tone patterning mechanism with hybrid inorganic/organic photoresists. Hafnium oxide (HfO2) modified with acrylic acid was prepared and the influence of electrolyte solutions as well as pH on its particle size change was investigated. The average particle size and zeta potential of the nanoparticles in different electrolyte solutions were measured. The results show that addition of different concentrations of electrolytes changed the hydrodynamic diameter of nanoparticles in water. Increased concentration of tetramethyl ammonium hydroxide (TMAH) caused the zeta potential of nanoparticles to change from positive to negative and its hydrodynamic diameter to increase from 40 nm to 165 nm. In addition, increasing concentration of triflic acid led to the decrease of particle size and zeta potential. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  6. Optical transfection using an endoscope-like system.

    Science.gov (United States)

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  7. Optical sorting and photo-transfection of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-02-01

    Full Text Available and that the scattering force can enable sorting through axial guiding onto laminin coated glass coverslips upon which the selected cells adhere. Following this, I report on transient photo-transfection of mammalian cells including neuroblastomas (rat/mouse and human...

  8. Establishing malaria parasite transfection technology in South Africa

    CSIR Research Space (South Africa)

    Van Brummelen, AC

    2010-01-01

    Full Text Available -richness and intracellular location of the organism. As a result such successful transfection often requires prolonged periods (up to 2-3 months) of constant and patient culturing and selection. In addition, plasmids usually have a complicated composition and require lengthy...

  9. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available on transient photo-transfection of ovary (CHO-Kl), neuroblastoma (NG-I08 & SKN-SH) and embryonic kidney (HEK-293) as well as primary non-differentiated stem cells (EI4g2a) using a tightly focused titanium sapphire laser beam (1.1 urn diameter spot size...

  10. Transfer Study of Silver Nanoparticles in Poultry Production.

    Science.gov (United States)

    Gallocchio, Federica; Biancotto, Giancarlo; Cibin, Veronica; Losasso, Carmen; Belluco, Simone; Peters, Ruud; van Bemmel, Greet; Cascio, Claudia; Weigel, Stefan; Tromp, Peter; Gobbo, Federica; Catania, Salvatore; Ricci, Antonia

    2017-05-10

    Silver nanoparticles (AgNPs) are of interest due to their antimicrobial activity and are seen as potential candidates to replace antibiotics in animal husbandry. A few studies have focused on this new application, but they lack any considerations about residual accumulation of AgNPs in edible animal tissues and animal products. In this research, a 22 day in vivo study was carried out by oral administration of 20 nm spherical PVP coated AgNPs to hens. Six doses of approximately 1 mg kg -1 of AgNPs-PVP each were administered to animals throughout the experimentation. Atomic absorption spectroscopy (AAS) was used for quantitative determination of residual total Ag in different organs and matrices. The analyses showed that Ag accumulates in livers (concentration ranging from 141 μg kg -1 to 269 μg kg -1 ) and yolks (concentration ranging from 20 μg kg -1 to 49 μg kg -1 ) but not in muscles, kidneys, and albumen belonging to hens of the treated group (tG2). Ag was not detected in animals of the control group (uG1) (i.e., total Ag animals. spICP-MS highlighted that part of residual Ag found in livers (about 5-20%) is in NP form with an average dimension of approximately 20 nm. SEM-EDX technique confirmed the presence of AgNPs only in livers of treated animals. The results show that feeding AgNPs to hens may become a source of consumer exposure to AgNPs. As far as we know this is the first study showing transfer of AgNPs or reaction products thereof from animal feed to animal products.

  11. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  12. Green Synthesis of Silver Nanoparticles and the Study of Optical Properties

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vasireddy

    2012-08-01

    Full Text Available The synthesis of silver nanoparticles of varying size has been achieved using different molar concentrations of NaOH while the effect of changing the temperature has been studied. AgNO3, gelatine, glucose and NaOH are used as a silver precursor, stabilizer, reducing agent and accelerator respectively. The synthesized nanoparticles have been characterized by a FESEM study, X‐ray diffractometry, Raman spectroscopy and UV‐vis spectroscopy. The colloidal sols of the silver nanoparticles in a biopolymer gelatine show strong surface plasmon resonance absorption peaks. The visible photoluminescence emission from the synthesized silver nanocrystals has been recorded within the wavelength range of 400‐600 nm under UV excitation. The synthesized nanoparticles may be extremely useful in making biosensor devices as well as for other applications.

  13. Study of Coating Geometries and Photoluminescence Properties of Metal Nanoparticles/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Pasquale Barone

    2014-01-01

    Full Text Available In this work we present the results of a study of growth and characterization of metal nanoparticles (Ag, Au, and Co/carbon surfaces. The nanoparticles grew by laser ablation technique and their dimensions were controlled by light scattering study and AFM microscopy before their insertion on graphite surface. Nanoparticles appear randomly disposed on carbon surfaces aggregating to form big particles only in the case of silver. The different behavior of metal nanoparticles on carbon surface was explained in terms of different metal wetting of surface, in agreement with previous theoretical results of He et al. Chemical information, obtained by X-ray photoelectron spectroscopy, indicated that the doping process is a simple physisorption while the interfacial interaction between particles and carbon layers causes local defects in graphite structure and the appearance of a strong photoluminescence signal for all composites. Moreover, the visible optical absorption decreases about 10% indicating the progressive metallization of carbon surface.

  14. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2017-01-01

    Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the in vivo visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles. Specifically, we observe the in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and study the penetration, diffusion, and spatial distribution of the nanoparticles in the tissue. The promising results reveal that photoacoustic microscopy can be used as a potential imaging modality for the in vivo characterization of microneedles based drug delivery. PMID:29296482

  15. XAFS Studies of Fe Doped PhTiO3 Nanoparticles

    International Nuclear Information System (INIS)

    Shibata, Tomohiro; Chattopadhyay, Soma; Lin Bin; Palkar, V. R.

    2007-01-01

    Fe K and Ti K edge XAFS studies are reported on Fe doped PbTiO3 nanoparticles down to the 10 nm size. Fe forms Fe3+ ions and substitute for Ti4+ ions. For 18 nm nanoparticles, the Fe and Ti environment is found to be quite different. For PbFe0.5Ti0.5O3, locally the structure remains distorted from bulk to 10 nm size although the average structure changes

  16. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B.

    Science.gov (United States)

    Khatri, Kapil; Goyal, Amit K; Gupta, Prem N; Mishra, Neeraj; Vyas, Suresh P

    2008-04-16

    This work investigates the preparation and in vivo efficacy of plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Chitosan pDNA nanoparticles were prepared using a complex coacervation process. Prepared nanoparticles were characterized for size, shape, surface charge, plasmid loading and ability of nanoparticles to protect DNA against nuclease digestion and for their transfection efficacy. Nasal administration of nanoparticles resulted in serum anti-HBsAg titre that was less compared to that elicited by naked DNA and alum adsorbed HBsAg, but the mice were seroprotective within 2 weeks and the immunoglobulin level was above the clinically protective level. However, intramuscular administration of naked DNA and alum adsorbed HBsAg did not elicit sIgA titre in mucosal secretions that was induced by nasal immunization with chitosan nanoparticles. Similarly, cellular responses (cytokine levels) were poor in case of alum adsorbed HBsAg. Chitosan nanoparticles thus produced humoral (both systemic and mucosal) and cellular immune responses upon nasal administration. The study signifies the potential of chitosan nanoparticles as DNA vaccine carrier and adjuvant for effective immunization through non-invasive nasal route.

  17. A multicenter study of using carbon nanoparticles to show sentinel lymph nodes in early gastric cancer.

    Science.gov (United States)

    Yan, Jun; Zheng, Xiaoling; Liu, Zhangyuanzhu; Yu, Jiang; Deng, Zhenwei; Xue, Fangqing; Zheng, Yu; Chen, Feng; Shi, Hong; Chen, Gang; Lu, Jianping; Cai, Lisheng; Cai, Mingzhi; Xiang, Gao; Hong, Yunfeng; Chen, Wenbo; Li, Guoxin

    2016-04-01

    Lymph node metastasis occurs in approximately 10% of early gastric cancer. Preoperative or intra-operative identification of lymph node metastasis in early gastric cancer is crucial for surgical planning. The purpose of this study was to evaluate the feasibility of using carbon nanoparticles to show sentinel lymph nodes (SLNs) in early gastric cancer. A multicenter study was performed between July 2012 and November 2014. Ninety-one patients with early gastric cancer identified by preoperative endoscopic ultrasonography were recruited. One milliliter carbon nanoparticles suspension, which is approved by Chinese Food and Drug Administration, was endoscopically injected into the submucosal layer at four points around the site of the primary tumor 6-12 h before surgery. Laparoscopic radical resection with D2 lymphadenectomy was performed. SLNs were defined as nodes that were black-dyed by carbon nanoparticles in greater omentum and lesser omentum near gastric cancer. Lymph node status and SLNs accuracy were confirmed by pathological analysis. All patients had black-dyed SLNs lying in greater omentum and/or lesser omentum. SLNs were easily found under laparoscopy. The mean number of SLNs was 4 (range 1-9). Carbon nanoparticles were around cancer in specimen. After pathological analysis, 10 patients (10.99%) had lymph node metastasis in 91 patients with early gastric cancer. SLNs were positive in 9 cases and negative in 82 cases. In pathology, carbon nanoparticles were seen in lymphatic vessels, lymphoid sinus, and macrophages in SLNs. When SLNs were positive, cancer cells were seen in lymph nodes. The sensitivity, specificity, and accuracy of black-dyed SLNs in early gastric cancers were 90, 100, and 98.9 %, respectively. No patient had any side effects of carbon nanoparticles in this study. It is feasible to use carbon nanoparticles to show SLNs in early gastric cancer. Carbon nanoparticles suspension is safe for submucosal injection.

  18. Electro-precipitation of magnetite nanoparticles: an electrochemical study

    OpenAIRE

    Ibrahim, Mona; Groenen-Serrano, Karine; Noé, Laure; Garcia, Cécile; Verelst, Marc

    2009-01-01

    Nanoparticles of magnetites (Fe3O4) are synthesized with a new process based on electro-precipitation in ethanol medium. A mechanism pathway is proposed consisting of a Fe(OH)3 precipitation followed by the reduction of iron hydroxide to magnetite in the presence of hydroxyl ions which are enerated at the cathode.

  19. Dynamics of Magnetic Nanoparticles Studied by Neutron Scattering

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen

    1997-01-01

    We present the first triple-axis neutron scattering measurements of magnetic fluctuations in nanoparticles using an antiferromagnetic reflection. Both the superparamagnetic relaxation and precession modes in similar to 15 nm hematite particles are: observed. The results have been consistently...... analyzed on the basis of a simple model with uniaxial anisotropy and the Neel-Brown theory for the relaxation....

  20. Europium polyoxometalates encapsulated in silica nanoparticles - characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Cristina S.; Granadeiro, Carlos M.; Cunha-Silva, Luis; Eaton, Peter; Balula, Salete S.; Pereira, Eulalia [REQUIMTE/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto (Portugal); Ananias, Duarte [CICECO, Departamento de Quimica, Universidade de Aveiro (Portugal); Gago, Sandra [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Feio, Gabriel [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Carvalho, Patricia A. [ICEMS/Departamento de Bioengenharia, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-06-15

    The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW{sub 11}){sub x} (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, {sup 31}P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW{sub 11}){sub x} rate at SiO{sub 2} nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    International Nuclear Information System (INIS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2014-01-01

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4

  2. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies

    Directory of Open Access Journals (Sweden)

    Robert S. Aronstam

    2010-10-01

    Full Text Available Nanotechnology has evolved to play a prominent role in our economy. Increased use of nanomaterials poses potential human health risk. It is therefore critical to understand the nature and origin of the toxicity imposed by nanomaterials (nanotoxicity. In this article we review the toxicity of the transition metal oxides in the 4th period that are widely used in industry and biotechnology. Nanoparticle toxicity is compellingly related to oxidative stress and alteration of calcium homeostasis, gene expression, pro-inflammatory responses, and cellular signaling events. The precise physicochemical properties that dictate the toxicity of nanoparticles have yet to be defined, but may include element-specific surface catalytic activity (e.g., metallic, semiconducting properties, nanoparticle uptake, or nanoparticle dissolution. These in vitro studies substantially advance our understanding in mechanisms of toxicity, which may lead to safer design of nanomaterials.

  3. Spectroscopic studies of energy transfer in fluorene co-polymer blend nanoparticles

    Science.gov (United States)

    Gao, Jian; Grey, John K.

    2012-01-01

    Nanoparticles of poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) [PFB] and poly(9,9-dioctylfluorene-co-benzothiadiazole) [F8BT] (1:1 w/w) were studied using scanned probe and single particle spectroscopy techniques. Photoluminescence (PL spectra of ∼58 and ∼100 nm PFB/F8BT nanoparticles show efficient energy transfer from the PFB (donor) component to the F8BT (acceptor) component that is independent of particle size. We propose that nanoparticles are phase segregated into discrete PFB/F8BT nanodomains on the order of ∼20-40 nm for both particle sizes. Pressure-dependent nanoparticle PL spectra support this assignment where lineshape maxima of each component red-shift in a similar manner due to increased interchain packing within the single nanodomains.

  4. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    International Nuclear Information System (INIS)

    Yan, Chen; Jie, Leng; Yongqi, Wang; Weiming, Xiao; Juqun, Xi; Yanbing, Ding; Li, Qian; Xingyuan, Pan; Mingchun, Ji; Weijuan, Gong

    2015-01-01

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8 + T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle

  5. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chen; Jie, Leng; Yongqi, Wang [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weiming, Xiao [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Juqun, Xi [Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Yanbing, Ding [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Li, Qian [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Xingyuan, Pan [Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Mingchun, Ji [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weijuan, Gong, E-mail: wjgong@yzu.edu.cn [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 (China)

    2015-07-31

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8{sup +} T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle.

  6. Comprehensive studies on the interactions between chitosan nanoparticles and some live cells

    International Nuclear Information System (INIS)

    Zheng Aiping; Liu Huixue; Yuan Lan; Meng Meng; Wang Jiancheng; Zhang Xuan; Zhang Qiang

    2011-01-01

    As more and more oral formulations of nanoparticles are used in clinical contexts, a comprehensive study on the mechanisms of interaction between polymer nanoparticles and live cells seems merited. Such a study was conducted and the results were compared to the polymer itself in order to demonstrate different kinds of effects that are brought into the cell by polymer and its nanoparticles, especially the effects on the biomembrane. Several techniques, including surface plasmon resonance (SPR), Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, fluorescence polarization spectroscopy (FP), flow cytometry (FCM) with quantitative analysis, and confocal images with antibody staining were employed toward this end. The cytotoxicity in vitro was also evaluated. Chitosan (CS), a polycationic polymer, was used to prepare the nanoparticles. We demonstrate that chitosan nanoparticles (CS-NP) induce strong alterations in the distribution of membrane proteins, fluidity of membrane lipids, and general membrane structure. Furthermore, the uptake of CS-NP into Caco-2 cells was found to have a similar mechanism to that of CS molecules, but the differences in degree were noted. These results indicate that positive charge and nanoscale size were the factors that most significantly affected the interactions between the nanoparticles of polycationic polymers and live cells. However, no difference in cytotoxicity toward the Caco-2 cells was found between CS and CS-NP. This supports the idea that CS-NP is an effective and safe carrier for oral drug delivery.

  7. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  8. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Science.gov (United States)

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S.; Nath, Gopal; Srivastava, Sunil K.; Giri, Rajiv; Srivastava, Anchal

    2011-10-01

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag + by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag + has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  9. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Upendra Kumar; Srivastava, Sunil K; Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, Vinod; Saxena, Preeti S [Department of Zoology, Banaras Hindu University, Varanasi 22005 (India); Bera, Tanmay [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Nath, Gopal [Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 22005 (India); Giri, Rajiv, E-mail: anchalbhu@gmail.com [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2011-10-14

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag{sup +} by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag{sup +} has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  10. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    International Nuclear Information System (INIS)

    Garabagiu, Sorina

    2011-01-01

    Highlights: ► The interaction was studied using UV–vis and fluorescence spectroscopy. ► Gold nanoparticles quench the fluorescence emission of hemoglobin solution. ► The binding and thermodynamic constants were calculated. ► Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV–vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longer wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern–Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.

  11. Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-09-01

    Full Text Available Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293 and two rodent (CHO-K1, L929 cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP was studied under the control of the human elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV, that of ZsYellow1 (yellow fluorescence and mCherry (red fluorescence for the CMV promoter. Results varied with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-transfections, YFP in case of YFP/RFP co-transfections. Only Jurkat cells were almost incapable of expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent effects on transfection efficiency and/or expression levels.

  12. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Sandeep; Agrawal, Ashish Kumar

    2013-01-01

    The present study reports the development, characterization, and evaluation of novel polyelectrolytes stabilized lipoplexes as a nonviral vector for gene delivery. In order to achieve the advantage of both DOTAP (1,2-dioleoyl-3-trimethylammonium propane) and PEI (high transfection efficiency...... uptake and nuclear colocalization in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, and PEI polyplexes. Nanoplexes also exhibited 50-80, 11-12, 6-7, and 5-6 fold higher transfection efficiency in comparison with DOTAP/PC-lipoplexes, DOTAP/DOPE-lipoplexes, PEI-polyplexes, and lipofectamine, respectively......, and significantly lower toxicity in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, PEI polyplexes, and commercial lipofectamine....

  13. Nanobarcoding for improved nanoparticle detection in nanomedical biodistribution studies

    Science.gov (United States)

    Eustaquio, Trisha

    Determination of the fate of nanoparticles (NPs) in a biological system, or NP biodistribution, is critical in evaluating a NP formulation for nanomedicine. Unlike small-molecule drugs, NPs impose unique challenges in the design of appropriate biodistribution studies due to their small size and subsequent detection signal. Current methods to determine NP biodistribution are greatly inadequate due to their limited detection thresholds. There is an overwhelming need for a sensitive and efficient imaging-based method that can (1) detect and measure small numbers of NPs of various types, ideally single NPs, (2) associate preferential NP uptake with histological cell type by preserving spatial information in samples, and (3) allow for relatively quick and accurate NP detection in in vitro (and possibly ex vivo) samples for comprehensive NP biodistribution studies. Herein, a novel method for improved NP detection is proposed, coined "nanobarcoding." Nanobarcoding utilizes a non-endogenous oligonucleotide, or "nanobarcode" (NB), conjugated to the NP surface to amplify the detection signal from a single NP via in situ polymerase chain reaction (ISPCR), and this signal amplification will facilitate rapid and precise detection of single NPs inside cells over large areas of sample such that more sophisticated studies can be performed on the NP-positive subpopulation. Moreover, nanobarcoding has the potential to be applied to the detection of more than one NP type to study the effects of physicochemical properties, targeting mechanisms, and route of entry on NP biodistribution. The nanobarcoding method was validated in vitro using NB-functionalized superparamagnetic iron oxide NPs (NB-SPIONs) as the model NP type for improved NP detection inside HeLa human cervical cancer cells, a cell line commonly used for ISPCR-mediated detection of human papilloma virus (HPV). Nanotoxicity effects of NB-SPIONs were also evaluated at the single-cell level using LEAP (Laser-Enabled Analysis

  14. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    International Nuclear Information System (INIS)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-01-01

    In this work, the core-magnesium ferrite (MgFe_2O_4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe_2O_4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe_2O_4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe_2O_4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe_2O_4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe_2O_4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe_2O_4 core. Both of MgFe_2O_4 and MgFe_2O_4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe_2O_4-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe_2O_4 nanoparticles • In vitro cytotoxicity study of complete coated MgFe_2O_4-Au core-shell nanoparticles

  15. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core

  16. Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zlotea, Claudia; Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei

    2016-01-01

    Recent advances on synthesis, characterization, and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions, contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd 90 Rh 10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions, as suggested by in situ X-ray diffraction (XRD). Apart from this composition, common laboratory techniques, such as in situ XRD, DSC, and PCI, failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd 75 Rh 25 and Pd 50 Rh 50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover, the hydrogen solubility in these solid solutions is higher with increasing Pd content, and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions, as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd 25 Rh 75 and Pd 10 Rh 90 ) only adsorb hydrogen on the developed surface of ultrasmall

  17. Study of the Performance of the Organic Extracts of Chenopodium ambrosioides for Ag Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Luis M. Carrillo-López

    2016-01-01

    Full Text Available There are many ways to obtain metal nanoparticles: biological, physical, and chemical ways and combinations of these approaches. Synthesis assisted with plant extracts has been widely documented. However, one issue that is under discussion refers to the metabolites responsible for reduction and stabilization that confine nanoparticle growth and prevent coalescence between nanoparticles in order to avoid agglomeration/precipitation. In this study, Ag nanoparticles were synthesized using organic extracts of Chenopodium ambrosioides with different polarities (hexane, dichloromethane, and methanol. Each extract was phytochemically characterized to identify the nature of the metabolites responsible for nanoparticle formation. With methanol extract, the compounds responsible for reducing and stabilizing silver nanoparticle were associated with the presence of phenolic compounds (flavonoids and tannins, while, with dichloromethane and hexane extracts, the responsible compounds were mainly terpenoids. Large part of the reducing activity of secondary metabolites in C. ambrosioides is closely related to compounds with antioxidant capacity, such as phenolic compounds (flavone glycoside and isorhamnetin, which are the main constituents of the methanol extracts. Otherwise, terpenoids (trans-diol, α-terpineol, monoterpene hydroperoxides, and apiole are the central metabolites present in dichloromethane and hexane extracts.

  18. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  19. Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma

    Science.gov (United States)

    Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra

    2018-03-01

    Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.

  20. Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Beak, Il Kwon; Kim, Kyu Han; Jang, Seok Pil [Korea Aerospace University, Goyang (Korea, Republic of)

    2014-08-15

    In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be 129 ℃, which is 44 ℃ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

  1. Study of the growth of CeO2 nanoparticles onto titanate nanotubes

    Science.gov (United States)

    Marques, Thalles M. F.; Ferreira, Odair P.; da Costa, Jose A. P.; Fujisawa, Kazunori; Terrones, Mauricio; Viana, Bartolomeu C.

    2015-12-01

    We report the study of the growth of CeO2 nanoparticles on the external walls and Ce4+ intercalation within the titanate nanotubes. The materials were fully characterized by multiple techniques, such as: Raman spectroscopy, infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The ion exchange processes in the titanate nanotubes were carried out using different concentrations of Ce4+ in aqueous solution. Our results indicate that the growth of CeO2 nanoparticles grown mediated by the hydrolysis in the colloidal species of Ce and the attachment onto the titanate nanotubes happened and get it strongly anchored to the titanate nanotube surface by a simple electrostatic interaction between the nanoparticles and titanate nanotubes, which can explain the small size and even distribution of nanoparticles on titanate supports. It was demonstrated that it is possible to control the amount and size of CeO2 nanoparticles onto the nanotube surface, the species of the Ce ions intercalated between the layers of titanate nanotubes, and the materials could be tuned for using in specific catalysis in according with the amount of CeO2 nanoparticles, their oxygen vacancies/defects and the types of Ce species (Ce4+ or Ce3+) present into the nanotubes.

  2. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  3. Highly Effective Gene Transfection In Vivo by Alkylated Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Jennifer A. Fortune

    2011-01-01

    Full Text Available We mechanistically explored the effect of increased hydrophobicity of the polycation on the efficacy and specificity of gene delivery in mice. N-Alkylated linear PEIs with varying alkyl chain lengths and extent of substitution were synthesized and characterized by biophysical methods. Their in vivo transfection efficiency, specificity, and biodistribution were investigated. N-Ethylation improves the in vivo efficacy of gene expression in the mouse lung 26-fold relative to the parent polycation and more than quadruples the ratio of expression in the lung to that in all other organs. N-Propyl-PEI was the best performer in the liver and heart (581- and 3.5-fold enhancements, resp. while N-octyl-PEI improved expression in the kidneys over the parent polymer 221-fold. As these enhancements in gene expression occur without changing the plasmid biodistribution, alkylation does not alter the cellular uptake but rather enhances transfection subsequent to cellular uptake.

  4. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles

    Science.gov (United States)

    Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.

    2014-01-01

    The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.

  5. Mechanistic Studies of Flavivirus Inhibition and Nanoparticle-Catalyzed Decontamination

    Science.gov (United States)

    2016-06-01

    Chemistry, Ph.D. Program in Chemistry, Vanderbilt University Nicholas Forster – undergraduate student in Biology Megan Fox – undergraduate student / B.A...C. Si and X. O. Tan (2008) Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol. Energy 82, 706–713...Florida Gulf Coast University, Fort Myers, FL 33965, USA b Communicable Disease Center, Tan Tock Seng Hospital, Singapore 308433, Singapore c National

  6. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    Science.gov (United States)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  7. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  8. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  9. Establishment of Lipofection Protocol for Efficient miR-21 Transfection into Cortical Neurons In Vitro.

    Science.gov (United States)

    Han, Zhaoli; Ge, Xintong; Tan, Jin; Chen, Fanglian; Gao, Huabin; Lei, Ping; Zhang, Jianning

    2015-12-01

    Dysregulated microRNAs in neurons could cause many nervous system diseases. The therapeutic manipulation of these pathogenic microRNAs necessitates novel, efficient delivery systems to facilitate microRNA modulators targeting neurons with minimal off-target effects. The study aimed to establish a lipofection protocol to upregulate expression levels of miR-21 in neurons under different conditions, including different serum-free medium, transfection conditions, and reagent concentration, by evaluating the expression levels of miR-21 and neuron injury. The expression levels of miR-21 were higher in neurons transfected by Neurobasal-A than by DMEM. Expression levels of miR-21 were already the highest at the ratio RNAiMAX:miR-21 = 3:5, but the increase of RNAiMAX's concentration had not caused the further upregulation of expression level of miR-21. Neuron injury was condition dependent and dose dependent after transfection. Compared to S-Neurobasal groups, neurons have a smaller injury in N-Neurobasal groups, and compared to ratios RNAiMAX:miR-21 = 4:5, 5:5, neuron injury was smaller at ratios of RNAiMAX:miR-21 = 1:5, 2:5, 3:5. Without the pretreatment of starvation in vitro, the lipofection protocol was that RNAiMAX/miR-21 agomir complexes were diluted in Neurobasal-A at the ratio of RNAiMAX:miR-21 = 3:5.

  10. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    Science.gov (United States)

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  11. siRNA Transfection and EMSA Analyses on Freshly Isolated Human Villous Cytotrophoblasts.

    Science.gov (United States)

    Lokossou, Adjimon Gatien; Toufaily, Chirine; Vargas, Amandine; Barbeau, Benoit

    2016-09-20

    Human primary villous cytotrophoblasts are a very useful source of primary cells to study placental functions and regulatory mechanisms, and to comprehend diseases related to pregnancy. In this protocol, human primary villous cytotrophoblasts freshly isolated from placentas through a standard DNase/trypsin protocol are microporated with small interfering RNA (siRNA). This approach provided greater efficiency for siRNA transfection when compared to a lipofection-based method. Transfected cells can subsequently be analyzed by standard Western blot within a time frame of 3-4 days post-transfection. In addition, using cultured primary villous cytotrophoblasts, Electrophoretic Mobility Shift Assay (EMSA) analysis was optimized and performed on extracts from days 1 to 4. The use of these cultured primary cells and the protocol described allow for an evaluation of the implication of specific genes and transcription factors in the process of villous cytotrophoblast differentiation into a syncytiotrophoblast-like cell layer. However, the limited time span allowable in culture precludes the use of methods requiring more time, such as generation of a stable cell population. Therefore testing of this cell population requires highly optimized gene transfer protocols.

  12. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    Science.gov (United States)

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  13. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Jeggo, P.; Smith, J.

    1987-01-01

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  14. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  15. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection.

    Science.gov (United States)

    Kuroda, Hitoshi; Kutner, Robert H; Bazan, Nicolas G; Reiser, Jakob

    2009-05-01

    During the past 12 years, lentiviral vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression. Despite significant progress, the production of high-titer high-quality lentiviral vectors is cumbersome and costly. The most commonly used method to produce lentiviral vectors involves transient transfection using calcium phosphate (CaP)-mediated precipitation of plasmid DNAs. However, inconsistencies in pH can cause significant batch-to-batch variations in lentiviral vector titers, making this method unreliable. This study describes optimized protocols for lentiviral vector production based on polyethylenimine (PEI)-mediated transfection, resulting in more consistent lentiviral vector stocks. To achieve this goal, simple production methods for high-titer lentiviral vector production involving transfection of HEK 293T cells immediately after plating were developed. Importantly, high titers were obtained with cell culture media lacking serum or other protein additives altogether. As a consequence, large-scale lentiviral vector stocks can now be generated with fewer batch-to-batch variations and at reduced costs and with less labor compared to the standard protocols.

  16. Femtosecond laser assisted photo-transfection and differentiation of mouse embryonic stem cells

    Science.gov (United States)

    Thobakgale, Lebogang; Manoto, Sello; Ombinda Lemboumba, Satuurnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    In tissue engineering research, stem cells have been used as starting material in the synthesis of mammalian cells for the treatment of various cell based diseases. This is done by manipulating the DNA content of the cells to induce a specific effect such as increased proliferation or developing a new cell type through the process of differentiation. Such controlled gene expression of stem cells is achieved by the method of transfection, where exogenous plasmid deoxyribonucleic acid (pDNA) is inserted into a stem cell using chemical, viral or physical methods. In this research, we used femtosecond (fs) laser pulses from a home-build microscope system to perforate the cellular membrane and allow entry of selected pDNA to alter the behaviour of mouse embryonic stem cells (mESCs). In one set of experiments, we induce fluorescence on mESCs using green fluorescence protein plasmid (pGFP) while in other tests; differentiation of mESCs into endoderm cells is performed using Sox-17 plasmid DNA (pSox-17). Primitive endoderm formation was thereafter confirmed using polymerase chain reactions (PCR) and the Sox-17 primer. Cell viability studies using adenosine triphosphate were also conducted. From the data, it was concluded that the photo-transfection method is biocompatible since it was able to induce fluorescence in mESCs. Secondly, it was confirmed that Sox-17 was photo-transfected successfully using 6 μW laser power, 128 fs pulses and 1kHz pulse repetition rate.

  17. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    Science.gov (United States)

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  18. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    International Nuclear Information System (INIS)

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-01-01

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd 2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl 2 . X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells

  19. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, D.H., E-mail: dhnagu@gmail.com [Department of Mechanical Engineering, 117 576 (Singapore); Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Saudi Arabia); Devaraj, S. [Department of Mechanical Engineering, 117 576 (Singapore); School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 (India); Balaya, P., E-mail: mpepb@nus.edu.sg [Department of Mechanical Engineering, 117 576 (Singapore); Engineering Science Program, National University of Singapore, 117 576 (Singapore)

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  20. Drug-polymer interaction studies of cytarabine loaded chitosan nanoparticles

    International Nuclear Information System (INIS)

    Madni, A.; Kashif, P.M.; Nazir, I.; Rehman, M.

    2017-01-01

    Assessment of possible incompatibilities between drug and excipients is an important parameter of preformulation stage during the pharmaceutical product development of active pharmaceutical ingredient (API). The potential physical and chemical interaction among the components of a delivery system can affect the chemical nature, bioavailability, stability, and subsequently therapeutic efficacy of drugs. In this study, ATR-FTIR spectroscopy was employed to investigate the possible intermolecular interaction of Cytarabine with deacetylated chitosan and tripolyphosphate in the resulting physical blends and crosslinked nanoparticulate system. Two different strategies, physical blending and ionotropic gelation, were adopted to prepare binary or tertiary mixtures and nanoparticulate formulation, respectively. The IR spectra of CB showed characteristic peaks at 3438.27 cm-1 (primary amine), 3264.74 cm-1 (hydroxyl group) and 1654.98 cm-1 (C=O stretch in cyclic ring); CS at 3361.47 cm-1 (N-H stretching), 1646.18 cm-1 (C=O of Amide I), 1582.36 cm-1 (C=O of Amide II), and sTPP at 1135.77 cm-1 (P=O). CS-sTPP chemical interaction was confirmed from the shift in the absorption band of carbonyl groups (amide I, II) to 1634.66 cm-1 and 1541.17 cm-1 in blank chitosan nanoparticles, and 1636.87 cm-1, 1543.33 cm-1 in CSNP1 (2:6:1), and at 1646.15 cm-1 and 1557.04 cm-1 in CSNP2 (1:3:1). The characteristic peaks of CB were also present in chitosan formulation with a slight shift in the amino group at 3429.43 cm-1 and 3423.21 cm-1, in the hydroxyl group at 3274.54 cm-1 and 3270.73 cm-1, CSNP1 and CSNP2, respectively. The findings counseled no significant interaction in IR absorption pattern of cytarabine functional groups after encapsulation in CS-sTPP complex, which projected the potential of chitosan nanoparticulate system to entrap cytarabine. (author)

  1. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma. Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV) spectrophotometry was used ...

  2. [Study of the effect of colloidal solution of silver nanoparticles on parameters of cardio- and hemo-dynamics in rabbits].

    Science.gov (United States)

    Pryskoka, A O

    2014-01-01

    Metal nanoparticles and silver nanoparticles in particular are extensively studied recently considering their prominent antimicrobial properties. Nevertheless, their toxicity aspects and probable side effects remain not well studied. In this article the results of study of the influence of silver nanoparticles onto a cardiovascular system in an in vivo experiment were provided, changes in parameters of cardio- and hemodynamics were defined, and the principles of such influence were identified. Dose-dependent effect of these nanoparticles was established when administered in dose of 4.3 mg/kg three times and 20 mg/kg once.

  3. Transfection of embryonated Muscovy duck eggs with a recombinant plasmid is suitable for rescue of infectious Muscovy duck parvovirus.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Ling, Jueyi; Wang, Zhixiang; Zhu, Guoqiang

    2017-12-01

    For members of the family Parvoviridae, rescue of infectious virus from recombinant plasmid is usually done in cultured cells. In this study, the whole genome of the pathogenic Muscovy duck parvovirus (MDPV) strain YY was cloned into the pBluescript II (SK) vector, generating recombinant plasmid pYY. With the aid of a transfection reagent, pYY plasmid was inoculated into 11-day-old embryonated Muscovy duck eggs via the chorioallantoic membrane route, resulting in the successful rescue of infectious virus and death of the embryos. The rescued virus exhibited pathogenicity in Muscovy ducklings similar to that of its parental strain, as evaluated based on the mortality rate. The results demonstrate that plasmid transfection in embryonated Muscovy duck eggs is a convenient and efficacious method for rescue of infectious MDPV in comparison to transfection of primary cells, which is somewhat time-consuming and laborious.

  4. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    Science.gov (United States)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  5. Loading of atorvastatin and linezolid in β-cyclodextrin–conjugated cadmium selenide/silica nanoparticles: A spectroscopic study

    International Nuclear Information System (INIS)

    Antony, Eva Janet; Shibu, Abhishek; Ramasamy, Sivaraj; Paulraj, Mosae Selvakumar; Enoch, Israel V.M.V.

    2016-01-01

    The preparation of β–cyclodextrin–conjugated cadmium selenide–silica nanoparticles, the loading of two drugs viz., Atorvastatin and linezolid in the cyclodextrin cavity, and the fluorescence energy transfer between CdSe/SiO_2 nanoparticles and the drugs encapsulated in the cyclodextrin cavity are reported in this paper. IR spectroscopy, X-ray diffractometry, transmission electron microscopy, and particle size analysis by light–scattering experiment were used as the tools of characterizing the size and the crystal system of the nanoparticles. The nanoparticles fall under hexagonal system. The silica–shell containing CdSe nanoparticles were functionalized by reaction with aminoethylamino–β–cyclodextrin. Fluorescence spectra of the nanoparticles in their free and drug–encapsulated forms were studied. The FÖrster distances between the encapsulated drugs and the CdSe nanoparticles are below 3 nm. The change in the FÖrster resonance energy parameters under physiological conditions may aid in tracking the release of drugs from the cavity of the cyclodextrin. - Highlights: • CdSe/SiO_2 nanoparticles of crystallite size 15 nm are prepared. • β-Cyclodextrin is attached to the surface of the nanoparticles. • Atorvastatin and linezolid get encapsulated in the cyclodextrin cavity. • FRET efficiency between the nanoparticles and the loaded drugs are determined.

  6. Loading of atorvastatin and linezolid in β-cyclodextrin–conjugated cadmium selenide/silica nanoparticles: A spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Eva Janet; Shibu, Abhishek [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Ramasamy, Sivaraj; Paulraj, Mosae Selvakumar [Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India); Enoch, Israel V.M.V., E-mail: drisraelenoch@gmail.com [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India)

    2016-08-01

    The preparation of β–cyclodextrin–conjugated cadmium selenide–silica nanoparticles, the loading of two drugs viz., Atorvastatin and linezolid in the cyclodextrin cavity, and the fluorescence energy transfer between CdSe/SiO{sub 2} nanoparticles and the drugs encapsulated in the cyclodextrin cavity are reported in this paper. IR spectroscopy, X-ray diffractometry, transmission electron microscopy, and particle size analysis by light–scattering experiment were used as the tools of characterizing the size and the crystal system of the nanoparticles. The nanoparticles fall under hexagonal system. The silica–shell containing CdSe nanoparticles were functionalized by reaction with aminoethylamino–β–cyclodextrin. Fluorescence spectra of the nanoparticles in their free and drug–encapsulated forms were studied. The FÖrster distances between the encapsulated drugs and the CdSe nanoparticles are below 3 nm. The change in the FÖrster resonance energy parameters under physiological conditions may aid in tracking the release of drugs from the cavity of the cyclodextrin. - Highlights: • CdSe/SiO{sub 2} nanoparticles of crystallite size 15 nm are prepared. • β-Cyclodextrin is attached to the surface of the nanoparticles. • Atorvastatin and linezolid get encapsulated in the cyclodextrin cavity. • FRET efficiency between the nanoparticles and the loaded drugs are determined.

  7. Study of internalization and viability of multimodal nanoparticles for labeling of human umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Miyaki, Liza Aya Mabuchi; Sibov, Tatiana Tais; Pavon, Lorena Favaro; Mamani, Javier Bustamante; Gamarra, Lionel Fernel

    2012-01-01

    Objective: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10 μg Fe/mL and 100μg Fe/mL. Methods: We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. Results: The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which were shown as blue granules co-localized in fluorescent clusters, thus characterizing magnetic and fluorescent properties of multimodal magnetic nanoparticles Rhodamine B. Conclusion: The stability of multimodal magnetic nanoparticles-Rhodamine B found in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium assured intracellular mesenchymal stem cells labeling. This cell labeling did not affect viability of labeled mesenchymal stem cells since they continued to proliferate for five days. (author)

  8. X-ray Spectromicroscopy Studies of Nanoparticles in the Environment

    Science.gov (United States)

    Sedlmair, J.; Gleber, S.-C.; Schirz, A.; Zanker, H.; Thieme, J.

    2009-04-01

    Motivation: In recent time, carbon nanotubes (CNTs) have drawn a lot of attention due to their unique properties and due to that possible application, for instance in pharmacology, material sciences or as semiconductors. CNTs are tubes with diameters in the nanometer scale, but with lengths up to several millimeters. Their walls consist of carbon atoms, each bound to three other carbon atoms (sp2-hybridization), which results in a hexagonal honeycomb-like structure. They can also be functionalized, e.g. with carboxyl- or hydroxyl groups. Although the production and modification of CNTs in sizable quantities have been improved continuously, the characterization of these nano-particles still needs to be advanced. Additionally, the ecological aspect comes into account. Since most of these new materials consist of particles too small to be biodegraded, it is important to analyze the impact of CNTs on the environment (and biomolecular matter in general). Here we present the result of a study of pristine and functionalized carbon nanotubes (CNTs) using the x-ray scanning transmission microscope (STXM) at the storage ring BESSY II in Berlin for a NEXAFS (near edge x-ray absorption spectroscopy) analysis with spatial resolution. Experiment and results: We characterized three types of multi-walled CNTs (3-15 walls, outer diameter of 13-16 nm and length distribution 1-10 nm) by x-ray spectromicroscopy. To be more specific, we have investigated different CNT-samples with energies around the C1s K-shell edge (~284 eV) dry and in aqueous environment at ambient conditions. Using the STXM, the spatial information from the x-ray image with a pixel size of 50 nm can be combined with NEXAFS-spectra[5] of each pixel of the image area. The differences between the species are observable both in the microscopic images and the spectral data. The evaluation[1][2] of the NEXAFS-spectra yields information about the chemical bindings in the sample. Discussion The difference between the

  9. Novel targeted siRNA-loaded hybrid nanoparticles: preparation, characterization and in vitro evaluation.

    Science.gov (United States)

    Dim, Nneka; Perepelyuk, Maryna; Gomes, Olukayode; Thangavel, Chellappagounder; Liu, Yi; Den, Robert; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2015-09-26

    siRNAs have a high potential for silencing critical molecular pathways that are pathogenic. Nevertheless, their clinical application has been limited by a lack of effective and safe nanotechnology-based delivery system that allows a controlled and safe transfection to cytosol of targeted cells without the associated adverse effects. Our group recently reported a very effective and safe hybrid nanoparticle delivery system composing human IgG and poloxamer-188 for siRNA delivery to cancer cells. However, these nanoparticles need to be optimized in terms of particle size, loading capacity and encapsulation efficiency. In the present study, we explored the effects of certain production parameters on particle size, loading capacity and encapsulation efficiency. Further, to make these nanoparticles more specific in their delivery of siRNA, we conjugated anti-NTSR1-mAb to the surface of these nanoparticles to target NTSR1-overexpressing cancer cells. The mechanism of siRNA release from these antiNTSR1-mAb functionalized nanoparticles was also elucidated. It was demonstrated that the concentration of human IgG in the starting nanoprecipitation medium and the rotation speed of the magnetic stirrer influenced the encapsulation efficiency, loading capacity and the size of the nanoparticles produced. We also successfully transformed these nanoparticles into actively targeted nanoparticles by functionalizing with anti-NTSR1-mAb to specifically target NTSR1-overexpressing cancer cells, hence able to avoid undesired accumulation in normal cells. The mechanism of siRNA release from these nanoparticles was elucidated to be by Fickian diffusion. Using flow cytometry and fluorescence microscopy, we were able to confirm the active involvement of NTSR1 in the uptake of these anti-NTSR1-mAb functionalized hybrid nanoparticles by lung adenocarcinoma cells. This hybrid nanoparticle delivery system can be used as a platform technology for intracellular delivery of siRNAs to NTSR1

  10. Study of defect generated visible photoluminescence in zinc oxide nano-particles prepared using PVA templates

    Energy Technology Data Exchange (ETDEWEB)

    Oudhia, A. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Choudhary, A., E-mail: aarti.bhilai@gmail.com [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Sharma, S.; Aggrawal, S. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Dhoble, S.J. [RTM University Nagpur, Maharashtra (India)

    2014-10-15

    Intrinsic defect generated photoluminescence (PL) in zinc oxide nanoparticles (NPs) obtained by a PVA template based wet-chemical process has been studied. A good controllability was achieved on the surface defects, structure and the morphology of ZnO NPs through the variation of solvents used in synthesis. The PL emission strongly depended on the defect structure and morphology. SEM, XRD, annealing and PL excitation studies were used to analyze the types of defects involved in the visible emission as well as the defect concentration. The mechanism for the blue, green and yellow emissions was proposed. The spectral content of the visible emission was controlled through generation/removal of defects through the shape transformation or annealing by focusing on defect origins and broad controls. - Highlights: • ZnO nanoparticles were synthesized using poly-vinyl alcohol template in various solvents. • The structure and morphology of ZnO nanoparticles were depended on dielectric constant and boiling point of solvents. • Photoluminescence properties of ZnO nanoparticles were studied. • Maximum optical absorbance and Photoluminescence intensity were found in ethanolic preparation. • ZnO nanoparticles were annealed at different temperatures for detection of defect emission.

  11. Application of magnetic resonance imaging and spectroscopy in studying the biological effects of manufactured nanoparticles

    International Nuclear Information System (INIS)

    Lei Hao; Wei Li; Liu Maili

    2006-01-01

    With the rapid development of nanoscience and nanotechnology in recent years, growing research interest and efforts have been directed to study the biological effects of manufactured nanoparticles and substances alike. Despite the fact that significant progress has been made, this is still largely an uncharted field. Any advances in this field would certainly require thorough multi-disciplinary collaboration, in which the expertise and tools in nanoscience/nanotechnoloogy, physics, chemistry and biomedicine have to be combined. Due to their wide range of applications in physics, chemistry and biomedicine, magnetic resonance (MR) imaging and spectroscopy are among the most important and powerful research tools currently in use, mainly because these techniques can be used in situ and noninvasively to acquire dynamic and real-time information in various samples ranging from protein solution to the human brain. In this paper, the application of MR imaging and spectroscopy in studying the biological effects of manufactured nanoparticles is discussed. It is expected that these techniques will play important roles in 1) detecting the presence of nanoparticles in biological tissues and in vivo, 2) studying the interactions between the nanoparticles and biomolecules and 3) investigating the metabonomic aspect of the biological effects of nanoparticles. (authors)

  12. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J., E-mail: javierlo21@gmail.com [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Gonzalez-Bahamon, L.F. [Analytical Chemistry Laboratory, Universidad del Valle, A.A. 25360, Cali (Colombia); Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Esteve, J. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Prieto, P. [Center of Excellence for Novel Materials, Universidad del Valle, Cali (Colombia)

    2012-02-15

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles. X-ray diffraction patterns of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe{sub 2}O{sub 4}. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5{+-}0.3) nm to (5.4{+-}0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} magnetic

  13. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    International Nuclear Information System (INIS)

    Lopez, J.; Gonzalez-Bahamon, L.F.; Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E.; Esteve, J.; Prieto, P.

    2012-01-01

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co (1-x) Zn x Fe 2 O 4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co (1-x) Zn x Fe 2 O 4 nanoparticles. X-ray diffraction patterns of Co (1-x) Zn x Fe 2 O 4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe 2 O 4 . Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co (1-x) Zn x Fe 2 O 4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM

  14. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    International Nuclear Information System (INIS)

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-01-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified

  15. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles.

    Science.gov (United States)

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R

    2012-12-01

    Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa

  16. Synthesis, Characterization and Comparative Luminescence Studies of Rare-Earth-Doped Gd2O3 Nanoparticles

    Science.gov (United States)

    Pyngrope, D.; Singh, L. R.; Prasad, A. I.; Bora, A.

    2018-04-01

    A facile direct precipitation method was used for the synthesis of luminescence nanomaterial. Gd2O3 doped with rare earth element Eu3+ is synthesized by polyol route. The synthesized nanoparticles show their characteristic red emission. The nanoparticles are characterized by x-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL) study. The synthesized nanoparticles are spherical particles with 30 nm size. The photoluminescence studies show the characteristic Eu3+ red emission. The PL study shows the intensity of the magnetic dipole transition ( 5 D0 \\to 7 F1 ) at 592 nm compared to that of the electronic dipole transition ( 5 D0 \\to 7 F2 ) at 615 nm. The nanomaterials can show significant application in various display devices and biomedical applications for tracking.

  17. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    Directory of Open Access Journals (Sweden)

    Wu K

    2013-05-01

    Full Text Available Kaimin Wu,1,* Jie Xu,2,* Mengyuan Liu,1 Wen Song,1 Jun Yan,1 Shan Gao,3 Lingzhou Zhao,2 Yumei Zhang1 1Department of Prosthetic Dentistry, 2Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3The Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; School of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China*Both authors contributed equally to this workAbstract: MicroRNA (miRNA regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes on a tissue culture plate. The lipoplexes can be immobilized on a tissue culture plate with an intact pseudospherical structure and lyophilization without any lyoprotectant. In this study, reverse transfection resulted in highly efficient cellular uptake of miRNA and enabled significant manipulation of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing osteogenic differentiation, as indicated by enhanced osteogenesis-related gene expression, amount of alkaline phosphatase present, production of collagen, and matrix mineralization. Overall

  18. Effect of Titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: an in vitro study.

    Science.gov (United States)

    Harini, P; Mohamed, Kasim; Padmanabhan, T V

    2014-01-01

    To improve the flexural strength of polymethylmethacrylate (PMMA). To evaluate whether the incorporation of titanium dioxide nanoparticles in polymethylmethacrylate (PMMA) increases the flexural strength and to compare the different concentrations of titanium dioxide nanoparticles and its relation to flexural strength. Study was conducted in Sri Ramachandra University utilizing 40 specimens manufactured from clear heat polymerizing acrylic resin. Forty specimens of clear heat polymerizing acrylic resin of dimensions 65 Χ 10 Χ 3 mm as per ISO 1,567 standardization were fabricated and were grouped into A (CONTROL) with no titanium dioxide (TiO2) nanoparticles, B with 0.5 gms of TiO 2 nanoparticles, C with 1 gm of TiO 2 nanoparticles and D with 2.5 gms of TiO 2 nanoparticles added.The concentrations of titanium dioxide in each group were 1 wt%, 2 wt% and 5 wt%. Universal testing machine INSTRON was used to load at the center of the specimen with a cross head speed of 1.50 mm/min and a span length of 40.00 mm. ANOVA and multiple comparisons are carried out using the independent t-test. The ANOVA result shows that there is a significant difference between the groups with respect to the mean flexural strength. Highest mean flexural strength is observed in Group D, while the lowest is seen in Group A. Independent t-test revealed that there was a statistical significance between Group A and Group D (0.041) and between Group B and Group D (0.028). The results concluded that polymethylmethacrylate reinforced with different concentrations of titanium dioxide nanoparticles showed superior flexural strength than those of normal PMMA.

  19. ESR study of thermal demagnetization processes in ferromagnetic nanoparticles with Curie temperatures between 40 and 60 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation)]. E-mail: kuznetsov_oa@yahoo.com; Sorokina, Olga N. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Leontiev, Vladimir G. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Shlyakhtin, Oleg A. [Institute of Chemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Kovarski, Alexander L. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation)

    2007-04-15

    Thermal demagnetization in the vicinity of the Curie temperature of silver and sodium manganite nanoparticles, as well as copper-nickel and palladium-nickel alloy nanoparticles were studied by both static magnetic measurements and by electron spin resonance (ESR). ESR data indicate that some magnetic ordering remains even above the Curie temperature, determined by static magnetometry. Mechanisms of thermal demagnetization in alloy nanoparticles appear to be different from that in manganites.

  20. ESR study of thermal demagnetization processes in ferromagnetic nanoparticles with Curie temperatures between 40 and 60 deg. C

    International Nuclear Information System (INIS)

    Kuznetsov, Oleg A.; Sorokina, Olga N.; Leontiev, Vladimir G.; Shlyakhtin, Oleg A.; Kovarski, Alexander L.; Kuznetsov, Anatoly A.

    2007-01-01

    Thermal demagnetization in the vicinity of the Curie temperature of silver and sodium manganite nanoparticles, as well as copper-nickel and palladium-nickel alloy nanoparticles were studied by both static magnetic measurements and by electron spin resonance (ESR). ESR data indicate that some magnetic ordering remains even above the Curie temperature, determined by static magnetometry. Mechanisms of thermal demagnetization in alloy nanoparticles appear to be different from that in manganites

  1. A Study of Efficiency of Zero-valent Iron Nanoparticles in Degradation of Trichlorethylene from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Samaneh Dehghan

    2016-12-01

    mg/l, and contact time= 86 min. The results of kinetic studies revealed that TCE degradation by nZVI follows first-order kinetic model. Conclusion: It is conclude that zero-valent iron nanoparticles have a good efficiency in the degradation of TCE. On the other hand, separation of these nanoparticles is simple due to its magnetism properties, which can improve the use of these nanoparticles

  2. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    Science.gov (United States)

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin

    Science.gov (United States)

    Bhunia, Amit Kumar; Kanti Samanta, Pijus; Aich, Debasish; Saha, Satyajit; Kamilya, Tapanendu

    2015-06-01

    The interactions of human hemoglobin with protein capped silver nanoparticles and bare silver nanoparticles were studied to understand fundamental perspectives about the biocompatibility of protein capped silver nanoparticles compared with bare silver nanoparticles. Bare silver (Ag) nanoparticles (NPs) were prepared by the chemical reduction method. High resolution transmission electron microscopy (HRTEM) analysis along with absorption at ~390 nm indicated the formation of bare Ag NPs. Protein coated Ag NPs were prepared by a green synthesis method. Absorption at ~440 nm along with ~280 nm indicated the formation of protein coated Ag NPs. The biocompatibility of the above mentioned Ag NPs was studied by interaction with human hemoglobin (Hb) protein. In presence of bare Ag NPs, the Soret band of Hb was red shifted. This revealed the distortion of iron from the heme pockets of Hb. Also, the fluorescence peak of Hb was quenched and red shifted which indicated that Hb became unfolded in the presence of bare Ag NPs. No red shift of the absorption of Soret, along with no shift and quenching of the fluorescence peak of Hb were observed in the presence of protein coated Ag NPs. A hemolysis assay suggested that protein coated Ag NPs were more biocompatible than bare one.

  4. Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2013-05-01

    Full Text Available Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.

  5. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: A first-principles study

    KAUST Repository

    Liu, Xin

    2012-01-01

    The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru 13 nanoparticle on a single vacancy graphene is as high as -7.41 eV, owing to the hybridization between the dsp states of the Ru particles with the sp 2 dangling bonds at the defect sites. Doping the defective graphene with boron would further increase the binding energy to -7.52 eV. The strong interaction results in the averaged d-band center of the deposited Ru nanoparticle being upshifted toward the Fermi level from -1.41 eV to -1.10 eV. Further study reveals that the performance of the nanocomposites against hydrogen, oxygen and carbon monoxide adsorption is correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles deposited on defective graphene are expected to exhibit both high stability against sintering and superior catalytic performance in hydrogenation, oxygen reduction reaction and hydrogen evolution reaction. © 2012 The Royal Society of Chemistry.

  6. Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles

    Science.gov (United States)

    Hong, Bingbing

    Solvent-free covalently- or ionically-grafted nanoparticles (CGNs and IGNs) are a new class of organic-inorganic hybrid composite materials exhibiting fluid-like behaviors around room temperature. With similar structures to prior systems, e.g. nanocomposites, neutral or charged colloids, ionic liquids, etc, CGNs and IGNs inherit the functionality of inorganic nanopariticles, the facile processibility of polymers, as well as conductivity and nonvolatility from their constituent materials. In spite of the extensive prior experimental research having covered synthesis and measurements of thermal and dynamic properties, little progress in understanding of these new materials at the molecular level has been achieved, because of the lack of simulation work in this new area. Atomistic and coarse-grained molecular dynamics simulations have been performed in this thesis to investigate the thermodynamics, structure, and dynamics of these systems and to seek predictive methods predictable for their properties. Starting from poly(ethylene oxide) oligomers (PEO) melts, we established atomistic models based on united-atom representations of methylene. The Green-Kubo and Einstein-Helfand formulas were used to calculate the transport properties. The simulations generate densities, viscosities, diffusivities, in good agreement with experimental data. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. Coupled with thermodynamic integration methods, the models give good predictions of pressure-composition-density relations for CO 2 + PEO oligomers. Water effects on the Henry's constant of CO 2 in PEO have also been investigated. The dependence of the calculated Henry's constants on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. CGNs are modeled by the inclusion of solid-sphere nanoparticles into the atomistic

  7. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    Science.gov (United States)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  8. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    Science.gov (United States)

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment

  9. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    Science.gov (United States)

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the

  10. Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters

    Directory of Open Access Journals (Sweden)

    Gradzielski Michael

    2008-01-01

    Full Text Available Abstract Synthesis of semiconductor nanoparticles with new photophysical properties is an area of special interest. Here, we report synthesis of ZnS nanoparticles in aqueous micellar solution of Cetyltrimethylammonium bromide (CTAB. The size of ZnS nanodispersions in aqueous micellar solution has been calculated using UV-vis spectroscopy, XRD, SAXS, and TEM measurements. The nanoparticles are found to be polydispersed in the size range 6–15 nm. Surface passivation by surfactant molecules has been studied using FTIR and fluorescence spectroscopy. The nanoparticles have been better stabilized using CTAB concentration above 1 mM. Furthermore, room temperature absorption and fluorescence emission of powdered ZnS nanoparticles after redispersion in water have also been investigated and compared with that in aqueous micellar solution. Time-dependent absorption behavior reveals that the formation of ZnS nanoparticles depends on CTAB concentration and was complete within 25 min.

  11. Thermal, optical and vibrational studies of tyrosine doped LaF3:Ce nanoparticles for bioimaging and biotagging

    Science.gov (United States)

    Singh, Amit T.

    2018-05-01

    Upconversion quantum dots of tyrosine doped LaF3:Ce nanoparticles have been synthesized by wet chemical route. The thermal studies (TGA/DTA) confirm the crystallinity and stability of different phases of synthesized nanoparticles. The UV-Visible spectra show multiple absorption edges at 215.60 nm and 243.10 nm indicating quantum dot nature of the synthesized nanoparticles. The PL spectra showed upconversion with sharp emission peak at 615 nm (red colour). The FT-RAMAN spectra of the synthesized nanoparticles show the modification of the surface of the nanoparticles in the form of functional groups and skeletal groups. Upconversion nature of the synthesized nanoparticles indicates their potential application in bioimaging and biotagging.

  12. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  13. Formulation of Stable and Homogeneous Cell-Penetrating Peptide NF55 Nanoparticles for Efficient Gene Delivery In Vivo

    Directory of Open Access Journals (Sweden)

    Krista Freimann

    2018-03-01

    Full Text Available Although advances in genomics and experimental gene therapy have opened new possibilities for treating otherwise incurable diseases, the transduction of nucleic acids into the cells and delivery in vivo remain challenging. The high molecular weight and anionic nature of nucleic acids require their packing into nanoparticles for the delivery. The efficacy of nanoparticle drugs necessitates the high bioactivity of constituents, but their distribution in organisms is mostly governed by the physical properties of nanoparticles, and therefore, generation of stable particles with strictly defined characteristics is highly essential. Using previously designed efficient cell-penetrating peptide NF55, we searched for strategies enabling control over the nanoparticle formation and properties to further improve transfection efficacy. The size of the NF55/pDNA nanoparticles correlates with the concentration of its constituents at the beginning of assembly, but characteristics of nanoparticles measured by DLS do not reliably predict the applicability of particles in in vivo studies. We introduce a new formulation approach called cryo-concentration, where we acquired stable and homogeneous nanoparticles for administration in vivo. The cryo-concentrated NF55/pDNA nanoparticles exhibit several advantages over standard formulation: They have long shelf-life and do not aggregate after reconstitution, have excellent stability against enzymatic degradation, and show significantly higher bioactivity in vivo.

  14. Theoretical studies of acrolein hydrogenation on Au20 nanoparticle

    Science.gov (United States)

    Li, Zhe; Chen, Zhao-Xu; He, Xiang; Kang, Guo-Jun

    2010-05-01

    Gold nanoparticles play a key role in catalytic processes. We investigated the kinetics of stepwise hydrogenation of acrolein on Au20 cluster model and compared with that on Au(110) surface. The rate-limiting step barrier of CC reduction is about 0.5 eV higher than that of CO hydrogenation on Au(110) surface. On Au20 nanoparticle, however, the energy barrier of the rate-determining step for CC hydrogenation turns out to be slightly lower than the value for the CO reduction. The selectivity difference on the two substrate models are attributed to different adsorption modes of acrolein: via the CC on Au20, compared to through both CC and CO on Au(110). The preference switch implies that the predicted selectivity of competitive hydrogenation depends on substrate model sensitively, and particles with more low-coordinated Au atoms than flat surfaces are favorable for CC hydrogenation, which is in agreement with experimental result.

  15. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies

    Science.gov (United States)

    Hung, Ching-cheh; McNatt, Jeremiah

    2009-01-01

    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.

  16. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ranganaik Viswanath

    2014-01-01

    Full Text Available Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectrometry (FTIR, thermogravimetric-differential scanning calorimetry (TG-DSC, and UV-visible and photoluminescence (PL spectroscopy were employed to characterize the as-synthesized ZnS and ZnS:Y nanoparticles, respectively. XRD and TEM studies show the formation of cubic ZnS:Y particles with an average size of ~4.5 nm. The doping did not alter the phase of the zinc sulphide, as a result the sample showed cubic zincblende structure. The UV-visible spectra of ZnS and ZnS:Y nanoparticles showed a band gap energy value, 3.85 eV and 3.73 eV, which corresponds to a semiconductor material. A luminescence characteristics such as strong and stable visible-light emissions in the orange region alone with the blue emission peaks were observed for doped ZnS nanoparticles at room temperature. The PL intensity of orange emission peak was found to be increased with an increase in yttrium ions concentration by suppressing blue emission peaks. These results strongly propose that yttrium doped zinc sulphide nanoparticles form a new class of luminescent material.

  17. Toxicity Study of Silver Nanoparticles Synthesized from Suaeda monoica on Hep-2 Cell Line.

    Science.gov (United States)

    Satyavani, Kaliyamurthi; Gurudeeban, Selvaraj; Ramanathan, Thiruganasambandam; Balasubramanian, Thangavel

    2012-01-01

    Recently there has been fabulous excitement in the nano-biotechnological area for the study of nanoparticles synthesis using some natural biological system, which has led the growth advanced nanomaterials. This intention made us to assess the biologically synthesized silver nanoparticles from the leaf of Suaeda monoica (S.monoica) using 1 mM silver nitrate. The leaf extract of S.monoica incubated with 1 mM silver nitrate solution and characterized by UV- spectrometer and AFM. The effect of synthesized silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line was evaluated by the MTT colorimetric technique. As a result we observed gradual change in the colour of extract from greenish to brown. The synthesized silver nanoparticles confirmed by UV at 430 nm and spherical shape identified in the range of 31 nm under AFM. The effect of silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line exhibits a dose-dependent toxicity for the cell tested and the viability of Hep-2 cells decreased to 50 % (IC(50)) at the concentration of 500 nM. Further findings will be determined the exact mechanisms of this cost effective Nano-treatments.

  18. Preparation, characterization and SRXPS study of polyvinyl alcohol modified Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Li Ming; Wang Bing; Feng Weiyue; Liu Hui; Kang Yanjie; Kui Rexi

    2011-01-01

    In this study, Fe 3 O 4 nanoparticles were coated with PVA to synthesize PVA-Fe 3 O 4 complex, which were characterized by transmission electron microscopy(TEM),thermo gravimetric(TG) analysis, UV-vis spectra,zeta potentials and ICP-MS, in terms of the physicochemical properties, while surface constituents, structures and chemical bonds of the modified and unmodified nanoparticles were characterized with synchrotron radiation X-ray photoelectron spectroscopy(SRXPS), for exploring modification mechanism of the PVA-Fe 3 O 4 . The results indicate that after PVA modification, the suspension stability of Fe 3 O 4 nanoparticles in water and cellular uptake capability were significantly improved compared with unmodified Fe 3 O 4 . The SRXPS analysis reveals that the hydroxy groups on the surface of Fe 3 O 4 nanoparticles and PVA were combined by hydrogen bond to consist a stable system, which would be beneficial to the biomedical applications of Fe 3 O 4 nanoparticles. (authors)

  19. Theoretical study of the interparticle interaction of nanoparticles randomly dispersed on a substrate

    International Nuclear Information System (INIS)

    Horikoshi, S.; Kato, T.

    2015-01-01

    Metal nanoparticles exhibit the phenomenon of localized surface plasmon resonance (LSPR) due to the collective oscillation of their conduction electrons, which is induced by external electromagnetic radiation. The finite-differential time-domain (FDTD) method is widely used as an electromagnetic field analysis tool for nanoparticles. Although the influence of interparticle interactions is taken into consideration in the FDTD calculation for the plural particles configuration, the FDTD calculation of a random configuration is very difficult, particularly in the case of non-spherical particles. In this study, a theoretical calculation method incorporating interparticle interactions on a substrate with various particle shapes and sizes on a subwavelength scale is developed. The interparticle interaction is incorporated following FDTD calculation with an isolated single particle. This is explained systematically using a signal flow graph. Moreover, the mirror image effect of the substrate and the retardation effect are also taken into account in this method. The validity of this method is verified by calculations for simple arrangements of nanoparticles. In addition, it is confirmed that the method can improve the accuracy of predicted experimental results for Au nanoparticles prepared by the sputtering method, in terms of the plasmon peak wavelength. This method may enable the design of LSPR devices by controlling nanoparticle characteristics, such as the size, shape, and distribution density

  20. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    International Nuclear Information System (INIS)

    Wang Yunyu; Luo Zhiquan; Li Bin; Ho, Paul S.; Yao Zhen; Shi Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-01-01

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO 2 ) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO 2 and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO 2 . CNT growth on SiO 2 exhibited a tip growth mode with a slow growth rate of less than 100 nm/min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1 μm/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO 2 and showed a base growth mode with a growth rate greater than 2 μm/min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process

  1. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  2. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  3. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  4. Conceptual and technical aspects of transfection and gene delivery.

    Science.gov (United States)

    Kaestner, Lars; Scholz, Anke; Lipp, Peter

    2015-03-15

    Genetically modified animals are state of the art in biomedical research as gene therapy is a promising perspective in the attempt to cure hereditary diseases. Both approaches have in common that modified or corrected genetic information must be transferred into cells in general or into particular cell types of an organism. Here we give an overview of established and emerging methods of transfection and gene delivery and provide conceptual and technical advantages and drawbacks of their particular use. Additionally, based on a flow chart, we compiled a rough guideline to choose a gene transfer method for a particular field of application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Transfection and imaging of diamond nanocrystals as scattering optical labels

    International Nuclear Information System (INIS)

    Smith, Bradley R.; Niebert, Marcus; Plakhotnik, Taras; Zvyagin, Andrei V.

    2007-01-01

    We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation 'space' contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond

  6. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment.

    Science.gov (United States)

    Battaglia, Luigi; Muntoni, Elisabetta; Chirio, Daniela; Peira, Elena; Annovazzi, Laura; Schiffer, Davide; Mellai, Marta; Riganti, Chiara; Salaroglio, Iris Chiara; Lanotte, Michele; Panciani, Pierpaolo; Capucchio, Maria Teresa; Valazza, Alberto; Biasibetti, Elena; Gallarate, Marina

    2017-03-01

    Methotrexate-loaded biocompatible nanoparticles were tested for preliminary efficacy in glioma treatment. Behenic acid nanoparticles, prepared by the coacervation method, were loaded with the ester prodrug didodecylmethotrexate, which was previously tested in vitro against glioblastoma human primary cultures. Nanoparticle conjugation with an ApoE mimicking chimera peptide was performed to obtain active targeting to the brain. Biodistribution studies in healthy rats assessed the superiority of ApoE-conjugated formulation, which was tested on an F98/Fischer glioma model. Differences were observed in tumor growth rate (measured by MRI) between control and treated rats. In vitro tests on F98 cultured cells assessed their susceptibility to treatment, with consequent apoptosis, and allowed us to explain the apoptosis observed in glioma models.

  7. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  8. Electrical sintering of silver nanoparticle ink studied by in-situ TEM probing.

    Directory of Open Access Journals (Sweden)

    Magnus Hummelgård

    Full Text Available Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1-10 mW/μm³. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 10⁵ Sm⁻¹.

  9. Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices

    Directory of Open Access Journals (Sweden)

    Jejenija Osuntokun

    2016-01-01

    Full Text Available We report the synthesis and structural studies of ZnS and CdS nanoparticles in polyvinylpyrrolidone (PVP, poly(vinyl alcohol (PVA, and poly(methyl methacrylate (PMMA matrices. The metal sulfides/polymer nanocomposites were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy, electronic spectroscopy (UV-Vis, transmission electron microscopy (TEM, and thermogravimetric analysis (TGA. The particle sizes as calculated from the absorption spectra were in agreement with the results obtained from TEM and XRD data. They showed metal sulfides nanoparticles in the polymers matrices with average crystallite sizes of 1.5–6.9 nm. The TGA results indicate that incorporation of the nanoparticles significantly altered the thermal properties of the respective polymers with ZnS/PVA and CdS/PVA nanocomposites displaying higher thermal stability than the other polymer nanocomposites.

  10. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study

    Science.gov (United States)

    Ojha, Sunita; Sett, Arghya; Bora, Utpal

    2017-09-01

    In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).

  11. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    International Nuclear Information System (INIS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-01-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst's equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix. (author)

  12. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen, E-mail: delucas@u-bourgogne.fr

    2016-12-15

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  13. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    International Nuclear Information System (INIS)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen

    2016-01-01

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  14. Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications

    NARCIS (Netherlands)

    Wasungu, Luc; Scarzello, Marco; van Dam, Gooitzen; Molema, Grietje; Wagenaar, Anno; Engberts, Jan B. F. N.; Hoekstra, Dick

    In this study, the in vitro and in vivo transfection capacity of novel pH-sensitive sugar-based gemini surfactants was investigated. In an aqueous environment at physiological pH, these compounds form bilayer vesicles, but they undergo a lamellar-to-micellar phase transition in the endosomal pH

  15. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation

    DEFF Research Database (Denmark)

    Glahder, Jacob; Norrild, Bodil; Persson, Mikael B

    2005-01-01

    Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 microg DNA in 90 microl low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and puls...

  16. Study of photocatalytic activities of Bi2WO6 nanoparticles synthesized by fast microwave-assisted method

    International Nuclear Information System (INIS)

    Phu, Nguyen Dang; Hoang, Luc Huy; Chen, Xiang-Bai; Kong, Meng-Hong; Wen, Hua-Chiang; Chou, Wu Ching

    2015-01-01

    We present a study of photocatalytic activities of Bi 2 WO 6 nanoparticles synthesized by fast microwave-assisted method. The photocatalytic activities of the nanoparticles were evaluated by the decolorization of methylene-blue under visible-light-irradiation. Our results show that the surface area of Bi 2 WO 6 nanoparticles plays a major role for improving photocatalytic activity, while visible-light absorption has only a weak effect on photocatalytic activity. This suggests efficient transportation of photo-generated electrons and holes to the oxidation active sites on the surface of nanoparticles, indicating Bi 2 WO 6 nanoparticles synthesized by fast microwave-assisted method are promising for achieving high photocatalytic activity under visible-light-irradiation. - Highlights: • The Bi 2 WO 6 nanoparticles were synthesized via fast microwave-assisted method. • The obtained Bi 2 WO 6 nanoparticles exhibited visible-light absorbance. • The surface area of Bi 2 WO 6 nanoparticles plays major role for improving photocatalytic activity. • The Bi 2 WO 6 nanoparticles are promising for achieving high photocatalytic activity under visible-light-irradiation

  17. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-12-01

    Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl2. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells. © 2014 Elsevier Ltd.

  18. Atorvastatin calcium loaded chitosan nanoparticles: in vitro evaluation and in vivo pharmacokinetic studies in rabbits

    Directory of Open Access Journals (Sweden)

    Abdul Baquee Ahmed

    2015-06-01

    Full Text Available In this study, we prepared atorvastatin calcium (AVST loaded chitosan nanoparticles to improve the oral bioavailability of the drug. Nanoparticles were prepared by solvent evaporation technique and evaluated for its particle size, entrapment efficiency, zeta potential, in vitro release and surface morphology by scanning electron microscopy (SEM. In addition, the pharmacokinetics of AVST from the optimized formulation (FT5 was compared with marketed immediate release formulation (Atorva(r in rabbits. Particle size of prepared nanoparticles was ranged between 179.3 ± 7.12 to 256.8 ± 8.24 nm with a low polydispersity index (PI value. Zeta potential study showed that the particles are stable with positive values between 13.03 ± 0.32 to 46.90 ± 0.49 mV. FT-IR studies confirmed the absence of incompatibility of AVST with excipient used in the formulations. In vitro release study showed that the drug release was sustained for 48 h. Results of pharmacokinetics study showed significant changes in the pharmacokinetic parameter (2.2 fold increase in AUC of the optimized formulation as compared to marketed formulation (Atorva(r. Thus, the developed nanoparticles evidenced the improvement of oral bioavailability of AVST in rabbit model.

  19. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Science.gov (United States)

    2011-01-01

    Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on hsp promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells. PMID:21663599

  20. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Directory of Open Access Journals (Sweden)

    Lisowska Katarzyna Marta

    2011-06-01

    Full Text Available Abstract Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1 gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA, Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i some cationic liposomes may not be suitable for functional studies on hsp promoters, ii lipofection may cause unintended changes in global gene expression in the transfected cells.

  1. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  2. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties.

    Science.gov (United States)

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2016-03-14

    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity.

  3. LUMINESCENCE DIAGNOSTICS OF TUMORS WITH UPCONVERSION NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    V. V. Rocheva

    2016-01-01

    Full Text Available Background: To improve quality of surgery in oncology, it is necessary to completely remove the tumor, including its metastases, to minimize injury to normal tissues and to reduce duration of an intervention. Modern methods of detection based on radiological computerized tomography and magnetic resonance imaging can identify a tumor after its volume has become big enough, i.e. it contains more than 10 billion cells. Therefore, an improvement of sensitivity and resolution ability of diagnostic tools to identify early stages of malignant neoplasms seems of utmost importance. Aim: To demonstrate the potential of a new class of anti-Stokes luminescence nanoparticles for deep optical imaging with high contrast of malignant tumors. Materials and methods: Upconversion nanoparticles with narrow dispersion and a  size of 70 to 80  nm, with a  core/shell structure of NaYF4:Yb3+:Tm3+/NaYF4 were used in the study. The nanoparticles have an intensive band of anti-Stokes photoluminescence at a wavelength of 800  nm under irradiation with a  wavelength of 975  nm (both wavelengths are within the transparency window for biological tissues. The conversion coefficient of the excitation radiation into the anti-Stokes luminescence was 9%. To increase the time during which nanoparticles can circulate in blood flow of small animals, the nanoparticles were covered by a  biocompatible amphiphilic polymer shell. As a  tumor model we used Lewis epidermoid carcinoma transfected to mice. Results: We were able to obtain stable water colloids of nanoparticles covered with amphiphilic polymer that could preserve their initial size at least for one month. The use of upconversion nanoparticles with a  hydrophilic shell made of intermittent maleic anhydride and octadecene co-polymer with subsequent coating with diglycidyl polyethylene glycol ether allowed for reduction of non-specific reaction of nanoparticles with plasma proteins. In its turn, it resulted in an

  4. Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2010-01-01

    This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al2O3 support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10...

  5. Biosynthesis and characterization of gold nanoparticles: Kinetics, in vitro and in vivo study.

    Science.gov (United States)

    Ahmad, Nabeel; Bhatnagar, Sharad; Saxena, Ritika; Iqbal, Danish; Ghosh, A K; Dutta, Rajiv

    2017-09-01

    This study reports a facile, cost effective, nontoxic and eco-friendly method for the synthesis of gold nanoparticles. In this paper, leaf extract of Mentha piperita was successfully used to reduce chloroauric acid, leading to synthesis of gold nanoparticles (AuNPs). The synthesized nanoparticles were further characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy and field emission scanning electron microscopy. Kinetics studies like effect of volume of leaf extract, precursor, pH, temperature for the synthesis of AuNPs were studied spectrophotometrically. Synthesized AuNPs were found to possess hexagon structure where size of nanoparticles was ~78nm in diameter. These biologically synthesized AuNPs exhibited significant activity against cancerous cell lines MDA-MB-231 and A549 and was compared with the normal 3T3-L1 cell line. Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AuNPs for a probable role in these applications. AuNPs gave positive results for both these activities, although the potency was less as compared to the standard drugs. These results suggested that the leaves extract of Mentha piperita is a very good bioreductant for the synthesis of AuNPs and have potential for various biomedical and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Studies on interfacial interactions of TiO2 nanoparticles with ...

    Indian Academy of Sciences (India)

    Administrator

    Studies on interfacial interactions of TiO2 nanoparticles with bacterial cells under light and dark conditions by Swayamprava Dalai et al (pp 371–381). Graphical abstract. Sequence of events occurring in course of cell-NP interaction: Surface adsorption, internalization and bioaccumulation of NPs which leads to stress upon ...

  7. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  8. Evaluation of twin-head electrospray nanoparticle disperser for nanotoxicity study

    Science.gov (United States)

    Liu, Qiaoling; Budiman, Thomas; Chen, Da-Ren

    2014-08-01

    With the rapid development of nanotechnology, nanoparticles with various sizes and compositions have been synthesized and proposed for industrial applications. At the same time, the health effects and environmental impacts of nanoparticles become an emerging concern to be addressed. Both in vitro and in vivo studies are of importance to better understand the toxicity of nanoparticles. It is thus essential to have a nanoparticle disperser capable of dispersing individual nanoparticles for these studies. A twin-head electrospray (THES) nanoparticle disperser for animal inhalation exposure studies has recently become commercially available from TSE Systems Inc. Different from the cone-jet electrospray method used in the majority of literature, this particular disperser operates at the multi-jet mode. In this study, we reported our finding on the performance evaluation of the THES disperser with respect to its mass throughput and quality of size distribution of aerosol produced. Three different nanomaterials (TiO2, ZnO, and NiO) were used in this study. It is found that the maximal mass throughput of the studied disperser was achieved by keeping the distance between two opposite spray capillary tips at 3.0 cm, operating the primary carrier-to-capillary sheath flow rates at the ratio of 4:3, and feeding spray suspensions at a flow rate of 20 µl/min. Under the above settings and operations, the highest mass concentration for nano-ZnO was measured at 14.56 mg/m3. Nanoparticle streams with higher concentrations can be further produced by lowering the total carrier gas flow rate and spraying suspensions of higher nanomaterial concentrations. Our study also found that the particle mass throughput of the studied disperser had a good linear relationship with the mass concentration of spray suspension. In addition, the spatial uniformity of nano aerosol distribution in a TSE head-nose-only exposure chamber was investigated. An acceptable nano aerosol uniformity result was

  9. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  10. Real time X-ray scattering study of the formation of ZnS nanoparticles using synchrotron radiation

    International Nuclear Information System (INIS)

    Rath, T.; Novák, J.; Amenitsch, H.; Pein, A.; Maier, E.; Haas, W.; Hofer, F.; Trimmel, G.

    2014-01-01

    We investigate the growth of ZnS nanoparticles by a real-time simultaneous small and wide angle X-ray scattering (SAXS, WAXS) study using synchrotron radiation. Zinc chloride and elemental sulfur were dissolved in oleylamine. The formation of nanoparticles was induced by heating to 170 °C and 215 °C. The influence of temperature, reaction time, and sulfur concentration was investigated. After a short phase of rapid growth, saturation in size and a slower growth is observed depending on the temperature. The final size of the nanoparticles ranges between 2 and 6 nm for the investigated growth conditions and increases with the reaction temperature and sulfur concentration. SAXS analysis allows for determination of the size of the nanoparticles and proves also the existence of an organized layer of oleylamine molecules covering the nanoparticles' surfaces, which, however, appears only for diameters of the nanoparticles larger than approximately 2.8 nm. The investigation of the measured structure factor of the nanoparticle assemblies showed that the distance of an attractive interaction is 2.5 nm, which was interpreted as a consequence of the ordered oleylamine surface layer. - Highlights: • ZnS nanoparticle growth is investigated by real-time simultaneous SAXS and WAXS measurements. • Nanoparticle growth can be divided into two growth phases. • Higher reaction temperature or higher surplus of sulfur leads to larger nanoparticles. • Post-growth ex situ XRD and TEM measurements confirm results of the in situ study. • Nanoparticles are surrounded by a 2.6 nm thick ordered shell of oleylamine

  11. Physical, chemical and biological studies of gelatin/chitosan based transdermal fims with embedded silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Sneha Paul

    2015-12-01

    Full Text Available Objective: To study the physical, chemical and biological properties of composite chitosangelatin transdermal film along with silver nanoparticles as binding agent and determine the compatibility of the prepared amalgamation towards wound management. Methods: Transdermal film preparations were done by solvent casting method containing different concentrations of biological synthesized silver nanoparticles. The films were characterized by using scanning electron microscope for their morphology and the determination of silver metal was done by using inductively coupled plasma atomic emission spectroscopy. Then a quantity of silver nanoparticles was further proceeded by physiochemical parameters (weight, thickness, temperature, solubility, absorption, tensile strength, in vitro drug release and skin permeation and biological parameters studies (anti-microbial, cytotoxicity and reactive oxygen species. Results: The film prepared by utilizing 2 g of gelatin and 0.5 g of chitosan exhibited better results. The physiochemical parameters studies revealed higher concentration of silver nanoparticles would give better results. In vitro drug release studies through dialysis and skin permeation showed the release of drug versus time (h. These films had shown excellent inhibition against Streptococcus and Escherichia coli species. Cytotoxicity study by MTT indicated the mild toxicity existed as the concentration of silver nanoparticles increased. Reactive oxygen species generation studies of transdermal film by using 2'7'-dichlorofluorescein diacetate assay demonstrated that the fluorescent cells were found in the higher concentration, which indicated cell damage (reactive oxygen species generated. Conclusions: Based on these observations, in vitro performances against various characteristics of transdermal film, would be utilized as a distinct dressing material and patches accessible in market.

  12. Study of [18F]FLT and [123I]IaraU for cellular imaging in HSV1 tk-transfected murine fibrosarcoma cells: evaluation of the tracer uptake using 5-fluoro, 5-iodo and 5-iodovinyl arabinosyl uridines as competitive probes

    International Nuclear Information System (INIS)

    Huang, Ho-Lien; Chiang, Li-Wu; Chen, Jia-Rong; Yang, Wen K.; Jeng, Kee-Ching; Chen, Jenn-Tzong; Duh, Ting-Shien; Lin, Wuu-Jyh; Farn, Shiou-Shiow; Chiang, Chi-Shiun; Huang, Chia-Wen; Lin, Kun-I; Yu, Chung-Shan

    2012-01-01

    As one of the most intensively studied probes for imaging of the cellular proliferation, [ 18 F]FLT was investigated whether the targeting specificity of thymidine kinase 1 (TK1) dependency could be enhanced through a synergistic effect mediated by herpes simplex type 1 virus (HSV1) tk gene in terms of the TK1 or TK2 expression. 5-[ 123 I]Iodo arabinosyl uridine ([ 123 I]IaraU) was prepared in a radiochemical yield of 8% and specific activity of 21 GBq/μmol, respectively. Inhibition of the cellular uptake of these two tracers was compared by using the arabinosyl uridine analogs such as 5-iodo, 5-fluoro and 5-(E)-iodovinyl arabinosyl uridine along with 2′-fluoro-5-iodo arabinosyl uridine (FIAU). Due to potential instability of the iodo group, accumulation index of 1.6 for [ 123 I]IaraU by HSV1-TK vs. control cells could virtually be achieved at 1.5 h, but dropped to 0.2 compared to 2.0 for [ 18 F]FLT at 5 h. The results from competitive inhibition by these nucleosides against the accumulation of [ 18 F]FLT implied that FLT exerted a mixed TK1- and TK2-dependent inhibition with HSV1-tk gene transfection because of the shifting of thymidine kinase status. Taken together, the combination of [ 18 F]FLT and HSV1-TK provides a synergistic imaging potency.

  13. Study of [18F]FLT and [123I]IaraU for cellular imaging in HSV1 tk-transfected murine fibrosarcoma cells: evaluation of the tracer uptake using 5-fluoro, 5-iodo and 5-iodovinyl arabinosyl uridines as competitive probes.

    Science.gov (United States)

    Huang, Ho-Lien; Chiang, Li-Wu; Chen, Jia-Rong; Yang, Wen K; Jeng, Kee-Ching; Chen, Jenn-Tzong; Duh, Ting-Shien; Lin, Wuu-Jyh; Farn, Shiou-Shiow; Chiang, Chi-Shiun; Huang, Chia-Wen; Lin, Kun-I; Yu, Chung-Shan

    2012-04-01

    As one of the most intensively studied probes for imaging of the cellular proliferation, [(18)F]FLT was investigated whether the targeting specificity of thymidine kinase 1 (TK1) dependency could be enhanced through a synergistic effect mediated by herpes simplex type 1 virus (HSV1) tk gene in terms of the TK1 or TK2 expression. 5-[(123)I]Iodo arabinosyl uridine ([(123)I]IaraU) was prepared in a radiochemical yield of 8% and specific activity of 21 GBq/μmol, respectively. Inhibition of the cellular uptake of these two tracers was compared by using the arabinosyl uridine analogs such as 5-iodo, 5-fluoro and 5-(E)-iodovinyl arabinosyl uridine along with 2'-fluoro-5-iodo arabinosyl uridine (FIAU). Due to potential instability of the iodo group, accumulation index of 1.6 for [(123)I]IaraU by HSV1-TK vs. control cells could virtually be achieved at 1.5 h, but dropped to 0.2 compared to 2.0 for [(18)F]FLT at 5 h. The results from competitive inhibition by these nucleosides against the accumulation of [(18)F]FLT implied that FLT exerted a mixed TK1- and TK2-dependent inhibition with HSV1-tk gene transfection because of the shifting of thymidine kinase status. Taken together, the combination of [(18)F]FLT and HSV1-TK provides a synergistic imaging potency. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Transferrin coated nanoparticles: study of the bionano interface in human plasma.

    Directory of Open Access Journals (Sweden)

    Andrzej S Pitek

    Full Text Available It is now well established that the surface of nanoparticles (NPs in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a new biological identity. Consequently, a methodology to effectively study the interaction between nanomaterials and the biological corona encountered within an organism is a key objective in nanoscience for understanding the impact of the nanoparticle-protein interactions on the biological response in vitro and in vivo. Here, we outline an integrated methodology to address the different aspects governing the formation and the function of the protein corona of polystyrene nanoparticles coated with Transferrin by different strategies. Protein-NP complexes are studied both in situ (in human plasma, full corona FC and after washing (hard corona, HC in terms of structural properties, composition and second-order interactions with protein microarrays. Human protein microarrays are used to effectively study NP-corona/proteins interactions addressing the growing demand to advance investigations of the extrinsic function of corona complexes. Our data highlight the importance of this methodology as an analysis to be used in advance of the application of engineered NPs in biological environments.

  15. The study of magnetic properties and relaxation processes in Co/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hrubovčák, Pavol [Department of Condensed Matter Physics, P.J. Šafárik University, Park Angelinum 9, Košice (Slovakia); Zeleňáková, Adriana, E-mail: adriana.zelenakova@upjs.sk [Department of Condensed Matter Physics, P.J. Šafárik University, Park Angelinum 9, Košice (Slovakia); Zeleňák, Vladimir [Department of Inorganic Chemistry, P.J. Šafárik University, Moyzesova 11, Košice (Slovakia); Kováč, Jozef [Institute of Experimental Physics, SAS, Watsonova 41, Košice (Slovakia)

    2015-11-15

    Co/Au bimetallic fine nanoparticles were prepared employing the method of microemulsion using reverse micelle as nanoreactor, controlling the particles size. Magnetic and structural properties of two different samples Co/Au1 and Co/Au2 with almost comparable size of Co core and different size of Au layer were studied. The investigation of magnetic relaxation processes present in the particles was carried out by means of ac and dc magnetization data obtained at different temperatures and magnitudes of magnetic field. We observed the existence of superspin glass state characterized by the strong inter-particle interactions in the nanoparticle systems. In this paper, we discuss the attributes of novel superspin glass magnetic state reflected on various features (saturated FC magnetization at low temperatures, shift of the Cole–Cole arc downwards) and calculated parameters (relaxation time, critical exponent zv ∼ 10 and frequency dependent criterion p < 0.05). Comparison of the magnetic properties of two studied samples show that the thickness of diamagnetic Au shell significantly influences the magnetic interactions and change the relaxation dynamics. - Highlights: • Co/Au fine nanoparticles prepared by reverse micelle as nanoreactor, controlling the size. • Existence of superspin glass state confirmed from ac magnetic susceptibility study. • Individual particles exhibit the collective behavior below glass temperature T{sub SSG}. • Influence of diamagnetic shell on the magnetic properties of core–shell nanoparticles.

  16. Mannan-Modified PLGA Nanoparticles for Targeted Gene Delivery

    Directory of Open Access Journals (Sweden)

    Fansheng Kong

    2012-01-01

    Full Text Available The studies of targeted gene delivery nanocarriers have gained increasing attention during the past decades. In this study, mannan modified DNA loaded bioadhesive PLGA nanoparticles (MAN-DNA-NPs were investigated for targeted gene delivery to the Kupffer cells (KCs. Bioadhesive PLGA nanoparticles were prepared and subsequently bound with pEGFP. Following the coupling of the mannan-based PE-grafted ligands (MAN-PE with the DNA-NPs, the MAN-DNA-NPs were delivered intravenously to rats. The transfection efficiency was determined from the isolated KCs and flow cytometry was applied for the quantitation of gene expression after 48 h post transfection. The size of the MAN-DNA-NPs was found to be around 190 nm and the Zeta potential was determined to be −15.46mV. The pEGFP binding capacity of MAN-DNA-NPs was (88.9±5.8% and the in vitro release profiles of the MAN-DNA-NPs follow the Higuchi model. When compared with non-modified DNA-NPs and Lipofectamine 2000-DNA, MAN-DNA-NPs produced the highest gene expressions, especially in vivo. The in vivo data from flow cytometry analysis showed that MAN-DNA-NPs displayed a remarkably higher transfection efficiency (39% than non-modified DNA-NPs (25% and Lipofectamine 2000-DNA (23% in KCs. The results illustrate that MAN-DNA-NPs have the ability to target liver KCs and could function as promising active targeting drug delivery vectors.

  17. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, M.; Kraemer, K.H.

    1985-01-01

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D 0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  18. X-ray absorption and emission studies of diamond nanoparticles

    International Nuclear Information System (INIS)

    Van Buuren, T.; Willey, T.; Raty, J.Y.; Galli, G.; Terminello, L.J.; Bostedt, C.

    2004-01-01

    Full text: A new family of carbon nanopaticles produced in detonations, are found to have a core of diamond with a coating fullerene- like carbon. X-ray diffraction and TEM show that the nanodiamond powder is crystalline and approximately 4 nm in diameter. These nano-sized diamonds do not display the characteristic property of other group IV nanoparticles: a strong widening of the energy gap between the conduction and valence bands owing to quantum-confinement effects. For nano-sized diamond with a size distribution of 4 nm, there is no shift of the band energies relative to bulk diamond. Although the C1s core exciton feature clearly observed in the K-edge absorption edge of bulk diamond is shifted and broadening due to increased overlap of the excited electron with the core holein the small particle. Also the depth of the second gap in the nanodiamond spectra is shallower than that of bulk diamond. A feature at lower energy in the X-ray absorption spectra that is not present in the bulk samples is consistent with a fullerene like surface reconstruction. By exposing the diamond nanoparticles to an Argon /Oxygen plasma then annealing in a UHV environment we have obtained a hydrogen free surface. The nanodiamonds processed in this manner show an increase fullerene type contribution in the carbon x-ray absorption pre-edge. High spatial resolution EELS measurements of the empty states of a single nanodiamond particle acquired with a ld emission TEM also show the core of the particle is bulk diamond like where as the surface has a fullerene like structure. Standard density-functional calculations on clusters in which the diamond surface bonds are terminated with hydrogen atoms, show that the bandgap begins to increase above the bulk value only for clusters smaller than 1 nm. Surface hydrogen atoms are found to be about as close as they do in molecular hydrogen and can escape as H 2 , forcing the respective carbon atoms to rearrange. A series of such rearrangements can

  19. Adipogenic differentiation and EGFP gene transfection of amniotic fluid-derived stem cells from goat fetus at terminal gestational age.

    Science.gov (United States)

    He, Xiao-Ying; Zheng, Yue-Mao; Qiu, Shuang; Qi, Ying-Pei; Zhang, Yong

    2011-08-01

    The aims of this study were to determine whether stem cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and to determine if these stem cells could differentiate into adipogenic cells and be transfected with a reporter gene, EGFP (enhanced green fluorescent protein). The stem cells were isolated from amniotic fluid of goat fetus at terminal gestational age, induced to differentiate into adipogenic cells in vitro and transfected with the EGFP gene using lipofection. Markers associated with undifferentiated AFS (amniotic fluid-derived stem) cells were tested by RT (reverse transcription)-PCR. The results demonstrated that AFS cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and could differentiate into adipogenic cells. The EGFP gene was transfected into AFS cells successfully. EGFP gene transfection efficiency of the three groups of transgenic AFS cells were 26.0, 29.9 and 30.5%, respectively. Both transgenic and wild-type AFS cells could express Hes1 (hairy and enhancer of split 1), Oct4 (octamer-binding protein 4) and Nanog.

  20. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    Science.gov (United States)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei; Zhao, Xinmin; Zhang, Feng

    2015-12-01

    The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 107 M-1 and the interaction was spontaneously driven by mainly the van der Waals force and hydrogen-bond mediated interactions, and negatively cooperative from the point of view of thermodynamics. With the non-uniform coating of amphiphilic polymer, the silver nanoparticles can form protein coronas which can become discrete protein-nanoparticle conjugates when controlling their molar ratios of mixing. The protein's conformational changes upon binding nanoparticles was also studied by using the three-dimensional fluorescence spectroscopy.

  1. Determination of the threshold of nanoparticle behavior: Structural and electronic properties study of nano-sized copper

    International Nuclear Information System (INIS)

    Torres-Vega, Juan J.; Medrano, L.R.; Landauro, C.V.; Rojas-Tapia, J.

    2014-01-01

    In the present work we determine the threshold of the nanoparticle behavior of copper nanoparticles by studying their structural and electronic properties. The studied nanoparticles contain from 13 to 8217 atoms and were obtained by molecular dynamics simulations using the Johnson potential for copper based on the embedded atom method. The results indicate that for small copper nanoparticles ( 2000atoms, ∼3.5 nm), with spherical-like external shape and large percentage of fcc-like local structure, this effect is negligible and their electronic character are similar to such expected in solid copper. Finally, it has also been shown that copper nanoparticles change their electronic character, from metallic to insulating, after increasing the strength of the chemical disorder

  2. Transfection of Babesia bovis by Double Selection with WR99210 and Blasticidin-S and Its Application for Functional Analysis of Thioredoxin Peroxidase-1.

    Directory of Open Access Journals (Sweden)

    Masahito Asada

    Full Text Available Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using selectable markers blasticidin-S deaminase (bsd or human dihydrofolate reductase (hdhfr. In this work, we combine these two selectable markers in a sequential transfection system. Specifically, a parent transgenic B. bovis line which episomally expresses green fluorescent protein (GFP and human dihydrofolate reductase (hDHFR, was transfected with a plasmid encoding a fusion protein consisting of red fluorescent protein (RFP and blasticidin-S deaminase (BSD. Selection with WR99210 and blasticidin-S resulted in the emergence of parasites double positive for GFP and RFP. We then applied this method to complement gene function in a parasite line in which thioredoxin peroxidase-1 (Bbtpx-1 gene was knocked out using hDHFR as a selectable marker. A plasmid was constructed harboring both RFP-BSD and Bbtpx-1 expression cassettes, and transfected into a Bbtpx-1 knockout (KO parasite. Transfectants were independently obtained by two transfection methods, episomal transfection and genome integration. Complementation of Bbtpx-1 resulted in full recovery of resistance to nitrosative stress, via the nitric oxide donor sodium nitroprusside, which was impaired in the Bbtpx-1 KO parasites. In conclusion, we developed a sequential transfection method in B. bovis and subsequently applied this technique in a gene complementation study. This method will enable broader genetic manipulation of Babesia toward enhancing our understanding of the biology of this parasite.

  3. Study of transfer mechanism of nanoparticles across a dynamical air barrier

    International Nuclear Information System (INIS)

    Cesard, V.

    2012-01-01

    The thesis works have enabled us to quantify the containment efficiency of two devices (a microbiological safety cabinet and classical fume hood) during the simultaneous production of nano-aerosols and a tracer gas (SF 6 ). Two different measurement techniques were used: the first based on the measurement of particle size distribution of the escaping aerosol (SMPS-C), the other based on the detection of fluorescence of samples (sodium fluorescein used as marker of nanoparticles). The results have established a strong correlation between the behavior of a nano-aerosols and the tracer gas when they are emitted simultaneously in a ventilated enclosure. More, we observed that tracer gas back diffusion was almost twice greater than for nanoparticles back diffusion in all the tested configurations. The deposit and the agglomeration present in the case of transport of a cloud of nanoparticles can explain these differences in the overall level of containment. However, this observation does not guarantee sufficient protection since there is no specific reference value for nanoparticle exposure. It is useful to observe the guidelines that have been defined in many INRS publications or through IRSN studies. In addition to these experimental studies, the test-rig developed at INRS has been numerically simulated to validate an Eulerian transport and deposition model implemented in a CFD code for modeling the behavior of a nano-aerosol. Numerical and experimental results are concordant; orders of magnitude for the achieved containment levels are comparable. (author)

  4. Real time in vitro studies of doxorubicin release from PHEMA nanoparticles

    Directory of Open Access Journals (Sweden)

    Bajpai AK

    2009-10-01

    Full Text Available Abstract Background Many anticancer agents have poor water solubility and therefore the development of novel delivery systems for such molecules has received significant attention. Nanocarriers show great potential in delivering therapeutic agents into the targeted organs or cells and have recently emerged as a promising approach to cancer treatments. The aim of this study was to prepare and use poly-2-hydroxyethyl methacrylate (PHEMA nanoparticles for the controlled release of the anticancer drug doxorubicin. Results PHEMA nanoparticles have been synthesized and characterized using FTIR and scanning electron microscopy (SEM, particle size analysis and surface charge measurements. We also studied the effects of various parameters such as percent loading of drugs, chemical architecture of the nanocarriers, pH, temperature and nature of the release media on the release profiles of the drug. The chemical stability of doxorubicin in PBS was assessed at a range of pH. Conclusion Suspension polymerization of 2-hydroxyethyl methacrylate (HEMA results in the formation of swellable nanoparticles of defined composition. PHEMA nanoparticles can potentially be used for the controlled release of the anticancer drug doxorubicin.

  5. Synthesis and spectroscopic study of CdS nanoparticles using hydrothermal method

    Science.gov (United States)

    AL-Mamoori, Mohammed H. K.; Mahdi, Dunia K.; Al-Shrefi, Saif M.

    2018-05-01

    In this work, cadmium sulfide nanoparticles (powder) with diameter 50.8 nm was prepared using hydrothermal method. The structural and optical properties of CdS nanoparticles was studied by X-ray diffraction, FESEM, EDS, FTIR, UV-Diffuse Reflectance spectroscopy and Photoluminance spectrum. X-ray diffraction reveal the formation the purity of prepared phase of CdS particles with hexagonal wurtzite structure with particle size 31.8nm by using sheerer equation. The energy dispersion scattering (EDS) examination explains that the sample is composed of a large amount of Cd and S which are exactly CdS nanoparticles and there is a very small trace of (Zn) and (O) element observed because of there is a small pollutions in the measurement place of samples. FESEM shows the spherical shape of nanoparticles with around 50.8 nm diameter. The optical absorption spectral study identified the red shift of the sample in comparison to bulk ZnO in three dimensions. Photoluminance spectrum (PL) at room temperature showed that there are two luminescence peaks at 433.14 nm and 518.21nm. Samples demonstrate a sharp emission band at around 433.18 nm, which is attributed to the typical exciton luminescence. The broad band at 518.21nm which were attributed to the trapped luminescence. The green emission band at 518.21 nm was associated with the emission due to electronic transition from the conduction band to an accepter level due to interstitial sulphur ion.

  6. Synthesis of water soluble CdS nanoparticles and study of their DNA damage activity

    Directory of Open Access Journals (Sweden)

    Kumar Suranjit Prasad

    2017-05-01

    Full Text Available This study reports a novel method for preparation of water soluble CdS nanoparticles using leaf extract of a plant, Asparagus racemosus. The extract of the leaf tissue which worked as a stabilizing and capping agent, assisted the formation of nanoparticles. Nanoparticles were characterized using a UV–vis spectrophotometer, Photoluminescence, TEM, EDAX, XRD and FT-IR. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, crystalline, CdS of diameter ranging from 2 to 8 nm. X-ray diffraction studies showed the formation of 111, 220 and 311 planes of face-centered cubic (fcc CdS. EDAX analysis confirmed the presence of Cd and S in nanosphere. The cytotoxicity test using MTT assay as well as DNA damage analysis using comet assay revealed that synthesized nano CdS quantum dots (QDs caused less DNA damage and cell death of lymphocytes than pure CdS nanoparticles.

  7. Cage-like effect in Au-Pt nanoparticle synthesis in microemulsions: a simulation study.

    Science.gov (United States)

    Tojo, C; de Dios, M; Buceta, D; López-Quintela, M A

    2014-09-28

    The different distributions of metals in bimetallic nanoparticles synthesized in microemulsions were studied by computer simulation. The simulations demonstrated that if the difference between the reduction potentials of both metals is about 0.15-0.3 V, the compartmentalization of the reaction media causes the accumulation of slower reduction reactants in the microemulsions droplets, which favours the chemical reaction like a cage effect: increasing the local concentration of the slower reduction metal salt gives rise to a faster reduction, so the differences in reduction rates of both metals are attenuated. A more coincidental reduction of both metals deeply affects the nanoparticle structure, causing a better mixed alloy. This effect will be more pronounced when the concentration is higher and the intermicellar exchange rate is faster. This means that for any fixed microemulsion the nanoparticle structure can be modified by changing the reactant concentration: the core can be enriched in the faster reduction metal by lower concentrations, and the shell can be enriched in the slower metal by higher concentrations. Based on these observations, this study suggests a route to help experimentalists better create nanoparticles with a pre-defined structure.

  8. Spectroscopic characterization and docking studies of ZnO nanoparticle modified with BSA

    Science.gov (United States)

    Ledesma, Ana E.; Chemes, Doly María; Frías, María de los Angeles; Guauque Torres, Maria del Pilar

    2017-08-01

    Nanoparticles (NP) into a biological environment are an interesting topic for diagnosis and therapy in applications for medicine or environment and the knowledge about this interaction is important from the perspective of safe use of nanomaterials. In the current study, we characterized the type of interaction and the orientation of bovine serum albumin (BSA) adsorbed on ZnO nanoparticle surfaces as a function of size, using molecular docking. To probe experimentally different theoretical hypothesis about the interaction, ZnO-NPs were prepared in aqueous solution, and then were bioconjugated with BSA. Transmission electron microscopy (TEM) and Raman spectroscopy confirm the spherical shape of NP and the irreversible adsorption of BSA on NP surface. Raman and Infrared spectroscopy (FTIR) reveal that BSA interaction with ZnO nanoparticle produced a conformational rearrangement into protein, observing changes in Tyr and Trp environment, a minor percentage of α-helix structure and a more extended chain. The fluorescence analysis demonstrated that when BSA concentration higher than 30 μM is used the signal due to the self-oligomerization of protein overlaps with the ZnO nanoparticle emission. The results predicted that the most probable interaction site is near to domain IB and IIA and ionic interactions are the major responsible for the binding. Thermal stability studies reveals that the denaturalization temperature of BSA increase from 57 °C to 65 °C in presence of ZnO NP and their esterase-like activity was improved.

  9. Comparison studies on catalytic properties of silver nanoparticles biosynthesized via aqueous leaves extract of Hibiscus rosa sinensis and Imperata cylindrica

    Science.gov (United States)

    Fairuzi, Afiza Ahmad; Bonnia, Noor Najmi; Akhir, Rabiatuladawiyah Md.; Akil, Hazizan Md; Yahya, Sabrina M.; Rahman, Norafifah A.

    2018-05-01

    Synthesis of silver nanoparticles has been developed by using aqueous leaves extract (ALE) of Hibiscus rosa sinensis (H. rosa sinensis) and Imperata cylindrica (I. cylindrica). Both plants extract acts as reducing and capping agent. The colour change in reaction mixture (pale yellow to dark brown) was observed during the synthesis process. The formation of silver nanoparticles was confirmed by surface Plasmon Resonance (SPR) at range 300-700 nm for both leaves using UV-Vis Spectroscopy. The reduction of silver ions to silver nanoparticles was completed within 2 hour for H. rosa sinensis and 30 minutes for I. cylindrica extract. The synthesized nanoparticles were characterized using UV-Vis spectroscopy, field emission scanning electron microscope (FESEM) and Fourier transform infrared (FTIR) spectroscopy. The morphology of silver nanoparticles was found to be different when synthesized using different plant extract. In addition, this study also reported on the effect of silver nanoparticles on the degradation of organic dye by sodium borohydride (NaBH4). The silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method compared to the conventional physical and physical methods. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer is established in the present study.

  10. Quantitative study of FORC diagrams in thermally corrected Stoner– Wohlfarth nanoparticles systems

    International Nuclear Information System (INIS)

    De Biasi, E.; Curiale, J.; Zysler, R.D.

    2016-01-01

    The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations 'blur' the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner– Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution. - Highlights: • Quantify the degree of accuracy of the information obtained using the FORC diagrams.

  11. Study of nonlinear effects in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 Ontario (Canada)

    2008-07-14

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration.

  12. An aerosol-mediated magnetic colloid: Study of nickel nanoparticles

    International Nuclear Information System (INIS)

    Sahoo, Y.; He, Y.; Swihart, M. T.; Wang, S.; Luo, H.; Furlani, E.P.; Prasad, P.N.

    2005-01-01

    A method is presented for the synthesis of high-quality nickel nanoparticles. Laser-driven decomposition of nickel carbonyl vapors is used to produce particles in the form of an aerosol, followed by exposure to a solvent containing an appropriate surfactant to yield a stable dispersion of particles. This method is scalable and yields a substantially monodisperse distribution of particles at a relatively high rate of production. The particles produced by this method are subjected to a detailed characterization using transmission electron microscopy, atomic force microscopy, energy dispersive spectroscopy, and dc magnetization. They have an average diameter of 5 nm, and the observed magnetization curves show no hysteresis above 200 K. The normalized magnetization curves follow a scaling law proportional to the quotient of the applied field over temperature. This data indicates the presence of randomly oriented superparamagnetic particles. The measured magnetization is significantly smaller than that of the bulk, probably due to an effective surface anisotropy and spin canting. The coercivity is the same in either direction of the applied field which indicates that there is negligible exchange coupling between the nickel particles and any possible antiferromagnetic oxide layer on their surfaces

  13. Cell membrane damage by iron nanoparticles: an invitro study

    Directory of Open Access Journals (Sweden)

    Gelare Hajsalimi

    2016-12-01

    Full Text Available Application of nanotechnology in medicinal and biological fields has attracted a great interest in the recent yeras. In this paper the cell membrane leakage induced by iron nanoparticles (Fe-NP against PC12 cell line which is known as a model of nervous system cell line was investigated by the lactate dehydrogenase (LDH test. Therefore, PC12 cells were incubated with different concentration of Fe-NP and test was performed after 48h of incubation of the cells with Fe-NP. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters.

  14. Study of nonlinear effects in photonic crystals doped with nanoparticles

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2008-01-01

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration

  15. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle

    OpenAIRE

    Salieri, Beatrice; Righi, Serena; Pasteris, Andrea; Olsen, Stig Irving

    2015-01-01

    The Life Cycle Assessment (LCA) methodology is widely applied in several industrial sectors to evaluate the environmental performance of processes, products and services. Recently, several reports and studies have emphasized the importance of LCA in the field of engineered nanomaterials. However, to date only a few LCA studies on nanotechnology have been carried out, and fewer still have assessed aspects relating to ecotoxicity. This is mainly due to the lack of knowledge in relation on human...

  16. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  17. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  18. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  19. Spectrofluoremetric and molecular docking study on the interaction of bisdemethoxycurcumin with bovine β-casein nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mehranfar, Fahimeh [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Bordbar, Abdol-Khalegh, E-mail: bordbar@chem.ui.ac.ir [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Keyhanfar, Mehrnaz; Behbahani, Mandana [Faculty of Advanced Sciences and Technologies, Department of Biotechnology, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2013-11-15

    The interaction of bisdemethoxycurcumin (BDMC), as one of the main active component of turmeric (Curcuma longa L.), with bovine β-casein nanoparticle, as an efficient drug carrier system, was investigated using steady-state fluorescence spectroscopy and molecular docking calculations. Results of fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations suggested that BDMC bind to the hydrophobic core of β-casein via formation of 3 hydrogen bonds and several vander Waals contacts that represented the encapsulation of BDMC in β-casein micelle nanoparticles. The binding parameters including number of substantive binding sites and the binding constants were evaluated by fluorescence quenching method. Additionally, the cytotoxicity of free BDMC and BDMC-β-casein complex in human breast cancer cell line MCF7 was evaluated in vitro. The study revealed the higher cytotoxic effects of encapsulated BDMC on MCF7 cells compared to equal dose of free BDMC. -- Highlights: • BDMC binds to the hydrophobic core of β-casein. • The effective encapsulation of BDMC in β-casein micelle nanoparticles was shown. • Enhanced cytotoxicity was observed for encapsulated BDMC in β-casein nanoparticles.

  20. A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Dolgovskiy, V. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Lebedev, V., E-mail: victor.lebedev@unifr.ch [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Colombo, S.; Weis, A. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Michen, B.; Ackermann-Hirschi, L. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Petri-Fink, A. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Chemistry Department, University of Fribourg, CH-1700 Fribourg (Switzerland)

    2015-04-01

    The discrimination of immobilised superparamagnetic iron oxide nanoparticles (SPIONs) against SPIONs in fluid environments via their magnetic relaxation behaviour is a powerful tool for bio-medical imaging. Here we demonstrate that a gradiometer of laser-pumped atomic magnetometers can be used to record accurate time series of the relaxing magnetic field produced by pre-polarised SPIONs. We have investigated dry in vitro maghemite nanoparticle samples with different size distributions (average radii ranging from 14 to 21 nm) and analysed their relaxation using the Néel–Brown formalism. Fitting our model function to the magnetorelaxation (MRX) data allows us to extract the anisotropy constant K and the saturation magnetisation M{sub S} of each sample. While the latter was found not to depend on the particle size, we observe that K is inversely proportional to the (time- and size-) averaged volume of the magnetised particle fraction. We have identified the range of SPION sizes that are best suited for MRX detection considering our specific experimental conditions and sample preparation technique. - Highlights: • We studied magnetorelaxation of magnetic nanoparticles using atomic magnetometers. • We show that atomic magnetometers yield high precision MRX data. • The observed magnetorelaxation is well described by the moment superposition model. • Model fits allow extraction of nanoparticle material parameters of six samples. • All samples exhibit an unexpected size-dependent anisotropy constant.

  1. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles

    Science.gov (United States)

    Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha

    2018-04-01

    An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.

  2. Spectrofluoremetric and molecular docking study on the interaction of bisdemethoxycurcumin with bovine β-casein nanoparticles

    International Nuclear Information System (INIS)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Keyhanfar, Mehrnaz; Behbahani, Mandana

    2013-01-01

    The interaction of bisdemethoxycurcumin (BDMC), as one of the main active component of turmeric (Curcuma longa L.), with bovine β-casein nanoparticle, as an efficient drug carrier system, was investigated using steady-state fluorescence spectroscopy and molecular docking calculations. Results of fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations suggested that BDMC bind to the hydrophobic core of β-casein via formation of 3 hydrogen bonds and several vander Waals contacts that represented the encapsulation of BDMC in β-casein micelle nanoparticles. The binding parameters including number of substantive binding sites and the binding constants were evaluated by fluorescence quenching method. Additionally, the cytotoxicity of free BDMC and BDMC-β-casein complex in human breast cancer cell line MCF7 was evaluated in vitro. The study revealed the higher cytotoxic effects of encapsulated BDMC on MCF7 cells compared to equal dose of free BDMC. -- Highlights: • BDMC binds to the hydrophobic core of β-casein. • The effective encapsulation of BDMC in β-casein micelle nanoparticles was shown. • Enhanced cytotoxicity was observed for encapsulated BDMC in β-casein nanoparticles

  3. Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.; Ohsaka, Takeo

    2002-01-01

    The electrocatalytic reduction of oxygen at Au nanoparticles-electrodeposited Au electrodes has been studied using rotating disk electrode (RDE) voltammetry in 0.5 M H 2 SO 4 . Upon analyzing and comparison of the limiting currents data obtained at various rotation speeds of this RDE with those obtained at the bulk Au electrode, an effective value of the number of electrons, n, involved in the electrochemical reduction of O 2 was estimated to be ca. 4 for the former electrode and ca. 3 for the bulk Au electrode at the same potential of -350 mV versus Ag/AgCl/KCl(sat.). This indicates the higher possibility of further reduction and decomposition of H 2 O 2 at Au nanoparticles-electrodeposited Au electrode in this acidic medium. The reductive desorption of the self-assembled monolayer of cysteine, which was formed on the Au nanoparticles-electrodeposited Au electrode, was used to monitor the change of the specific activity of the bulk Au electrode upon the electrodeposition of the Au nanoparticles

  4. Study of static and dynamic magnetic properties of Fe nanoparticles composited with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Satyendra Prakash, E-mail: sppal85@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067 (India); Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge city, Sector81, SAS Nagar, Manauli-140306, Punjab (India); Kaur, Guratinder [Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge city, Sector81, SAS Nagar, Manauli-140306, Punjab (India); Sen, P. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067 (India)

    2016-05-23

    Nanocomposite of Fe nanoparticles with activated carbon has been synthesized to alter the magnetic spin-spin interaction and hence study the dilution effect on the static and dynamic magnetic properties of the Fe nanoparticle system. Transmission electron microscopic (TEM) image shows the spherical Fe nanoparticles dispersed in carbon matrix with 13.8 nm particle size. Temperature dependent magnetization measurement does not show any blocking temperature at all, right up to the room temperature. Magnetic hysteresis curve, taken at 300 K, shows small value of the coercivity and this small hysteresis indicates the presence of an energy barrier and inherent magnetization dynamics. Langevin function fitting of the hysteresis curve gives almost similar value of particle size as obtained from TEM analysis. Magnetic relaxation data, taken at a temperature of 100 K, were fitted with a combination of two exponentially decaying function. This diluted form of nanoparticle system, which has particles size in the superparamagnetic limit, behaves like a dilute ensemble of superspins with large value of the magnetic anisotropic barrier.

  5. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    Science.gov (United States)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  6. Titanium dioxide nanoparticles: synthesis, X-Ray line analysis and chemical composition study

    Energy Technology Data Exchange (ETDEWEB)

    Chenari, Hossein Mahmoudi, E-mail: mahmoudi_hossein@guilan.ac.ir, E-mail: h.mahmoudiph@gmail.com [University of Guilan, Rasht (Iran, Islamic Republic of); Seibel, Christoph; Hauschild, Dirk; Reinert, Friedrich [Karlsruhe Institute of Technology - KIT, Gemeinschaftslabor für Nanoanalytik, Karlsruhe (Germany); Abdollahian, Hossein [Nanotechnology Research Center of Urmia University, Urmia, (Iran, Islamic Republic of)

    2016-11-15

    TiO{sub 2} nanoparticles have been synthesized by the sol-gel method using titanium alkoxide and isopropanol as a precursor. The structural properties and chemical composition of the TiO{sub 2} nanoparticles were studied using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.The X-ray powder diffraction pattern confirms that the particles are mainly composed of the anatase phase with the preferential orientation along [101] direction. The physical parameters such as strain, stress and energy density were investigated from the Williamson- Hall (W-H) plot assuming a uniform deformation model (UDM), and uniform deformation energy density model (UDEDM). The W-H analysis shows an anisotropic nature of the strain in nano powders. The scanning electron microscopy image shows clear TiO{sub 2} nanoparticles with particle sizes varying from 60 to 80nm. The results of mean particle size of TiO{sub 2} nanoparticles show an inter correlation with the W-H analysis and SEM results. Our X-ray photoelectron spectroscopy spectra show that nearly a complete amount of titanium has reacted to TiO{sub 2}. (author)

  7. Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: an experimental study

    Directory of Open Access Journals (Sweden)

    Nima Mohamadian

    2018-05-01

    Full Text Available The suspension properties of drilling fluids containing pure and polymer-treated (partially-hydrolyzed polyacrylamide (PHPA or Xanthan gum clay nanoparticles are compared withthose of a conventional water-and-bentonite-based drilling fluid, used as the referencesample. Additionally, the mud weight, plastic viscosity, apparent viscosity, yield point, primary and secondary gelatinization properties, pH, and filtration properties of the various drilling fluids studied are also measured and compared. The performance of each drilling fluid type is evaluated with respect in terms of its ability to reduce mud cake thickness and fluid loss thereby inhibiting differential-pipe-sticking. For that scenario, the mud-cake thickness is varied, and the filtration properties of the drilling fluids are measured as an indicator of potential well-diameter reduction, caused by mud cake, adjacent to permeable formations. The novel results show that nanoparticles do significantly enhance the rheological and filtration characteristics of drilling fluids. A pure-clay-nanoparticle suspension, without any additives, reduced fluid loss to about 42% and reduced mud cake thickness to 30% compared to the reference sample. The xanthan-gum-treated-clay-nanoparticle drilling fluid showed good fluid loss control and reduced fluid loss by 61% compared to the reference sample. The presence of nanofluids also leads to reduced mud-cake thicknesses, directly mitigating the risks of differential pipe sticking.

  8. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays

    International Nuclear Information System (INIS)

    Dai, Z G; Xiao, X H; Zhang, Y P; Ren, F; Wu, W; Zhang, S F; Zhou, J; Jiang, C Z; Mei, F

    2012-01-01

    Control of the plasmon-driven chemical reaction for the transformation of 4-nitrobenzenethiol to p,p′-dimercaptoazobenzene by Ag nanoparticle arrays was studied. The Ag nanoparticle arrays were fabricated by means of nanosphere lithography. By changing the PS particle size, the localized surface plasmon resonance (LSPR) peaks of the Ag nanoparticle arrays can be tailored from 460 to 560 nm. The controlled reaction process was monitored by in situ surface-enhanced Raman scattering. The reaction can be dramatically influenced by varying the duration of laser exposure, Ag nanoparticle size, laser power and laser excitation wavelength. The maximum reaction speed was achieved when the LSPR wavelength of the Ag nanoparticle arrays matched the laser excitation wavelength. The experimental results reveal that the strong LSPR can effectively drive the transfer of the ‘hot’ electrons that decay from the plasmon to the reactants. The experimental results were confirmed by theoretical calculations. (paper)

  9. Comparison study on biosynthesis of silver nanoparticles using fresh and hot air oven dried IMPERATA CYLINDRICA leaf

    Science.gov (United States)

    Najmi Bonnia, Noor; Fairuzi, Afiza Ahmad; Akhir, Rabiatuladawiyah Md.; Yahya, Sabrina M.; Rani, Mohd Azri Ab; Ratim, Suzana; Rahman, Norafifah A.; Akil, Hazizan Md

    2018-01-01

    The perennial rhizomatous grass; Imperata cylindrica (I. cylindrica) has been reported rich in various phytochemicals. In present study, silver nanoparticles were synthesized from aqueous leaf extract of I. cylindrica at two different leaf conditions; fresh leaves and hot-air oven dried leaves. Biosynthesized silver nanoparticles were characterized by UV-visible spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Maximum absorption was recorded between 400 nm to 500 nm. FESEM analysis revealed that the silver nanoparticles predominantly form spherical shapes. The particles sizes were ranging from 22-37 nm. The elemental composition of the synthesized silver nanoparticles was confirmed by using energy dispersive X-ray spectroscopy (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) confirmed the reducing and stabilizing actions came from biomolecules associated with I. cylindrica leaf extract. Thus in this investigation, an environmentally safe method to synthesized silver nanoparticles using local plant extract was successfully established.

  10. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.

    Science.gov (United States)

    Umamaheswari, C; Lakshmanan, A; Nagarajan, N S

    2018-01-01

    The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.

  11. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine

    Science.gov (United States)

    Oldiges, Daiane P.; Laughery, Jacob M.; Tagliari, Nelson Junior; Leite Filho, Ronaldo Viana; Davis, William C.; da Silva Vaz, Itabajara; Termignoni, Carlos; Knowles, Donald P.; Suarez, Carlos E.

    2016-01-01

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves

  12. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine.

    Directory of Open Access Journals (Sweden)

    Daiane P Oldiges

    2016-12-01

    Full Text Available The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST. The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein-blasticidin deaminase, and HlGST fused to the MSA-1 (merozoite surface antigen 1 signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on Hl

  13. Optimization of a nonviral transfection system to evaluate Cox-2 controlled interleukin-4 expression for osteoarthritis gene therapy in vitro.

    Science.gov (United States)

    Lang, Annemarie; Neuhaus, Johannes; Pfeiffenberger, Moritz; Schröder, Erik; Ponomarev, Igor; Weber, Yvonne; Gaber, Timo; Schmidt, Michael F G

    2014-01-01

    Gene therapy appears to have the potential for achieving a long-term remedy for osteoarthritis (OA). However, there is a risk of adverse reactions, especially when using cytomegalovirus-controlled expression. To provide a safe application, we focused on the expression of therapeutic cytokines [e.g. interleukin (IL)-4] in a disease-responsive manner by use of the previously cloned Cox-2 promoter as 'genetic switch'. In the present study, we report the functionality of a controlled gene therapeutic system in an equine osteoarthritic cell model. Different nonviral transfection reagents were tested for their efficiency on equine chondrocytes stimulated with equine IL-1β or lipopolysaccharide to create an inflammatory environment. To optimize the transfection, we successfully redesigned the vector by excluding the internal ribosomal entry site (IRES). The functionality of our Cox-2 promoter construct with respect to expressing IL-4 was proven at the mRNA and protein levels and the anti-inflammatory potential of IL-4 was confirmed by analyzing the expression of IL-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3 and tumor necrosis factor (TNF)-α using a quantitative polymerase chain reaction. Nonviral transfection reagents yielded transfection rates from 21% to 44% with control vectors with and without IRES, respectively. Stimulation of equine chondrocytes resulted in a 20-fold increase of mRNA expression of IL-1β. Such exogenous stimulation of chondrocytes transfected with pNCox2-IL4 led to an increase of IL-4 mRNA expression, whereas expression of inflammatory mediators decreased. The timely link between these events confirms the anti-inflammatory potential of synthesized IL-4. We consider that this approach has significant potential for translation into a useful anti-inflammation therapy. Molecular tools such as the described therapeutic plasmid pave the way for a local-controlled, self-limiting gene therapy. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  15. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis.

    Science.gov (United States)

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D; Manunta, Maria D; Hart, Stephen L; Khaw, Peng T

    2016-02-24

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.

  16. Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study.

    Science.gov (United States)

    Smulders, Stijn; Luyts, Katrien; Brabants, Gert; Golanski, Luana; Martens, Johan; Vanoirbeek, Jeroen; Hoet, Peter H M

    2015-01-22

    The unique physicochemical properties of nanomaterials has led to an increased use in the paint and coating industry. In this study, the in vitro toxicity of three pristine ENPs (TiO2, Ag and SiO₂), three aged paints containing ENPs (TiO₂, Ag and SiO₂) and control paints without ENPs were compared. In a first experiment, cytotoxicity was assessed using a biculture consisting of human bronchial epithelial (16HBE14o-) cells and human monocytic cells (THP-1) to determine subtoxic concentrations. In a second experiment, a new coculture model of the lung-blood barrier consisting of 16HBE14o- cells, THP-1 and human lung microvascular endothelial cells (HLMVEC) was used to study pulmonary and extrapulmonary toxicity. The results show that the pristine TiO₂ and Ag ENPs have some cytotoxic effects at relative high dose, while pristine SiO₂ ENPs and all aged paints with ENPs and control paints do not. In the complex triculture model of the lung-blood barrier, no considerable changes were observed after exposure to subtoxic concentration of the different pristine ENPs and paint particles. In conclusion, we demonstrated that although pristine ENPs show some toxic effects, no significant toxicological effects were observed when they were embedded in a complex paint matrix. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    International Nuclear Information System (INIS)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudiere, Dominique; Saboungi, Marie-Louise

    2011-01-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2 O-22.5Al 2 O 3 -55B 2 O 3 co-doped with low concentrations of Fe 2 O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2 O 4 after annealing the glasses at 560 o C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: →Magnetic nanoparticles are formed in borate glasses co-doped with Fe 2 O 3 and MnO. →The nanoparticle structure is close to that of manganese ferrite. →The particles have large morphological distributions with mean size of 3-4 nm. →These glasses remain transparent in a part of visible and near infrared range. →The glasses show hysteresis in the magnetic field dependence of the

  18. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kliava, Janis, E-mail: j.kliava@cpmoh.u-bordeaux1.f [CPMOH, UMR 5798, Universite Bordeaux 1-CNRS, 351 Cours de la Liberation, 33405 Talence Cedex (France); Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora [L.V. Kirensky Institute of Physics, Siberian Branch of the RAS, 660036 Krasnoyarsk (Russian Federation); Hennet, Louis [CEMHTI, UPR3079 CNRS et Universite d' Orleans, 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Thiaudiere, Dominique [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Saboungi, Marie-Louise [CRMD, UMR 6619, Universite d' Orleans-CNRS, 1b Rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2011-03-15

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K{sub 2}O-22.5Al{sub 2}O{sub 3}-55B{sub 2}O{sub 3} co-doped with low concentrations of Fe{sub 2}O{sub 3} and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe{sub 2}O{sub 4} after annealing the glasses at 560 {sup o}C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value. - Research Highlights: >Magnetic nanoparticles are formed in borate glasses co-doped with Fe{sub 2}O{sub 3} and MnO. >The nanoparticle structure is close to that of manganese ferrite. > The particles have large morphological distributions with mean size of 3-4 nm. > These glasses remain transparent in a part of visible and near infrared range. > The glasses show

  19. [VEGF165 transfected endothelial progenitor cells mediated by lentivirus alleviated ALI in rats].

    Science.gov (United States)

    He, Zhaohui; He, Huiwei; Lu, Yuanhua; Chen, Zhi; Xu, Fanghua; Wang, Rongsheng; Yang, Chunli

    2017-11-01

    To investigate the protective effects of vascular endothelial growth factor-165 (VEGF165) transfected the endothelial progenitor cells (EPCs) mediated by lentivirus on acute lung injury (ALI) in rats. The mononuclear cells from the male Sprague-Dawley (SD) rats were isolated and cultured to get the EPCs for study. The lentivirus vector carrying the human VEGF165 gene was constructed. According to the random number table method, 90 male SD rats were divided into ALI model group, phosphate buffer solution (PBS) group, EPCs treatment group, none transfected EPCs treatment group and VEGF165 transfected EPCs treatment group, and the rats in each group were subdivided into 4, 12 and 48 hours subgroups, with 6 rats in each subgroup. The rat model of ALI was reproduced by intravenous injection of oleic acid (0.15 μL/g). Then each treatment group was given PBS, EPCs, none transfected EPCs and VEGF165 transfected EPCs respectively with the same volume of 0.2 mL. For the groups with cells, about 1×10 6 cells were contained. Abdominal aortic blood and lung tissue were harvested at 4, 12 and 48 hours. Arterial blood gas analysis was performed. The lung wet/dry weight ratio (W/D) was calculated. The expre