WorldWideScience

Sample records for nanoparticles inhibit vegf-and

  1. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB.

    Science.gov (United States)

    Parajó, Yolanda; D'Angelo, Ivana; Welle, Alexander; Garcia-Fuentes, Marcos; Alonso, María José

    2010-11-01

    The development of a vascular network in tissue-engineered constructs is a fundamental bottleneck of bioregenerative medicine, particularly when the size of the implant exceeds a certain limit given by diffusion lengths and/or if the host tissue shows a very active metabolism. One of the approaches to achieve the vascularization of tissue constructs is generating a sustained release of proangiogenic factors from the ischemic site. This work describes the formation and characterization of hyaluronic acid-chitosan (HA/CS) nanoparticles for the delivery of two pro-angiogenic growth factors: vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF-BB). These nanoparticles were prepared by an ionic gelification technique, and different formulations were developed by encapsulating the growth factors in association with two stabilizing agents: bovine serum albumin or heparin sodium salt. These carriers were characterized with regard to their physicochemical properties, their stability in biological media, and their cytotoxicity in the C3a hepatoma cell line. The results show that nanoparticles around 200 nm can be prepared by this method. HA/CS nanoparticles were stable when incubated in EMEM cell culture medium or in water at 37°C for 24 h. Cell culture tests confirmed that HA/CS nanoparticles are not cytotoxic within the concentration range used for growth factor delivery. Moreover, HA/CS nanoparticles were able to entrap efficiently both growth factors, reaching association values of 94% and 54% for VEGF and PDGF, respectively. In vitro release studies confirm that PDGF-BB is released from HA/CS nanoparticles in a sustained manner over approximately 1 week. On the other hand, VEGF is completely released within the first 24 h.

  2. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment.

    Science.gov (United States)

    Xu, X H; Zhao, C; Peng, Q; Xie, P; Liu, Q H

    2017-03-02

    Diabetic retinopathy (DR) is one of the common and specific microvascular complications of diabetes. This study aimed to investigate the anti-angiogenic effect of kaempferol and explore its underlying molecular mechanisms. The mRNA expression level of vascular endothelial growth factor (VEGF) and placenta growth factor (PGF) and the concentrations of secreted VEGF and PGF were measured by qTR-PCR and ELISA assay, respectively. Human retinal endothelial cells (HRECs) proliferation, migration, and sprouting were measured by CCK-8 and transwell, scratching wound, and tube formation assays, respectively. Protein levels were determined by western blot. High glucose (25 mM) increased the mRNA expression levels of VEGF and PGF as well as the concentrations of secreted VEGF and PGF in HRECs, which can be antagonized by kaempferol (25 µM). Kaempferol (5-25 µM) significantly suppressed cell proliferation, migration, migration distance and sprouting of HRECs under high glucose condition. The anti-angiogenic effect of kaempferol was mediated via downregulating the expression of PI3K and inhibiting the activation of Erk1/2, Src, and Akt1. This study indicates that kaempferol suppressed angiogenesis of HRECs via targeting VEGF and PGF to inhibit the activation of Src-Akt1-Erk1/2 signaling pathway. The results suggest that kaempferol may be a potential drug for better management of DR.

  3. Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Khan AA

    2011-05-01

    Full Text Available Afshan Afsar Khan, Arghya Paul, Sana Abbasi, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering Faculty of Medicine, McGill University Montreal, Québec, CanadaBackground: Research towards the application of nanoparticles as carrier vehicles for the delivery of therapeutic agents is increasingly gaining importance. The angiogenic growth factors, human vascular endothelial growth factor (VEGF and human angiopoietin-1 are known to prevent vascular endothelial cell apoptosis and in fact to stimulate human vascular endothelial cell (HUVEC proliferation. This paper aims to study the combined effect of these bioactive proteins coencapsulated in human serum albumin nanoparticles on HUVECs and to evaluate the potential application of this delivery system towards therapeutic angiogenesis.Methods and results: The angiogenic proteins, human VEGF and human angiopoietin-1, were coencapsulated in albumin nanoparticles for better controlled delivery of the proteins. The application of a nanoparticle system enabled efficient and extended-release kinetics of the proteins. The size of the nanoparticles crosslinked with glutaraldehyde was 101.0 ± 0.9 nm and the zeta potential was found to be -18 ± 2.9 mV. An optimal concentration of glutaraldehyde for the nanoparticle coating process was determined, and this provided stable and less toxic nanoparticles as protein carriers. The results of the study indicate that nanoparticles crosslinked with glutaraldehyde produced nanoparticles with tolerable toxicity which provided efficient and controlled release of the coencapsulated proteins. The nanoparticles were incubated for two weeks to determine the release profiles of the proteins. At the end of the two-week incubation period, it was observed that 49% ± 1.3% of human angiopoietin-1 and 59% ± 2.1% of human VEGF had been released from the nanoparticles. The proliferation and percent apoptosis of the HUVECs in

  4. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells

    International Nuclear Information System (INIS)

    Stanley, Gwenaelle; Harvey, Kevin; Slivova, Veronika; Jiang Jiahua; Sliva, Daniel

    2005-01-01

    Ganoderma lucidum (G. lucidum) is a popular medicinal mushroom that has been used as a home remedy for the general promotion of health and longevity in East Asia. The dried powder of G. lucidum, which was recommended as a cancer chemotherapy agent in traditional Chinese medicine, is currently popularly used worldwide in the form of dietary supplements. We have previously demonstrated that G. lucidum induces apoptosis, inhibits cell proliferation, and suppresses cell migration of highly invasive human prostate cancer cells PC-3. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the prostate cancer cells has not been fully elucidated. In the present study, we examined the effect of G. lucidum on angiogenesis related to prostate cancer. We found that G. lucidum inhibits the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells. These effects are caused by the inhibition of constitutively active AP-1 in prostate cancer cells, resulting in the down-regulation of secretion of VEGF and TGF-β1 from PC-3 cells. Thus, G. lucidum modulates the phosphorylation of Erk1/2 and Akt kinases in PC-3 cells, which in turn inhibits the activity of AP-1. In summary, our results suggest that G. lucidum inhibits prostate cancer-dependent angiogenesis by modulating MAPK and Akt signaling and could have potential therapeutic use for the treatment of prostate cancer

  5. Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling.

    Directory of Open Access Journals (Sweden)

    Ikuo Nakamura

    Full Text Available Brivanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR and fibroblast growth factor receptor (FGFR tyrosine kinases, which are both involved in mechanisms of liver fibrosis. We hypothesized that inhibition of VEGFR and FGFR by brivanib would inhibit liver fibrosis. We therefore examined the effect of brivanib on liver fibrosis in three mouse models of fibrosis.In vivo, we induced liver fibrosis by bile duct ligation (BDL, chronic carbon tetrachloride (CCl4, and chronic thioacetamide (TAA administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs to assess the effect of brivanib on stellate cell proliferation and activation.After in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF, VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor.Brivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.

  6. Kaempferol Identified by Zebrafish Assay and Fine Fractionations Strategy from Dysosma versipellis Inhibits Angiogenesis through VEGF and FGF Pathways

    Science.gov (United States)

    Liang, Fang; Han, Yuxiang; Gao, Hao; Xin, Shengchang; Chen, Shaodan; Wang, Nan; Qin, Wei; Zhong, Hanbing; Lin, Shuo; Yao, Xinsheng; Li, Song

    2015-01-01

    Natural products are a rich resource for the discovery of therapeutic substances. By directly using 504 fine fractions from isolated traditional Chinese medicine plants, we performed a transgenic zebrafish based screen for anti-angiogenesis substances. One fraction, DYVE-D3, was found to inhibit the growth of intersegmental vessels in the zebrafish vasculature. Bioassay-guided isolation of DYVE-D3 indicates that the flavonoid kaempferol was the active substance. Kaempferol also inhibited the proliferation and migration of HUVECs in vitro. Furthermore, we found that kaempferol suppressed angiogenesis through inhibiting VEGFR2 expression, which can be enhanced by FGF inhibition. In summary, this study shows that the construction of fine fraction libraries allows efficient identification of active substances from natural products. PMID:26446489

  7. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  8. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression.

    Science.gov (United States)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P<0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P<0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Uto, Yoshihiro [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nagasawa, Hideko [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hori, Hitoshi [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Shimada, Mitsuo [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  10. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression

    International Nuclear Information System (INIS)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-01-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: ► We designed and synthesized novel hypoxic cytoxin, TX-2098. ► TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. ► TX-2098 reduced VEGF protein level than TPZ. ► TX-2098 inhibited mRNA expression of VEGF, GLUT1 and Aldolase A, not HIF-1α. ► TX-2098 improved the survival in

  11. Evaluation of the therapeutic efficacy and radiotoxicity of the conjugates 177Lu-DOTA-E-c(RGDfK)2 and 177Lu-DOTA-GGC-AuNP-c[RGDfk(C)] in a murine model and their relationship with the inhibition of the angiogenic factors VEGF and HIF-1α

    International Nuclear Information System (INIS)

    Vilchis J, A.

    2013-01-01

    Molecular targeting therapy has become a relevant therapeutic strategy for cancer. The principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been proven, and radiolabeled peptides have been demonstrated to be effective in patients with malignant tumors. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been designed to antagonize the function of α(v)β(3) integrin, thereby inhibiting angio genesis. The conjugation of RGD peptides to radiolabeled gold nanoparticles (AuNP) produces biocompatible and stable m ultimeric systems with target-specific molecular recognition. The aim of this research was to evaluate the therapeutic response of 177 Lu-AuNP-RGD in athymic mice bearing α(v)β(3)-integrin-positive C6 gliomas and compare with that of 177 Lu-AuNP or 177 Lu-RGD. The radiation absorbed dose, metabolic activity (SUV, [18F]fluor-deoxy-glucose-micro PET/CT), renal radiotoxicity, renal and tumoral histological characteristics as well as tumoral VEGF and HIF-1? gene expression (by realtime polymerase chain reaction) following treatment with 177 Lu-AuNP-RGD, 177 Lu-AuNP or 177 Lu-RGD were assessed. Of the radiopharmaceuticals evaluated, 177 Lu-AuNP-RGD delivered the highest tumor radiation absorbed dose (63.8 ± 7.9 Gy) vs other treatments. These results correlated with the observed therapeutic response, in which 177 Lu-AuNP-RGD significantly (p 177 Lu). There was a low uptake in non-target organs and no induction of renal toxicity. 177 Lu-AuNP-RGD demonstrates properties suitable for use as an agent for molecular targeting radiotherapy. (Author)

  12. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    International Nuclear Information System (INIS)

    Lin Daohui; Xing Baoshan

    2007-01-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC 50 ) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth

  13. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    Energy Technology Data Exchange (ETDEWEB)

    Lin Daohui [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2007-11-15

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC{sub 50}) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth.

  14. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  15. Polyphenon-E encapsulated into chitosan nanoparticles inhibited proliferation and growth of Ehrlich solid tumor in mice

    Directory of Open Access Journals (Sweden)

    Azza I. Othman

    2018-03-01

    Full Text Available Limited bioavailability of green tea polyphenols hampered their delivery to tumor and hence therapeutic effectiveness. This study investigated the antitumor activity of polyphenon-E (PE encapsulated into chitosan nanoparticles (CSNPs in Ehrlich solid tumor in mice. CSNPs-PE, with a particle size of 53–69 nm showed 83% entrapment efficiency and a sustained release of PE in pH = 7.4 at 37 °C. The data demonstrated a higher percentage of released drug in case of less crosslinked formulations. Ehrlich ascites carcinoma (EAC cells (2.5 × 106/0.2 ml/mouse were injected subcutaneously in the back of mice. Oral administration of CSNPs-PE for 30 days produced a significant decrease in tumor volume (53% and weight (60% compared with free PE and voids CSNPs (72%. Compared with free PE and control, cell cycle revealed G0/G1 arrest associated with decrease in proliferating cell nuclear antigen (PCNA. In tumor tissue of CSNPs-PE treated mice, compared with free PE, there were; 1 induction of Bax and p53, 2 activation of caspases-3,-8 and -9, and CD95, 3 decrease in Bcl-2 expression of 4 inhibition of VEGF and CD31 expressions in tumor tissue. In conclusion, encapsulation of PE into CSNPs provided a good platform for cancer chemotherapy and raised existing application of different polyphenols for nanochemotherapy/prevention.

  16. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    International Nuclear Information System (INIS)

    Cao Ying; Wang Huajie; Cao Cui; Sun Yuanyuan; Yang Lin; Wang Baoqing; Zhou Jianguo

    2011-01-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  17. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

    Science.gov (United States)

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We

  18. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    International Nuclear Information System (INIS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S V; Ganesan, V; Kulkarni, Anjali

    2013-01-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle–RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml −1 ) as compared to neat RIF (125 μg ml −1 ). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle–RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml −1 , respectively. Further studies are underway to determine the efficacy of NPs–RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates. (paper)

  19. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition.

    Science.gov (United States)

    Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin

    2017-06-01

    Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  20. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats

    Directory of Open Access Journals (Sweden)

    Li ZR

    2012-03-01

    Full Text Available Zhanrong Li1, Lin Yao1, Jingguo Li2, Wenxin Zhang1, Xianghua Wu1, Yi Liu1, Miaoli Lin1, Wenru Su1, Yongping Li1, Dan Liang11State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 2School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of ChinaPurpose: Celastrol, a traditional Chinese medicine, is widely used in anti-inflammation and anti-angiogenesis research. However, the poor water solubility of celastrol restricts its further application. This paper aims to study the effect of celastrol nanoparticles (CNPs on corneal neovascularization (CNV and determine the possible mechanism.Methods: To improve the hydrophilicity of celastrol, celastrol-loaded poly(ethylene glycol-block-poly(ε-caprolactone nanopolymeric micelles were developed. The characterization of CNPs was measured by dynamic light scattering and transmission electron microscopy analysis. Celastrol loading content and release were assessed by ultraviolet-visible analysis and high performance liquid chromatography, respectively. In vitro, human umbilical vein endothelial cell proliferation and capillary-like tube formation were assayed. In vivo, suture-induced CNV was chosen to evaluate the effect of CNPs on CNV in rats. Immunohistochemistry for CD68 assessed the macrophage infiltration of the cornea on day 6 after surgery. Real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were used to evaluate the messenger ribonucleic acid and protein levels, respectively, of vascular endothelial growth factor, matrix metalloproteinase 9, and monocyte chemoattractant protein 1 in the cornea.Results: The mean diameter of CNPs with spherical shape was 48 nm. The celastrol loading content was 7.36%. The release behavior of CNPs in buffered solution (pH 7.4 showed a typical two-phase release profile. CNPs inhibited the proliferation of human umbilical vein endothelial

  1. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sibag, Mark [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Choi, Byeong-Gyu [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Suh, Changwon [Energy Lab, Environment Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Kwan Hyung; Lee, Jae Woo [Department of Environmental Engineering and Program in Environmental Technology and Policy, Korea University, Sejong 339-700 (Korea, Republic of); Maeng, Sung Kyu [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Cho, Jinwoo, E-mail: jinwoocho@sejong.edu [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-02-11

    Highlights: • Silica nanoparticles (SNP) inhibit total oxygen uptake in activated sludge. • Relatively smaller SNP are inhibitorier than larger SNP. • SNP alters C15:0, C16:0 and C18:0 in activated sludge fatty acid methyl ester profile. - Abstract: Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (I{sub T}), we observed that smaller SNPs (12 nm, I{sub T} = 33 ± 3%; 151 nm, I{sub T} = 23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, I{sub T} = 5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake.

  2. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    Science.gov (United States)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  3. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles

    International Nuclear Information System (INIS)

    Park, Margriet V.D.Z.; Annema, Wijtske; Salvati, Anna; Lesniak, Anna; Elsaesser, Andreas; Barnes, Clifford; McKerr, George; Howard, C. Vyvyan; Lynch, Iseult; Dawson, Kenneth A.; Piersma, Aldert H.; Jong, Wim H. de

    2009-01-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining their ability to inhibit differentiation of embryonic stem cells into spontaneously contracting cardiomyocytes. Four well characterized silica nanoparticles of various sizes were used to investigate whether nanomaterials are capable of inhibition of differentiation in the embryonic stem cell test. Nanoparticle size distributions and dispersion characteristics were determined before and during incubation in the stem cell culture medium by means of transmission electron microscopy (TEM) and dynamic light scattering. Mouse embryonic stem cells were exposed to silica nanoparticles at concentrations ranging from 1 to 100 μg/ml. The embryonic stem cell test detected a concentration dependent inhibition of differentiation of stem cells into contracting cardiomyocytes by two silica nanoparticles of primary size 10 (TEM 11) and 30 (TEM 34) nm while two other particles of primary size 80 (TEM 34) and 400 (TEM 248) nm had no effect up to the highest concentration tested. Inhibition of differentiation of stem cells occurred below cytotoxic concentrations, indicating a specific effect of the particles on the differentiation of the embryonic stem cells. The impaired differentiation of stem cells by such widely used particles warrants further investigation into the potential of these nanoparticles to migrate into the uterus, placenta and embryo and their possible effects on embryogenesis.

  4. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    Directory of Open Access Journals (Sweden)

    Grodzik M

    2011-11-01

    Full Text Available Marta Grodzik1, Ewa Sawosz1, Mateusz Wierzbicki1, Piotr Orlowski1, Anna Hotowy2, Tomasz Niemiec1, Maciej Szmidt3, Katarzyna Mitura4, André Chwalibog21Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Basic Animal and Veterinary Science, University of Copenhagen, Copenhagen, Denmark; 3Division of Histology and Embryology, Warsaw University of Life Sciences, Warsaw, Poland; 4Department of Biomedical Engineering, Koszalin University of Technology, Koszalin, PolandAbstract: The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chorioallantoic membrane of chicken embryo and after 7 days of incubation, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, and vessel area. Quantitative real-time polymerase chain reaction analysis showed downregulated fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.Keywords: cancer, nanoparticle, embryo, angiogenesis, FGF-2, VEGF

  5. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Ewa; Wierzbicki, Mateusz

    2011-01-01

    The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubati...

  6. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  7. Mechanistic Studies of Flavivirus Inhibition and Nanoparticle-Catalyzed Decontamination

    Science.gov (United States)

    2016-06-01

    Chemistry, Ph.D. Program in Chemistry, Vanderbilt University Nicholas Forster – undergraduate student in Biology Megan Fox – undergraduate student / B.A...C. Si and X. O. Tan (2008) Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol. Energy 82, 706–713...Florida Gulf Coast University, Fort Myers, FL 33965, USA b Communicable Disease Center, Tan Tock Seng Hospital, Singapore 308433, Singapore c National

  8. Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-07-21

    We have investigated the inhibition of two-photon absorption in photonic crystals doped with an ensemble of four-level nanoparticles. The particles are interacting with one another by the dipole-dipole interaction. Dipoles in nanoparticles are induced by a selected transition. Numerical simulations have been performed for an isotropic photonic crystal. Interesting phenomena have been predicted such as the inhibition of the two-photon absorption due to the dipole-dipole interaction. It has also been found that the inhibition effect can be switched on and off by tuning a decay resonance energy within the energy band of the crystal. A theory of dressed states has been used to explain the results.

  9. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles

    International Nuclear Information System (INIS)

    Espinosa-Cristóbal, L.F.; Martínez-Castañón, G.A.; Téllez-Déctor, E.J.

    2013-01-01

    The aim of this ex vivo study was to evaluate the adherence capacity of Streptococcus mutans after being exposed to three different sizes of silver nanoparticles on healthy human dental enamel. Three different sizes of silver nanoparticles (9.3, 21.3 and 98 nm) were prepared, characterized and an adherence testing was performed to evaluate their anti-adherence activity on a reference strain of S. mutans on healthy dental enamel surfaces. Colony-Forming Unit count was made for adherence test and light microscopy, atomic force microscopy and scanning electron microscopy were used to compare qualitative characteristics of S. mutans. 9.3 nm and 21.3 nm groups did not show differences between them but statistical differences were found when 9.3 nm and 21.3 nm groups were compared with 98 nm and negative control groups (p < 0.05). Microscopy analysis shows a better inhibition of S. mutans adherence in 9.3 nm and 21.3 nm groups than the 98 nm group when compared with control group. Silver nanoparticles showed an adherence inhibition on S. mutans and the anti-adherence capacity was better when silver nanoparticles were smaller. Highlights: ► We examined how SNP can affect cellular adhesion from S. mutans. ► Several techniques were applied to analyzed S. mutans biofilm on enamel. ► All SNP sizes had an adhesion inhibition of S. mutans. ► Smaller SNP showed a better adhesion inhibition than larger SNP. ► Inhibition effect of SNP could be related with adhesion inhibition from S. mutans

  10. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Cristóbal, L.F. [Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Maestría en Ciencias Odontológicas en el Área de Odontología Integral Avanzada, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Martínez-Castañón, G.A., E-mail: mtzcastanon@fciencias.uaslp.mx [Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Maestría en Ciencias Odontológicas en el Área de Odontología Integral Avanzada, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Téllez-Déctor, E.J. [Facultad de Odontología de la Universidad Veracruzana campus Río Blanco, Mariano Abasolo S/N. Col. Centro. Río Blanco, Veracruz (Mexico); and others

    2013-05-01

    The aim of this ex vivo study was to evaluate the adherence capacity of Streptococcus mutans after being exposed to three different sizes of silver nanoparticles on healthy human dental enamel. Three different sizes of silver nanoparticles (9.3, 21.3 and 98 nm) were prepared, characterized and an adherence testing was performed to evaluate their anti-adherence activity on a reference strain of S. mutans on healthy dental enamel surfaces. Colony-Forming Unit count was made for adherence test and light microscopy, atomic force microscopy and scanning electron microscopy were used to compare qualitative characteristics of S. mutans. 9.3 nm and 21.3 nm groups did not show differences between them but statistical differences were found when 9.3 nm and 21.3 nm groups were compared with 98 nm and negative control groups (p < 0.05). Microscopy analysis shows a better inhibition of S. mutans adherence in 9.3 nm and 21.3 nm groups than the 98 nm group when compared with control group. Silver nanoparticles showed an adherence inhibition on S. mutans and the anti-adherence capacity was better when silver nanoparticles were smaller. Highlights: ► We examined how SNP can affect cellular adhesion from S. mutans. ► Several techniques were applied to analyzed S. mutans biofilm on enamel. ► All SNP sizes had an adhesion inhibition of S. mutans. ► Smaller SNP showed a better adhesion inhibition than larger SNP. ► Inhibition effect of SNP could be related with adhesion inhibition from S. mutans.

  11. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    Science.gov (United States)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  12. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    Directory of Open Access Journals (Sweden)

    Ernesto R. Soto

    2016-01-01

    Full Text Available Glucan particles (GPs are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker’s yeast (Saccharomyces cerevisiae. The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles.

  13. Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating

    International Nuclear Information System (INIS)

    Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A.

    2014-01-01

    Highlights: • Corrosion inhibitive pigment based on ZnOCo was synthesized through combustion method. • Doping ZnO nanoparticle with Co enhanced its inhibition properties considerably. • ZnOCo nanoparticle could enhance corrosion protective performance of epoxy coating. • Co doped ZnO nanoparticles behaved as efficient barrier and inhibitive pigment. - Abstract: Co doped ZnO nanoparticles were synthesized by combustion method. Then, the epoxy nanocomposites were prepared using various amounts of nanoparticles. Salt spray and electrochemical impedance spectroscopy (EIS) were used in order to investigate the corrosion inhibition effects of nanoparticles on the steel substrate. The morphology and composition of the films precipitated on the steel surface were investigated by scanning electron microscope (SEM) and energy dispersive spectroscopy. Results revealed that the corrosion inhibition properties of ZnO nanoparticle were significantly enhanced after doping with Co. Moreover, Co doped ZnO nanoparticles enhanced the corrosion resistance of the epoxy coating effectively

  14. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    Science.gov (United States)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  15. Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces

    Science.gov (United States)

    Wheatley Myerson, Jacob; He, Li; Allen, John Stacy; Williams, Todd; Lanza, Gregory; Tollefsen, Douglas; Caruthers, Shelton; Wickline, Samuel

    2014-09-01

    Restoring an antithrombotic surface to suppress ongoing thrombosis is an appealing strategy for treatment of acute cardiovascular disorders such as erosion of atherosclerotic plaque. An antithrombotic surface would present an alternative to systemic anticoagulation with attendant risks of bleeding. We have designed thrombin-targeted nanoparticles (NPs) that bind to sites of active clotting to extinguish local thrombin activity and inhibit platelet deposition while exhibiting only transient systemic anticoagulant effects. Perfluorocarbon nanoparticles (PFC NP) were functionalized with thrombin inhibitors (either D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone or bivalirudin) by covalent attachment of more than 15 000 inhibitors to each PFC NP. Fibrinopeptide A (FPA) ELISA demonstrated that thrombin-inhibiting NPs prevented cleavage of fibrinogen by both free and clot-bound thrombin. Magnetic resonance imaging (MRI) confirmed that a layer of thrombin-inhibiting NPs prevented growth of clots in vitro. Thrombin-inhibiting NPs were administered in vivo to C57BL6 mice subjected to laser injury of the carotid artery. NPs significantly delayed thrombotic occlusion of the artery, whereas an equivalent bolus of free inhibitor was ineffective. For thrombin-inhibiting NPs, only a short-lived (˜10 min) systemic effect on bleeding time was observed, despite prolonged clot inhibition. Imaging and quantification of in vivo antithrombotic NP layers was demonstrated by MRI of the PFC NP. 19F MRI confirmed colocalization of particles with arterial thrombi, and quantitative 19F spectroscopy demonstrated specific binding and retention of thrombin-inhibiting NPs in injured arteries. The ability to rapidly form and image a new antithrombotic surface in acute vascular syndromes while minimizing risks of bleeding would permit a safer method of passivating active lesions than current systemic anticoagulant regimes.

  16. Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces

    International Nuclear Information System (INIS)

    Myerson, Jacob Wheatley; Lanza, Gregory; Caruthers, Shelton; Wickline, Samuel; He, Li; Allen, John Stacy; Williams, Todd; Tollefsen, Douglas

    2014-01-01

    Restoring an antithrombotic surface to suppress ongoing thrombosis is an appealing strategy for treatment of acute cardiovascular disorders such as erosion of atherosclerotic plaque. An antithrombotic surface would present an alternative to systemic anticoagulation with attendant risks of bleeding. We have designed thrombin-targeted nanoparticles (NPs) that bind to sites of active clotting to extinguish local thrombin activity and inhibit platelet deposition while exhibiting only transient systemic anticoagulant effects. Perfluorocarbon nanoparticles (PFC NP) were functionalized with thrombin inhibitors (either D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone or bivalirudin) by covalent attachment of more than 15 000 inhibitors to each PFC NP. Fibrinopeptide A (FPA) ELISA demonstrated that thrombin-inhibiting NPs prevented cleavage of fibrinogen by both free and clot-bound thrombin. Magnetic resonance imaging (MRI) confirmed that a layer of thrombin-inhibiting NPs prevented growth of clots in vitro. Thrombin-inhibiting NPs were administered in vivo to C57BL6 mice subjected to laser injury of the carotid artery. NPs significantly delayed thrombotic occlusion of the artery, whereas an equivalent bolus of free inhibitor was ineffective. For thrombin-inhibiting NPs, only a short-lived (∼10 min) systemic effect on bleeding time was observed, despite prolonged clot inhibition. Imaging and quantification of in vivo antithrombotic NP layers was demonstrated by MRI of the PFC NP. 19 F MRI confirmed colocalization of particles with arterial thrombi, and quantitative 19 F spectroscopy demonstrated specific binding and retention of thrombin-inhibiting NPs in injured arteries. The ability to rapidly form and image a new antithrombotic surface in acute vascular syndromes while minimizing risks of bleeding would permit a safer method of passivating active lesions than current systemic anticoagulant regimes. (paper)

  17. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...... of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...

  18. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  19. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  20. Improved microbial growth inhibition activity of bio-surfactant induced Ag–TiO{sub 2} core shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadevi, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Meena, P. [Department of Physics, PSGR Krishnammal college for women, Coimbatore 641 004 (India)

    2015-02-01

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles were synthesized by hydrolysis process and Ag nanoparticles were prepared by using hydrazine reduction method. • Ag–TiO{sub 2} core shell nanoparticles were synthesized by reverse micelle method. • Coatings of TiO{sub 2} shell leads to decrease the usage of silver particles and also it reduces the release of silver ions from the matrix. • Optimum ratio of TiO{sub 2} particles: Ag atoms are needed for better antibacterial activity. • Sodium alginate (Bio-copolymer) induced core shell nanoparticles results 100% cell growth inhibition toward Staphylococcus aureus. - Abstract: Surfactant induced silver–titanium dioxide core shell nanoparticles within the size range of 10–50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver–titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver–titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV–vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver–titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell

  1. Evaluation of the therapeutic efficacy and radiotoxicity of the conjugates {sup 177}Lu-DOTA-E-c(RGDfK){sub 2} and {sup 177}Lu-DOTA-GGC-AuNP-c[RGDfk(C)] in a murine model and their relationship with the inhibition of the angiogenic factors VEGF and HIF-1α; Evaluacion de la eficacia terapeutica y radiotoxicidad de los conjugados {sup 177}Lu-DOTA-E-c(RGDfK){sub 2} y {sup 177}Lu-DOTA-GGC-AuNP-c[RGDfK(C)] en un modelo murino y su relacion con la inhibicion de los factores angiogenicos VEGF y HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis J, A.

    2013-07-01

    Molecular targeting therapy has become a relevant therapeutic strategy for cancer. The principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been proven, and radiolabeled peptides have been demonstrated to be effective in patients with malignant tumors. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been designed to antagonize the function of α(v)β(3) integrin, thereby inhibiting angio genesis. The conjugation of RGD peptides to radiolabeled gold nanoparticles (AuNP) produces biocompatible and stable m ultimeric systems with target-specific molecular recognition. The aim of this research was to evaluate the therapeutic response of {sup 177}Lu-AuNP-RGD in athymic mice bearing α(v)β(3)-integrin-positive C6 gliomas and compare with that of {sup 177}Lu-AuNP or {sup 177}Lu-RGD. The radiation absorbed dose, metabolic activity (SUV, [18F]fluor-deoxy-glucose-micro PET/CT), renal radiotoxicity, renal and tumoral histological characteristics as well as tumoral VEGF and HIF-1? gene expression (by realtime polymerase chain reaction) following treatment with {sup 177}Lu-AuNP-RGD, {sup 177}Lu-AuNP or {sup 177}Lu-RGD were assessed. Of the radiopharmaceuticals evaluated, {sup 177}Lu-AuNP-RGD delivered the highest tumor radiation absorbed dose (63.8 ± 7.9 Gy) vs other treatments. These results correlated with the observed therapeutic response, in which {sup 177}Lu-AuNP-RGD significantly (p<0.05) reduced tumor progression, tumor metabolic activity, intratumoral vessels and VEGF gene expression compared to the other radiopharmaceuticals. This was consequence of high tumor retention and a combination of molecular targeting therapy (m ultimeric RGD system) and radiotherapy ({sup 177}Lu). There was a low uptake in non-target organs and no induction of renal toxicity. {sup 177}Lu-AuNP-RGD demonstrates properties suitable for use as an agent for molecular targeting radiotherapy. (Author)

  2. Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum

    Directory of Open Access Journals (Sweden)

    Miriam Barquero-Quirós

    2016-09-01

    Full Text Available A novel amperometric biosensor for the determination of Al(III based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 ± 0.2 μM for Al(III, with a reproducibility of 7.9% (n = 5. Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5. Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3. The study of interfering ions has also been carried out.

  3. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

    Science.gov (United States)

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S. G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  4. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    International Nuclear Information System (INIS)

    Skaat, Hadas; Margel, Shlomo; Belfort, Georges

    2009-01-01

    Maghemite (γ-Fe 2 O 3 ) magnetic nanoparticles of 15.0 ± 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic γ-Fe 2 O 3 /poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) (γ-Fe 2 O 3 /PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the γ-Fe 2 O 3 /PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from α-helix to β-sheets during insulin fibril formation is observed in the presence of the γ-Fe 2 O 3 /PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the γ-Fe 2 O 3 core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  5. Biosynthesis of silver nanoparticles using Sida acuta extract for antimicrobial actions and corrosion inhibition potential.

    Science.gov (United States)

    Idrees, Muhammad; Batool, Saima; Kalsoom, Tanzila; Raina, Sadaf; Sharif, Hafiz Muhammad Adeel; Yasmeen, Summera

    2018-02-12

    Nanotechnology exhibits a multidisciplinary area and gained interests for researchers. Nanoparticles produced via physical and chemical methods affects ecosystem drastically. Green synthesis is the charming technique that is inexpensive and safe for the environment. This study aimed to explore the antibacterial actions of as-synthesized silver nanoparticles (Ag-NPs) against Escherichia coli, Staphylococcus aureus and Streptococcus faecalis. Also, the anti-corrosion actions confirmed that the Ag-NPs proved as good inhibitors. In this way, Ag-NPs were prepared via biosynthesis technique by consuming the ground leaves and stem of 'Sida acuta' as a capping agent. The Ag-NPs were formed by irradiation of the aqueous solution of silver nitrate (AgNO 3 ) with extract of S. acuta stem and leaves. The as-synthesized reaction mixture of Ag-NPs was found to exhibit an absorbance band at 446-447 nm, by an UV/VIS spectrophotometer, which is a characteristic of Ag-NPs due to the surface plasmon resonance absorption band. The X-ray diffraction and transmission electron microscopy (TEM) were used for the confirmation of Ag-NPs' variety dimension, morphology and dispersion. The infrared spectra confirmed the bio-fabrication of the Ag-NPs displayed the existence of conceivable functional groups responsible for the bio-reduction and capping. The antimicrobial actions were measured and the zone of inhibition was compared with standard antibiotics.

  6. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  7. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Conde, J; Baptista, P V; De la Fuente, J M

    2010-01-01

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  8. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); De la Fuente, J M, E-mail: pmvb@fct.unl.pt [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2010-12-17

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  9. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-11-01

    Full Text Available Yuji Wang,1 Jingcheng Tang,1 Haimei Zhu,1 Xueyun Jiang,1 Jiawang Liu,1 Wenyun Xu,1 Haiping Ma,1 Qiqi Feng,1 Jianhui Wu,1 Ming Zhao,1,2 Shiqi Peng1 1Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China; 2Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan Abstract: The hot water extract of Rabdosia rubescens was traditionally used as an antithrombotic medicine. To explore its antithrombotic utility and mechanism, we carried out a series of in vitro and in vivo assays in this study. In vitro platelet aggregation assay showed that the half maximal inhibitory concentration values of aqueous extract of R. rubescens leaves (AERL inhibiting platelet aggregation induced by thrombin, arachidonic acid, adenosine diphosphate, and platelet-activating factor ranged from 0.12 mg/mL to 1.43 mg/mL. The minimal effective oral dose of AERL inhibiting the rats from forming thrombus was 25 mg/kg. Both in vitro and in vivo actions were correlated with AERL concentration-dependently inhibiting sP-selectin release. In water, AERL formed nanoparticles, and their size depended on the concentration. Docking the five nucleotides, 21 phenolic acids, and four diterpenoids identified by high-performance liquid chromatography–photodiode array detector/(-electrospray ionization-tandem mass spectrometry analysis into the active site of P-selectin, rosmarinic acid was predicted to be the antithrombotic ingredient of AERL. In flow cytometry analysis, 1 µM of rosmarinic acid effectively inhibited sP-selectin release in arachidonic acid-activated platelets. In a rat model, 5 mg/kg of oral rosmarinic acid effectively inhibited thrombosis. Keywords: R. rubescens, s

  10. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Skaat, Hadas; Margel, Shlomo [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Belfort, Georges [Howard P Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)], E-mail: ch348@mail.biu.ac.il, E-mail: belfog@rpi.edu, E-mail: Shlomo.margel@mail.biu.ac.il

    2009-06-03

    Maghemite ({gamma}-Fe{sub 2}O{sub 3}) magnetic nanoparticles of 15.0 {+-} 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic {gamma}-Fe{sub 2}O{sub 3}/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) ({gamma}-Fe{sub 2}O{sub 3}/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the {gamma}-Fe{sub 2}O{sub 3}/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from {alpha}-helix to {beta}-sheets during insulin fibril formation is observed in the presence of the {gamma}-Fe{sub 2}O{sub 3}/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the {gamma}-Fe{sub 2}O{sub 3} core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  11. Stability and enzyme inhibition activities of au nanoparticles using an aqueous extract of clove as a reducing and stabilizing agent

    International Nuclear Information System (INIS)

    Hameed, A.; Khan, I.; Naz, S.S.; Islam, N.U.

    2014-01-01

    Gold nanoparticles (AuNPs) were synthesized in one pot using aqueous extract of clove buds (CB) to reduce HAuCl/sub 4/ and stabilize gold in its atomic form at room temperature. To determine the potential of gold nanoparticles with clove buds (AuCB) for in vivo applications, the stability of the nanoparticles was explored as a function of temperature, pH and salt concentration. The suspensions were found to be stable for salt concentrations up to 1 mol/L, temperatures of up to 100 degree C and a pH range of 2-13. Our results indicate that CB exhibited comparable activities to standards of urease and carbonic anhydrase, but its conjugation to Au knocks out the enzyme inhibition activity by about two times. In case of xanthine oxidase activity, CB and its gold Au bio-conjugates (AuCB) are found to be absolutely inactive. (author)

  12. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Millotti, Gioconda; Ponchel, Gilles, E-mail: gilles.ponchel@u-psud.f [UMR CNRS 8612, Universite Paris Sud, Laboratoire de Physicochimie, Faculte de Pharmacie, Pharmacotechnie et Biopharmacie (France)

    2008-12-15

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  13. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  14. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  15. Antimicrobial Activity and Mechanism of inhibition of Silver Nanoparticles against Extreme Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Rebecca Thombre

    2016-09-01

    Full Text Available Haloarchaea are salt-loving halophilic microorganism’s that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs as a potent and broad spectrum inhibitory agent is known however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300- 400µg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting programme. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540 and human breast adenocarcinoma cell line (MCF-7. The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  16. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism

    Science.gov (United States)

    Cagno, Valeria; Andreozzi, Patrizia; D'Alicarnasso, Marco; Jacob Silva, Paulo; Mueller, Marie; Galloux, Marie; Le Goffic, Ronan; Jones, Samuel T.; Vallino, Marta; Hodek, Jan; Weber, Jan; Sen, Soumyo; Janeček, Emma-Rose; Bekdemir, Ahmet; Sanavio, Barbara; Martinelli, Chiara; Donalisio, Manuela; Rameix Welti, Marie-Anne; Eleouet, Jean-Francois; Han, Yanxiao; Kaiser, Laurent; Vukovic, Lela; Tapparel, Caroline; Král, Petr; Krol, Silke; Lembo, David; Stellacci, Francesco

    2018-02-01

    Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (~190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.

  17. Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis.

    Science.gov (United States)

    Zhang, Xue-Qing; Even-Or, Orli; Xu, Xiaoyang; van Rosmalen, Mariska; Lim, Lucas; Gadde, Suresh; Farokhzad, Omid C; Fisher, Edward A

    2015-01-28

    Liver X receptor (LXR) signaling pathways regulate lipid metabolism and inflammation, which has generated widespread interest in developing synthetic LXR agonists as potential therapeutics for the management of atherosclerosis. In this study, it is demonstrated that nanoparticles (NPs) containing the synthetic LXR agonist GW3965 (NP-LXR) exert anti-inflammatory effects and inhibit the development of atherosclerosis without causing hepatic steatosis. These NPs are engineered through self-assembly of a biodegradable diblock poly(lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) copolymer. NP-LXR is significantly more effective than free GW3965 at inducing LXR-target gene expression and suppressing inflammatory factors in macrophages in vitro and in vivo. Additionally, the NPs elicit negligible lipogenic gene stimulation in the liver. Using the Ldlr (-/-) mouse model of atherosclerosis, abundant colocalization of fluorescently labeled NPs within plaque macrophages following systemic administration is seen. Notably, six intravenous injections of NP-LXR over 2 weeks markedly reduce the CD68-positive cell (macrophage) content of plaques (by 50%) without increasing total cholesterol or triglycerides in the liver and plasma. Together, these findings identify GW3965-encapsulated PLGA-b-PEG NPs as a promising nanotherapeutic approach to combat atherosclerosis, providing the benefits of LXR agonists without their adverse effects on hepatic and plasma lipid metabolism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Márquez-Ramírez, Sandra Gissela; Delgado-Buenrostro, Norma Laura; Chirino, Yolanda Irasema; Iglesias, Gisela Gutiérrez; López-Marure, Rebeca

    2012-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in the chemical, electrical and electronic industries. TiO 2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO 2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO 2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO 2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO 2 NPs were internalized and formation of vesicles was observed. TiO 2 NPs induced apoptosis after 96 h of treatment. Hence, TiO 2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO 2 NPs could cause brain injury and be hazardous to health.

  19. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water

    Directory of Open Access Journals (Sweden)

    Guisbiers G

    2016-08-01

    Full Text Available G Guisbiers,1 Q Wang,2 E Khachatryan,1 LC Mimun,1 R Mendoza-Cruz,1 P Larese-Casanova,3 TJ Webster,2,4,5 KL Nash1 1Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 2Department of Bioengineering, 3Department of Civil and Environmental Engineering, 4Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Nosocomial diseases are mainly caused by two common pathogens, Escherichia coli and Staphylococcus aureus, which are becoming more and more resistant to conventional antibiotics. Therefore, it is becoming increasingly necessary to find other alternative treatments than commonly utilized drugs. A promising strategy is to use nanomaterials such as selenium nanoparticles. However, the ability to produce nanoparticles free of any contamination is very challenging, especially for nano-medical applications. This paper reports the successful synthesis of pure selenium nanoparticles by laser ablation in water and determines the minimal concentration required for ~50% inhibition of either E. coli or S. aureus after 24 hours to be at least ~50 ppm. Total inhibition of E. coli and S. aureus is expected to occur at 107±12 and 79±4 ppm, respectively. In this manner, this study reports for the first time an easy synthesis process for creating pure selenium to inhibit bacterial growth. Keywords: nosocomial disease, bacteria, antibiotics resistant, cytotoxicity

  20. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles.

    Science.gov (United States)

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens

    2015-01-01

    The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.

  1. Vascular endothelial growth factor (VEGF and prostate pathology

    Directory of Open Access Journals (Sweden)

    Francisco Botelho

    2010-08-01

    Full Text Available PURPOSE: Previous studies suggest that vascular endothelial growth factor (VEGF circulating levels might improve identification of patients with prostate cancer but results are conflicting. Our aim was to compare serum VEGF levels across different prostate pathologies (including benign prostatic hyperplasia, prostatitis, high grade prostate intraepithelial neoplasia and prostate cancer in patients at high risk of prostate cancer. MATERIALS AND METHODS: We consecutively enrolled 186 subjects with abnormal digital rectal examination and/or total PSA (tPSA = 2.5 ng/mL. Blood was collected before diagnostic ultrasound guided trans-rectal prostate biopsy, or any prostate oncology treatment, to measure PSA isoforms and VEGF. Unconditional logistic regression was used to compute age-, tPSA- and free/total PSA-adjusted odds ratios (OR and respective 95% confidence intervals (95% CI for the association between serum VEGF and different prostatic pathologies. RESULTS: Prostate biopsy main diagnoses were normal or benign prostatic hyperplasia (27.3%, prostatitis (16.6%, and prostatic cancer (55.0%. The median VEGF levels (ng/mL in these groups were 178.2, 261.3 and 266.4 (p = 0.029, respectively, but no significant differences were observed for benign vs. malignant pathologies (215.2 vs. 266.4, p = 0.551. No independent association was observed between VEGF (3rd vs. 1st third and prostate cancer, when compared to benign conditions (adjusted OR = 1.44; CI 95%: 0.64-3.26. CONCLUSIONS: In patients at high risk of prostate cancer, circulating VEGF levels have no clinical role in deciding which patients should be submitted to prostate biopsy. Prostatitis patients, often with higher PSA levels, also present high serum levels of VEGF, and their inclusion in control groups might explain the heterogeneous results in previous studies.

  2. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways.

    Science.gov (United States)

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-06-27

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.

  3. Exploiting BSA to Inhibit the Fibrous Aggregation of Magnetic Nanoparticles under an Alternating Magnetic Field

    Directory of Open Access Journals (Sweden)

    Ning Gu

    2013-03-01

    Full Text Available The alternating magnetic field was discovered to be capable of inducing the fibrous aggregation of magnetic nanoparticles. However, this anisotropic aggregation may be unfavorable for practical applications. Here, we reported that the adsorption of BSA (bovine serum albumin on the surfaces of magnetic nanoparticles can effectively make the fibrous aggregation of γ-Fe2O3 nanoparticles turn into a more isotropic aggregation in the presence of the alternating magnetic field. Also, the heating curves with and without BSA adsorption under different pH conditions were measured to show the influence of the colloidal aggregation states on the collective calorific behavior of magnetic nanoparticles.

  4. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells.

    Science.gov (United States)

    Jafari, A R; Mosavi, T; Mosavari, N; Majid, A; Movahedzade, F; Tebyaniyan, M; Kamalzadeh, M; Dehgan, M; Jafari, S; Arastoo, S

    2016-12-01

    Humans have been in a constant battle with tuberculosis (TB). Currently, overuse of antibiotics has resulted in the spread of multidrug-resistant Mycobacterium tuberculosis (MDR), leading to antibiotic ineffectiveness at controlling the spread of TB infection in host cells and especially macrophages. Additionally, the Mycobacterium tuberculosis (Mtb) has developed methods to evade the immune system and survive. With the discovery of nanoparticle (NP)-based drugs, it is necessary to research their anti-mycobacterial properties and bactericidal mechanisms. In this study, we synthesized mixed metal oxide NPs and tested their ability to inhibit Mtb growth into macrophages and investigated the cytotoxic effects of NPs in THP-1 cells. Silver (Ag) NPs and zinc oxide (ZnO) NPs were synthesized by chemical reduction and chemical deposition in aqueous solution, and the diffraction light scattering, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible light-absorption spectra were used to identify NP properties. Ag and ZnO NPs were mixed together at a ratio of 8 ZnO /2 Ag and diluted into Löwenstein-Jensen medium followed by the addition of bacteria and incubation for 28days at 37°C. The toxicity of NPs to THP-1 cells was assessed by MTT test, and macrophages were infected with Mtb for 4h at 37°C under 5% CO 2 . Nano-sized particles were estimated at ∼30-80nm, and the initial concentration of Ag NPs and ZnO NPs were estimated at ∼20ppm and ∼60ppm. The minimal inhibitory concentration ratio of 8 ZnO /2 Ag NPs against Mtb was detected at ∼1/32 of the initial concentration. Ag NPs in the range of concentrations exhibited no anti-Mtb effects, whereas ZnO NPs showed potent antibacterial activity at ∼1/128 of the initial concentration. ZnO NPs at all concentrations showed cytotoxic activity, whereas 100% of THP-1 cells remained viable in the presence of Ag NPs at ∼1/32 and ∼1/64 of the initial concentrations. However, at ratios of

  5. Inhibition of Phytophthora parasitica and P. capsici by Silver Nanoparticles Synthesized Using Aqueous Extract of Artemisia absinthium.

    Science.gov (United States)

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D; Norman, David; Brennan, Mary; Ali, Gul Shad

    2015-09-01

    Application of nanoparticles for controlling plant pathogens is a rapidly emerging area in plant disease management, and nanoparticles synthesis methods that are economical and ecofriendly are extensively investigated. In this project, we investigated the potential of silver nanoparticles (AgNPs) synthesized with aqueous extract of Artemisia absinthium against several Phytophthora spp., which cause many economically important crop diseases. In in vitro dose-response tests conducted in microtiter plates, 10 µg ml⁻¹ of AgNPs inhibited mycelial growth of P. parasitica, P. infestans, P. palmivora, P. cinnamomi, P. tropicalis, P. capsici, and P. katsurae. Detailed in vitro dose-response analyses conducted with P. parasitica and P. capsici revealed that AgNPs synthesized with A. absinthium extract were highly potent (IC50: 2.1 to 8.3 µg ml⁻¹) and efficacious (100%) in inhibiting mycelial growth, zoospore germination, germ tube elongation, and zoospore production. Interestingly, AgNP treatment accelerated encystment of zoospores. Consistent with in vitro results, in planta experiments conducted in a greenhouse revealed that AgNP treatments prevented Phytophthora infection and improved plant survival. Moreover, AgNP in in planta experiments did not produce any adverse effects on plant growth. These investigations provide a simple and economical method for controlling Phytophthora with AgNP without affecting normal plant physiology.

  6. The prognosis was poorer in colorectal cancers that expressed both VEGF and PROK1 (No correlation coefficient between VEGF and PROK1).

    Science.gov (United States)

    Goi, Takanori; Nakazawa, Toshiyuki; Hirono, Yasuo; Yamaguchi, Akio

    2015-10-06

    The angiogenic proteins vascular endothelial growth factor (VEGF) and prokineticin1 (PROK1) proteins are considered important in colorectal cancer, the relationship between their simultaneous expression and prognosis was investigated in the present study. VEGF and PROK1 expression in 620 primary human colorectal cancer lesions was confirmed via immunohistochemical staining with anti-VEGF and anti-PROK1 antibodies, and the correlation between the expression of these 2 proteins and recurrence/prognosis were investigated. VEGF protein was expressed in 329 (53.1%) and PROK1 protein was expressed in 223 (36.0%). PROK1 and VEGF were simultaneously expressed in 116 (18.7%) of the 620 cases. The correlation coefficient between VEGF expression and PROK1 expression was r = 0.11, and therefore correlation was not observed. Clinical pathology revealed that substantially lymphnode matastasis, hematogenous metastasis, or TMN advanced-stage IV was significantly more prevalent in cases that expressed both VEGF and PROK1 than in the cases negative for both proteins or those positive for only 1 of the proteins. Also the cases positive for both proteins exhibited the worst recurrence and prognosis. In the Cox proportional hazards model, VEGF and PROK1 expression was an independent prognostic factor. The prognosis was poorer in colorectal cancers that expressed both PROK1 and VEGF relative to the cases that expressed only 1 protein, and the expression of both proteins was found to be an independent prognostic factor.

  7. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems

    International Nuclear Information System (INIS)

    Sadeghi, S M

    2009-01-01

    We study the inhibition of optical excitation and enhancement of Rabi flopping and frequency in semiconductor quantum dots via plasmonic effects. This is done by demonstrating that the interaction of a quantum dot with a laser field in the vicinity of a metallic nanoparticle can be described in terms of optical Bloch equations with a plasmically normalized Rabi frequency. We show that in the weak-field regime plasmonic effects can suppress the interband transitions, inhibiting exciton generation. In the strong-field regime these effects delay the response of the quantum dot to the laser field and enhance Rabi flopping. We relate these to the conversion of Rabi frequency from a real quantity into a complex and strongly frequency-dependent quantity as plasmonic effects become significant. We show that, within the strong-field regime, in the wavelength range where real and imaginary parts of this frequency reach their maxima, a strongly frequency-dependent enhancement of carrier excitation can happen.

  8. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Linlin Zhang,1,2,* Arun K lyer,3,4,* Xiaoqian Yang,1 Eisuke Kobayashi,1 Yuqi Guo,1,2 Henry Mankin,1 Francis J Hornicek,1 Mansoor M Amiji,3 Zhenfeng Duan1 1Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 2Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 3Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, USA; 4Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA *These authors contributed equally to this work Abstract: Our prior screening of microRNAs (miRs identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS successfully. Western blotting analysis and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma cells. These results demonstrate that a lipid-modified dextran

  9. Biological nanoparticles carrying the Hmda-7 gene are effective in inhibiting pancreatic cancer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Qingyun Zhu

    Full Text Available Pancreatic cancer is one of the most common malignancies of the digestive system, and remains a clinical challenge. This study aimed to assess the effects of bovine serum albumin (BSA nanoparticles carrying the hMDA-7 gene (BSA-NP-hMDA-7 in the treatment of pancreatic cancer.BSA-NP-hMDA-7 was generated by nanotechnology and gene recombination technology. A total of 5 BXPC-3 or PANC-1 pancreatic cancer cell groups were examined, including Control, BSA-NPs, Empty vector, hMDA-7 plasmid, and hMDA-7 BSA-NPs groups, respectively. Proliferation and apoptosis of cultured cells were assessed by the MTT method and flow-cytometry, respectively. In addition, pancreatic cancer models were established with both cell lines in nude mice, and the expression profiles of hMDA-7 and VEGF in cancer tissues were measured by Western blot and immunohistochemistry.BSA-NP-hMDA-7 nanoparticles were successfully generated, and significantly inhibited the proliferation of BXPC-3 and PANC-1 cells; in addition, apoptosis rates were higher in both cell lines after treatment with BSA-NP-hMDA-7 (P<0.05. Nude mouse xenograft studies indicated that treatment with BSA-NP-hMDA-7 nanoparticles resulted in decreased tumor size. Moreover, the hMDA-7 protein was found in tumor tissues after hMDA-7 gene transfection, while BSA-NP-hMDA-7 significantly suppressed VEGF expression in tumor tissues. Similar results were obtained for both BXPC-3 and PANC-1 xenograft models.BSA nanoparticles carrying the hMDA-7 gene effectively transfected BXPC-3 and PANC-1 pancreatic cancer cells, causing reduced cell proliferation and enhanced apoptosis in vitro. In mouse xenografts, BSA-NP-hMDA-7 treatment decreased tumor size and reduced VEGF expression. These findings indicated that BSA-NP-hMDA-7 might exert anticancer effects via VEGF suppression.

  10. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia

    Directory of Open Access Journals (Sweden)

    Tianyu Jia

    2018-01-01

    Full Text Available Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP. Satellite glial cells (SGCs enwrap the neuronal soma in the dorsal root ganglia (DRG. The purinergic 2 (P2 Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM. Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β and connexin43 (Cx43 resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM.

  11. Nanoparticles and Ethylene Diamine Tetra Acetic Acid on Growth Inhibition of Standard Strain of Candida albicans

    Directory of Open Access Journals (Sweden)

    F Haghighi

    2010-07-01

    Full Text Available Introduction & Objective: In recent years, the incidence of opportunistic fungi has shown a marked increase. Infection caused by common pathogenic fungi is a significant health problem in immune compromised hosts. The present study evaluated antifungal activity of Titanum dioxide nanoparticles and Ethylene Diamine Tetra-acetic Acid against Candida albicans as self-cleaning agent by standard micro dilution test. Materials & Methods: The present study was conducted at the Medical University of Tarbiyat Modares in 2009. TiO2 nanoparticles were obtained through the hydrolysis of TiCl4 (Titanium tetrachloride. Size and type of these nanoparticles were characterized by scanning electron microscopy (SEM and X-Ray-Diffraction (XRD. Afterwards, the Minimum Inhibitory Concentration (MIC and Minimal Fungicide Concentration (MFC test for TiO2 and EDTA were performed. Results: Concentration of synthesised TiO2 was 7.03 mg/ml and 5.63 5.63 ×1020 particles/ml. Evaluation of morphology and diameter of the TiO2 nanoparticles with SEM showed that nanoparticles were spherical with diameter between 40-65 nm. MIC50 of 2.2, 1.24 and 0.125 µg/ml respectively. MIC90 and MFC of TiO2, EDTA and fluconazole were 3.51, 2.48 , 0.5 µg/ml and 4.06, 3.1 ,1 µg/ml respectively. Conclusion: In the present study, using of synthesized TiO2 nanoparticles with chemical method showed a suitable activity against Candida in comparison with Fluconazole. Thus it might represent a good candidates in elimination of Candida in medical from medical devices. Key Words:

  12. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-12-01

    Full Text Available Tieshan Yang,1 Qian Yao,1 Fei Cao,1 Qianqian Liu,1 Binlei Liu,2 Xiu-Hong Wang1 1Laboratory for Biomedical Photonics, Institute of Laser Engineering, Beijing University of Technology, 2Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Hypoxia-inducible factor-1 (HIF-1 is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs, which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis. Keywords: silver nanoparticles (AgNPs, hypoxia-inducible factor, transcriptional activity, vascular endothelial growth factor-A, angiogenesis

  13. Molecularly imprinted nanoparticles for inhibiting ribonuclease in reverse transcriptase polymerase chain reaction

    DEFF Research Database (Denmark)

    Feng, Xiaotong; Ashley, Jon; Zhou, Tongchang

    2018-01-01

    Molecularly imprinted nanoparticles (nanoMIPs) are synthesized via a solid-phase approach using RNase as the template. The feasibility of employing the nanoMIPs as RNase inhibitor is successfully demonstrated in reverse transcriptase polymerase chain reaction (RT-PCR) assays, suggesting the tailor...

  14. Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Julian Burks

    2018-01-01

    Conclusions: Our polyplex nanoparticle platform establishes both a strong foundation for the development of receptor-targeted therapeutics and a unique approach for the delivery of siRNA in vivo, thus warranting further exploration of this approach in other types of cancers.

  15. Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Chronopoulou, Laura [University of Rome La Sapienza, Department of Chemistry (Italy); Di Domenico, Enea Gino [IRCCS, Department of Clinical Pathology and Microbiology, San Gallicano Institute (Italy); Ascenzioni, Fiorentina [University of Rome La Sapienza, Department of Biology and Biotechnology C. Darwin (Italy); Palocci, Cleofe, E-mail: cleofe.palocci@uniroma1.it [University of Rome La Sapienza, Department of Chemistry (Italy)

    2016-10-15

    Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.

  16. Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms

    International Nuclear Information System (INIS)

    Chronopoulou, Laura; Di Domenico, Enea Gino; Ascenzioni, Fiorentina; Palocci, Cleofe

    2016-01-01

    Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.

  17. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    NARCIS (Netherlands)

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that

  18. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism

    Czech Academy of Sciences Publication Activity Database

    Cagno, V.; Andreozzi, P.; D'Alicarnasso, M.; Silva, P. J.; Mueller, M.; Galloux, M.; Le Goffic, R.; Jones, S. T.; Vallino, M.; Hodek, Jan; Weber, Jan; Sen, S.; Janeček, E. R.; Bekdemir, A.; Sanavio, B.; Martinelli, C.; Donalisio, M.; Welti, M. A. R.; Eleouet, J. F.; Han, Y.; Kaiser, L.; Vukovic, L.; Tapparel, C.; Král, P.; Krol, S.; Lembo, D.; Stellacci, F.

    2018-01-01

    Roč. 17, č. 2 (2018), s. 195-203 ISSN 1476-1122 R&D Projects: GA MŠk(CZ) LK11207 Institutional support: RVO:61388963 Keywords : coli polysaccharide derivatives * multivalent gold nanoparticles * respiratory syncytial virus Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 39.737, year: 2016

  19. Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Chronopoulou, Laura; Di Domenico, Enea Gino; Ascenzioni, Fiorentina; Palocci, Cleofe

    2016-10-01

    Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.

  20. Release Profile and Inhibition Test of The Nanoparticles A. Paniculata Extract as Inhibitor of α-Glucosidase in The Process of Carbohydrates Breakdown Into Glucose Diabetes Mellitus

    Science.gov (United States)

    Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita

    2017-07-01

    Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.

  1. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    Science.gov (United States)

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-01-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  3. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao [Department of Chemistry, Jinan University, Guangzhou (China); Zhang, Yikai [Institute of Hematology, Jinan University, Guangzhou (China); Zheng, Shanyuan [School of Life Sciences, The Chinese University of Hong Kong, Hong Kong (China); Weng, Zeping; Ma, Jun [First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Yangqiu [Institute of Hematology, Jinan University, Guangzhou (China); First Affiliated Hospital, Jinan University, Guangzhou (China); Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 (China); Xie, Xinyuan [Department of Chemistry, Jinan University, Guangzhou (China); Zheng, Wenjie, E-mail: tzhwj@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou (China)

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  4. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    Science.gov (United States)

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Innovative approach for urease inhibition by Ficus carica extract-fabricated silver nanoparticles: An in vitro study.

    Science.gov (United States)

    Borase, Hemant P; Salunkhe, Rahul B; Patil, Chandrashekhar D; Suryawanshi, Rahul K; Salunke, Bipinchandra K; Wagh, Nilesh D; Patil, Satish V

    2015-01-01

    In the present study, a rapid, low-cost, and ecofriendly method of stable silver nanoparticles (AgNPs) synthesis using leaves extract of Ficus carica (F. carica), a plant with diverse metabolic consortium, is reported for the first time. An absorption peak at 422 nm in UV-Vis spectroscopy, a spherical shape with an average size of 21 nm in transmission electron microscopy, and crystalline nature in X-ray powder diffraction studies were observed for the synthesized AgNPs. Fourier transform infrared analysis indicated that proteins of F. carica might have a vital role in AgNP synthesis and stabilization. AgNPs were found to inhibit urease, a key enzyme responsible for the survival and pathogenesis of the bacterium, Helicobacter pylori. Inhibition of urease by AgNPs was monitored spectrophotometrically by the evaluation of ammonia release. The urease inhibition potential of AgNPs can be explored in the treatment of H. pylori by preparing novel combinations of standard drugs with AgNPs- or AgNPs-encapsulated drug molecules. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  6. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis.

    Science.gov (United States)

    Yang, Tieshan; Yao, Qian; Cao, Fei; Liu, Qianqian; Liu, Binlei; Wang, Xiu-Hong

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs), which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis.

  7. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells

    Directory of Open Access Journals (Sweden)

    A R Jafari

    2016-01-01

    Conclusion: Although Ag NPs exhibited low cytotoxicity, they were unable to inhibit Mtb growth in vitro. ZnO NPs exhibited strong anti-Mtb activity and inhibited bacterial growth, but exhibited high cytotoxicity to human macrophage cells. By mixing Ag and ZnO NPs at a ratio of 8ZnO/2Ag, we acquired a mixture that exhibited potent antibacterial activity against Mtb and no cytotoxic effects on THP-1 cells, resulting in inhibition of both in vitro and ex vivo Mtb growth [Figure 1],[Figure 2],[Figure 3], [Table 1],[Table 2],[Table 3].{Figure 1}{Figure 2}{Figure 3} {Table 1}{Table 2}{Table 3}

  8. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Saura Cardoso, Vinicius, E-mail: vscfisio@ufpi.edu.br [Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Carvalho Filgueiras, Marcelo de; Medeiros Dutra, Yago; Gomes Teles, Ramon Handerson [Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Morphology and Muscle Physiology Laboratory, LAMFIM, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Rodrigues de Araújo, Alyne [Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Primo, Fernando Lucas [Faculdade de Ciências Farmacêuticas, UNESP, Universidade Estadual Paulista, Campus de Araraquara, Departamento de Bioprocessos e Biotecnologia, 14800903 Araraquara, São Paulo (Brazil); Mafud, Ana Carolina; Batista, Larissa Fernandes; Mascarenhas, Yvonne Primerano [Institute of Physics of São Carlos, IFSC, University of São Paulo, USP, 13566590 São Carlos, SP (Brazil); and others

    2017-05-01

    Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH{sub 4}), silver nitrate (AgNO{sub 3}) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7 ± 7.8 nm and 20.1 ± 0.7 mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema. - Highlights: • Silver nanoparticles were synthesized with type I collagen (AgNPcol). • AgNPcol which was characterized by XRD and DLS. • AgNPcol exhibited enhanced toxicity in cancer cells. • The efficiency of the AgNPcol against the paw edema was evaluated.

  9. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition

    International Nuclear Information System (INIS)

    Saura Cardoso, Vinicius; Carvalho Filgueiras, Marcelo de; Medeiros Dutra, Yago; Gomes Teles, Ramon Handerson; Rodrigues de Araújo, Alyne; Primo, Fernando Lucas; Mafud, Ana Carolina; Batista, Larissa Fernandes; Mascarenhas, Yvonne Primerano

    2017-01-01

    Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH 4 ), silver nitrate (AgNO 3 ) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7 ± 7.8 nm and 20.1 ± 0.7 mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema. - Highlights: • Silver nanoparticles were synthesized with type I collagen (AgNPcol). • AgNPcol which was characterized by XRD and DLS. • AgNPcol exhibited enhanced toxicity in cancer cells. • The efficiency of the AgNPcol against the paw edema was evaluated.

  10. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes

    Science.gov (United States)

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A.; Wang, Lu-Ning

    2018-06-01

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  11. Intranasal immunization with chitosan/pCETP nanoparticles inhibits atherosclerosis in a rabbit model of atherosclerosis.

    Science.gov (United States)

    Yuan, Xiying; Yang, Xiaorong; Cai, Danning; Mao, Dan; Wu, Jie; Zong, Li; Liu, Jingjing

    2008-07-04

    In search of a convenient and pain-free route of administration of DNA vaccine against atherosclerosis, the plasmid pCR-X8-HBc-CETP (pCETP) encoding B-cell epitope of cholesteryl ester transfer protein C-terminal fragment displayed by Hepatitis B virus core particle was condensed with chitosan to form chitosan/pCETP nanoparticles. Cholesterol-fed rabbits were then intranasally immunized with the chitosan/pCETP nanoparticles to evaluate antiatherogenic effects. The results showed that significant serum antibodies against CETP were detected by enzyme-linked immunosorbent analysis and verified by Western blot analysis. The significant anti-CETP IgG lasted for 21 weeks in the rabbits immunized intranasally. Moreover, the atherogenic index was significantly lower compared with the saline control (5.95 versus 2.39, pnanoparticles was 59.2% less than those treated with saline (29.0+/-10.9% versus 71.0+/-14.4%, pintramuscularly injected with pCETP solution (29.0+/-10.9% versus 21.2+/-14.2%, p>0.05). Thus, chitosan/pCETP nanoparticles could significantly attenuate the progression of atherosclerosis by intranasal immunization. The results suggested that intranasal administration could be potentially developed as a vaccination route against atherosclerosis.

  12. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  13. Characterization and Molecular Mechanism of Peptide-Conjugated Gold Nanoparticle Inhibiting p53-HDM2 Interaction in Retinoblastoma

    Directory of Open Access Journals (Sweden)

    Sushma Kalmodia

    2017-12-01

    Full Text Available Inhibition of the interaction between p53 and HDM2 is an effective therapeutic strategy in cancers that harbor a wild-type p53 protein such as retinoblastoma (RB. Nanoparticle-based delivery of therapeutic molecules has been shown to be advantageous in localized delivery, including to the eye, by overcoming ocular barriers. In this study, we utilized biocompatible gold nanoparticles (GNPs to deliver anti-HDM2 peptide to RB cells. Characterization studies suggested that GNP-HDM2 was stable in biologically relevant solvents and had optimal cellular internalization capability, the primary requirement of any therapeutic molecule. GNP-HDM2 treatment in RB cells in vitro suggested that they function by arresting RB cells at the G2M phase of the cell cycle and initiating apoptosis. Analysis of molecular changes in GNP-HDM2-treated cells by qRT-PCR and western blotting revealed that the p53 protein was upregulated; however, transactivation of its downstream targets was minimal, except for the PUMA-BCl2 and Bax axis. Global gene expression and in silico bioinformatic analysis of GNP-HDM2-treated cells suggested that upregulation of p53 might presumptively mediate apoptosis through the induction of p53-inducible miRNAs.

  14. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells.

    Science.gov (United States)

    Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-10-21

    Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.

  15. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants.

    Science.gov (United States)

    Saleem, Samia; Ahmed, Bilal; Khan, Mohammad Saghir; Al-Shaeri, Majed; Musarrat, Javed

    2017-10-01

    Nanotechnology based therapeutics has emerged as a promising approach for augmenting the activity of existing antimicrobials due to the unique physical and chemical properties of nanoparticles (NPs). Nickel oxide nanoparticles (NiO-NPs) have been suggested as prospective antibacterial and antitumor agent. In this study, NiO-NPs have been synthesized by a green approach using Eucalyptus globulus leaf extract and assessed for their bactericidal activity. The morphology and purity of synthesized NiO-NPs determined through various spectroscopic techniques like UV-Visible, FT-IR, XRD, EDX and electron microscopy differed considerably. The synthesized NiO-NPs were pleomorphic varying in size between 10 and 20 nm. The XRD analysis revealed the average size of NiO-NPs as 19 nm. The UV-Vis spectroscopic data showed a strong SPR of NiO-NPs with a characteristic spectral peak at 396 nm. The FTIR data revealed various functional moieties like C=C, C-N, C-H and O-H which elucidate the role of leaf biomolecules in capping and dispersal of NiO-NPs. The bioactivity assay revealed the antibacterial and anti-biofilm activity of NiO-NPs against ESβL (+) E. coli, P. aeruginosa, methicillin sensitive and resistant S. aureus. Growth inhibition assay demonstrated time and NiO-NPs concentration dependent decrease in the viability of treated cells. NiO-NPs induced biofilm inhibition was revealed by a sharp increase in characteristic red fluorescence of PI, while SEM images of NiO-NPs treated cells were irregular shrink and distorted with obvious depressions/indentations. The results suggested significant antibacterial and antibiofilm activity of NiO-NPs which may play an important role in the management of infectious diseases affecting human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization

    International Nuclear Information System (INIS)

    Xia, Bin; Chen, Bijuan; Sun, Xuemei; Qu, Keming; Ma, Feifei; Du, Meirong

    2015-01-01

    The toxicity of TiO 2 engineered nanoparticles (NPs) to the marine microalga Nitzschia closterium was investigated by examining growth inhibition, oxidative stress and uptake. The results indicated that the toxicity of TiO 2 particles to algal cells significantly increased with decreasing nominal particle size, which was evidenced by the 96 EC 50 values of 88.78, 118.80 and 179.05 mg/L for 21 nm, 60 nm and 400 nm TiO 2 particles, respectively. The growth rate was significantly inhibited when the alga was exposed to 5 mg/L TiO 2 NPs (21 nm). Measurements of antioxidant enzyme activities showed that superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were first induced and subsequently inhibited following exposure to 5 mg/L TiO 2 NPs. The depletion of antioxidant enzymes with a concomitant increase in malondialdehyde (MDA) levels and reactive oxygen species (ROS) posed a hazard to membrane integrity. A combination of flow cytometry analysis, transmission electron microscopy and Ti content measurement indicated that TiO 2 NPs were internalized in N. closterium cells. The level of extracellular ROS, which was induced by TiO 2 NPs under visible light, was negligible when compared with the intracellular ROS level (accounting for less than 6.0% of the total ROS level). These findings suggest that elevated TiO 2 nanotoxicity in marine environments is related to increased ROS levels caused by internalization of TiO 2 NPs. - Highlights: • Inhibition of marine microalgae by TiO 2 NPs and bulk particles was evaluated. • Aggregation of TiO 2 NPs and bulk particles was observed in marine algal test medium. • TiO 2 NPs induced damage to algal cell membranes as detected by flow cytometry. • Increased TiO 2 nanotoxicity to algal cells was caused by internalization of NPs

  17. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  18. Clinical significance of determination of serum VEGF and CEA levels in patients with colorectal cancer

    International Nuclear Information System (INIS)

    Du Xiaohui; Song Shaobai; Zheng Wei

    2007-01-01

    Objective: To study the applicability of combined determination of serum VEGF and CEA levels in the diagnosis of colorectal cancer as well as the relationship between VEGF level and stage of the disease. Methods: Serum VEGF (with ELISA) and CEA (with RIA) levels serum were detected in 28 patients with colorectal cancer of various stages and 29 controls. Results: The diagnostic positive rate was 53.6% (15/28), 39.3% (11/28), 71.4% (20/28) with CEA, VEGF and combined test for colorectal cancer, respectively. The serum VEGF levels in patients with advance colorectal cancer were significantly higher than those in patients with earlier stages diseases and controls, VEGF levels were positively correlated with CEA levels (P<0.05). Conclusion: Combined detection of the levels of serum VEGF and CEA could improve significantly the diagnostic positive rate in patients with colorectal cancer. (authors)

  19. Adsorption and inhibition of CuO nanoparticles on Arabidopsis thaliana root

    Science.gov (United States)

    Xu, Lina

    2018-02-01

    CuO NPs, the size ranging from 20 to 80 nm were used to detect the adsorption and inhibition on the Arabidopsis thaliana roots. In this study, CuO NPs were adsorbed and agglomerated on the surface of root top after exposed for 7 days. With the increasing of CuO NPs concentrations, CuO NPs also adsorbed on the meristernatic zone. The growth of Arabidopsis thaliana lateral roots were also inhibited by CuO NPs exposure. The Inhibition were concentration dependent. The number of root top were 246, 188 and 123 per Arabidopsis thaliana, respectively. The number of root tops after CuO NPs exposure were significantly decreased compared with control groups. This results suggested the phytotoxicity of CuO NPs on Arabidopsis thaliana roots.

  20. Trichophyton rubrum is inhibited by free and nanoparticle encapsulated curcumin by induction of nitrosative stress after photodynamic activation.

    Directory of Open Access Journals (Sweden)

    Ludmila Matos Baltazar

    Full Text Available Antimicrobial photodynamic inhibition (aPI utilizes radical stress generated from the excitation of a photosensitizer (PS with light to destroy pathogens. Its use against Trichophyton rubrum, a dermatophytic fungus with increasing incidence and resistance, has not been well characterized. Our aim was to evaluate the mechanism of action of aPI against T. rubrum using curcumin as the PS in both free and nanoparticle (curc-np form. Nanocarriers stabilize curcumin and allow for enhanced solubility and PS delivery. Curcumin aPI, at optimal conditions of 10 μg/mL of PS with 10 J/cm² of blue light (417 ± 5 nm, completely inhibited fungal growth (p<0.0001 via induction of reactive oxygen (ROS and nitrogen species (RNS, which was associated with fungal death by apoptosis. Interestingly, only scavengers of RNS impeded aPI efficacy, suggesting that curcumin acts potently via a nitrosative pathway. The curc-np induced greater NO˙ expression and enhanced apoptosis of fungal cells, highlighting curc-np aPI as a potential treatment for T. rubrum skin infections.

  1. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    Science.gov (United States)

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  2. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells.

    Science.gov (United States)

    Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A

    2017-02-01

    One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  4. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    International Nuclear Information System (INIS)

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-01-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe 3 O 4 –SiO 2 ) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g −1 . The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K m and the V max values (0.02 mM, 6.40 U·mg −1 enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg −1 enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity, reusability, and thermo-stability than

  5. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuan-Ting [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ren, Xiao-Yun [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liu, Yi-Ming [Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217 (United States); Wei, Ying [Changzhi Medical College, Changzhi 046000 (China); Qing, Lin-Sen [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liao, Xun, E-mail: liaoxun@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe{sub 3}O{sub 4}–SiO{sub 2}) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g{sup −1}. The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K{sub m} and the V{sub max} values (0.02 mM, 6.40 U·mg{sup −1} enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg{sup −1} enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity

  6. VEGF and bFGF Gene Polymorphisms in Patients with Non-Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Tomasz Wróbel

    2013-01-01

    Full Text Available Angiogenesis and lymphangiogenesis are important in the proliferation and survival of the malignant hematopoietic neoplasms, including non-Hodgkin’s lymphomas (NHLs. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF play an important role in the initiation of angiogenesis. Both VEGF and bFGF have been reported to have prognostic significance in NHL. The present study aimed to determine an association between the VEGF and bFGF gene polymorphisms and disease susceptibility and progression. VEGF (rs3025039; 936 C>T and bFGF (rs308395, −921 G>C variants were determined in 78 NHL patients and 122 healthy individuals by PCR-RFLP technique. The presence of the VEGF 936T allele was found to significantly associate with worse prognosis of the disease (expressed by the highest International Prognostic Index (IPI (0.41 versus 0.20, for IPI 4 among patients having and lacking the T allele. The VEGF 936T variant was also more frequent among patients with IPI 4 than in controls (OR = 3.37, . The bFGF −921G variant was more frequently detected among patients with aggressive as compared to those with indolent histological subtype (0.37 versus 0.18, and healthy individuals (0.37 versus 0.19, OR = 2.51, . These results imply that VEGF and bFGF gene polymorphisms have prognostic significance in patients with NHL.

  7. Interaction of TiO{sub 2} nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bin, E-mail: xiabin@ysfri.ac.cn; Chen, Bijuan; Sun, Xuemei; Qu, Keming; Ma, Feifei; Du, Meirong

    2015-03-01

    The toxicity of TiO{sub 2} engineered nanoparticles (NPs) to the marine microalga Nitzschia closterium was investigated by examining growth inhibition, oxidative stress and uptake. The results indicated that the toxicity of TiO{sub 2} particles to algal cells significantly increased with decreasing nominal particle size, which was evidenced by the 96 EC{sub 50} values of 88.78, 118.80 and 179.05 mg/L for 21 nm, 60 nm and 400 nm TiO{sub 2} particles, respectively. The growth rate was significantly inhibited when the alga was exposed to 5 mg/L TiO{sub 2} NPs (21 nm). Measurements of antioxidant enzyme activities showed that superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were first induced and subsequently inhibited following exposure to 5 mg/L TiO{sub 2} NPs. The depletion of antioxidant enzymes with a concomitant increase in malondialdehyde (MDA) levels and reactive oxygen species (ROS) posed a hazard to membrane integrity. A combination of flow cytometry analysis, transmission electron microscopy and Ti content measurement indicated that TiO{sub 2} NPs were internalized in N. closterium cells. The level of extracellular ROS, which was induced by TiO{sub 2} NPs under visible light, was negligible when compared with the intracellular ROS level (accounting for less than 6.0% of the total ROS level). These findings suggest that elevated TiO{sub 2} nanotoxicity in marine environments is related to increased ROS levels caused by internalization of TiO{sub 2} NPs. - Highlights: • Inhibition of marine microalgae by TiO{sub 2} NPs and bulk particles was evaluated. • Aggregation of TiO{sub 2} NPs and bulk particles was observed in marine algal test medium. • TiO{sub 2} NPs induced damage to algal cell membranes as detected by flow cytometry. • Increased TiO{sub 2} nanotoxicity to algal cells was caused by internalization of NPs.

  8. TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.

    Science.gov (United States)

    Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C

    2015-07-01

    To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  10. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles.

    Science.gov (United States)

    Singh, Manu Smriti; Lamprecht, Alf

    2016-01-01

    Several pharmaceutical excipients are known for their ability to interact with cell membrane lipids and reverse the phenomenon of multidrug resistance (MDR) in cancer. Interestingly, many excipients act as stabilizers and are key ingredients in a variety of nano-formulations. In this study, representatives of ionic and non-ionic excipients were used as surface active agents in nanoparticle (NP) formulations to utilize their MDR reversing potential. In-vitro assays were performed to elucidate particle-cell interaction and accumulation of P-glycoprotein (P-gp) substrates-rhodamine-123 and calcein AM, in highly drug resistant glioma cell lines. Chemosensitization achieved using NPs and their equivalent dose of free excipients was assessed with the co-administered anti-cancer drug doxorubicin. Among the excipients used, non-ionic surfactant, Cremophor® EL, and cationic surfactant, cetyltrimethylammonuium bromide (CTAB), demonstrated highest P-gp modulatory activity in both free solution form (up to 7-fold lower IC50) and as a formulation (up to 4.7-fold lower IC50) as compared to doxorubicin treatment alone. Solutol® HS15 and Tween® 80 exhibited considerable chemosensitization as free solution but not when incorporated into a formulation. Sodium dodecyl sulphate (SDS)-based nanocarriers resulted in slightly improved cytotoxicity. Overall, the results highlight and envisage the usage of excipient in nano-formulations in a bid to improve chemosensitization of drug resistant cancer cells towards anti-cancer drugs.

  11. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells.

    Science.gov (United States)

    Rahim, Moniba; Iram, Sana; Khan, Mohd Sajid; Khan, M Salman; Shukla, Ankur R; Srivastava, A K; Ahmad, Saheem

    2014-05-01

    This study presents a novel approach to synthesize glycogenic gold nanoparticles (glycogenic GNps) capped with glycated products (Schiff's base, Heyns products, fructosylamine etc.). These glycogenic GNps have been found to be active against human osteosarcoma cell line (Saos-2) with an IC50 of 0.187 mM, while the normal human embryonic lung cell line (L-132) remained unaffected up to 1mM concentration. The size of glycogenic GNps can also be controlled by varying the time of incubation of gold solution. Glycation reactions involving a combination of fructose and HSA (Human Serum Albumin) were found to be effective in the reduction of gold to glycogenic GNps whereas glucose in combination with HSA did not result in the reduction of gold. The progress of the reaction was followed using UV-visible spectroscopy and NBT (Nitroblue tetrazolium) assay. The glycogenic GNps were found to be spherical in shape with an average size of 24.3 nm, in a stable emulsion. These GNps were characterized using UV-visible spectroscopy, zeta potential analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo.

    Science.gov (United States)

    Cheng, Mingrong; Gao, Xiaoyan; Wang, Yong; Chen, Houxiang; He, Bing; Xu, Hongzhi; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-09-17

    Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR) and ¹H-nuclear magnetic resonance (¹H-NMR). By combining GA-CTS and 5-FU (5-fluorouracil), we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time.

  13. Two potential uses for silver nanoparticles coated with Solanum nigrum unripe fruit extract: Biofilm inhibition and photodegradation of dye effluent.

    Science.gov (United States)

    Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Vaseeharan, Baskaralingam; Jenifer, Anthonisamy Anthoni; Chitra, Ponnaiah; Prabhu, Narayanan Marimuthu; Kannapiran, Ethiraj

    2017-10-01

    Silver nanoparticle was green synthesized involving the unripe fruit extracts of Solanum nigrum (Sn-AgNPs). The synthesized Sn-AgNPs was bio-physically characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). UV-Vis recorded the absorbance spectra at 443 nm. XRD analysis clearly demonstrated the crystalline nature of Sn-AgNPs with Bragg's reflection peaks at 111, 200, 220 and 311 lattice planes. The FTIR spectrum of Sn-AgNPs showed strong bands at 3432, 1555, 1455, 862 and 406 cm -1 which corresponds at O-H, C-H, C-C, C-OH and C-N groups respectively. TEM exhibited the spherical shape of Sn-AgNPs with particle size between 20 and 30 nm. The antibacterial effects of Sn-AgNPs were tested on clinically important biofilm forming Gram positive (Bacillus pumulis and Enterococcus faecalis) and Gram negative (Proteus vulgaris and Vibrio parahaemolyticus) bacteria. The greater inhibition of B. pumulis and E. faecalis was observed at 100 μg mL -1 of Sn-AgNPs compared to P. vulgaris and V. parahaemolyticus. The biofilm inhibition potential of Sn-AgNPs was greater against Gram positive bacteria than that of Gram negative bacteria. Furthermore, Sn-AgNPs effectively degraded the industrial effluent methyl orange dye by photocatalysis. It is concluded that Sn-AgNPs could be used as an effective therapeutics against the biofilm of clinically important bacteria. The green synthesized Sn-AgNPs can be employed to degrade dye effluents and prevent environmental pollution as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Inhibition of thrombin by functionalized C60 nanoparticles revealed via in vitro assays and in silico studies.

    Science.gov (United States)

    Liu, Yanyan; Fu, Jianjie; Pan, Wenxiao; Xue, Qiao; Liu, Xian; Zhang, Aiqian

    2018-01-01

    The studies on the human toxicity of nanoparticles (NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. However, different from other kinds of NPs, fullerene-based NPs (C 60 NPs) have been found to have an anticoagulation effect, although the potential target is still unknown. In the study, both experimental and computational methods were adopted to gain mechanistic insight into the modulation of thrombin activity by nine kinds of C 60 NPs with diverse surface chemistry properties. In vitro enzyme activity assays showed that all tested surface-modified C 60 NPs exhibited thrombin inhibition ability. Kinetic studies coupled with competitive testing using 3 known inhibitors indicated that six of the C 60 NPs, of greater hydrophobicity and hydrogen bond (HB) donor acidity or acceptor basicity, acted as competitive inhibitors of thrombin by directly interacting with the active site of thrombin. A simple quantitative nanostructure-activity relationship model relating the surface substituent properties to the inhibition potential was then established for the six competitive inhibitors. Molecular docking analysis revealed that the intermolecular HB interactions were important for the specific binding of C 60 NPs to the active site canyon, while the additional stability provided by the surface groups through van der Waals interaction also play a key role in the thrombin binding affinity of the NPs. Our results suggest that thrombin is a possible target of the surface-functionalized C 60 NPs relevant to their anticoagulation effect. Copyright © 2017. Published by Elsevier B.V.

  15. Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies

    Science.gov (United States)

    Jannoo, Kanokwan; Teerapatsakul, Churapa; Punyanut, Adisak; Pasanphan, Wanvimol

    2015-07-01

    Silver nanoparticles (AgNPs) in chitosan (CS) stabilizer were successfully synthesized using electron beam irradiation. The effects of irradiation dose, molecular weight (MW) of CS stabilizer, concentration of AgNO3 precursor and addition of tert-butanol on AgNPs production were studied. The stability of the AgNPs under different temperatures and storage times were also investigated. The AgNPs formation in CS was observed using UV-vis, FT-IR and XRD. The characteristic surface plasmon resonance (SPR) of the obtained AgNPs was around 418 nm. The CS stabilizer and its MW, AgNO3 precursor and irradiation doses are important parameters for the synthesis of AgNPs. The optimum addition of 20% v/v tert-butanol could assist the formation of AgNPs. The AgNPs in CS stabilizer were stable over a period of one year when the samples were kept at 5 °C. The AgNPs observed from TEM images were spherical with an average particle size in the range of 5-20 nm depending on the irradiation doses. The AgNPs in CS solution effectively inhibited the growth of several fungi, i.e., Curvularia lunata, Trichoderma sp., Penicillium sp. and Aspergillus niger, which commonly found on the building surface.

  16. Inhibition of Xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA.

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Yeom

    Full Text Available Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy.

  17. Aqueous zymography screening of matrix metalloproteinase activity and inhibition based on colorimetric gold nanoparticles.

    Science.gov (United States)

    Chuang, Yao-Chen; Huang, Wei-Ting; Chiang, Pin-Hsuan; Tang, Meng-Che; Lin, Chih-Sheng

    2012-02-15

    An optical gold nanoparticles (AuNPs)-based method was fabricated for the rapid detection of matrix metalloproteinase (MMP) activity and screening potential MMP inhibitors without sophisticated instruments. The diagnosis platform was composed of AuNPs, particular MMP substrates and 6-mercapto-1-hexanol (MCH). The functionalized AuNPs were subjected to specific MMP digestion, and the MMP found the substrate on AuNPs, such that the AuNPs lost shelter and MCH increased the attraction force between AuNPs. Consequently, AuNPs aggregation and a color change from red to purple with increasing MMP concentration were observed. The surface plasmon resonance (SPR) of the formed AuNPs allowed for the quantitative detection of MMP activity. A sensitive linear correlation existed between the absorbance and the activity of the MMPs, which ranged from 10 ng/mL to 700 ng/mL in NTTC buffer and plasma samples. The proposed colorimetric method could be accomplished in a homogeneous solution with one-step operation in 30 min and has been successfully applied to the determination of particular MMP activity in plasma samples, in which the results are consistent with substrate zymography. This technology may become a simple platform for parallel screening a number of inhibitors and offer an alternative method to studying the efficiency of inhibitors for suppressing MMP activity. The absorbance ratio at 625 nm and 525 nm (A(625)/A(525)) confirmed the efficiency of the inhibitors as observed in substrate zymography. The IC(50) of ONO-4817 and galardin for MMP-1, MMP-2 and MMP-7 determined by the proposed colorimetric method was similar to the results of substrate zymography. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Pachymic acid modified carbon nanoparticles reduced angiogenesis via inhibition of MMP-3.

    Science.gov (United States)

    Ma, Jun; Liu, Jun; Lu, Chun-Wei; Cai, Ding-Fang

    2015-01-01

    Angiogenesis is a process of new blood vessel generation, which is consistently and robustly correlated with tumor formation, growth, and metastasis. The disruption of angiogenesis, and the imbalanced endothelial remodeling and regression, are the main pathogenesis of malignant tumor. Recently, multi-walled nanotubes (MWNTs) have been proposed as a new tool for drug delivery in cancer treatment, which also displayed anti-angiogenic property. In the present study, we modified MWNTs with pachymic acid (PA) extracted from Heterosmilax chinensis, a traditional Chinese medicine used for cancer treatment, and compared their effects on blood vessel development. MWNTs and PA/MWNTs were evaluated for their influences on chorioallantoic membrane (CAM) vessel morphology and extracellular matrix metalloproteinase-3 (MMP-3) expression, a crucial proteinase associated with tumor metastasis. MWNTs functioned as an inhibitor of forming branch while PA was not able to promote this inhibition. Subsequently, MWNTs suppressed the endothelial cell maturation, accounting for the ceased elongation of CAM blood vessel, while PA/MWNTs increased the suppressive effect, indicating the potential roles of PA in preventing angiogenesis. PA/MWNTs also showed greater anti-angiogenic property as MMP-3 expression in CAM tissue was significantly decreased by PA/MWNTs compared to MWNTs. These results emphasize the anti-angiogenic activities of PA, supporting a new promising therapy for cancer from the perspective of traditional Chinese medicine.

  19. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms

    Directory of Open Access Journals (Sweden)

    Emanuele eZonaro

    2015-06-01

    Full Text Available The present study deals with Se0- and Te0-based nanoparticles bio-synthesized by two selenite- and tellurite-reducing bacterial strains, namely Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1, isolated from polluted sites. We discovered that, by regulating culture conditions and exposure time to the selenite and tellurite oxyanions, differently sized zero-valent Se and Te nanoparticles were produced. The results revealed that these Se0 and Te0 nanoparticles possess antimicrobial and biofilm eradication activity against E. coli JM109, P. aeruginosa PAO1, and S. aureus ATCC 25923. In particular, Se0 nanoparticles exhibited antimicrobial activity at quite low concentrations, below that of selenite. Toxic effects of both Se0 and Te0 nanoparticles can be related to the production of reactive oxygen species upon exposure of the bacterial cultures. Evidence so far achieved suggests that the antimicrobial activity seems to be strictly linked to the dimensions of the nanoparticles: indeed, the highest activity was shown by nanoparticles of smaller sizes. In particular, it is worth noting how the bacteria tested in biofilm mode responded to the treatment by Se0 and Te0 nanoparticles with a susceptibility similar to that observed in planktonic cultures. This suggests a possible exploitation of both Se0 and Te0 nanoparticles as efficacious antimicrobial agents with a remarkable biofilm eradication capacity.

  20. MPEG-CS/Bmi-1RNAi Nanoparticles Synthesis and Its Targeted Inhibition Effect on CD133+ Laryngeal Stem Cells.

    Science.gov (United States)

    Wei, Xudong; He, Jian; Wang, Jingyu; Wang, Wei

    2018-03-01

    Previous studies have confirmed that CD133+ cells in laryngeal tumor tissue have the characteristics of cancer stem cells. Bmi-1 gene expression is central to the tumorigenicity of CD133+ cells. In this study, we tried to develop a new siRNA carrier system using chitosan-methoxypolyethylene nanoparticles (CS-mPEG-NPs) that exhibit higher tumor-targeting ability and enhanced gene silencing efficacy in CD133+ tumor stem cells. It is hoped to block the self-renewal and kill the stem cells of laryngeal carcinoma. The mPEG-CS-Bmi-1RNAi-NPs were synthesized and their characters were checked. The changes in invasion ability and sensitivity to radiotherapy and chemotherapy of CD133+Hep-2 tumor cells were observed after Bmi-1 gene silencing. The mPEG-CS-Bmi-1RNAi-NPs synthesized in this experiment have a regular spherical form, a mean size of 139.70 ±6.40 nm, an encapsulation efficiency of 85.21 ± 1.94%, with drug loading capacity of 18.47 ± 1.83%, as well as low cytotoxicity, providing good protection to the loaded gene, strong resistance to nuclease degradation and high gene transfection efficiency. After Bmi-1 gene silencing, the invasion ability of CD133+ cells was weakened. Co-cultured with paclitaxel, the survival rates of CD133+Bmi-1RNAi cells were lower. After radiotherapy, the mean growth inhibition rate of CD133+/Bmi-1RNAi cells was significantly lower than CD133+ cells. In conclusion, the mPEG-CS nano-carrier is an ideal vector in gene therapy, while silencing the Bmi-1 gene can enhance the sensitivity of CD133+ tumor stem cells to chemoradiotherapy and abate their invasion ability.

  1. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF and Her-2 Protein in the Genesis of Cervical Carcinoma

    Directory of Open Access Journals (Sweden)

    Arshad H. Rahmani

    2018-02-01

    CONCLUSION: The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  2. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jiang Han

    2013-09-01

    Full Text Available Nanoparticle drug delivery (NDDS is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA, to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS. The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR and 1H-nuclear magnetic resonance (1H-NMR. By combining GA-CTS and 5-FU (5-fluorouracil, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time.

  3. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.

    Directory of Open Access Journals (Sweden)

    Yitong J Zhang

    Full Text Available Artemisinin (ART dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs remained tightly associated with liposomal nanoparticles (NPs at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1 declines in a triple negative breast cancer (TNBC cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.

  4. VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy

    DEFF Research Database (Denmark)

    Cao, Renhai; Xue, Yuan; Hedlund, Eva-Maria

    2010-01-01

    . Moreover, blockade of VEGFR1 but not VEGFR2 significantly restores pericyte saturation in mature retinal vessels. Our findings link VEGF and PlGF to cancer-associated retinopathy, reveal the molecular mechanisms of VEGFR1 ligand-mediated retinopathy, and define VEGFR1 as an important target......, and adenoviral vectors ablates pericytes from the mature retinal vasculature through the VEGF receptor 1 (VEGFR1)-mediated signaling pathway, leading to increased vascular leakage. In contrast, we demonstrate VEGF receptor 2 (VEGFR2) is primarily expressed in nonvascular photoreceptors and ganglion cells...

  5. Effects of Chronic Exposure to Sodium Arsenite on Expressions of VEGF and VEGFR2 Proteins in the Epididymis of Rats

    Directory of Open Access Journals (Sweden)

    Dai Yan-Ping

    2017-01-01

    Full Text Available Objective. To study the expressions of VEGF and VEGFR2 at protein level in the epididymis of rats with arsenism. Methods. Forty male Sprague-Dawley rats were randomly divided into four groups: the high dose arsenic infected group (60.0 mg/L in water, the middle dose arsenic infected group (12.0 mg/L in water, the low dose arsenic infected group (2.4 mg/L in water, and the control group (distilled water. Rats were treated with arsenic through drinking water for 6 consecutive months. At the end of the experiment, the average densitometry values of apoptotic cells in epididymis tubules were determined by TUNEL method; the protein and mRNA levels of VEGF and VEGFR2 were observed by immunohistochemistry, Western blot, and real time fluorescent quantitative PCR, respectively. Results. Compared with the control group, in each infected group, the average densitometry values of apoptotic cells in the epididymis tubules were significantly lower. Compared with control group, protein and mRNA levels of VEGF and VEGFR2 in each infected group were obviously declined. The correlations between protein and mRNA levels of VEGF and VEGFR2 were positively exhibited (r = 0.843, 0.869, p < 0.05. Conclusions. Arsenism affects the expressions of VEGF and VEGFR2 in the epididymis of rats and results in apoptosis of pathophysiology of male infertility.

  6. Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation.

    Science.gov (United States)

    Wang, Xiuli; Cui, Fuai; Madhu, Vedavathi; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2011-02-01

    A novel strategy to enhance bone repair is to combine angiogenic factors and osteogenic factors. We combined vascular endothelial growth factor (VEGF) and LIM mineralization protein-1 (LMP-1) by using an internal ribosome entry site to link the genes within a single plasmid. We then evaluated the effects on osteoblastic differentiation in vitro and ectopic bone formation in vivo with a subcutaneously placed PLAGA scaffold loaded with a cloned mouse osteoprogenitor cell line, D1, transfected with plasmids containing VEGF and LMP-1 genes. The cells expressing both genes elevated mRNA expression of RunX2 and β-catenin and alkaline phosphatase activity compared to cells from other groups. In vivo, X-ray and micro-CT analysis of the retrieved implants revealed more ectopic bone formation at 2 and 3 weeks but not at 4 weeks compared to other groups. The results indicate that the combination of the therapeutic growth factors potentiates cell differentiation and may promote osteogenesis.

  7. Angiogenesis in cancer of unknown primary: clinicopathological study of CD34, VEGF and TSP-1

    International Nuclear Information System (INIS)

    Karavasilis, Vasilis; Malamou-Mitsi, Vasiliki; Briasoulis, Evangelos; Tsanou, Elena; Kitsou, Evangelia; Kalofonos, Haralambos; Fountzilas, George; Fotsis, Theodore; Pavlidis, Nicholas

    2005-01-01

    Cancer of unknown primary remains a mallignancy of elusive biology and grim prognosis that lacks effective therapeutic options. We investigated angiogenesis in cancer of unknown primary to expand our knowledge on the biology of these tumors and identify potential therapeutic targets. Paraffin embedded archival material from 81 patients diagnosed with CUP was used. Tumor histology was adenocarcinoma (77%), undifferentiated carcinoma (18%) and squamous cell carcinoma (5%). The tissue expression of CD34, VEGF and TSP-1 was assessed immunohistochemically by use of specific monoclonal antibodies and was analyzed against clinicopathological data. VEGF expression was detected in all cases and was strong in 83%. Stromal expression of TSP-1 was seen in 80% of cases and was strong in 20%. The expression of both proteins was not associated with any clinical or pathological parameters. Tumor MVD was higher in tumors classified as unfavorable compared to more favorable and was positively associated with VEGF and negatively with TSP-1. Angiogenesis is very active and expression of VEGF is almost universal in cancers of unknown primary. These findings support the clinical investigation of VEGF targeted therapy in this clinical setting

  8. Immunohistochemical Expression of VEGF and Podoplanin in Uterine Cervical Squamous Intraepithelial Lesions

    Directory of Open Access Journals (Sweden)

    Patrícia Napoli Belfort-Mattos

    2016-01-01

    Full Text Available VEGF and podoplanin (PDPN have been identified as angiogenesis and/or lymphangiogenesis regulators and might be essential to restrict tumor growth, progression, and metastasis. In the present study, we evaluate the association between the expression of these markers and CIN grade. Immunohistochemistry was performed in 234 uterine cervical samples using conventional histologic sections or TMA with the monoclonal antibodies to VEGF (C-1 clone and podoplanin (D2-40 clone. Positive-staining rates of VEGF in 191 CIN specimens were significantly associated with histological grade (P<0.001. Negative and/or focal immunostaining for PDPN were more frequent in CIN 3 (P=0.016. We found that patients with CIN 3 more frequently had strong and more diffuse staining for VEGF and diminished staining for PDPN (P=0.018. Strong and more diffuse VEGF immunoexpressions in CIN 2 and CIN 3 were detected when compared to CIN 1. Negative and/or focal PDPN immunoexpression appear to be more frequent in CIN 3. Moderate to strong VEGF expression may be a tendency among patients with high-grade lesions and diminished PDPN expression.

  9. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes.

    Science.gov (United States)

    Wassel, Mariem O; Khattab, Mona A

    2017-07-01

    Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.

  10. Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria

    Science.gov (United States)

    The polyol process is a widely used strategy for producing nanoparticles from various reducible metallic precursors; however it requires a bulk polyol liquid reaction with additional protective agents at high temperatures. Here, we report a water-based binary polyol process using low concentrations ...

  11. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  12. Autocrine VEGF and IL-8 Promote Migration via Src/Vav2/Rac1/PAK1 Signaling in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Ju, Li; Zhou, Zhiwen; Jiang, Bo; Lou, Yue; Guo, Xirong

    2017-01-01

    Pro-angiogenic factors VEGF and IL-8 play a major role in modulating the migratory potential of endothelial cells. The goal of this study was to investigate the effect of autocrine VEGF and IL-8 in the form of self-conditioned medium (CM) on human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assay (ELISA) examined the automatic secretion of VEGF and IL-8 protein by HUVECs. Western blot, small interfering RNA (siRNA), pulldown and Transwell assays were used to explore the role and the mechanism of autocrine VEGF and IL-8 in migration of HUVECs. Neutralizing VEGF and IL-8 in CM significantly abrogated CM-induced migration of HUVECs. Autocrine VEGF and IL-8 increased Src phosphorylation, Rac1 activity and PAK1 phosphorylation in a time dependent manner. Additionally, blocking Rac1 activity with Rac1 siRNA largely abolished autocrine VEGF and IL-8-induced cell migration. Vav2 siRNA suppressed autocrine VEGF and IL-8-induced Rac1 activation and cell migration. Furthermore, blocking Src signaling with PP2, a specific inhibitor for Src, markedly prevented autocrine VEGF and IL-8-induced Vav2 and Rac1 activation as well as consequently cell migration. PAK1 siRNA also significantly abolished autocrine VEGF and IL-8-induced cell migration. We demonstrated for the first time that autocrine VEGF and IL-8 promoted endothelial cell migration via the Src/Vav2/Rac1/PAK1 signaling pathway. This finding reveals the molecular mechanism in the increase of endothelial cell migration induced by autocrine growth factors and cytokines, which is expected to provide a novel therapeutic target in vascular diseases. © 2017 The Author(s)Published by S. Karger AG, Basel.

  13. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    Science.gov (United States)

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Study on the correlation between VEGF and peritumoral edema and tumor border in astrocytoma by CT

    International Nuclear Information System (INIS)

    Ye Yuxiang; Tan Siping; Liu Bo; Liu Guorui; Zhen Zhichao; Fan Miao

    2004-01-01

    Objective: To study the correlation between VEGF and peritumoral edema and tumor border in human astrocytoma, investigate the significance of its CT features in molecular-biology. Methods: The VEGF was examined by means of SP immunohistochemical technique in 52 cases of astrocytoma proved by pathology. The correlation of tumor VEGF with peritumoral edema, and tumor border was analyzed. Results: The peritumoral edema, tumor border and mass effect of astrocytoma was positively correlated with its VEGF. The VEGF increased with peritumoral edema and mass effect (P<0.01). VEGF were significantly higher in uncertain border group than those the clear border group (P<0.05), which VEGF were 69.2 ± 19.0. Conclusion: The over expression of VEGF obviously effect CT features in astrocytoma, such as peritumoral edema and tumor border

  15. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours.

    Science.gov (United States)

    Evans, James C; Malhotra, Meenakshi; Sweeney, Katrina; Darcy, Raphael; Nelson, Colleen C; Hollier, Brett G; O'Driscoll, Caitriona M

    2017-10-30

    The main barrier to the development of an effective RNA interference (RNAi) therapy is the lack of a suitable delivery vector. Modified cyclodextrins have emerged in recent years for the delivery of siRNA. In the present study, a folate-targeted amphiphilic cyclodextrin was formulated using DSPE-PEG 5000 -folate to target prostate cancer cells. The fusogenic peptide GALA was included in the formulation to aid in the endosomal release of siRNA. Targeted nanoparticles were less than 200nm in size with a neutral surface charge. The complexes were able to bind siRNA and protect it from serum nucleases. Incubation with excess free folate resulted in a significant decrease in the uptake of targeted nanoparticles in LNCaP and PC3 cells, both of which have been reported to have differing pathways of folate uptake. There was a significant reduction in the therapeutic targets, ZEB1 and NRP1 at mRNA and protein level following treatment with targeted complexes. In preliminary functional assays using 3D spheroids, treatment of PC3 tumours with targeted complexes with ZEB1 and NRP1 siRNA resulted in more compact colonies relative to the untargeted controls and inhibited infiltration into the Matrigel™ layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle.

    Science.gov (United States)

    Roseguini, Bruno T; Mehmet Soylu, S; Whyte, Jeffrey J; Yang, H T; Newcomer, Sean; Laughlin, M Harold

    2010-06-01

    Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (approximately 37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (approximately 30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1alpha mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min).

  17. Therapeutic potential of inhibiting ABCE1 and eRF3 genes via siRNA strategy using chitosan nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, Bagdat Burcu; Asik, Mehmet Dogan [Hacettepe University, Nanotechnology and Nanomedicine Division (Turkey); Kara, Goknur [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey); Turk, Mustafa [Kirikkale University, Bioengineering Department (Turkey); Denkbas, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey)

    2015-04-15

    In recent years, targeted cancer therapy strategies have begun to take the place of the conventional treatments. Inhibition of the specific genes, involved in cancer progress, via small interfering RNA (siRNA) has become one of the promising therapeutic approaches for cancer therapy. However, due to rapid nuclease degradation and poor cellular uptake of siRNA, a suitable carrier for siRNA penetration inside the cells is required. We used chitosan nanoparticles (CS-NPs) to efficiently deliver ATP-binding casette E1 (ABCE1) and eukaryotic release factor 3 (eRF3)-targeting siRNAs, individually and together, to reduce the proliferation and induce the apoptosis of breast cancer cells. The CS-NPs were generated by ionic gelation method using tripolyphosphate (TPP) as a crosslinker. Nanoparticles (NPs) were obtained with diameters ranging between 110 and 230 nm and the zeta potential of approximately 27 mV optimizing the solution pH to 4.5 and CS/TPP mass ratio to 3:1. Loading efficiencies of 98.69 % ± 0.051 and 98.83 % ± 0.047 were achieved when ABCE1 siRNA and eRF3 siRNA were entrapped into the NPs, respectively. Cell proliferation assay demonstrated that siRNA-loaded CS-NPs were more effective on cancer cells when compared to siRNAs without CS-NPs. Parallel results were also obtained by apoptosis/necrosis, double-staining analysis. Within our study, the potency of ABCE1 and eRF3 siRNAs were shown for the first time with this kind of polymeric delivery system. The results also indicated that ABCE1 and eRF3, important molecules in protein synthesis, could serve as effective targets to inhibit the cancer cells.

  18. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma.

    Science.gov (United States)

    Rahmani, Arshad H; Babiker, Ali Yousif; Alsahli, Mohammed A; Almatroodi, Saleh A; Husain, Nazik Elmalaika O S

    2018-02-15

    Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p 0.05). The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  19. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head.

    Science.gov (United States)

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

  20. Down-regulation of ATF2 in the inhibition of T-2-toxin-induced chondrocyte apoptosis by selenium chondroitin sulfate nanoparticles

    Science.gov (United States)

    Han, Jing; Guo, Xiong

    2013-12-01

    Selenium chondroitin sulfate nanoparticles (SeCS) with a size range of 30-200 nm were obtained in our previous study. Meanwhile, the up-regulated expression of ATF2 mRNA and protein levels could be observed in the cartilage from Kashin-Beck disease (KBD) patients. In this paper, we investigated the inhibition effect of SeCS on T-2-toxin-induced apoptosis of chondrocyte from KBD patients. Here, we found that when the chondrocytes were treated with T-2 toxin, the chondrocyte apoptosis performed in a concentration-dependent manner. The apoptosis of chondrocyte induced by T-2 toxin involved the increased levels of ATF2, JNK and p38 mRNAs and related protein expression. SeCS could partly block the T-2-toxin-induced chondrocyte apoptosis by decreasing the expression of ATF2, JNK and p38 mRNAs and p-JNK, p-38, ATF2 and p-ATF2 proteins. JNK and p38 pathways involved in the apoptosis of chondrocyte induced by T-2 toxin, and SeCS was efficient in the inhibition of chondrocyte apoptosis by T-2 toxin. These results suggested that SeCS had a potential for further prevention and treatment for KBD as well as other selenium deficiency disease.

  1. Arsenite-loaded nanoparticles inhibit the invasion and metastasis of a hepatocellular carcinoma: in vitro and in vivo study

    Science.gov (United States)

    Chi, Xiaoqin; Yin, Zhenyu; Jin, Jianbin; Li, Hui; Zhou, Jian; Zhao, Zhenghuan; Zhang, Sheng; Zhao, Wenxiu; Xie, Chengrong; Li, Jie; Feng, Min; Lin, Hongyu; Wang, Xiaomin; Gao, Jinhao

    2017-11-01

    Postoperative recurrence and metastasis are the major problems for the current treatment of hepatocellular carcinomas (HCC) in the clinic, including hepatectomy and liver transplantation. Here, we report that arsentic-loaded nanoparticles (ALNPs) are able to reduce the invasion of HCC cells in vitro, and, more importantly, can strongly suppress the invasion and metastasis of HCC in vivo without adverse side effects. Compared to free drug arsenic trioxide , ALNPs can deliver the drug into cancer cells more efficiently, destroy the structure of microtubules and reduce the aggregation of microfilaments in cell membranes more significantly. Furthermore, our results also reveal that tumor cells in murine blood were reduced remarkably after intravenous injection of ALNPs, indicating that this nano-drug may efficiently kill circulating tumor cells in vivo. In conclusion, our nano-drug ALNPs have great potential for the suppression of metastasis of HCC, which may open up a new avenue for the effective treatment of HCC without metastasis and recurrence.

  2. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.

    Science.gov (United States)

    Wang, Cailian; Zhang, Haijun; Chen, Yan; Shi, Fangfang; Chen, Baoan

    2012-01-01

    E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.

  3. Elevated IGFIR expression regulating VEGF and VEGF-C predicts lymph node metastasis in human colorectal cancer

    International Nuclear Information System (INIS)

    Zhang, Chunhui; Hao, Li; Wang, Liang; Xiao, Yichuan; Ge, Hailiang; Zhu, Zhenya; Luo, Yunbao; Zhang, Yi; Zhang, Yanyun

    2010-01-01

    Insulin-like growth factor-I receptor (IGFIR) has been shown to regulate the tumor development. The objective of the current study is to determine the association of IGFIR with lymph node metastasis and to explore the related mechanism in human colorectal cancer in clinic. In a random series of 98 colorectal cancer patients, the expressions of IGFIR, vascular endothelial growth factor (VEGF) and VEGF-C were investigated by immunohistochemistry, and the association of these expressions with lymph node metastasis was statistically analyzed. The expressions of VEGF and VEGF-C in colorectal cancer cells stimulated with IGF-I were also examined by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Higher rates of IGFIR (46%), VEGF (53%), and VEGF-C (46%) expression were found in colorectal cancer tissues than in normal and colorectal adenoma tissues. These expressions were significantly associated with clinicopathologic factors and lymph node status. We also found the concomitant high expressions of IGFIR/VEGF (P < 0.001) and IGFIR/VEGF-C (P = 0.001) had a stronger correlation with lymph node metastasis than did each alone or both low expressions. In addition, IGF-I could effectively induce the VEGF and VEGF-C mRNA expression and protein secretion in colorectal cancer cells expressing IGFIR molecules. Moreover, Patients who had strong staining for IGFIR, VEGF and VEGF-C showed significantly less favorable survival rates compared with patients who had low staining for these molecules (P < 0.001). The survival rates of patients who were both high expression of IGFIR/VEGF and IGFIR/VEGF-C also were significantly lower compared with patients who were negative or one of high expression of these molecules (P < 0.001). Together the findings indicated for the first time that simultaneous examination of the expressions of IGFIR, VEGF and VEGF-C will benefit the diagnosis of lymph node metastasis in order to assay the

  4. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection

    Directory of Open Access Journals (Sweden)

    Mohammed Fayaz A

    2012-09-01

    anti-HIV activity was primarily mediated by the Ag-NPs, which are associated with the PUC. In addition, the data showed that both macrophage (M-tropic and T lymphocyte (T-tropic strains of HIV-1 were highly sensitive to the Ag-NPs-coated PUC. Furthermore, we also showed that the Ag-NPs-coated PUC was able to inhibit the growth of bacteria and fungi. These results demonstrated that the Ag-NPs-coated PUC is able to directly inactivate the microbe’s infectious ability and provides another defense line against these sexually transmitted microbial infections.Keywords: silver nanoparticles, condom, HIV-1, HSV-1/2, antimicrobial

  5. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO_2 monodisperse nanoparticles mediated through reactive oxygen species

    International Nuclear Information System (INIS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Haider Naqvi, M. Sajjad; Ahmad, Ishaq

    2016-01-01

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO_2 nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO_2 and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO_2 nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO_2 nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO_2 nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO_2 nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO_2 nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  6. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    International Nuclear Information System (INIS)

    Constantino Rosa Santos, Susana; Miguel, Claudia; Domingues, Ines; Calado, Angelo; Zhu Zhenping; Wu Yan; Dias, Sergio

    2007-01-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention

  7. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hu, Bo; Sun, Ding; Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang; Zhu, Qing-Feng; Yang, Xin-Rong; Gao, Ya-Bo; Tang, Wei-Guo; Fan, Jia; Maitra, Anirban

    2015-01-01

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. - Highlights: • Polymeric nanoparticle formulation of curcumin not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. • In combination with sorafenib, NanoCurcumin induced HCC cell apoptosis and cell cycle arrest. • NanoCurcumin and

  8. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Sun, Ding [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Department of Hepatobiliary Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Zhu, Qing-Feng [The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD, 21205 (United States); Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 (China); Yang, Xin-Rong [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Gao, Ya-Bo [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032 (China); Tang, Wei-Guo [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Fan, Jia [Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 (China); Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 (China); Maitra, Anirban [The Sol Goldman Pancreatic Cancer Research Center, Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States); and others

    2015-12-25

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. - Highlights: • Polymeric nanoparticle formulation of curcumin not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. • In combination with sorafenib, NanoCurcumin induced HCC cell apoptosis and cell cycle arrest. • NanoCurcumin and

  9. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell.

    Science.gov (United States)

    Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin

    2014-01-01

    Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.

  10. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  11. Magnetite nanoparticles inhibit tumor growth and upregulate the expression of p53/p16 in Ehrlich solid carcinoma bearing mice.

    Directory of Open Access Journals (Sweden)

    Heba Bassiony

    Full Text Available BACKGROUND: Magnetite nanoparticles (MNPs have been widely used as contrast agents and have promising approaches in cancer treatment. In the present study we used Ehrlich solid carcinoma (ESC bearing mice as a model to investigate MNPs antitumor activity, their effect on expression of p53 and p16 genes as an indicator for apoptotic induction in tumor tissues. METHOD: MNPs coated with ascorbic acid (size: 25.0±5.0 nm were synthesized by co-precipitation method and characterized. Ehrlich mice model were treated with MNPs using 60 mg/Kg day by day for 14 injections; intratumorally (IT or intraperitoneally (IP. Tumor size, pathological changes and iron content in tumor and normal muscle tissues were assessed. We also assessed changes in expression levels of p53 and p16 genes in addition to p53 protein level by immunohistochemistry. RESULTS: Our results revealed that tumor growth was significantly reduced by IT and IP MNPs injection compared to untreated tumor. A significant increase in p53 and p16 mRNA expression was detected in Ehrlich solid tumors of IT and IP treated groups compared to untreated Ehrlich solid tumor. This increase was accompanied with increase in p53 protein expression. It is worth mentioning that no significant difference in expression of p53 and p16 could be detected between IT ESC and control group. CONCLUSION: MNPs might be more effective in breast cancer treatment if injected intratumorally to be directed to the tumor tissues.

  12. Aurora kinase inhibitors attached to iron oxide nanoparticles enhances inhibition of the growth of liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiquan [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Xie, Li [Southeast University, Zhongda Hospital, School of Medicine (China); Zheng, Ming; Yao, Juan [Jiangsu Chai Tai Tianqing Pharmaceutical Co. Ltd. (China); Song, Lina [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Chang, Weiwei [Jiangsu Chai Tai Tianqing Pharmaceutical Co. Ltd. (China); Zhang, Yu; Ji, Min, E-mail: minji888@hotmail.com; Gu, Ning, E-mail: guning@seu.edu.cn [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Zhan, Xi, E-mail: zhan01@gmail.com [University of Maryland School of Medicine, The Center of Vascular and Inflammatory Diseases, The Department of Pathology (United States)

    2015-06-15

    We have developed a novel Aurora kinase inhibitor (AKI) AM-005, an analogue of pan-AKI AT-9283. To improve the intracellular efficacy of AM-005 and AT-9283, we utilized magnetite nanoparticles (NPs) to deliver AM-005 and AT-9283 into human SMMC-7721 and HepG2 liver cancer cells. The drug-loaded NPs were prepared through quasi-emulsion solvent diffusion of magnetite NPs with AM-005 or AT-9283. The encapsulated drugs were readily released from NPs, preferentially at low pHs. Upon exposure, cancer cells effectively internalized drug-loaded NPs into lysosome-like vesicles, which triggered a series of cellular changes, including the formation of enlarged cytoplasm, the significant increase of membrane permeability, and the generation of reactive oxygen species (ROS). The increased ROS synthesis sustained over 72 h, whereas that in the cells treated with free-form drugs declined rapidly after 48 h. However, chemical sequestration of the iron core of NPs had a minor influence on the generation of intracellular ROS. On the other hand, uncoupling of AM-005 uptake with NP internalization into cells failed to induce ROS synthesis. Overall, our approach achieved two-fold increase in suppressing the viability of tumor cells in vitro and the growth of tumors in vivo. We conclude that magnetite NPs can be used as pH responsive nanocarriers that are able to improve the efficacy of AKIs.

  13. Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin

    Directory of Open Access Journals (Sweden)

    Fan W

    2014-11-01

    Full Text Available Wei Fan,1,* Daming Wu,1,* Franklin R Tay,2 Tengjiao Ma,1 Yujie Wu,1 Bing Fan1 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China; 2Department of Endodontics, Georgia Regents University, Augusta, Georgia, USA *These authors contributed equally to this work Abstract: Mesoporous calcium-silicate nanoparticles (MCSNs are advanced biomaterials for controlled drug delivery and mineralization induction. Nanosilver-incorporated MCSNs (Ag-MCSNs were prepared in the present study using both the adsorption and template methods. Both versions of Ag-MCSNs showed characteristic morphology of mesoporous materials and exhibited sustained release of ions over time. In antibacterial testing against planktonic Enterococcus faecalis, Ag-MCSNs showed significantly better antibacterial effects when compared with MCSNs (P<0.05. The Ag-MCSNs aggregated on the dentin surface of root canal walls and infiltrated into dentinal tubules after ultrasound activation, significantly inhibiting the adherence and colonization of E. faecalis on dentin (P<0.05. Despite this, Ag-MCSNs with templated nanosilver showed much lower cytotoxicity than Ag-MCSNs with adsorbed nanosilver (P<0.05. The results of the present study indicated that nanosilver could be incorporated into MCSNs using the template method. The templated nanosilver could release silver ions and inhibit the growth and colonization of E. faecalis both in the planktonic form and as biofilms on dentin surfaces as absorbed nanosilver. Templated Ag-MCSNs may be developed into a new intracanal disinfectant for root canal disinfection due to their antibacterial ability and low cytotoxicity, and as controlled release devices for other bioactive molecules to produce multifunctional biomaterials. Keywords: antibacterial effect, mesoporosity

  14. Clinical significance of determination of serum TNF-α, VEGF and TSGF levels after treatment in patients with aplastic anemia

    International Nuclear Information System (INIS)

    Hu Mingqiu; Xu Yanli

    2009-01-01

    Objective: To explore the clinical significance changes of serum TNF-α, VEGF and TSGF levels after treatment in patients with aplastic Anemia. Methods: Serum TNF-α(with RIA), VEGF(with ELISA) and TSGF(with biochemistry) levels were determined in 33 patients with aplastic anemia both before and after treatment and 35 controls. Results: Before treatment, the serum TNF-α, TSGF levels were significantly higher in the patients than those in controls (P<0.01), but serum VEGF levels were significantly lower in the patients (P<0.01). Serum TNF-α, TSGF levels were negatively correlated with levels of VEGF(r=-0.5192, -0.6018, P<0.01). After a course of treatment, the serum TNF-α, VEGF and TSGF levels, though corrected markedly, remained significantly different from those in controls (P<0.05). Conclusion: Determination of serum TNF-α, VEGF and TSGF levels after treatment might be of prognostic importance in patients with aplastic anemia. (authors)

  15. Ligand-receptor assay for evaluation of functional activity of human recombinant VEGF and VEGFR-1 extracellular fragment.

    Science.gov (United States)

    Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Shein, S A; Grinenko, N F; Pavlov, K A; Ryabukhin, I A; Chekhonin, V P

    2012-04-01

    cDNA encoding VEGF and Ig-like extracellular domains 2-4 of VEGFR-1 (sFlt-1(2-4)) were cloned into prokaryotic expression vectors pET32a and pQE60. Recombinant proteins were purified (metal affinity chromatography) and renatured. Chemiluminescent study for the interaction of recombinant VEGF and sFlt-1(2-4) showed that biotinylated VEGF specifically binds to the polystyrene-immobilized receptor extracellular fragment. Biotinylated recombinant sFlt-1 interacts with immobilized VEGF. Analysis of the interaction of immobilized recombinant VEGFR-1 and VEGF with C6 glioma cells labeled with CFDA-SE (vital fluorescent dye) showed that recombinant VEGFR-1 also binds to native membrane-associated VEGF. Recombinant VEGF was shown to bind to specific receptors expressed on the surface of C6 glioma cells. Functional activity of these proteins was confirmed by ligand-receptor assay for VEGF and VEGFR-1 (sFlt-1) and quantitative chemiluminescent detection.

  16. Magnetite (Fe3O4 Nanoparticles Alleviate Growth Inhibition and Oxidative Stress Caused by Heavy Metals in Young Seedlings of Cucumber (Cucumis Sativus L

    Directory of Open Access Journals (Sweden)

    Konate Alexandre

    2017-01-01

    Full Text Available Accumulation of heavy metals in the ecosystem and their toxic effects through food chain can cause serious ecological and health problems. In the present study, experiments were performed to understand how the addition of magnetite (Fe3O4 nanoparticles reduces the toxicity caused by Cd, Pb, Cu, and Zn in cucumber plants. Plant growth parameters, lipid peroxidation, and antioxidant enzymes were measured in seedling samples treated with either metals or metals supplemented with Fe3O4 to demonstrate the reduction in metal-induced oxidative stress conferred by Fe3O4. Results showed that the toxic effect of metals on seedling growth parameters can be arranged in the rank order of inhibition as follows: Cu > Cd > Zn > Pb. Exposure to metals significantly decreased the seedlings growth, the activities of superoxide dismutase (SOD and peroxidases (POD, while the malondialdehyde (MDA content significantly increased in cucumber seedlings. The reducing activity of nano-Fe3O4 against heavy metals stresses was confirmed in this study by the decrease in MDA content. The correlation between the decrease of MDA concentration and the increase in SOD and POD activities in the presence of nano-Fe3O4 suggest that the MDA reduction in the tested seedlings can result from the increased enzyme activity.

  17. Novel Arsenic Nanoparticles Are More Effective and Less Toxic than As (III) to Inhibit Extracellular and Intracellular Proliferation of Leishmania donovani

    Science.gov (United States)

    Chakraborty, Sudipta; Bhar, Kaushik; Saha, Sandip; Chakrabarti, Rajarshi; Pal, Anjali

    2014-01-01

    Visceral leishmaniasis, a vector-borne tropical disease that is threatening about 350 million people worldwide, is caused by the protozoan parasite Leishmania donovani. Metalloids like arsenic and antimony have been used to treat diseases like leishmaniasis caused by the kinetoplastid parasites. Arsenic (III) at a relatively higher concentration (30 μg/mL) has been shown to have antileishmanial activity, but this concentration is reported to be toxic in several experimental mammalian systems. Nanosized metal (0) particles have been shown to be more effective than their higher oxidation state forms. There is no information so far regarding arsenic nanoparticles (As-NPs) as an antileishmanial agent. We have tested the antileishmanial properties of the As-NPs, developed for the first time in our laboratory. As-NPs inhibited the in vitro growth, oxygen consumption, infectivity, and intramacrophage proliferation of L. donovani parasites at a concentration which is about several fold lower than that of As (III). Moreover, this antileishmanial activity has comparatively less cytotoxic effect on the mouse macrophage cell line. It is evident from our findings that As-NPs have more potential than As (III) to be used as an antileishmanial agent. PMID:25614827

  18. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    DEFF Research Database (Denmark)

    Müller, Hanna; Nagel, Christian; Weiss, Christel

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well...... as with DMBT1 levels. To examine the effect of DMBT1 on VEGF and IL-6 expression we compared type II lung epithelial A549 cells stably transfected with a DMBT1 expression plasmid (DMBT1+ cells) to A549 cells stably transfected with an empty expression plasmid (DMBT1- cells). The concentrations of VEGF and IL-6...... that DMBT1 promotes VEGF and suppresses IL-6 production in alveolar tissues, which could point to DMBT1 having a possible role in the transition from inflammation to regeneration and being a potentially useful clinical marker....

  19. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization

    Science.gov (United States)

    Chang, Che-Yi; Wang, Ming-Chen; Miyagawa, Takuya; Chen, Zhi-Yu; Lin, Feng-Huei; Chen, Ko-Hua; Liu, Guei-Sheung; Tseng, Ching-Li

    2017-01-01

    Neovascularization (NV) of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG), presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine–glycine–aspartic acid (RGD) peptide–hyaluronic acid (HA)-conjugated complex coating on the gelatin/EGCG self-assembly nanoparticles (GEH-RGD NPs) was synthesized for targeting the αvβ3 integrin on human umbilical vein endothelial cells (HUVECs) in this study, and a corneal NV mouse model was used to evaluate the therapeutic effect of this nanomedicine used as eyedrops. HA-RGD conjugation via COOH and amine groups was confirmed by 1H-nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average diameter of GEH-RGD NPs was 168.87±22.5 nm with positive charge (19.7±2 mV), with an EGCG-loading efficiency up to 95%. Images of GEH-RGD NPs acquired from transmission electron microscopy showed a spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin αvβ3. In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 μg/mL) when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV

  20. VEGF and IHH rescue definitive hematopoiesis in Gata-4 and Gata-6-deficient murine embryoid bodies.

    Science.gov (United States)

    Pierre, Monique; Yoshimoto, Momoko; Huang, Lan; Richardson, Matthew; Yoder, Mervin C

    2009-09-01

    Murine embryonic stem cells can be differentiated into embryoid bodies (EBs), which serve as an in vitro model recapitulating many aspects of embryonic yolk sac hematopoiesis. Differentiation of embryonic stem cells deficient in either Gata-4 or Gata-6 results in EBs with disrupted visceral endoderm (VE). While lack of VE has detrimental effects on hematopoiesis in vivo, it is unclear whether lack of VE affects hematopoiesis in EBs. Therefore, we compared Gata-4 null (G4N) and Gata-6 null (G6N) EBs with wild-type EBs to assess their ability to commit to hematopoietic cells. EB VE formation was examined using cell-sorting techniques and analysis visceral endoderm gene expression. Hematopoietic progenitor potential of EBs cultured under various conditions was assessed using colony-forming assays. Definitive erythroid, granulocyte-macrophage, and mixed colonies were significantly reduced in G4N and G6N EBs compared to wild-type EBs. Vascular endothelial growth factor (VEGF) expression and secretion were also reduced in both G4N and G6N EBs, consistent with VE serving as a site of VEGF production. Addition of exogenous VEGF(165), to EB cultures completely rescued definitive colony-forming cells in G4N and G6N EBs. This rescue response could be blocked by addition of soluble Flk-1 Fc to EB cultures. Similarly, addition of exogenous Indian hedgehog to EB cultures also recovers the diminishment in definitive hematopoiesis in a reversible manner. These results suggest that the absence of VE in G4N and G6N EBs does not prevent emergence of definitive progenitors from EBs. However, the decreased level of VEGF and Indian hedgehog production in VE devoid G4N and G6N EBs attenuates definitive hematopoietic progenitor cell expansion.

  1. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome.

    Directory of Open Access Journals (Sweden)

    Takahisa Furuta

    Full Text Available BACKGROUND: Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase and -related cytokines (IL-4, -9, and -17 between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF, Dengue hemorrhagic fever (DHF, and Dengue shock syndrome (DSS, as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS: As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.

  2. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO{sub 2} monodisperse nanoparticles mediated through reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Fazal; Jan, Tariq [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Haider Naqvi, M. Sajjad [Department of Biochemistry, University of Karachi, Karachi (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan)

    2016-04-15

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO{sub 2} nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO{sub 2} and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO{sub 2} nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO{sub 2} nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO{sub 2} nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO{sub 2} nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO{sub 2} nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  3. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    International Nuclear Information System (INIS)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-01-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  4. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Chang, Long-Sen, E-mail: lschang@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  5. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  6. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles.

    Science.gov (United States)

    Liu, Qin; Li, Ru-Tian; Qian, Han-Qing; Wei, Jia; Xie, Li; Shen, Jie; Yang, Mi; Qian, Xiao-Ping; Yu, Li-Xia; Jiang, Xi-Qun; Liu, Bao-Rui

    2013-09-01

    Cancer stem cells (CSCs) are recently discovered as vital obstacles for the successful cancer therapy. Emerging evidences suggest that miR-200c functions as an effective CSCs inhibitor and can restore sensitivity to microtubule-targeting drugs. In the present work, the intelligent gelatinases-stimuli nanoparticles (NPs) was set up to co-deliver miR-200c and docetaxel (DOC) to verify their synergetic effects on inhibition of CSCs and non-CSC cancer cells. After tumor cells were treated with miR-200c NPs, miR-200c and its targeted gene class III beta-tubulin (TUBB3)TUBB3 expression were evaluated. The effects of miR-200c/DOC NPs on tumor cell viability, migration and invasion as well as the expression of E-cadherin and CD44 were studied. The antitumor effects of miR-200c/DOC NPs were compared with DOC NPs in xenograft gastric cancer mice. Moreover, the residual tumors after treatment were subcutaneously seeded into nude mice to further investigate the effective maintenance of NPs. We found that the gelatinases-stimuli NPs facilitated miR-200c into cells, achieving sustained miR-200c expression in tumor cells during 9 days. The miR-200c/DOC NPs significantly enhanced cytotoxicity of DOC, possibly by decreasing TUBB3 level, and reversing EMT. The miR-200c NPs achieved high levels of in vivo accumulation and long retention in gastric cancer xenografts after intravenous administration. The miR-200c/DOC NPs prominently suppressed in vivo tumor growth with elevated miR-200c and E-cadherin levels and down-regulated TUBB3 and CD44 expressions. When the residual tumors after miR-200c/DOC NPs treatment were re-transplanted into nude mice, the tumors demonstrated the slowest growth speed. The miR-200c/DOC NPs may provide a promising modality for co-delivery of nucleic acid and drugs to simultaneously inhibit CSCs and non-CSC cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study.

    Science.gov (United States)

    Scartozzi, Mario; Faloppi, Luca; Svegliati Baroni, Gianluca; Loretelli, Cristian; Piscaglia, Fabio; Iavarone, Massimo; Toniutto, Pierluigi; Fava, Giammarco; De Minicis, Samuele; Mandolesi, Alessandra; Bianconi, Maristella; Giampieri, Riccardo; Granito, Alessandro; Facchetti, Floriana; Bitetto, Davide; Marinelli, Sara; Venerandi, Laura; Vavassori, Sara; Gemini, Stefano; D'Errico, Antonietta; Colombo, Massimo; Bolondi, Luigi; Bearzi, Italo; Benedetti, Antonio; Cascinu, Stefano

    2014-09-01

    Although new treatment modalities changed the global approach to hepatocellular carcinoma (HCC), this disease still represents a medical challenge. Currently, the therapeutic stronghold is sorafenib, a tyrosine kinase inhibitor (TKI) directed against the vascular endothelial growth factor (VEGF) family. Previous observations suggested that polymorphisms of VEGF and its receptor (VEGFR) genes may regulate angiogenesis and lymphangiogenesis and thus tumour growth control. The aim of our study was to evaluate the role of VEGF and VEGFR polymorphisms in determining the clinical outcome of HCC patients receiving sorafenib. From a multicentre experience 148 samples (tumour or blood samples) of HCC patients receiving sorafenib were tested for VEGF-A, VEGF-C and VEGFR-1,2,3 single nucleotide polymorphisms (SNPs). Patients' progression-free survival (PFS) and overall survival (OS) were analysed. At univariate analysis VEGF-A alleles C of rs25648, T of rs833061, C of rs699947, C of rs2010963, VEGF-C alleles T of rs4604006, G of rs664393, VEGFR-2 alleles C of rs2071559, C of rs2305948 were significant predictors of PFS and OS. At multivariate analysis rs2010963, rs4604006 and BCLC (Barcelona Clinic Liver Cancer) stage resulted to be independent factors influencing PFS and OS. Once prospectively validated, the analysis of VEGF and VEGFR SNPs may represent a clinical tool to better identify HCC patients more likely to benefit from sorafenib. On the other hand, the availability of more accurate predictive factors could help avoiding unnecessary toxicities to potentially resistant patients who may be optimal candidates for different treatments interfering with other tumour molecular pathways. © 2014 UICC.

  8. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization

    Directory of Open Access Journals (Sweden)

    Chang CY

    2016-12-01

    Full Text Available Che-Yi Chang,1,2,* Ming-Chen Wang,2,* Takuya Miyagawa,1 Zhi-Yu Chen,1 Feng-Huei Lin,3,4 Ko-Hua Chen,5,6 Guei-Sheung Liu,7 Ching-Li Tseng1 1Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 2Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, 3Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, 4Institute of Biomedical Engineering, National Taiwan University, 5Department of Ophthalmology, Taipei Veterans General Hospital, 6Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; 7Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia *These authors contributed equally to this work Abstract: Neovascularization (NV of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG, presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine–glycine–aspartic acid (RGD peptide–hyaluronic acid (HA-conjugated complex coating on the gelatin/EGCG self-assembly nanoparticles (GEH-RGD NPs was synthesized for targeting the αvβ3 integrin on human umbilical vein endothelial cells (HUVECs in this study, and a corneal NV mouse model was used to evaluate the therapeutic effect of this nanomedicine used as eyedrops. HA-RGD conjugation via COOH and amine groups was confirmed by 1H-nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average diameter of GEH-RGD NPs was 168.87±22.5 nm with positive charge (19.7±2 mV, with an EGCG-loading efficiency up to 95%. Images of GEH-RGD NPs acquired from transmission electron microscopy showed a

  9. Effects of EG-VEGF, VEGF and TGF-β1 on pregnancy outcome in patients undergoing IVF-ET treatment.

    Science.gov (United States)

    Gao, Min-zhi; Zhao, Xiao-ming; Lin, Yi; Sun, Zhao-gui; Zhang, Hui-qin

    2012-10-01

    To investigate the correlation of endocrine gland-derived vascular endothelial growth factor (EG-VEGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGF-β1) with the corresponding reproductive outcome in patients who received in vitro fertilization-embryo transfer (IVF-ET). Sixty-seven women undergoing IVF-ET at a university tertiary hospital were recruited for a prospective study. Concentrations of EG-VEGF, VEGF and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA) in follicular fluid (FF) collected during oocyte retrieval (OR) and in serum collected 2 days after OR. In FF, concentrations of both EG-VEGF and VEGF were negatively correlated with peak E2 and the number of MII oocytes retrieved, and positively correlated with each other. In serum, concentrations of all the three growth factors were positively correlated with the rate of good quality embryo, and with one another. Patients in the pregnancy group had lower peak E2 concentrations and higher serum EG-VEGF concentrations than those in the non-pregnancy group, but such tendency was not observed in the case of VEGF and TGF-β1. Both concentrations of EG-VEGF and VEGF in FF were negatively correlated with ovarian response and oocyte maturation. Concentrations of all the three growth factors in serum were positively correlated with embryo quality, but only serum concentrations of EG-VEGF were associated with the pregnancy outcome.

  10. An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL nanoparticles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion

    Directory of Open Access Journals (Sweden)

    Xu H

    2013-12-01

    Full Text Available Huae Xu,1,2 Zhibo Hou,3 Hao Zhang,4 Hui Kong,2 Xiaolin Li,4 Hong Wang,2 Weiping Xie21Department of Pharmacy, 2Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China; 3First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, People's Republic of China; 4Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of ChinaAbstract: Earlier studies have demonstrated the promising antitumor effect of tetrandrine (Tet against a series of cancers. However, the poor solubility of Tet limits its application, while its hydrophobicity makes Tet a potential model drug for nanodelivery systems. We report on a simple way of preparing drug-loaded nanoparticles formed by amphiphilic poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL copolymers with Tet as a model drug. The mean diameters of Tet-loaded PVP-b-PCL nanoparticles (Tet-NPs were between 110 nm and 125 nm with a negative zeta potential slightly below 0 mV. Tet was incorporated into PVP-b-PCL nanoparticles with high loading efficiency. Different feeding ratios showed different influences on sizes, zeta potentials, and the drug loading efficiencies of Tet-NPs. An in vitro release study shows the sustained release pattern of Tet-NPs. It is shown that the uptake of Tet-NPs is mainly mediated by the endocytosis of nanoparticles, which is more efficient than the filtration of free Tet. Further experiments including fluorescence activated cell sorting and Western blotting indicated that this Trojan strategy of delivering Tet in PVP-b-PCL nanoparticles via endocytosis leads to enhanced induction of apoptosis in the non-small cell lung cancer cell A549 line; enhanced apoptosis is achieved by inhibiting the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, Tet-NPs more efficiently inhibit the ability of cell migration and

  11. Growth Inhibition of Re-Challenge B16 Melanoma Transplant by Conjugates of Melanogenesis Substrate and Magnetite Nanoparticles as the Basis for Developing Melanoma-Targeted Chemo-Thermo-Immunotherapy

    Directory of Open Access Journals (Sweden)

    Tomoaki Takada

    2009-01-01

    Full Text Available Melanogenesis substrate, N-propionyl-cysteaminylphenol (NPrCAP, is selectively incorporated into melanoma cells and inhibits their growth by producing cytotoxic free radicals. Magnetite nanoparticles also disintegrate cancer cells and generate heat shock protein (HSP upon exposure to an alternating magnetic field (AMF. This study tested if a chemo-thermo-immunotherapy (CTI therapy strategy can be developed for better management of melanoma by conjugating NPrCAP on the surface of magnetite nanoparticles (NPrCAP/M. We examined the feasibility of this approach in B16 mouse melanoma and evaluated the impact of exposure temperature, frequency, and interval on the inhibition of re-challenged melanoma growth. The therapeutic protocol against the primary transplanted tumor with or without AMF exposure once a day every other day for a total of three treatments not only inhibited the growth of the primary transplant but also prevented the growth of the secondary, re-challenge transplant. The heat-generated therapeutic effect was more significant at a temperature of 43∘C than either 41∘C or 46∘C. NPrCAP/M with AMF exposure, instead of control magnetite alone or without AMF exposure, resulted in the most significant growth inhibition of the re-challenge tumor and increased the life span of the mice. HSP70 production was greatest at 43∘C compared to that with 41∘C or 46∘C. CD+T cells were infiltrated at the site of the re-challenge melanoma transplant.

  12. Clinical significance of estimation of changes in serum SF, VEGF and HGF levels and after transfusion of red blood cells in patients with chronic nephritis

    International Nuclear Information System (INIS)

    Mu Peidong; He Haoming

    2011-01-01

    Objective: To observe the changes of serum SF, VEGF and HGF levels and after transfusion of red blood cells (RBC) in patients with chronic nephritis. Methods: Serum SF (with RIA) and serum VEGF, HGF (with ELISA) levels were measured in 30 patients with chronic nephritis both before and after a course of transfusion of RBC and 35 controls. Results: Before transfusion the serum SF levels in the patients were significantly lower than those in controls (P 0.05). Conclusion: Determination of serum SF, VEGF and HGF levels were clinically useful for the progress, prognosis and judgement of chronic nephritis. (authors)

  13. Overexpression of LncRNA AC067945.2 Down-Regulates Collagen Expression in Skin Fibroblasts and Possibly Correlates with the VEGF and Wnt Signalling Pathways.

    Science.gov (United States)

    Chen, Ling; Li, Jingyun; Li, Qian; Li, Xue; Gao, Yanli; Hua, Xiangdong; Zhou, Bei; Li, Jun

    2018-01-01

    Long non-coding RNAs (lncRNAs) are thought to play crucial roles in human diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly understood. Utilizing qRT-PCR, we explored the expression changes of AC067945.2. Overexpression of AC067945.2 in normal skin fibroblasts was performed by transient plasmid transfection. Western blot was used to check the proteins' expression changes. Cell Counting Kit-8 (CCK-8) assay and Annexin V/7-AAD staining were used to examine cell proliferation and apoptosis, respectively. mRNA-seq was applied to dissect the differentially expressed mRNAs in AC067945.2 overexpressed cells. We also performed ELISA to detect the VEGF secretion. AC067945.2 was down-regulated in hypertrophic scar tissues. Overexpression of AC067945.2 did not affect cell proliferation, but it mildly promoted early apoptosis in normal skin fibroblasts. Furthermore, AC067945.2 overexpression inhibited the expression of COL1A1, COL1A2, COL3A1 and α-SMA proteins. Transforming growth factor-β1 (TGF-β1) could inhibit the expression of AC067945.2. Based on mRNA-seq data, compared with mRNAs in the control group, 138 mRNAs were differentially expressed, including 14 up-regulated and 124 down-regulated transcripts, in the AC067945.2 overexpression group. Gene ontology and pathway analyses revealed that AC067945.2 overexpression was correlated with developmental processes, binding, extracellular region, and the vascular endothelial cell growth factor (VEGF) and Wnt signalling pathways. ELISA confirmed that AC067945.2 overexpression could repress VEGF secretion. Taken together, our data uncovered the functions of a novel lncRNA AC067945.2, which might help us understand the mechanisms regulated by AC067945.2 in the pathogenesis of hypertrophic scar formation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chun-Hsu [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Kuo, Yueh-Hsiung, E-mail: kuoyh@mail.cmu.edu.tw [Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Wu, Chieh-Hsi, E-mail: chhswu@tmu.edu.tw [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  15. Effect of intensive insulin therapy on macular biometrics, plasma VEGF and its soluble receptor in newly diagnosed diabetic patients.

    Science.gov (United States)

    Hernández, Cristina; Zapata, Miguel A; Losada, Eladio; Villarroel, Marta; García-Ramírez, Marta; García-Arumí, José; Simó, Rafael

    2010-07-01

    To evaluate whether intensive insulin therapy leads to changes in macular biometrics (volume and thickness) in newly diagnosed diabetic patients with acute hyperglycaemia and its relationship with serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor (sFlt-1). Twenty-six newly diagnosed diabetic patients admitted to our hospital to initiate intensive insulin treatment were prospectively recruited. Examinations were performed on admission (day 1) and during follow-up (days 3, 10 and 21) and included a questionnaire regarding the presence of blurred vision, standardized refraction measurements and optical coherence tomography. Plasma VEGF and sFlt-1 were assessed by ELISA at baseline and during follow-up. At study entry seven patients (26.9%) complained of blurred vision and five (19.2%) developed burred vision during follow-up. Macular volume and thickness increased significantly (p = 0.008 and p = 0.04, respectively) in the group with blurred vision at day 3 and returned to the baseline value at 10 days. This pattern was present in 18 out of the 24 eyes from patients with blurred vision. By contrast, macular biometrics remained unchanged in the group without blurred vision. We did not detect any significant changes in VEGF levels during follow-up. By contrast, a significant reduction of sFlt-1 was observed in those patients with blurred vision at day 3 (p = 0.03) with normalization by day 10. Diabetic patients with blurred vision after starting insulin therapy present a significant transient increase in macular biometrics which is associated with a decrease in circulating sFlt-1. Copyright (c) 2010 John Wiley & Sons, Ltd.

  16. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    Science.gov (United States)

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  17. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension.

    Science.gov (United States)

    Li, Liwen; Pan, Hao; Wang, Handong; Li, Xiang; Bu, Xiaomin; Wang, Qiang; Gao, Yongyue; Wen, Guodao; Zhou, Yali; Cong, Zixiang; Yang, Youqing; Tang, Chao; Liu, Zhengwei

    2016-11-21

    Venous hypertension(VH) plays an important role in the pathogenesis of cerebral arteriovenous malformations (AVMs) and is closely associated with the HIF-1α/VEGF signaling pathway. Nuclear factor erythroid 2-related factor 2(Nrf2) significantly influences angiogenesis; however, the interplay between Nrf2 and VEGF under VH in brain AVMs remains unclear. Therefore, our study aimed to investigate the interplay between Nrf2 and VEGF due to VH in brain AVMs. Immunohistochemistry indicated that Nrf2 and VEGF were highly expressed in human brain AVM tissues. In vivo, we established a VH model in both wild-type (WT) and siRNA-mediated Nrf2 knockdown rats. VH significantly increased the expression of Nrf2 and VEGF. Loss of Nrf2 markedly inhibited the upregulation of VEGF, as determined by Western blot analysis and qRT-PCR. In vitro, primary brain microvascular endothelial cells (BMECs) were isolated from WT and Nrf2 -/- mice, and a VEGF-Nrf2 positive feed-back loop was observed in BMECs. By trans well assay and angiogenesis assay, Nrf2 knockout significantly inhibited the migration and vascular tube formation of BMECs. These findings suggest that the interplay between Nrf2 and VEGF can contribute to VH-induced angiogenesis in brain AVMs pathogenesis.

  18. Self-assembling nanoparticles encapsulating zoledronic acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Borghese, C.; Casagrande, N.; Pivetta, E.; Colombatti, A.; Boccellino, M.; Amler, Evžen; Normanno, N.; Caraglia, M.; de Rosa, G.; Aldinucci, D.

    2017-01-01

    Roč. 8, č. 26 (2017), s. 42926-42938 ISSN 1949-2553 Institutional support: RVO:68378041 Keywords : zoledronic acid * self-assembling nanoparticles * mesenchymal stromal cells * prostate cancer * tumor microenvironment Subject RIV: FP - Other Medical Disciplines OBOR OECD: Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction) Impact factor: 5.168, year: 2016

  19. Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138–  CD34– tumor stem-like cells in multiple myeloma-bearing mice

    Directory of Open Access Journals (Sweden)

    Yang C

    2013-04-01

    Full Text Available Cuiping Yang,1,3,* Jing Wang,2,* Dengyu Chen,1,* Junsong Chen,1 Fei Xiong,4 Hongyi Zhang,1 Yunxia Zhang,2 Ning Gu,4 Jun Dou11Department of Pathogenic Biology and Immunology, Medical School, 2Department of Gynecology and Obstetrics, Zhongda Hospital, Southeast University, Nanjing, 3Department of Pathogenic Biology and Immunology, School of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 4School of Biological Science and Medical Engineering, Southeast University, Nanjing, People’s Republic of China*These authors contributed equally to this workBackground: There is growing evidence that CD138– CD34– cells may actually be tumor stem cells responsible for initiation and relapse of multiple myeloma. However, effective drugs targeted at CD138– CD34– tumor stem cells are yet to be developed. The purpose of this study was to investigate the inhibitory effect of paclitaxel-loaded Fe3O4 nanoparticles (PTX-NPs on CD138– CD34– tumor stem cells in multiple myeloma-bearing mice.Methods: CD138– CD34– cells were isolated from a human U266 multiple myeloma cell line using an immune magnetic bead sorting method and then subcutaneously injected into mice with nonobese diabetic/severe combined immunodeficiency to develop a multiple myeloma-bearing mouse model. The mice were treated with Fe3O4 nanoparticles 2 mg/kg, paclitaxel 4.8 mg/kg, and PTX-NPs 0.64 mg/kg for 2 weeks. Tumor growth, pathological changes, serum and urinary interleukin-6 levels, and molecular expression of caspase-3, caspase-8, and caspase-9 were evaluated.Results: CD138– CD34– cells were found to have tumor stem cell characteristics. All the mice developed tumors in 40 days after injection of 1 × 106 CD138– CD34– tumor stem cells. Tumor growth in mice treated with PTX-NPs was significantly inhibited compared with the controls (P <  0.005, and the groups that received nanoparticles alone (P < 0.005 or paclitaxel alone (P < 0.05. In addition

  20. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.

    Science.gov (United States)

    Schiavo, S; Oliviero, M; Miglietta, M; Rametta, G; Manzo, S

    2016-04-15

    The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release into the aquatic environment where algae represent the basis of the trophic chain. NP effects upon algae population growth were indeed already reported in literature, but the concurrent effects at cellular and genomic levels are still largely unexplored. Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production and cell viability) of ZnO nanoparticles toward marine microalgae Dunaliella tertiolecta. A comparison at defined population growth inhibition levels (i.e. 50% Effect Concentration, EC50, and No Observed Effect Concentration, NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al., 2015) was performed in order to elucidate the possible diverse mechanisms leading to algae growth inhibition. After 72h exposure, ZnO particles act firstly at the level of cell division inhibition (EC50: 2mg Zn/L) while the genotoxic action is evident only starting from 5mg Zn/L. This outcome could be ascribable mainly to the release of toxic ions from the aggregate of ZnO particle in the proximity of cell membrane. In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic effect with respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with TiO2 and SiO2 that showed similar MI values at both NOEC and EC50 concentrations. The results presented herein suggest that up to TiO2 NOEC (7.5mg/L), the algae DNA repair mechanism is efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend for SiO2, although at lower effect level with respect to TiO2, is observable. The comparison among all the tested nanomaterial toxicity patterns highlighted that the algae population growth inhibition occurred through pathways specific for each NP also related to their

  1. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo

    OpenAIRE

    Cheng, Mingrong; Gao, Xiaoyan; Wang, Yong; Chen, Houxiang; He, Bing; Xu, Hongzhi; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed inf...

  2. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    Science.gov (United States)

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  3. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats.

    Science.gov (United States)

    Reis-Filho, Cláudio R; Silva, Elisângela R; Martins, Adalberto B; Pessoa, Fernanda F; Gomes, Paula V N; de Araújo, Mariana S C; Miziara, Melissa N; Alves, José B

    2012-05-01

    In this study we investigated the possible use of human demineralised dentine matrix (DHDM), obtained from the extracted teeth, as bone graft material and evaluated the expression of vascular endothelial growth factor (VEGF) induced by this material in the healing process of tooth sockets of rats. To evaluate bone regeneration and expression of VEGF induced by DHDM, thirty-two male Wistar rats weighing approximately 200 g were used. After maxillary second molar extraction, the left sockets were filled with DHDM and the right sockets were naturally filled by blood clot (control). The animals were sacrificed at 3, 7, 14 and 21 days after surgery and upper maxillaries were processed for histological, morphometric and immunohistochemical analyses. DHDM was used to evaluate the mechanical effect of bone graft material into sockets. Expression of VEGF was determined by immunohistochemistry in all groups. Our results demonstrated a significant increase in the newly formed bone tissue in sockets of 7, 14 and 21 days and a significant increase in VEGF expression at days 7 and 14 on treated sockets. Our results showed that DHDM increases the expression of VEGF and accelerates the healing process in rats tooth sockets, by stimulating bone deposition and also vessels formation. These results suggest that DHDM has osteoinductive/osteoconductive potential and may represent an efficient grafting material on guided bone regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using .... Characterization of BDMCA nanoparticles. The nanoparticle ...

  5. Zeaxanthin Inhibits Hypoxia-Induced VEGF Secretion by RPE Cells through Decreased Protein Levels of Hypoxia-Inducible Factors-1α

    Directory of Open Access Journals (Sweden)

    Richard Rosen

    2015-01-01

    Full Text Available Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2 to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50–150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.

  6. Water-Soluble Chitosan Nanoparticles Inhibit Hypercholesterolemia Induced by Feeding a High-Fat Diet in Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Yi Tao

    2011-01-01

    Full Text Available Chitosan, a deacetylated product of chitin, has been demonstrated to lower cholesterol in humans and animals. However, chitosan is not fully soluble in water which would influence absorption in the human intestine. In addition, water-soluble chitosan (WSC has higher reactivity compared to chitosan. The present study was designed to clarify the effects of WSC and water-soluble chitosan nanoparticles (WSC-NPs on hypercholesterolemia induced by feeding a high-fat diet in male Sprague-Dawley rats. WSC-NPs were prepared by the ionic gelation method and the spray-drying technique. The nanoparticles were spherical in shape and had a smooth surface. The mean size of WSC-NPs was 650 nm variing from 500 to 800 nm. Results showed that WSC-NPs reduced the blood lipids and plasma viscosity significantly and increased the serum superoxide dismutase (SOD activities significantly. This paper is the first report of the lipid-lowering effects of WSC-NPs suggesting that the WSC-NPs could be used for the treatment of hypercholesterolemia.

  7. Water-Soluble Chitosan Nanoparticles Inhibit Hypercholesterolemia Induced by Feeding a High-Fat Diet in Male Sprague-Dawley Rats

    International Nuclear Information System (INIS)

    Tao, Y.; Zhang, H.; Gao, B.; Guo, J.; Hu, Y.; Su, Z.

    2011-01-01

    Chitosan, a deacetylated product of chitin, has been demonstrated to lower cholesterol in humans and animals. However, chitosan is not fully soluble in water which would influence absorption in the human intestine. In addition, water-soluble chitosan (WSC) has higher reactivity compared to chitosan. The present study was designed to clarify the effects of WSC and water-soluble chitosan nanoparticles (WSC-NPs) on hypercholesterolemia induced by feeding a high-fat diet in male Sprague-Dawley rats. WSC-NPs were prepared by the ionic gelation method and the spray-drying technique. The nanoparticles were spherical in shape and had a smooth surface. The mean size of WSC-NPs was 650 nm variing from 500 to 800?nm. Results showed that WSC-NPs reduced the blood lipids and plasma viscosity significantly and increased the serum superoxide dismutase (SOD) activities significantly. This paper is the first report of the lipid-lowering effects of WSC-NPs suggesting that the WSC-NPs could be used for the treatment of hypercholesterolemia

  8. Daily low-dose/continuous capecitabine combined with neo-adjuvant irradiation reduces VEGF and PDGF-BB levels in rectal carcinoma patients

    International Nuclear Information System (INIS)

    Loven, David; B e'Ery, Einat; Yerushalmi, Rinat; Koren, Claude; Sulkes, Aaron; Fenig, Eyal; Lavi, Idit; Shaked, Yuval

    2008-01-01

    Metronomic low-dose chemotherapy regimen was found to have an antiangiogenic effect in tumors. However, its effect on levels of circulating pro-angiogenic and anti-angiogenic factors is not fully explored. Materials and methods. The levels of both VEGF and PDGF-BB were measured in three time points, in the serum of 32 rectal carcinoma patients receiving daily reduced-dose/continuous capecitabine in combination with preoperative pelvic irradiation. Results. We found a significant decrease in VEGF and PDGF-BB serum levels during the combination treatment (p<0.0001), followed by an increase in the successive rest-period (p<0.0001). In addition, substantial changes in platelets counts were observed during treatment in correlation with the changes of VEGF and PDGF-BB serum levels. Discussion. These results suggest that combined chemo-irradiation affect levels of pro-angiogenic factors during treatment, and may reflect an anti-angiogenic window induced during this treatment. The potential implications of this inducible phenomenon, including a possible clinical benefit from the administration of long lasting metronomic chemotherapy immediately following combined chemo-irradiation, would warrant further investigation

  9. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    Science.gov (United States)

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  10. Exercise Training Could Improve Age-Related Changes in Cerebral Blood Flow and Capillary Vascularity through the Upregulation of VEGF and eNOS

    Directory of Open Access Journals (Sweden)

    Sheepsumon Viboolvorakul

    2014-01-01

    Full Text Available This study aimed to investigate the effect of exercise training on age-induced microvascular alterations in the brain. Additionally, the association with the protein levels of vascular endothelial growth factor (VEGF and endothelial nitric oxide synthase (eNOS was also assessed. Male Wistar rats were divided into four groups: sedentary-young (SE-Young, n=5, sedentary aged (SE-Aged, n=8, immersed-aged (IM-Aged, n=5, and exercise trained-aged (ET-Aged, 60 minutes/day and 5 days/week for 8 weeks, n=8 rats. The MAPs of all aged groups, SE-Aged, IM-Aged, and ET-Aged, were significantly higher than that of the SE-Young group. The regional cerebral blood flow (rCBF in the SE-Aged and IM-Aged was significantly decreased as compared to SE-Young groups. However, rCBF of ET-Aged group was significantly higher than that in the IM-Aged group (P<0.05. Moreover, the percentage of capillary vascularity (%CV and the levels of VEGF and eNOS in the ET-Aged group were significantly increased compared to the IM-Aged group (P<0.05. These results imply that exercise training could improve age-induced microvascular changes and hypoperfusion closely associated with the upregulation of VEGF and eNOS.

  11. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Xing Y

    2017-04-01

    Full Text Available Yun Xing,1,2 Xiao-Zhen Feng,2 Lipeng Zhang,1 Jiating Hou,2 Guo-Cheng Han,2 Zhencheng Chen2 1Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 2School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People’s Republic of China Abstract: Soluble beta-amyloid (Aβ oligomer is believed to be the most important toxic species in the brain of Alzheimer’s disease (AD patients. Thus, it is critical to develop a simple method for the selective detection of Aβ oligomer with low cost and high sensitivity. In this paper, we report an electrochemical method for the detection of Aβ oligomer with a peptide as the bioreceptor and silver nanoparticle (AgNP aggregates as the redox reporters. This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution triggered together the in situ formation of AgNP aggregates, which produced a well-defined electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenability of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid (aCSF samples was demonstrated. Keywords: electrochemical biosensors, Alzheimer’s disease, beta-amyloid oligomer, peptide, silver nanoparticles

  12. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Polyvinylpyrrolidone-Capped Silver Nanoparticle Inhibits Infection of Carbapenem-Resistant Strain of Acinetobacter baumannii in the Human Pulmonary Epithelial Cell

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2017-08-01

    Full Text Available Acinetobacter baumannii, an opportunistic ESKAPE pathogen, causes respiratory and urinary tract infections. Its prevalence increases gradually in the clinical setup. Pathogenicity of Acinetobacter is significantly influenced by its ability to infect and survive in human pulmonary cells. Therefore, it is important to study the infection of A. baumannii in human pulmonary host cell (A-549, monitoring surface interacting and internalized bacteria. It was found that during infection of A. baumannii, about 40% bacteria adhered to A-549, whereas 20% got internalized inside pulmonary cell and induces threefold increase in the reactive oxygen species production. We have synthesized polyvinylpyrrolidone (PVP-capped AgNPs using chemical methods and tested its efficacy against carbapenem-resistant strain of A. baumannii. PVP-capped silver nanoparticles (PVP-AgNPs (30 µM have shown antibacterial activity against carbapenem-resistant strain of A. baumannii and this concentration does not have any cytotoxic effect on the human pulmonary cell line (IC50 is 130 µM. Similarly, PVP-AgNPs treatment decreases 80% viability of intracellular bacteria, decreases adherence of A. baumannii to A-549 (40 to 2.2%, and decreases intracellular concentration (20 to 1.3% of A. baumannii. This concludes that PVP-AgNPs can be developed as a substitute for carbapenem to control the infection caused by carbapenem-resistant A. baumannii.

  14. Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation.

    Science.gov (United States)

    Gul, Anum; Kunwar, Bimal; Mazhar, Maryam; Faizi, Shaheen; Ahmed, Dania; Shah, Muhammad Raza; Simjee, Shabana U

    2018-04-18

    Numerous studies have suggested that nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) are important mediators of inflammatory response in human and animal models of arthritis. Besides, oxidative stress markers, nitric oxide (NO) and peroxide (PO) are also major contributors in the pathogenesis of rheumatoid arthritis (RA). Over expression of these inflammatory mediators leads to the extracellular matrix degradation, and excessive cartilage and bone resorption, ultimately leading to the irreversible damage to joints. The aim of the present study was to investigate the anti-arthritic mechanism of bioflavonoids, rutin and rutin-conjugated gold nanoparticles (R-AuNPs) by determining their role in the modulation of NF-κB and iNOS expression in collagen-induced arthritis (CIA) model of rats. Arthritis was induced by the subcutaneous administration of bovine type II collagen. Treatment was started with rutin, indomethacin + rutin (I + R) and R-AuNPs on the day of CIA induction. The severity of arthritis was determined by measuring the arthritic score on alternate days until mean arthritic score of 4 was observed. The NO and PO levels were also analyzed in serum samples. NF-κB and iNOS expression levels were determined in spleen tissue samples by real time RT-PCR and immunohistochemistry. Marked reduction in the arthritic score as well as in the NO and PO levels was observed in the treated groups. A significant downregulation in the NF-κB and iNOS expression levels was also observed in the treatment groups compared to the arthritic control group. Collectively, the findings suggest potential clinical role of rutin and R-AuNPs in the treatment of rheumatoid arthritis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Expression patterns of the hypoxia-related genes osteopontin, CA9, erythropoietin, VEGF and HIF-1α in human glioma in vitro and in vivo

    International Nuclear Information System (INIS)

    Said, Harun M.; Hagemann, Carsten; Staab, Adrian; Stojic, Jelena; Kuehnel, Siglinde; Vince, Giles H.; Flentje, Michael; Roosen, Klaus; Vordermark, Dirk

    2007-01-01

    Background and purpose: To identify molecular markers of tumor hypoxia and potential therapeutic targets in glioblastoma (GBM), we investigated the hypoxia-related expression of osteopontin (OPN), carbonic anhydrase 9 (CA9), erythropoietin (EPO), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in vitro in human GBM cell lines and in vivo in human tumor samples of GBM, compared to low-grade astrocytoma (LGA). Materials and methods: Expression of the hypoxia-induced genes OPN, CA9, EPO, VEGF and HIF-1α was analyzed in three GBM cell lines, GaMG, U373 and U251, under in vitro hypoxia (1, 6 or 24 h at 5%, 1% or 0.1% O 2 ) and in tumor samples from two patient groups with LGA and GBM (n = 15 each), at the mRNA level (semiquantitative RT-PCR). Selected conditions and representative tumor samples were also evaluated at the protein level by Western blot. Results: OPN and CA9 mRNA was most consistently upregulated in relation to severity and duration of in vitro hypoxia. In tumor samples, mean expression levels (LGA vs. GBM, normalized to mean expression in normal brain) were 1.71 vs. 4.57 (p < 0.001) for OPN, 1.11 vs. 3.35 (p < 0.001) for CA9, 2.79 vs. 5.28 (not significant, n.s.) for Epo, 1.13 vs. 2.0 (p = 0.007) for VEGF and 0.97 vs. 0.97 (n.s.) for HIF-1α. In tumor samples, GBM showed a particularly strong protein expression of OPN. Conclusions: Among a panel of known hypoxia-inducible genes, OPN and CA9 emerge as most consistently induced by in vitro hypoxia in human GBM cell lines and most specifically expressed in patient GBM tumor tissue, rendering these two genes attractive targets for hypoxia-directed treatment approaches

  16. Vascular endothelial growth factor (VEGF and monocyte chemoattractant protein (MCP-1 levels unaltered in symptomatic atherosclerotic carotid plaque patients from North India

    Directory of Open Access Journals (Sweden)

    Dheeraj eKhurana

    2013-04-01

    Full Text Available We aimed to identify the role of vascular endothelial growth factor(VEGF and monocyte chemoattractant protein(MCP-1 as a serum biomarker of symptomatic carotid atherosclerotic plaque in North Indian population. Individuals with symptomatic carotid atherosclerotic plaque have high risk of ischemic stroke. Previous studies from western countries have shown an association between VEGF and MCP-1 levels and the incidence of ischemic stroke. In this study, venous blood from 110 human subjects was collected, 57 blood samples of which were obtained from patients with carotid plaques, 38 neurological controls without carotid plaques and another 15 healthy controls who had no history of serious illness. Serum VEGF and MCP-1 levels were measured using commercially available enzyme-linked immunosorbent assay(ELISA. We also correlated the data clinically and carried out risk factor analysis based on the detailed questionnaire obtained from each patient. For risk factor analysis, a total of 70 symptomatic carotid plaque cases and equal number of age and sex matched healthy controls were analyzed. We found that serum VEGF levels in carotid plaque patients did not show any significant change when compared to either of the controls. Similarly, there was no significant upregulation of monocyte chemoattractant protein-1 in the serum of these patients. The risk factor analysis revealed that hypertension, diabetes, and physical inactivity were the main correlates of carotid atherosclerosis(p<0.05. Prevalence of patients was higher residing in urban areas as compared to rural region. We also found that patients coming from mountaineer region were relatively less vulnerable to cerebral atherosclerosis as compared to the ones residing at plain region. We conclude that the pathogenesis of carotid plaques may progress independent of these inflammatory molecules. In parallel, risk factor analysis indicates hypertension, diabetes and sedentary lifestyle as the most

  17. Scavenger Receptor B1 is a Potential Biomarker of Human Nasopharyngeal Carcinoma and Its Growth is Inhibited by HDL-mimetic Nanoparticles

    Science.gov (United States)

    Zheng, Ying; Liu, Yanyan; Jin, Honglin; Pan, Shaotao; Qian, Yuan; Huang, Chuan; Zeng, Yixin; Luo, Qingming; Zeng, Musheng; Zhang, Zhihong

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is a very regional malignant head and neck cancer that has attracted widespread attention for its unique etiology, epidemiology and therapeutic options. To achieve high cure rates in NPC patients, theranostic approaches are actively being pursued and improved efforts remain desirable in identifying novel biomarkers and establishing effective therapeutic approaches with low long-term toxicities. Here, we discovered that the scavenger receptor class B type I (SR-B1) was overexpressed in all investigated NPC cell lines and 75% of NPC biopsies, demonstrating that SR-B1 is a potential biomarker of NPC. Additional functional analysis showed that SR-B1 has great effect on cell motility while showing no significant impact on cell proliferation. As high-density lipoproteins (HDL) exhibit strong binding affinities to SR-B1 and HDL mimetic peptides are reportedly capable of inhibiting tumor growth, we further examined the SR-B1 targeting ability of a highly biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier and investigated its therapeutic effect on NPC. Results show that NPC cells with higher SR-B1 expression have superior ability in taking up the core constituents of HPPS. Moreover, HPPS inhibited the motility and colony formation of 5-8F cells, and significantly suppressed the NPC cell growth in nude mice without inducing tumor cell necrosis or apoptosis. These results indicate that HPPS is not only a NPC-targeting nanocarrier but also an effective anti-NPC drug. Together, the identification of SR-B1 as a potential biomarker and the use of HPPS as an effective anti-NPC agent may shed new light on the diagnosis and therapeutics of NPC. PMID:23843895

  18. Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice

    International Nuclear Information System (INIS)

    Chen, Jing; Zhu, Shu; Tong, Liangqian; Li, Jiansha; Chen, Fei; Han, Yunfeng; Zhao, Ming; Xiong, Wei

    2014-01-01

    Hepatocellular carcinoma (HCC) is a primary liver tumor and is the most difficult human malignancy to treat. In this study, we sought to develop an integrative approach in which real-time tumor monitoring, gene therapy, and internal radiotherapy can be performed simultaneously. This was achieved through targeting HCC with superparamagnetic iron oxide nanoparticles (SPIOs) carrying small interfering RNA with radiolabled iodine 131 ( 131 I) against the human vascular endothelial growth factor (hVEGF). hVEGF siRNA was labeled with 131 I by the Bolton-Hunter method and conjugated to SilenceMag, a type of SPIOs. 131 I-hVEGF siRNA/SilenceMag was then subcutaneously injected into nude mice with HCC tumors exposed to an external magnetic field (EMF). The biodistribution and cytotoxicity of 131 I-hVEGF siRNA/SilenceMag was assessed by SPECT (Single-Photon Emission Computed Tomography) and MRI (Magnetic Resonance Imaging) studies and blood kinetics analysis. The body weight and tumor size of nude mice bearing HCC were measured daily for the 4-week duration of the experiment. 131 I-hVEGF siRNA/SilenceMag was successfully labeled; with a satisfactory radiochemical purity (>80%) and biological activity in vitro. External application of an EMF successfully attracted and retained more 131 I-hVEGF siRNA/SilenceMag in HCC tumors as shown by SPECT, MRI and biodistribution studies. The tumors treated with 131 I-hVEGF siRNA/SilenceMag grew nearly 50% slower in the presence of EMF than those without EMF and the control. Immunohistochemical assay confirmed that the tumor targeted by 131 I-hVEGF siRNA/SilenceMag guided by an EMF had a lower VEGF protein level compared to that without EMF exposure and the control. EMF-guided 131 I-hVEGF siRNA/SilenceMag exhibited an antitumor effect. The synergic therapy of 131 I-hVEGF siRNA/SilenceMag might be a promising future treatment option against HCC with the dual functional properties of tumor therapy and imaging

  19. The impact of carboplatin and toceranib phosphate on serum vascular endothelial growth factor (VEGF) and metalloproteinase-9 (MMP-9) levels and survival in canine osteosarcoma.

    Science.gov (United States)

    Gieger, Tracy L; Nettifee-Osborne, Julie; Hallman, Briana; Johannes, Chad; Clarke, Dawn; Nolan, Michael W; Williams, Laurel E

    2017-07-01

    In this pilot study, 10 dogs with osteosarcoma (OSA) were treated with amputation and subsequent carboplatin chemotherapy (300 mg/m 2 IV q3wk × 4 doses) followed by toceranib phosphate (2.75 mg/kg PO q48h starting at day 14 post carboplatin). Monthly clinical monitoring and serum measurements of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were acquired. No dogs were removed from the study due to toxicity. Levels of VEGF and MMP-9 did not change over time. Seven dogs died related to local recurrence and/or pulmonary or bone metastasis and the remainder died of other causes. Median OSA-free survival was 238 d with 34% 1-year progression-free survival. Median overall survival was 253 d with 30% alive at 1.5 y and 10% alive at 2 y. Although this regimen was well-tolerated, survival times did not exceed previously published data from dogs treated with amputation plus chemotherapy alone.

  20. Interaction between VEGF and Calcium-Independent Phospholipase A(2) in Proliferation and Migration of Retinal Pigment Epithelium

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Andersen, Emelie Cammilla; Andreasen, Jens Rovelt

    2012-01-01

    Purpose: Inhibition of VEGF in the eye is an important treatment modality for reducing proliferation and migration of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Additionally, previous studies suggest calcium-independent phospholipase A2 group VIA (iPLA2-VIA) to be...

  1. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts

    International Nuclear Information System (INIS)

    Gu, Zhipeng; Zhang, Xu; Li, Li; Wang, Qiguang; Yu, Xixun; Feng, Ting

    2013-01-01

    The development of suitable bioactive three-dimensional scaffold for the promotion of bone regeneration is critical in bone tissue engineering. The purpose of this study was to investigate in vivo osteogenesis of the porous strontium-doped calcium polyphosphate (SCPP) scaffolds for bone repair, as well as the relationship between osteogenic properties of SCPP scaffolds and the secretion of bFGF and VEGF from osteoblasts stimulated by SCPP. Besides, the advantages of scaffolds seeded with mesenchymal stem cells (MSCs) for bone repair were also studied. Firstly, the bone repair evaluation of scaffolds was performed on a rabbit segmental bony defects model over a period of 16 weeks by histology combined with X-ray microradiography. And then, in order to avoid the influence from the other factors such as hypoxia which emerge in vivo study and affect the secretion of VEGF and bFGF from host cells, human osteoblast-like cells (MG63) were seeded to SCPP, CPP and HA scaffolds in vitro to determine the ability of these scaffolds to stimulate the secretion of angiogenic growth factors (VEGF and bFGF) from MG63 and further explore the reason for the better osteogenic properties of SCPP scaffolds. The histological and X-ray microradiographic results showed that the SCPP scaffolds presented better osteogenic potential than CPP and HA scaffolds, when combined with MSCs, the SCPP scaffolds could further accelerate the bone repair. And the amounts of VEGF measured by ELISA assay in SCPP, CPP and HA groups after cultured for 7 days were about 364.989 pg/mL, 244.035 pg/mL and 232.785 pg/mL, respectively. Accordingly, the amounts of bFGF were about 27.085 pg/mL, 15.727 pg/mL and 8.326 pg/mL. The results revealed that the SCPP scaffolds significantly enhanced the bFGF and VEGF secretion compared with other scaffolds. The results presented in vivo and in vitro study demonstrated that the SCPP could accelerate bone formation through stimulating the secretion of VEGF and bFGF from

  2. VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans

    Directory of Open Access Journals (Sweden)

    Rita Schüler

    2018-05-01

    Full Text Available Objective: Reduction of brain glucose transporter GLUT1 results in severe neurological dysfunction. VEGF is required to restore and maintain brain glucose uptake across the blood brain barrier via GLUT1, which was shown to be acutely diminished in response to a high fat diet (HFD in mice. The genetic and HFD-related regulation and association of VEGF and GLUT1 (SLC2A1 in humans was investigated in the NUtriGenomic Analysis in Twins (NUGAT study. Methods: 92 healthy and non-obese twins were standardized to a high-carbohydrate low-fat diet for 6 weeks before switched to a 6-week HFD under isocaloric conditions. Three clinical investigation days were conducted: after 6 weeks of low-fat diet and after 1 and 6 weeks of HFD. Serum VEGF and other cytokine levels were measured using ELISA. Gene expression in subcutaneous adipose tissue was assessed by quantitative Real-Time PCR. Genotyping was performed using microarray. The Auditory Verbal Learning Task was conducted to measure cognitive performance. Results: In this human study, we showed that the environmental regulation of SLC2A1 expression and serum VEGF by HFD was inversely correlated and both factors showed strong heritability (>90%. In response to the HFD containing 45% fat, serum VEGF levels increased (P = 0.002 while SLC2A1 mRNA expression in adipose tissue decreased (P = 0.001. Higher BMI was additionally associated with lower SLC2A1 expression. AA-genotypes of the rs9472159 polymorphism, which explained ∼39% of the variation in circulating VEGF concentrations, showed significantly reduced serum VEGF levels (P = 6.4 × 10−11 but higher SLC2A1 expression (P = 0.009 in adipose tissue compared to CC/CA-genotypes after 6 weeks of HFD. Memory performance in AA-genotypes declined in response to the HFD compared to CC- and CA-genotypes. Conclusions: The results provide evidence to suggest the translatability of the dietary regulation of VEGF and GLUT1 from mouse models to humans. Our

  3. Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Marianne Pons

    2011-02-01

    Full Text Available Age-related macular degeneration (AMD is the leading cause of legal blindness in the elderly population. Debris (termed drusen below the retinal pigment epithelium (RPE have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV. The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1, pro-angiogenic vascular endothelial growth factor (VEGF and anti-angiogenic pigment epithelial derived factor (PEDF in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ, a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice.MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo.We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might promote drusen accumulation and

  4. Impact of VEGF and VEGF receptor 1 (FLT1) expression on the prognosis of stage III esophageal cancer patients after radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rades, D. [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf (Germany); Dept. of Radiation Oncology, Univ. Hospital Schleswig-Holstein, Luebeck (Germany); Golke, H. [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf (Germany); Inst. of Pathology, Univ. Medical Center Hamburg-Eppendorf (Germany); Schild, S.E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Kilic, E. [Inst. of Pathology, Univ. Medical Center Hamburg-Eppendorf (Germany); Inst. of Pathology, Univ. Hospital Basel-Stadt (Switzerland)

    2008-08-15

    Background and purpose: high expression of vascular endothelial growth factor (VEGF) is negatively associated with clinical outcome. The prognostic value of VEGF receptor 1 (FLT1) is unclear. This retrospective study investigated the impact of tumor expression of VEGF and FLT1 on outcome in 68 stage III esophageal cancer patients. Material and methods: the impact of tumor VEGF and FLT expression (< 10% vs. > 10%) and five additional potential prognostic factors on overall survival (OS) and locoregional control (LC) was retrospectively evaluated. These factors included T-stage (T3 vs. T4), N-stage (NO vs. N1), treatment (radiochemotherapy plus resection vs. radiochemotherapy alone), erythropoietin (ERYPO {sup registered} 10000, Janssen-Cilag, Neuss, Germany) administration during radiotherapy, and majority of hemoglobin levels during radiotherapy (< 12 vs. {>=} 12 g/dl). Subgroup analyses were performed for patients receiving resection (R0 vs. R1/2 resection). The factors found to be significant on univariate analyses (Kaplan-Meier method, log-rank test) were included in multivariate analyses performed with the Cox proportional hazard model. Results: on univariate analysis, improved OS was associated with T3 stage (p = 0.011), surgery (p = 0.019), and hemoglobin {>=} 12 g/dl (p < 0.001). Improved LC was associated with T3 stage (p = 0.025), hemoglobin {>=} 12 g/dl (p < 0.001), and VEGF negativity (p = 0.045). On multivariate analyses, only hemoglobin maintained significance. In patients having surgery, R0 resection was significantly better than R1/2 resection for OS (p < 0.001) and LC (p < 0.001). Conclusion: preradiotherapy tumor VEGF expression appears negatively correlated with outcomes, whereas FLT1 expression appears to have no significant impact on OS and LC. (orig.)

  5. Impact of VEGF and VEGF receptor 1 (FLT1) expression on the prognosis of stage III esophageal cancer patients after radiochemotherapy

    International Nuclear Information System (INIS)

    Rades, D.; Golke, H.; Schild, S.E.; Kilic, E.

    2008-01-01

    Background and purpose: high expression of vascular endothelial growth factor (VEGF) is negatively associated with clinical outcome. The prognostic value of VEGF receptor 1 (FLT1) is unclear. This retrospective study investigated the impact of tumor expression of VEGF and FLT1 on outcome in 68 stage III esophageal cancer patients. Material and methods: the impact of tumor VEGF and FLT expression ( 10%) and five additional potential prognostic factors on overall survival (OS) and locoregional control (LC) was retrospectively evaluated. These factors included T-stage (T3 vs. T4), N-stage (NO vs. N1), treatment (radiochemotherapy plus resection vs. radiochemotherapy alone), erythropoietin (ERYPO registered 10000, Janssen-Cilag, Neuss, Germany) administration during radiotherapy, and majority of hemoglobin levels during radiotherapy (< 12 vs. ≥ 12 g/dl). Subgroup analyses were performed for patients receiving resection (R0 vs. R1/2 resection). The factors found to be significant on univariate analyses (Kaplan-Meier method, log-rank test) were included in multivariate analyses performed with the Cox proportional hazard model. Results: on univariate analysis, improved OS was associated with T3 stage (p = 0.011), surgery (p = 0.019), and hemoglobin ≥ 12 g/dl (p < 0.001). Improved LC was associated with T3 stage (p = 0.025), hemoglobin ≥ 12 g/dl (p < 0.001), and VEGF negativity (p = 0.045). On multivariate analyses, only hemoglobin maintained significance. In patients having surgery, R0 resection was significantly better than R1/2 resection for OS (p < 0.001) and LC (p < 0.001). Conclusion: preradiotherapy tumor VEGF expression appears negatively correlated with outcomes, whereas FLT1 expression appears to have no significant impact on OS and LC. (orig.)

  6. Tumor-specific expression of shVEGF and suicide gene as a novel strategy for esophageal cancer therapy.

    Science.gov (United States)

    Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng

    2016-06-21

    To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.

  7. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using polycaprolactone as the polymer. The nanoparticles were characterised for drug content, particles size, in vitro drug release and the drug-polymer interaction. The in vivo properties of the formulations in male ...

  8. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  9. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  10. Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression.

    Directory of Open Access Journals (Sweden)

    Anton M Markovets

    Full Text Available UNLABELLED: The incidence of age-related macular degeneration (AMD, the main cause of blindness in older patients in the developed countries, is increasing with the ageing population. At present there is no effective treatment for the prevailing geographic atrophy, dry AMD, whereas antiangiogenic therapies successful used in managing the wet form of AMD. Recently we showed that mitochondria-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1 is able to prevent the development and moreover caused regression of pre-existing signs of the retinopathy in OXYS rats, an animal model of AMD. Here we examine the effects of SkQ1 on expression of key regulators of angiogenesis vascular endothelial growth factor A (VEGF and its antagonist pigment epithelium-derived factor (PEDF genes in the retina of OXYS rats as evidenced by real-time PCR and an ELISA test for VEGF using Wistar rats as control. Ophthalmoscopic examinations confirmed that SkQ1 supplementation (from 1.5 to 3 months of age, 250 nmol/kg prevented development while eye drops SkQ1 (250 nM, from 9 to 12 months caused some reduction of retinopathy signs in OXYS rats and did not reveal any negative effects on the control Wistar rat's retina. Prevention of premature retinopathy by SkQ1 was connected with an increase of VEGF mRNA and protein in OXYS rat's retina up to the levels corresponding to the Wistar rats, and did not involve changes in PEDF expression. In contrast the treatment with SkQ1 drops caused a decrease of VEGF mRNA and protein levels and an increase in the PEDF mRNA level in the middle-aged OXYS rats, but in Wistar rats the changes of gene expression were the opposite. CONCLUSIONS: The beneficial effects of SkQ1 on retinopathy connected with normalization of expression of VEGF and PEDF in the retina of OXYS rats and depended on age of the animals and the stage of retinopathy.

  11. (shell) nanoparticles

    Indian Academy of Sciences (India)

    the quasistatic approximation shows good agreement with the Mie theory results. .... medium, respectively, and f = (rcore/rshell)1/3 is the fraction of the total particle ..... [27] Michael Quinten, Optical properties of nanoparticle systems: Mie and ...

  12. Inhibition of corneal neovascularization by recombinant adenovirus-mediated sFlk-1 expression

    International Nuclear Information System (INIS)

    Yu Hui; Wu Jihong; Li Huiming; Wang Zhanli; Chen Xiafang; Tian Yuhua; Yi Miaoying; Ji Xunda; Ma Jialie; Huang Qian

    2007-01-01

    The interaction of vascular endothelial growth factor (VEGF) and its receptors (Flt-1, Flk-1/KDR) is correlated with neovascularization in the eyes. Therefore, blocking the binding of VEGF and the corresponding receptor has become critical for inhibiting corneal neovascularization. In this study, we have expressed the cDNA for sFlk-1 under the control of cytomegalovirus immediate-early promoter (CMV) from an E1/partial E3 deleted replication defective recombinant adenovirus, and Ad.sflk-1 expression was determined by Western blotting. We have shown that conditioned media from Ad.sflk-1-infected ARPE-19 cells significantly reduced VEGF-induced human umbilical vein endothelial cells (HUVEC) and murine endothelial cells (SVEC) proliferation in vitro compared with the control vector. In vivo, adenoviral vectors expressing green fluorescent protein alone (Ad.GFP) were utilized to monitor gene transfer to the cornea. Moreover, in the models of corneal neovascularization, the injection of Ad.sflk-1 (10 8 PFU) into the anterior chamber could significantly inhibit angiogenic changes compared with Ad.null-injected and vehicle-injected models. Immunohistochemical analysis showed that corneal endothelial cells and corneal stroma of cauterized rat eyes were efficiently transduced and expressed sFlk-1. These results not only support that adenoviral vectors are capable of high-level transgene expression but also demonstrate that Ad.sflk-1 gene therapy might be a feasible approach for inhibiting the development of corneal neovascularization

  13. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Eok-Cheon; Min, Jeong-Ki; Kim, Tae-Yoon; Lee, Shin-Jeong; Yang, Hyun-Ok; Han, Sanghwa; Kim, Young-Myeong; Kwon, Young-Guen

    2005-01-01

    [6]-Gingerol, a pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has anti-bacterial, anti-inflammatory, and anti-tumor-promoting activities. Here, we describe its novel anti-angiogenic activity in vitro and in vivo. In vitro, [6]-gingerol inhibited both the VEGF- and bFGF-induced proliferation of human endothelial cells and caused cell cycle arrest in the G1 phase. It also blocked capillary-like tube formation by endothelial cells in response to VEGF, and strongly inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessel in the mouse cornea in response to VEGF. Moreover, i.p. administration, without reaching tumor cytotoxic blood levels, to mice receiving i.v. injection of B16F10 melanoma cells, reduced the number of lung metastasis, with preservation of apparently healthy behavior. Taken together, these results demonstrate that [6]-gingerol inhibits angiogenesis and may be useful in the treatment of tumors and other angiogenesis-dependent diseases

  14. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  16. Influence of surface-imprinted nanoparticles on trypsin activity.

    Science.gov (United States)

    Guerreiro, António; Poma, Alessandro; Karim, Kal; Moczko, Ewa; Takarada, Jessica; de Vargas-Sansalvador, Isabel Perez; Turner, Nicholas; Piletska, Elena; de Magalhães, Cristiana Schmidt; Glazova, Natalia; Serkova, Anastasia; Omelianova, Aleksandra; Piletsky, Sergey

    2014-09-01

    Here, the modulation of enzyme activity is presented by protein-imprinted nanoparticles produced using a solid-phase approach. Using trypsin as target, binding of the nanoparticles to the enzyme results in its inhibition or in stabilization, depending on the orientation of the immobilized enzyme used during imprinting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma. Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV) spectrophotometry was used ...

  18. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    oxide nanoparticles encapsulated in the lipid bilayer, the local temperature and membrane fluidity could be observed. DLNAs were encapsulated with different sized nanoparticles and concentrations in order to observe the effect of the bilayer nanoparticles on the lipid bilayer's phase behavior and leakage. Two different sized nanoparticles were used, a 2 nm gold nanoparticle (GNP) much smaller than the thickness of the bilayer and a 4 nm GNP near the thickness of the lipid bilayer. The 2 nm GNPs were shown to affect the lipid bilayer differently than the 4 nm GNP. Specifically, the two nanoparticles altered the phase behavior and leakage differently in a temperature dependent fashion, demonstrating that embedded nanoparticle size can be used induce or inhibit bilayer leakage. A dual solvent exchange method was used to control the lipid surface composition of an iron oxide nanoparticle with a cationic lipid and a polyethylene glycol (PEG) lipid to produce lipid coated magnetic nanoparticles (LMNPs). PEG is well known for its ability to enhance the pharmacokinetics of nanostructures by preventing uptake by the immune system. By controlling the lipid surface composition, the surface charge and PEG conformation can be controlled which allowed the LMNPs to be used as an MRI contrast agent and a delivery system for siRNA that could be triggered with temperature.

  19. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  20. Developing nano-particles as radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gambhir, S.

    2013-01-01

    The wide variety of core materials available, coupled with tunable surface properties, make nanoparticles an excellent platform for a broad range of biological and biomedical applications. The unique properties and utility of nanoparticles arise from a variety of attributes, including the similar size of nanoparticles and biomolecules such as proteins and polynucleic acids. Additionally, nanoparticles can be fashioned with a wide range of metal and semiconductor core materials that impart useful properties such as fluorescence and magnetic behavior. Bio-macromolecule surface recognition by nanoparticles as artificial receptors provides a potential tool for controlling cellular and extracellular processes for numerous biological applications such as transcription regulation, enzymatic inhibition, delivery and sensing. The size of nanoparticle cores can be tuned from 1.5 nm to more than 10 nm depending on the core material, providing a suitable platform for the interaction of nanoparticles with proteins and other biomolecules. The conjugation of nanoparticles with biomolecules such as proteins and DNA can be done by using two different approaches, direct covalent linkage and non-covalent interactions between the particle and bio-molecules.The most direct approach to the creation of integrated biomolecule-nanoparticle conjugates is through covalent attachment.This conjugation can be achieved either through chemisorptions of the biomolecule to the particle surface or through the use of hetero-bi-functional linkers. Chemisorption of proteins onto the surface of nanoparticles (usually containing a core of Au, ZnS, CdS, and CdSe/ZnS) can be done through cysteine residues that are present in the protein surface (e.g., oligo-peptide, serum albumin), or chemically using 2-iminothiolane (Traut's reagent). Bifunctional linkers provide a versatile means of bio-conjugation. Biomolecules are often covalently linked to ligands on the nanoparticle surface via traditional

  1. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.

    Science.gov (United States)

    Povysheva, Tatyana; Shmarov, Maksim; Logunov, Denis; Naroditsky, Boris; Shulman, Ilya; Ogurcov, Sergey; Kolesnikov, Pavel; Islamov, Rustem; Chelyshev, Yuri

    2017-07-01

    OBJECTIVE The most actively explored therapeutic strategy for overcoming spinal cord injury (SCI) is the delivery of genes encoding molecules that stimulate regeneration. In a mouse model of amyotrophic lateral sclerosis and in preliminary clinical trials in patients with amyotrophic lateral sclerosis, the combined administration of recombinant adenoviral vectors (Ad5-VEGF+Ad5-ANG) encoding the neurotrophic/angiogenic factors vascular endothelial growth factor ( VEGF) and angiogenin ( ANG) was found to slow the development of neurological deficits. These results suggest that there may be positive effects of this combination of genes in posttraumatic spinal cord regeneration. The objective of the present study was to determine the effects of Ad5-VEGF+Ad5-ANG combination therapy on motor function recovery and reactivity of astrocytes in a rat model of SCI. METHODS Spinal cord injury was induced in adult Wistar rats by the weight-drop method. Rats (n = 51) were divided into 2 groups: the experimental group (Ad5-VEGF+Ad5-ANG) and the control group (Ad5-GFP [green fluorescent protein]). Recovery of motor function was assessed using the Basso, Beattie, and Bresnahan scale. The duration and intensity of infectivity and gene expression from the injected vectors were assessed by immunofluorescent detection of GFP. Reactivity of glial cells was assessed by changes in the number of immunopositive cells expressing glial fibrillary acidic protein (GFAP), S100β, aquaporin 4 (AQP4), oligodendrocyte transcription factor 2, and chondroitin sulfate proteoglycan 4. The level of S100β mRNA expression in the spinal cord was estimated by real-time polymerase chain reaction. RESULTS Partial recovery of motor function was observed 30 days after surgery in both groups. However, Basso, Beattie, and Bresnahan scores were 35.9% higher in the Ad5-VEGF+Ad5-ANG group compared with the control group. Specific GFP signal was observed at distances of up to 5 mm in the rostral and caudal

  2. Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing.

    Science.gov (United States)

    Maccormack, Tyson J; Clark, Rhett J; Dang, Michael K M; Ma, Guibin; Kelly, Joel A; Veinot, Jonathan G C; Goss, Greg G

    2012-08-01

    The objective of this study was to investigate whether nanoparticle-exposure affects enzyme function and to determine the mechanisms responsible. Silicon, Au, and CdSe nanoparticles were synthesized in house and their physicochemical properties were characterized. The activity of purified lactate dehydrogenase (LDH) was inhibited or abolished by all nanoparticles tested. Inhibition was dependent upon particle core and surface-functional group composition. Inhibition of LDH was absent in crude tissue homogenates, in the presence of albumin, and at the isoelectric point of the protein, indicating that nanoparticles bind non-specifically to abundant proteins via a charge interaction. Circular dichroism spectroscopy suggests that the structure of LDH may be altered by nanoparticles in a manner different from that of bulk controls. We present new data on the specific physicochemical properties of nanoparticles that may lead to bioactivity and highlight a number of potentially serious problems with common nanotoxicity testing methods.

  3. Biopolymeric nanoparticles

    International Nuclear Information System (INIS)

    Sundar, Sushmitha; Kundu, Joydip; Kundu, Subhas C

    2010-01-01

    This review on nanoparticles highlights the various biopolymers (proteins and polysaccharides) which have recently revolutionized the world of biocompatible and degradable natural biological materials. The methods of their fabrication, including emulsification, desolvation, coacervation and electrospray drying are described. The characterization of different parameters for a given nanoparticle, such as particle size, surface charge, morphology, stability, structure, cellular uptake, cytotoxicity, drug loading and drug release, is outlined together with the relevant measurement techniques. Applications in the fields of medicine and biotechnology are discussed along with a promising future scope. (topical review)

  4. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults.

    Science.gov (United States)

    Maass, Anne; Düzel, Sandra; Brigadski, Tanja; Goerke, Monique; Becke, Andreas; Sobieray, Uwe; Neumann, Katja; Lövdén, Martin; Lindenberger, Ulman; Bäckman, Lars; Braun-Dullaeus, Rüdiger; Ahrens, Dörte; Heinze, Hans-Jochen; Müller, Notger G; Lessmann, Volkmar; Sendtner, Michael; Düzel, Emrah

    2016-05-01

    Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. Copyright © 2015 The Authors

  5. Comparison of efficacy between anti-vascular endothelial growth factor (VEGF) and laser treatment in Type-1 and threshold retinopathy of prematurity (ROP).

    Science.gov (United States)

    Li, Zijing; Zhang, Yichi; Liao, Yunru; Zeng, Rui; Zeng, Peng; Lan, Yuqing

    2018-01-30

    Retinopathy of Prematurity (ROP) is one of the most common causes of childhood blindness worldwide. Comparisons of anti-VEGF and laser treatments in ROP are relatively lacking, and the data are scattered and limited. The objective of this meta-analysis is to compare the efficacy of both treatments in type-1 and threshold ROP. A comprehensive literature search on ROP treatment was conducted using PubMed and Embase up to March 2017 in all languages. Major evaluation indexes were extracted from the included studies by two authors. The fixed-effects and random-effects models were used to measure the pooled estimates. The test of heterogeneity was performed using the Q statistic. Ten studies were included in this meta-analysis. Retreatment incidence was significantly increased for anti-VEGF (OR 2.52; 95% CI 1.37 to 4.66; P = 0.003) compared to the laser treatment, while the incidences of eye complications (OR 0.29; 95% CI 0.10 to 0.82; P = 0.02) and myopia were significantly decreased with anti-VEGF compared to the laser treatment. However, there was no difference in the recurrence incidence (OR 1.86; 95% CI 0.37 to 9.40; P = 0.45) and time between treatment and retreatment (WMD 7.54 weeks; 95% CI 2.00 to 17.08; P = 0.12). This meta-analysis indicates that laser treatment may be more efficacious than anti-VEGF treatment. However, the results of this meta-analysis also suggest that laser treatment may cause more eye complications and increase myopia. Large-scale prospective RCTs should be performed to assess the efficacy and safety of anti-VEGF versus laser treatment in the future.

  6. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  7. Robust Nanoparticles

    Science.gov (United States)

    2015-01-21

    avenues for creating flexible conducting and semiconducting materials in a variety of simple or complex geometries. B. Conducting nanoparticle...coated with poly(MPC-co-DHLA) proved stable against challenging conditions, and resisted cyanide ion digestion. Au NRs coated with poly(MPC-co-DHLA

  8. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    Science.gov (United States)

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  9. Bacterial resistance to silver nanoparticles and how to overcome it

    Science.gov (United States)

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  10. Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma.

    Science.gov (United States)

    Yanhua, Wang; Hao, Hang; Li, Yan; Zhang, Shengmin

    2016-04-01

    Absence of curative treatment creates urgent need for new strategies for unresectable hepatoma. Novel selenium-substituted hydroxyapatite nanoparticles (SeHAN) were designed to serve as anticancer agent. The authors examined the nanoparticles by physicochemical techniques. The in vivo efficacy and toxicity of these nanoparticles were also investigated on a nude mice model of human hepatocellular carcinoma. The results showed that the selenite ions can be incorporated into the hydroxyapatite lattice facilely. They exhibited bundles of needles shape with a size of 160-200 nm. In the in vivo study, they showed better survival advantage. The overall survival rate of nude mice in the control, pure hydroxyapatite and SeHAN group were 50.00%, 76.92%, and 100.00% respectively. Blood biochemical studies showed that SeHAN group had significantly lower toxicities on the liver and kidney functions. Histopathological studies confirmed that massive tumor necrosis and calcium deposition were evident after SeHAN treatment. Moreover, immunohistochemistry and Western blot assay showed significantly reduced expression of the Ki-67, VEGF and MMP-9 protein in the SeHAN group. Taken together, these results suggest that the selenium-substituted hydroxyapatite nanoparticles could be a new type of promising anticancer agent to provide both survival advantage and lower toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Adaptation in Response of Excitation and Inhibition Factors of Angiogenesis after 4 Weeks of Progressive Resistant Training in Sedentary Men

    Directory of Open Access Journals (Sweden)

    s. Karami

    2016-09-01

    Full Text Available Aims: The sport activity is an important factor affecting the capillary density and angiogenesis. Nitric oxide (NO and vascular endothelial growth factor (VEGF are the most important stimulative regulators in the angiogenesis. In addition, endostatin is one of the inhibitors of angiogenesis. The aim of this study was to investigate the adaptation in the responses of the angiogenesis inhibition and stimulating factors after 4-week increasing resistive exercises in the sedentary men. Materials & Methods: In the semi-experimental study, 20 healthy and inactive male students, aged between 20 and 25 years, who were residents of Tehran University Dormitory, were studied in the first semester of the academic year 2015-16. The subjects, selected via available sampling method, were divided into two groups including experimental and control groups (n=10 per group. 4-week resistive exercises were done three sessions per week. Blood-sampling was done before and 48 hours after the last exercise session. VEGF, NO, and endostatin were then measured. Data was analyzed by SPSS 18 software using independent and dependent T tests, as well as Pearson correlation coefficient test. Findings: In experimental group, VEGF and No significantly increased at the posttest stage than the pretest (p=0.001. Nevertheless, no significant difference was observed in control group (p>0.05. In both experimental and control groups, endostatin level did not significantly increase at the posttest stage than the pretest (p>0.05. In addition, VEGF and NO were the only variables that were significantly correlated (p=0.016; r=0.82. Conclusion: 4-week increasing resistive exercises in the sedentary men significantly affect the angiogenes stimulating factors, i. e. VEGF and NO, while such exercises do not significantly affect the angiogenesis inhibition factor, i. e. endostatin.

  12. Improved polymer thin-film wetting behavior through nanoparticle segregation to interfaces

    International Nuclear Information System (INIS)

    Krishnan, R S; Mackay, M E; Duxbury, P M; Hawker, C J; Asokan, Suba; Wong, Michael S; Goyette, Rick; Thiyagarajan, P

    2007-01-01

    We report a systematic study of improved wetting behavior for thin polymer films containing nanoparticles, as a function of nanoparticle size and concentration, the energy of the substrate and the dielectric properties of the nanoparticles. An enthalpy matched system consisting of polystyrene nanoparticles in linear polystyrene is used to show that nanoparticles are uniformly distributed in the film after spin coating and drying. However, on annealing the film above its bulk glass transition temperature these nanoparticles segregate strongly to the solid substrate. We find that for a wide range of film thicknesses and nanoparticle sizes, a substrate coverage of nanoparticles of approximately a monolayer is required for dewetting inhibition. Cadmium selenide quantum dots also inhibit dewetting of polystyrene thin films, again when a monolayer is present. Moreover, TEM microscopy images indicate that CdSe quantum dots segregate primarily to the air interface. Theoretical interpretation of these phenomena suggests that gain of linear chain configurational entropy promotes segregation of nanoparticles to the solid substrate, as occurs for polystyrene nanoparticles; however, for CdSe nanoparticles this is offset by surface energy or enthalpic terms which promote segregation of the nanoparticles to the air interface

  13. The biotoxicity of hydroxyapatite nanoparticles to the plant growth.

    Science.gov (United States)

    Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Zhang, Min; Yang, Xiao-Hong; Hong, Dan-Jing

    2014-04-15

    In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca(2+) concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; Chen Yiru; He Wenjie; Hong Poda; Yu, Dah-Shyong; Domb, Abraham J.

    2013-01-01

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe 2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  15. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor

    International Nuclear Information System (INIS)

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan; Veerappan, Anbazhagan

    2016-01-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. - Highlights: • Mechanisms of antibiotics and metal nanoparticles resemble one another. • Bactericidal mechanisms of NPs are cell wall damage, and ROS generation. • Metal NPs inhibit membrane synthesis enzyme. • NPs can be used as antibacterial agents. • NP as antibacterial strategy important due to widespread antibiotic resistance

  16. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@yahoo.com [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Chen Yiru [National Yang-Ming University, Department of Biomedical Engineering (China); He Wenjie; Hong Poda [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem (Israel)

    2013-01-15

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe{sup 2+} solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  17. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan, E-mail: raman@biotech.sastra.edu; Veerappan, Anbazhagan, E-mail: anbazhagan@scbt.sastra.edu

    2016-11-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. - Highlights: • Mechanisms of antibiotics and metal nanoparticles resemble one another. • Bactericidal mechanisms of NPs are cell wall damage, and ROS generation. • Metal NPs inhibit membrane synthesis enzyme. • NPs can be used as antibacterial agents. • NP as antibacterial strategy important due to widespread antibiotic resistance.

  18. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  19. Anti-microbial and skin wound dressing application of molecular iodine nanoparticles

    Science.gov (United States)

    Viswanathan, Kaliyaperumal; Bharathi Babu, Divya; Jayakumar, Gomathi; Dhinakar Raj, Gopal

    2017-10-01

    In this study, iodine nanoparticles were synthesized without use of any stabilizer by a new co-precipitation process using polyvinyl pyrolidone, calcium lactate, disodium hydrogen phosphate and iodine solution as precursor and the reaction was catalyzed by sodium hydroxide. Ten mg of the synthesized nanoparticles killed 95% of bacteria and inhibited 90% of bio film formation. Assays on membrane disintegration activities of the nanoparticles indicated that these nanoparticles destroyed the extracellular membrane of the bacteria. The wound healing application evaluated using mice model showed that it was hastened by iodine nanoparticles.

  20. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Siposova, Katarina [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Bednarikova, Zuzana [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Department of Biochemistry, Faculty of Science, Safarik University, Kosice (Slovakia); Safarik, Ivo [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Kubovcikova, Martina; Kopcansky, Peter [Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Gazova, Zuzana, E-mail: gazova@saske.sk [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia)

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe{sub 3}O{sub 4}-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC{sub 50} values decreased with increasing size of nanoparticles.

  1. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    International Nuclear Information System (INIS)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-01-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe 3 O 4 -based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC 50 values decreased with increasing size of nanoparticles.

  2. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    Science.gov (United States)

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  3. Nanoparticles as a source for the treatment of fish diseases

    Directory of Open Access Journals (Sweden)

    S. Ravikumar

    2012-10-01

    Full Text Available Objective: The present study was aimed to investigate the antibacterial activity of 5 different nanoparticles against fish bacterial pathogens viz., Aeromonas hydrophila, Bacillus subtilis, Vibrio harveyi, Vibrio parahaemolyticus and serratia sp. Methods: The antibacterial activity of the chosen nanoparticles was assessed by well diffusion method. Different concentrations of the nanoparticles were analyzed by MIC and MBC techniques. Finally the potential nanoparticle CeO2 which showed maximum antibacterial activity was also subjected for the time kill assay method. Results: Among the five nanoparticles, CeO2 showed maximum activity against Bacillus subtilis (13暲0.35 mm dia. followed by Vibrio harveyi (11暲0.25 mm dia.. The MIC test was also carried out by the liquid dilution method. The results suggested that, the CeO2 nanoparticles showed maximum inhibition at a concentration of 20 毺 g.ml-1 against Bacillus subtilis and 30 毺 g.ml-1 against Vibrio harveyi than the other nanoparticles. It is also noted that, 10 毺 g.ml-1 concentrations of the CeO 2 nanoparticles showed the maximum reduction of bacterial growth from 2nd h up to 12th h. Conclusion:It is concluded from the present study, the CeO2 nanoparticles could be used as an effective antibacterial agents for disease free fish management.

  4. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity

    Science.gov (United States)

    Guilger, Mariana; Pasquoto-Stigliani, Tatiane; Bilesky-Jose, Natália; Grillo, Renato; Abhilash, P. C.; Fraceto, Leonardo Fernandes; Lima, Renata De

    2017-03-01

    White mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area. Here, silver nanoparticles were biogenically synthesized using the fungus Trichoderma harzianum and characterized. Cytotoxicity and genotoxicity were evaluated, and the nanoparticles were initially tested against white mold sclerotia. Their effects on soybean were also investigated with no effects observed. The nanoparticles showed potential against S. sclerotiorum, inhibiting sclerotia germination and mycelial growth. Nanoparticle characterization data indicated spherical morphology, satisfactory polydispersity and size distribution. Cytotoxicity and genotoxicity assays showed that the nanoparticles caused both the effects, although, the most toxic concentrations were above those applied for white mold control. Given the potential of the nanoparticles against S. sclerotiorum, we conclude that this study presents a first step for a new alternative in white mold control.

  5. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Ruge, Christian A

    2017-01-01

    Lung-delivered polymer nanoparticles provoked dysfunction of the essential lung surfactant system. A steric shielding of the nanoparticle surface with poloxamers could minimize the unwanted interference of polymer nanoparticles with the biophysical function of lung surfactant. The extent of poly......(styrene) and poly(lactide) nanoparticle-induced lung surfactant inhibition could be related to the type and content of the applied poloxamer. Escalations of the adsorbed coating layer thickness (>3 nm) as well as concentration (brush- rather than mushroom-like conformation of poly(ethylene glycol), chain......-associated proteins. Poloxamer-modified polymer nanoparticles represent a promising nanomedicine platform intended for respiratory delivery revealing negligible effects on the biophysical functionality of the lining layer present in the deep lungs....

  6. Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels

    Directory of Open Access Journals (Sweden)

    Mohamed T

    2017-12-01

    Full Text Available Teba Mohamed,1,* Sabine Matou-Nasri,2,* Asima Farooq,3 Debra Whitehead,3 May Azzawi1 1School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; 2Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Saudi Arabia; 3School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK *These authors contributed equally to this work Background: Gold nanoparticles (AuNPs demonstrate clinical potential for drug delivery and imaging diagnostics. As AuNPs aggregate in physiological fluids, polymer-surface modifications are utilized to allow their stabilization and enhance their retention time in blood. However, the impact of AuNPs on blood vessel function remains poorly understood. In the present study, we investigated the effects of AuNPs and their stabilizers on endothelial cell (EC and vasodilator function.Materials and methods: Citrate-stabilized AuNPs (12±3 nm were synthesized and surface-modified using mercapto polyethylene glycol (mPEG and polyvinylpyrrolidone (PVP polymers. Their uptake by isolated ECs and whole vessels was visualized using transmission electron microscopy and quantified using inductively coupled plasma mass spectrometry. Their biological effects on EC proliferation, viability, apoptosis, and the ERK1/2-signaling pathway were determined using automated cell counting, flow cytometry, and Western blotting, respectively. Endothelial-dependent and independent vasodilator functions were assessed using isolated murine aortic vessel rings ex vivo.Results: AuNPs were located in endothelial endosomes within 30 minutes’ exposure, while their surface modification delayed this cellular uptake over time. After 24 hours’ exposure, all AuNPs (including polymer-modified AuNPs induced apoptosis and decreased cell

  7. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié , Sté phane C.; Kahawong, Patarawan; Duan, Xiaonan; Bowser, Daniel; Edward, Joseph B.; Walker, Larry P.; Giannelis, Emmanuel P.

    2012-01-01

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs

  8. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  9. The Effect of PEI and PVP-Stabilized Gold Nanoparticles on Equine Platelets Activation: Potential Application in Equine Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Mateusz Hecold

    2017-01-01

    Full Text Available The aim of this work was to assess the effect of different stabilizing agents, for example, polyethylenimine (PEI and polyvinylpyrrolidone (PVP, on gold nanoparticles (AuNPs and their influence on equine platelet activation and release of particular growth factors. The gold nanoparticles were produced by chemical reduction of chloroauric acid. UV-Vis spectroscopy confirmed the presence of gold nanoparticles in investigated solutions. The AuNPs were incubated with whole blood at various concentrations. The morphology of platelets in PRP prepared from the blood incubated with AuNPs was characterized by scanning transmission electron microscopy, whereas the concentrations of growth factors and cytokines were evaluated by ELISA assays. The most promising results were obtained with equine platelets incubated with 5% AuNPs stabilized by PEI, which lead to secretion of bone morphogenetic protein 2 (BMP-2, vascular endothelial growth factor (VEGF, and fibroblast growth factor 1 (FGF-1 and simultaneously cause decrease in concentration of interleukin-1 alpha (IL-1α. The qRT-PCR confirmed ELISA test results. The incubation with 5% AuNPs stabilized by PEI leads to upregulation of BMP-2 and VEGF transcripts of mRNA level and to downregulating expression of interleukin-6 (IL-6. Obtained data shed a promising light on gold nanoparticle application for future regenerative medicine application.

  10. O3 Nanoparticles

    KAUST Repository

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tao

    2016-01-01

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal

  11. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    International Nuclear Information System (INIS)

    Kemp, Melissa M; Linhardt, Robert J; Kumar, Ashavani; Ajayan, Pulickel; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Mousa, Shaker A

    2009-01-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  12. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Melissa M; Linhardt, Robert J [Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Kumar, Ashavani; Ajayan, Pulickel [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Mousa, Shaker A, E-mail: Shaker.mousa@acphs.ed [Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208 (United States)

    2009-11-11

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  13. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    Science.gov (United States)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  14. Total Saponin from Root of Actinidia valvata Dunn Inhibits Hepatoma 22 Growth and Metastasis In Vivo by Suppression Angiogenesis

    Directory of Open Access Journals (Sweden)

    Guo-Yin Zheng

    2012-01-01

    Full Text Available The root of Actinidia valvata dunn has been widely used in the treatment of hepatocellular carcinoma (HCC, proved to be beneficial for a longer and better life in China. In present work, total saponin from root of Actinidia valvata Dunn (TSAVD was extracted, and its effects on hepatoma H22-based mouse in vivo were observed. Primarily transplanted hypodermal hepatoma H22-based mice were used to observe TSAVD effect on tumor growth. The microvessel density (MVD, vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF are characterized factors of angiogenesis, which were compared between TSAVD-treated and control groups. Antimetastasis effect on experimental pulmonary metastasis hepatoma mice was also observed in the study. The results demonstrated that TSAVD can effectively inhibit HCC growth and metastasis in vivo, inhibit the formation of microvessel, downregulate expressions of VEGF and bFGF, and retrain angiogenesis of hepatoma 22 which could be one of the reasons.

  15. O3 Nanoparticles

    KAUST Repository

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  16. Higher expression of vascular endothelial growth factor (VEGF and its receptor VEGFR-2 (Flk-1 and metalloproteinase-9 (MMP-9 in a rat model of peritoneal endometriosis is similar to cancer diseases

    Directory of Open Access Journals (Sweden)

    Nasciutti Luiz E

    2010-01-01

    Full Text Available Abstract Background Endometriosis is a common disease characterized by the presence of a functional endometrium outside the uterine cavity, causing pelvic pain, dysmenorrheal, and infertility. This disease has been associated to development of different types of malignancies; therefore new blood vessels are essential for the survival of the endometrial implant. Our previous observations on humans showed that angiogenesis is predominantly found in rectosigmoid endometriosis, a deeply infiltrating disease. In this study, we have established the experimental model of rat peritoneal endometriosis to evaluate the process of angiogenesis and to compare with eutopic endometrium. Methods We have investigated the morphological characteristics of these lesions and the vascular density, VEGF and its receptor Flk-1 and MMP-9 expression, and activated macrophage distribution, using immunohistochemistry and RT-PCR. Results As expected, the auto-transplantation of endometrium pieces into the peritoneal cavity is a well-established method for endometriosis induction in rats. The lesions were cystic and vascularized, and demonstrated histological hallmarks of human pathology, such as endometrial glands and stroma. The vascular density and the presence of VEGF and Flk-1 and MMP-9 were significantly higher in endometriotic lesions than in eutopic endometrium, and confirmed the angiogenic potential of these lesions. We also observed an increase in the number of activated macrophages (ED-1 positive cells in the endometriotic lesions, showing a positive correlation with VEGF. Conclusion The present endometriosis model would be useful for investigation of the mechanisms of angiogenesis process involved in the peritoneal attachment of endometrial cells, as well as of the effects of therapeutic drugs, particularly with antiangiogenic activity.

  17. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.

    Science.gov (United States)

    Bo, Zhang; Avsar, Saziye Yorulmaz; Corliss, Michael K; Chung, Minsub; Cho, Nam-Joon

    2017-10-05

    As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Metal nanoparticles in DBS card materials modification

    Science.gov (United States)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  19. Metal nanoparticles in DBS card materials modification

    International Nuclear Information System (INIS)

    Metelkin, A; Frolov, G; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers. (paper)

  20. Alpha amylase assisted synthesis of TiO2 nanoparticles: Structural characterization and application as antibacterial agents

    International Nuclear Information System (INIS)

    Ahmad, Razi; Mohsin, Mohd; Ahmad, Tokeer; Sardar, Meryam

    2015-01-01

    Graphical abstract: - Highlights: • Green synthesis of TiO 2 nanoparticles using an enzyme alpha amylase has been described. • The morphology and shape depends upon the concentration of the alpha amylase enzyme. • The biosynthesized nanoparticles show good bactericidal effect against both gram positive and gram negative bacteria. • The bactericidal effect was further confirmed by Confocal microscopy and TEM. - Abstract: The enzyme alpha amylase was used as the sole reducing and capping agent for the synthesis of TiO 2 nanoparticles. The biosynthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopic (TEM) methods. The XRD data confirms the monophasic crystalline nature of the nanoparticles formed. TEM data shows that the morphology of nanoparticles depends upon the enzyme concentration used at the time of synthesis. The presence of alpha amylase on TiO 2 nanoparticles was confirmed by FTIR. The nanoparticles were investigated for their antibacterial effect on Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentration value of the TiO 2 nanoparticles was found to be 62.50 μg/ml for both the bacterial strains. The inhibition was further confirmed using disc diffusion assay. It is evident from the zone of inhibition that TiO 2 nanoparticles possess potent bactericidal activity. Further, growth curve study shows effect of inhibitory concentration of TiO 2 nanoparticles against S. aureus and E. coli. Confocal microscopy and TEM investigation confirm that nanoparticles were disrupting the bacterial cell wall

  1. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant

    International Nuclear Information System (INIS)

    Liu, Jia; Vipulanandan, Cumaraswamy

    2013-01-01

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. - Highlights: • Modeled the effect of nanoparticles on the bacterial growth and biosurfactant production. • Effects of Au/Fe nonoparticles on Serratia Bacterial Growth and Production of Biosurfactant. • Scanning Electron Micrograph of bacteria-nanoparticles interaction

  2. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Vipulanandan, Cumaraswamy, E-mail: cvipulanandan@uh.edu

    2013-10-15

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. - Highlights: • Modeled the effect of nanoparticles on the bacterial growth and biosurfactant production. • Effects of Au/Fe nonoparticles on Serratia Bacterial Growth and Production of Biosurfactant. • Scanning Electron Micrograph of bacteria-nanoparticles interaction.

  3. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  4. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  5. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  6. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    Science.gov (United States)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  7. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  8. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    Science.gov (United States)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  9. Nanoparticle mediated micromotor motion

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  10. A nanoparticle in plasma

    International Nuclear Information System (INIS)

    Martynenko, Yu. V.; Nagel', M. Yu.; Orlov, M. A.

    2009-01-01

    Charge and energy fluxes onto a nanoparticle under conditions typical of laboratory plasmas are investigated theoretically. Here, by a nanoparticle is meant a grain the size of which is much smaller than both the electron Larmor radius and Debye length and the thermionic emission from which is not limited by the space charge. Under conditions at which thermionic emission plays an important role, the electric potential and temperature T p of a nanoparticle are determined by solving a self-consistent set of equations describing the balance of energy and charge fluxes onto the nanoparticle. It is shown that, when the degree of plasma ionization exceeds a critical level, the potential of the nanoparticle and the energy flux onto it increase with increasing nanoparticle temperature, so that, starting from a certain temperature, the nanoparticle potential becomes positive. The critical degree of ionization starting from which the potential of a nanoparticle is always positive is determined as a function of the plasma density and electron temperature. The nanoparticle temperature T p corresponding to the equilibrium state of a positively charged nanoparticle is found as a function of the electron density for different electron temperatures.

  11. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    Science.gov (United States)

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  12. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  13. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  14. Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp

    Directory of Open Access Journals (Sweden)

    Mahmood Nafisi Bahabadi

    2016-04-01

    Full Text Available Background: Nanotechnology is a field of applied science and technology covering a broad range of topics. Use of nanotechnology and especially silver nanoparticles in control of bacterial diseases and infections has been studied in the recent years. The aim of the present study was to investigate the in vitro antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. Materials and methods: In this research, first, the antibacterial effects of silver nanoparticles against mentioned bacteria were evaluated by microdilution method in Broth medium. After confidence of inhibitory effect of colloidal silver nanoparticles, antibacterial effect of filter media coated with silver nanoparticles was evaluated via in vitro microbiology tests (zone of inhibition test and test tube test. Results: Present study showed that colloidal silver nanoparticles have good antimicrobial effects against tested bacteria, so that MIC and MBC of silver nanoparticles for Bacillus spp. were calculated 3.9 and 31.25 mg/L, respectively. Also significant decrease was observed in bacterial growth after exposure to filter media coated with silver nanoparticles in test tube test and  zone of inhibition test (P≤ 5%. Conclusion: The results of this research indicate that filter media coated with silver nanoparticles have considerable antimicrobial effects; therefore they could possibly be used as excellent antibacterial water filters and would have several applications in other sectors.

  15. Synthesis and antibacterial activity of of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Sadowski, Z

    2009-01-01

    Silver nanoparticles have been known to have inhibitory and bactericidal effects but the antimicrobial mechanism have not been clearly revealed. Here, we report on the synthesis of metallic nanoparticles of silver using wild strains of Penicillium isolated from environment. Kinetics of the formation of nanosilver was monitored using the UV-Vis. TEM micrographs showed the formation of silver nanoparticles in the range 10-100 nm. Obtained Ag nanoparticles were evaluated for their antimicrobial activity against the gram-positive and gram-negative bacteria. As results, Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were effectively inhibited. Nanosilver is a promising candidate for development of future antibacterial therapies because of its wide spectrum of activity.

  16. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    International Nuclear Information System (INIS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-01-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  17. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  18. The biotoxicity of hydroxyapatite nanoparticles to the plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Liu, Jin-Ku, E-mail: jkliu@ecust.edu.cn [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jian-Dong; Lu, Yi; Zhang, Min [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Yang, Xiao-Hong, E-mail: yxh6110@yeah.net [Department of Chemistry, Chizhou University, Chizhou 247000 (China); Hong, Dan-Jing [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China)

    2014-04-01

    Highlights: • Mung bean sprouts were first used as the experimental model to research the cytotoxicity of the HAP nanomaterials. • The biotoxicity depends on the concentration and particle size of HAP nanomaterials. • The biotoxicity mechanism of HAP nanomaterials was discussed. - Abstract: In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5 mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24 h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca{sup 2+} concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth.

  19. The biotoxicity of hydroxyapatite nanoparticles to the plant growth

    International Nuclear Information System (INIS)

    Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Zhang, Min; Yang, Xiao-Hong; Hong, Dan-Jing

    2014-01-01

    Highlights: • Mung bean sprouts were first used as the experimental model to research the cytotoxicity of the HAP nanomaterials. • The biotoxicity depends on the concentration and particle size of HAP nanomaterials. • The biotoxicity mechanism of HAP nanomaterials was discussed. - Abstract: In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5 mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24 h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca 2+ concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth

  20. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  1. Nanoparticles and direct immunosuppression

    Science.gov (United States)

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  2. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    Science.gov (United States)

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  3. Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma.

    Science.gov (United States)

    Barone, Amy; Sengupta, Rajarshi; Warrington, Nicole M; Smith, Erin; Wen, Patrick Y; Brekken, Rolf A; Romagnoli, Barbara; Douglas, Garry; Chevalier, Eric; Bauer, Michael P; Dembowsky, Klaus; Piwnica-Worms, David; Rubin, Joshua B

    2014-10-30

    Glioblastoma recurrence involves the persistence of a subpopulation of cells with enhanced tumor-initiating capacity (TIC) that reside within the perivascular space, or niche (PVN). Anti-angiogenic therapies may prevent the formation of new PVN but have not prevented recurrence in clinical trials, suggesting they cannot abrogate TIC activity. We hypothesized that combining anti-angiogenic therapy with blockade of PVN function would have superior anti-tumor activity. We tested this hypothesis in an established intracranial xenograft model of GBM using a monoclonal antibody specific for murine and human VEGF (mcr84) and a Protein Epitope Mimetic (PEM) CXCR4 antagonist, POL5551. When doses of POL5551 were increased to overcome an mcr84-induced improvement in vascular barrier function, combinatorial therapy significantly inhibited intracranial tumor growth and improved survival. Anti-tumor activity was associated with significant changes in tumor cell proliferation and apoptosis, and a reduction in the numbers of perivascular cells expressing the TIC marker nestin. A direct effect on TICs was demonstrated for POL5551, but not mcr84, in three primary patient-derived GBM isolates. These findings indicate that targeting the structure and function of the PVN has superior anti-tumor effect and provide a strong rationale for clinical evaluation of POL5551 and Avastin in patients with GBM.

  4. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkuviene, Aida [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Kaseta, Vytautas [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Voronovic, Jaroslav [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Ramanauskaite, Giedre; Biziuleviciene, Gene [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Ramanaviciene, Almira [NanoTechnas–Center of Nanotechnology and Material Science at Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius (Lithuania); Ramanavicius, Arunas, E-mail: Arunas.Ramanavicius@chf.vu.lt [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Laboratory of BioNanoTechnology, Department of Materials Science and Electronics, Institute of Semiconductor Physics, State Scientific Research Institute Centre for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2013-04-15

    Highlights: ► Polypyrrole nanoparticles synthesized by environmentally friendly polymerization at high concentrations are cytotoxic. ► Primary mouse embryonic fibroblast, mouse hepatoma and human T lymphocyte Jurkat cell lines were treated by Ppy nanoparticles. ► Polypyrrole nanoparticles at high concentrations inhibit cell proliferation. -- Abstract: Polypyrrole (Ppy) is known as biocompatible material, which is used in some diverse biomedical applications and seeming to be a very promising for advanced biotechnological applications. In order to increase our understanding about biocompatibility of Ppy, in this study pure Ppy nanoparticles (Ppy-NPs) of fixed size and morphology were prepared by one-step oxidative polymerization and their cyto-compatibility was evaluated. The impact of different concentration of Ppy nanoparticles on primary mouse embryonic fibroblasts (MEF), mouse hepatoma cell line (MH-22A), and human T lymphocyte Jurkat cell line was investigated. Cell morphology, viability/proliferation after the treatment by Ppy nanoparticles was evaluated. Obtained results showed that Ppy nanoparticles at low concentrations are biocompatible, while at high concentrations they became cytotoxic for Jurkat, MEF and MH-22A cells, and it was found that cytotoxic effect is dose-dependent.

  5. Therapeutic Potential of Biologically Reduced Silver Nanoparticles from Actinomycete Cultures

    International Nuclear Information System (INIS)

    Sukanya, M.K.; Saju, K.A.; Praseetha, P.K.; Sakthivel, G.

    2013-01-01

    Silver nanoparticles are applied in nanomedicine from time immemorial and are still used as powerful antibiotic and anti-inflammatory agents. Antibiotics produced by actinomycetes are popular in almost all the therapeutic measures, and this study has proven that these microbes are also helpful in the biosynthesis of silver nanoparticles with good surface and size characteristics. Silver can be synthesized by various chemical methodologies, and most of them have turned to be toxic. This study has been successful in isolating the microbes from polluted environment, and subjecting them to the reduction of silver nanoparticles, characterizing the nanoparticles by UV spectrophotometry and transmission electron microscopy. The nanoparticles produced were tested for their antimicrobial property, and the zone of inhibition was greater than those produced by their chemically synthesized counterparts. Actinomycetes, helpful in bioremediating heavy metals, are useful for the production of metallic nanoparticles. The biosynthesized silver nanoparticles loaded with antibiotics prove to be better in killing the pathogens and have opened up new areas for developing nanobiotechnological research based on microbial applications.

  6. Sustained Cytotoxicity of Wogonin on Breast Cancer Cells by Encapsulation in Solid Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jong-Suep Baek

    2018-03-01

    Full Text Available While wogonin has been known to have cytotoxicity against various cancer cells, its bioavailability and cytotoxicity are low due to its low water solubility. Therefore, wogonin-loaded solid lipid nanoparticles were fabricated using a hot-melted evaporation technique. The highest solubility of wogonin was observed in stearic acid. Hence, wogonin-loaded solid lipid nanoparticles were composed of stearic acid as the lipid matrix. The physicochemical properties of the wogonin-loaded solid lipid nanoparticles were evaluated by dynamic laser scattering and scanning electron microscopy. The wogonin-loaded solid lipid nanoparticles exhibited sustained and controlled release up to 72 h. In addition, it was observed that the wogonin-loaded solid lipid nanoparticles exhibited enhanced cytotoxicity and inhibited poly (ADP-ribose polymerase in MCF-7 breast cancer cells. Overall, the results indicate that wogonin-loaded solid lipid nanoparticles could be an efficient delivery system for the treatment of breast cancer.

  7. [How safe are nanoparticles?].

    Science.gov (United States)

    Lademann, J; Meinke, M; Sterry, W; Patzelt, A

    2009-04-01

    Nanoparticles are experiencing an increasing application in dermatology and cosmetics. In both application areas, the requirements of nanoparticles are in most cases widely different. As a component of sunscreens, the nanoparticles are supposed to remain on the skin surface or in the upper most layers of the stratum corneum to protect the skin against UV-radiation of the sun. Whereas, on the other hand, when particulate substances are used as carrier systems for drugs, they have to cross the skin barrier to reach the target sites within the living tissue. We discuss the perspectives and risks of the topical application of nanoparticles.

  8. INHIBITION IN SPEAKING PERFORMANCE

    OpenAIRE

    Humaera, Isna

    2015-01-01

    The most common problem encountered by the learner in the languageacquisition process is learner inhibition. Inhibition refers to a temperamentaltendency to display wariness, fearfulness, or restrain in response tounfamiliar people, objects, and situations. There are some factors that causeinhibition, such as lack of motivation, shyness, self-confidence, self-esteem,and language ego. There are also levels of inhibition, it refers to kinds ofinhibition and caused of inhibition itself. Teacher ...

  9. UV-Curing of Nanoparticle Reinforced Acrylates

    International Nuclear Information System (INIS)

    Bauer, F.

    2006-01-01

    Polymer reinforcement by silica and alumina nanoparticles evidently yields improved surface hardness. Single mixing of nanoparticles into an acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification providing an interface between the two dissimilar materials. For example, vinyltrimethoxysilane (VTMO) can react via hydrolysis/condensation reactions with hydroxyl groups present on the inorganic surface and should bond via the polymerisation-active vinyl group to an acrylate resin through crosslinking reactions. Grafting reactions of surface OH groups and different trialkoxysilanes were studied by thermogravimetry, infrared, and multinuclear NMR spectroscopy. The copolymeri-zation of modified nanoparticles with the acrylate matrix has been investigated by 13 C NMR spectroscopy. UV curing under nitrogen inertization revealed a lower reactivity of vinyl groups of VTMO-modified silica compared to grafted methacryloxypropyl-trimethoxysilane (MEMO) which showed complete conversion of olefinic carbons (signals at 120 - 140 ppm). Under conditions of oxygen inhibition, the effect of the kind and the concentration of photoinitiator on the photopoly-merization reaction was studied. Compared to neat polyacrylate coatings the nanocomposite materials exhibit markedly improved properties, e.g., heat, scratch, and abrasion resistance. However, a much better abrasion resistance was obtained for coatings containing both silica nano-particles and corundum microparticles. In particular cases, radiation curing with 172 nm photons generated by Xe excimer was performed to obtain structured polymer surfaces, i.e., matting of the reinforced acrylate coatings

  10. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  11. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.

    2014-12-01

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  12. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  13. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Selvaraj Karthick Raja Namasivayam

    2015-04-01

    Full Text Available Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  14. The preparation, physicochemical properties, and the cohesive energy of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Itami, Toshio; Ara, Kuniaki

    2012-01-01

    Liquid sodium containing titanium nanoparticles (LSnanop) of 10-nm diameter was prepared by dispersing titanium nanoparticles (2 at.% Ti) into liquid sodium with the addition of stirring and ultrasonic sound wave. The titanium nanoparticles themselves were prepared by the vapor deposition method. This new liquid metal, LSnanop, shows a remarkable stability due to the Brownian motion of nanoparticles in liquid sodium medium. In addition, the difference of measured heat of reaction to water between this LSnanop and liquid sodium indicates the existence of cohesive energy between the liquid sodium medium and dispersed titanium nanoparticles. The origin of the cohesive energy, which serves to stabilize this new liquid metal, was explained by the model of screened nanoparticles in liquid sodium. In this model, negatively charged nanoparticles with transferred electrons from liquid sodium are surrounded by the positively charged screening shell, which may inhibit the gathering of nanoparticles by the “Coulombic repulsion coating.” The atomic volume of LSnanop shows the shrinkage from the linear law, which also suggests the existence of cohesive energy. The viscosity of LSnanop is almost the same as that of liquid sodium. This behavior was explained by the Einstein equation. The surface tension of LSnanop is 17 % larger than that of liquid sodium. The cohesive energy and the negative adsorption may be responsible to this increase. Titanium nanoparticles in liquid sodium seem to be free from the Coulomb fission. This new liquid metal containing nanoparticles suggests the possibility to prepare various stable suspensions with new properties.

  15. Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon J; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok C

    2016-09-01

    Nanoparticles and nanomaterials are at the prominent edge of the rapidly developing field of nanotechnology. Recently, nanoparticle synthesis using biological resources has been found to be a new area with considerable prospects for development. Biological systems are the masters of ambient condition chemistry and are able to synthesize nanoparticles by utilizing metal salts. In the perspective of the current initiative to develop green technologies for the synthesis of nanoparticles, microorganisms are of considerable interest. Thus, the present study describes a bacterial strain-Weissella oryzae DC6-isolated from mountain ginseng, for the green and facile synthesis of silver nanoparticles. The particles were synthesized effectively without the need for any supplementary modification to maintain stability. The synthesized nanoparticles were evaluated by several instrumental techniques, comprising ultraviolet-visible spectrophotometry, field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, and dynamic light scattering. In addition, the biosynthesized silver nanoparticles were explored for their antimicrobial activity against clinical pathogens including Vibrio parahaemolyticus, Bacillus cereus, Bacillus anthracis, Staphylococcus aureus, Escherichia coli, and Candida albicans. Furthermore, the potential of nanoparticles has been observed for biofilm inhibition against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the synthesis of silver nanoparticles by the strain W. oryzae DC6 may serve as a simple, green, cost-effective, consistent, and harmless method to produce antimicrobial silver nanoparticles.

  16. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  17. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Institute of Scientific and Technical Information of China (English)

    Duraisamy Jayakumar; Ramesh Kumar; Rajan SowriArvind Bharani

    2015-01-01

    Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  18. 18F-FET microPET and microMRI for anti-VEGF and anti-PlGF response assessment in an orthotopic murine model of human glioblastoma

    DEFF Research Database (Denmark)

    Nedergaard, Mette Kjoelhede; Michaelsen, Signe Regner; Urup, Thomas

    2015-01-01

    BACKGROUND: Conflicting data exist for anti-cancer effects of anti-placental growth factor (anti-PlGF) in combination with anti-VEGF. Still, this treatment combination has not been evaluated in intracranial glioblastoma (GBM) xenografts. In clinical studies, position emission tomography (PET) using......-FET MicroPET and MicroMRI for evaluation of anti-VEGF and anti-PlGF treatment response in GBM xenografts. METHODS: Mice with intracranial GBM were treated with anti-VEGF, anti-PlGF + anti-VEGF or saline. Bioluminescence imaging (BLI), 18F-FET MicroPET and T2-weighted (T2w)-MRI were used to follow tumour...... development. Primary end-point was survival, and tumours were subsequently analysed for Ki67 proliferation index and micro-vessel density (MVD). Further, PlGF and VEGFR-1 expression were examined in a subset of the xenograft tumours and in 13 GBM patient tumours. RESULTS: Anti-VEGF monotherapy increased...

  19. Isolation and identification of burn wound superbugs by molecular technique and their susceptibility to silver nanoparticles

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby

    2018-02-01

    Burn wound is a global problem affecting millions of people. It is the major cause of mortality and morbidity. This study was aimed to isolate and identify the wound isolates by 16S rRNA and to assess their susceptibility to antibiotics and silver nanoparticles. Silver nanoparticles were synthesized using aqueous extract of A.indica. The silver nanoparticles were characterized by FESEM, XRD, FTIR and DSC. Antibacterial susceptibility of the isolates was assessed by well diffusion method. The wound isolates were identified as S.aureus and E.coli. Both isolates were resistant to β lactum antibiotics, aminoglycoside, quinolones and macrolides. The inhibition zone exhibited by all antibiotics against both organisms was less than 5 mm. The size of silver nanoparticles were recorded as 55 nm. XRD confirmed the crystalline nature of the nanoparticles. TGA and DSC of silver nanoparticles showed the loss of weight and the melting point of silver nanoparticles was recorded at 871.3°C. Silver nano particles inhibited S.aureus and E.coli with an inhibition zone of 27 mm and 32 mm respectively. Therefore the study demonstrated that only silver containing dressings can be used in burn wounds infected by multi drug resistant super bugs.

  20. Experimental study of the biological properties of 188Re-Hepama-1 biologic superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Sun Jing; Wen Guanghua; Wu Xiaolian; Liang Sheng; Xia Jiaoyun

    2007-01-01

    Objective: To investigate a new biologic-superparamagnetic nanoparticles's characteristics of immunological activity, biological distributing in vivo, targeting and inhibiting tumor effect. Methods: The experimental group 188 Re-Hepama-l-superparamagnetic nanoparticles, and control groups, including 188 ReO 4 - , 188 Re-Hepama-1, and 188 Re-superparamagnetic nanoparticles, were set up. The distributions were measured after injection 4 h and 24 h by caudal vein of Kuming mice. The magnetic targeting experiments in vivo were clone with and without magnetic field in liver after injection in New Zealand rabbit. The inhibiting tumor effect on hepatic cancer cell lines SMMC-7721 of the above four 188 Re labeled products were measured by mono nuclear cell direct cytotoxicity assay method. Results: After injection 4 h and 24 h by vein, the liver taking was highest in group 188 Re-Hepama-l-superparamagnetic nanoparticles. The radiative activity in liver in magnetism zoo was higher than in non magnetism zoo in 188 Re- Hepama-1-superparamagnetic nanoparticles after applying magnetic field in left lobe of liver, and the ratio of in magnetism zoo to non magnetism zoo was 1.87. And the half effective inhibition radioactive concentrations (IC 50 ) in 188 Re-Hepama-l-superparamagnetic nanoparticles was one forth of 188 ReO 4 - . Conclusion: 188 Re- Hepama-l-superparamagnetic nanoparticles showed its fine stability in intro, good immunological activity and significant liver target. (authors)

  1. Biosynthesis of silver nanoparticles

    African Journals Online (AJOL)

    SIMBU

    2013-05-22

    May 22, 2013 ... accomplish a better control over the size and shape distributions of the nanoparticles, product harvesting, and recovery are ... stabilization of various nanoparticles by physical and che- .... colonies on Luria Bertani (LB) medium at 37°C up to 108- ..... Crude latex was obtained by cutting the green stems of J.

  2. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  3. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    Science.gov (United States)

    Kim, Sung Phil; Kang, Mi Young; Nam, Seok Hyun; Friedman, Mendel

    2012-06-01

    We investigated the effects of rice bran and components on tumor growth in mice. Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors. Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  5. Energy breathing of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dynich, Raman A., E-mail: dynich@solo.by [Institute of Social Educational Technologies (Belarus)

    2015-06-15

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such “energy breathing” is presented for spherical Ag and Au nanoparticles with radii of 10 and 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  6. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  7. Copper Nanoparticle Induced Cytotoxicity to Nitrifying Bacteria ...

    Science.gov (United States)

    With the inclusion of engineered nanomaterials in industrial processes and consumer products, wastewater treatments plants (WWTPs) will serve as a major sink for these emerging contaminants. Previous research has demonstrated that nanomaterials are potentially toxic to microbial communities utilized in biological wastewater treatment (BWT). Copper-based nanoparticles (CuNPs) are of particular interest based on their increasing use in wood treatment, paints, household products, coatings, and byproducts of semiconductor manufacturing. A critical step in BWT is nutrient removal via denitrification. This study examined the potential toxicity of bare and polyvinylpyrrolidone (PVP) coated CuO, and Cu2O nanoparticles, as well as Cu ions to microbial communities responsible for nitrogen removal in BWT. Inhibition was inferred from changes to the specific oxygen uptake rate (sOUR) in the absence and presence of Cu ions and CuNPs. X-ray absorption fine structure spectroscopy, with Linear Combination Fitting (LCF), was utilized to track changes to Cu speciation throughout exposure. Results indicate that the dissolution of Cu ions from CuNPs drive microbial inhibition. The presence of a PVP coating on CuNPs has little effect on inhibition. LCF fitting of the biomass combined with metal partitioning analysis supports the current hypothesis that Cu-induced cytotoxicity is primarily caused by reactive oxygen species formed from ionic Cu in solution via catalytic reaction inter

  8. Silver nanoparticles for the inhibition of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Ortiz-Gila

    2015-01-01

    Full Text Available Existe un gran ecosistema microbiano en la cavidad oral donde Staphylococcus aureus ( S. aureus se puede encontrar, causando patologías orales tales como quelitis angular, las paperas y la mucositis estafilocócica. Estas enfermedades producidas por S. aureus en la cavidad oral son consecuencia de los factores de virulencia, toxinas y multiresistencia a los antibióticos, lo que contribuye a la infección. La colonización en la cavidad oral por S. aureus en pacientes sanos es de 24% a 36%. Sin embargo, la incidencia aumenta a 48% en pacientes con prótesis debido a la formación de biofilms en la superficie de las dentaduras postizas. Actualmente, no existe ningún tratamiento para infecciones orales sin el uso de antibióticos. Investigaciones recientes indican que las nanopartículas de plata (AgNPs son un material o estrategia para eliminar S. aureus debido a su efecto antibacteriano. Sin embargo, el mecanismo del efecto inhibidor de los iones de Ag sobre S. aureus es sólo parcialmente conocida y muy poco se ha informado. Por lo tanto, el propósito de la presente revisión sistemática es determinar las estrategias y retos de la utilización de biomateriales antimicrobianos con AgNPs frente a las infecciones orales de S. aureus.

  9. Functional Magnetic Nanoparticles

    Science.gov (United States)

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  10. Cytotoxicity and effect on GJIC of SiO2 nanoparticles in HL-7702 cells

    International Nuclear Information System (INIS)

    Pan Tao; Jin Minghua; Liu Xiaomei; Du Zhongjun; Zhou Xianqing; Huang Peili; Sun Zhiwei

    2013-01-01

    scale particles could cause GJIC inhibition in a dose-dependent way; and when at the same dose, the nanoparticles could cause a more obvious inhibition of GJIC than the submicron particles. Conclusion: SiO 2 nanoparticles have cytotoxicity on HL-7702 cells, and would cause GJIC inhibition. (authors)

  11. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    International Nuclear Information System (INIS)

    Flores-Castañeda, Mariela; Vega-Jiménez, Alejandro L.; Almaguer-Flores, Argelia; Camps, Enrique; Pérez, Mario; Silva-Bermudez, Phaedra; Berea, Edgardo; Rodil, Sandra E.

    2015-01-01

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area

  12. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Science.gov (United States)

    Flores-Castañeda, Mariela; Vega-Jiménez, Alejandro L.; Almaguer-Flores, Argelia; Camps, Enrique; Pérez, Mario; Silva-Bermudez, Phaedra; Berea, Edgardo; Rodil, Sandra E.

    2015-11-01

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  13. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, Mariela [Instituto Nacional de Investigaciones Nucleares (Mexico); Vega-Jiménez, Alejandro L., E-mail: argelia.almaguer@mac.com; Almaguer-Flores, Argelia [Universidad Nacional Autónoma de México, Facultad de Odontología, DEPeI, I (Mexico); Camps, Enrique; Pérez, Mario [Instituto Nacional de Investigaciones Nucleares (Mexico); Silva-Bermudez, Phaedra [Instituto Nacional de Rehabilitación, Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa (Mexico); Berea, Edgardo [FarmaQuimia SA de CV. (Mexico); Rodil, Sandra E. [Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales (Mexico)

    2015-11-15

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  14. Microemulsion Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gotić, M.

    2013-11-01

    Full Text Available Nanoparticles and nanomaterials have wide applications in electronics, physics, material design, being also utilized as sensors, catalysts, and more and more in biomedicine. Microemulsions are an exceptionally suitable medium for the synthesis of nanoparticles due to their thermodynamical stability, great solubility of both polar and nonpolar components, as well as their ability to control the size, dispersity and shape of the particles. This review presents microemulsion techniques for the synthesis of inorganic nanoparticles. It takes place in water-in-oil microemulsions by mixing one microemulsion with a cationic precursor, and the other with a precipitating or reducing agent, or by direct addition of reducing agents or gas (O2, NH3 ili CO2 into microemul sion (Fig. 1. Metal nanoparticles are used as catalysts, sensors, ferrofluids etc. They are produced by reducing the metal cation with a suitable reducing agent. In a similar way, one can prepare nanoparticles of alloys from the metal salts, provided that the metals are mutually soluble. The microemulsion technique is also suitable for depositing nanoparticles onto various surfaces. Highly active catalysts made from nanoparticles of Pt, Pd, Rh and other noble metals may be obtained in this way. Metal oxides and hydroxides may be prepared by hydrolysis or precipitation in the water core of microemulsion. Precipitation can be initiated by adding the base or precipitating agent into the microemulsion with water solution of metal ions. Similarly, nanoparticles may be prepared of sulphides, halogenides, cyanides, carbonates, sulphates and other insoluble metal salts. To prevent oxidation of nanoparticles, especially Fe, the particles are coated with inert metals, oxides, various polymers etc. Coating may provide additional functionality; e.g. coating with gold allows subsequent functionalization with organic compounds containing sulphur, due to the strong Au–S bond. Polymer coatings decrease

  15. Animal study of rh-endostatin combined with ginsenoside Rg3 on inhibiting growth of breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Chuan-Ming Tong

    2016-03-01

    Full Text Available Objective: To study the inhibiting effect of rh-endostatin combined with ginsenoside Rg3 on growth of breast cancer xenografts. Methods: C57BL/6 nude mice were selected as research subjects, animal models with breast cancer xenografts were established through subcutaneous injection of breast cancer cells in the neck and randomly divided into A-D groups, and normal saline, rh-endostatin, ginsenoside Rg3 and rh-endostatin combined with ginsenoside Rg3 were injected respectively. Tumor growth, serum angiogenesis factor contents, percentages of cell cycles and expression levels of cell cycle-related molecules in tumor tissue of four groups were compared. Results: 7 d, 14 d and 21 d after treatment, tumor volume as well as serum VEGF and bFGF contents of B group, C group and D group were significantly lower than those of A group, and tumor volume as well as serum VEGF and bFGF contents of D group were significantly lower than those of B group and C group; 21 d after treatment, tumor weight, percentages of S phase and G2/M phase as well as mRNA contents and protein contents of cyclin E and CDC25A in tumor tissue of B group, C group and D group were lower than those of A group, and G0/G1 phase percentages were higher than that of A group; tumor weight, percentages of S phase and G2/M phase as well as mRNA contents and protein contents of cyclin E and CDC25A in tumor tissue of D group were significantly lower than those of B group and C group, and G0/G1 phase percentage was lower than those of B group and C group. Conclusion: rh-endostatin combined with ginsenoside Rg3 can more effectively inhibit growth of breast cancer xenografts, make cell cycle arrest and down-regulate expression of cell cyclerelated molecules.

  16. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  17. Electronically cloaked nanoparticles

    Science.gov (United States)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  18. Antioxidant Effects of Quercetin and Catechin Encapsulated into PLGA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hector Pool

    2012-01-01

    Full Text Available Polymeric nanoparticles (PLGA have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacement method. Physicochemical properties were measured by light scattering, scanning electron microscopy and ζ-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d≈ 400 nm polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE ≈ 79% and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

  19. ADJUVANT PROPERTIES OF NANOPARTICLES IMMOBILIZED RECOMBINANT DIPHTHERIA TOXOID FRAGMENT

    Directory of Open Access Journals (Sweden)

    T. O. Chudina

    2017-08-01

    Full Text Available The aim of the research was to compare the characteristics of nanoparticles with different chemical structure and size (colloidal gold Gold 1 and Gold 2, calcium phosphate CaP and poly(lactideco-glykolid PLGA 1 and 2 to find the most efficient carriers of antigen — recombinant diphtheria toxoid for per os immunization. According to the MTT test, all studied particles show no significant cytotoxic impact on the studied cells in vitro, with the exception of CaP nanoparticles, which in high concentrations have cytotoxic effect on the U937 cells, and Gold nanoparticles 1 and 2, that are able to inhibit growth of the L929 cells. The most effective phagocytosis by macrophage-like cells J774 is observed for PLGA nanoparticles 1 and 2 with the immobilized antigen, while Gold nanoparticles 1 and 2 with antigen can interact with the surface of these cells without being phagocytated by them. In BALB/c mice immunized per os with antigen immobilized on PLGA 1 and 2 as well as Gold 2 carriers, the concentration of specific IgA antibodies in blood significantly increases after the second immunization, compared with controls. In the group of mice treated with PLGA 2 conjugated antigen, the concentration of specific IgG in blood after the third immunization also increases. These results show the promise of nanoparticles PLGA 1 and 2 as adjuvant for immunization per os.

  20. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  1. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  2. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  3. Assembling RNA Nanoparticles.

    Science.gov (United States)

    Xiao, Shou-Jun

    2017-01-01

    RNA nanoparticles are designed and self-assembled according to noncanonical interactions of naturally conserved RNA motifs and/or canonical Watson-Crick base-pairing interactions, which have potential applications in gene therapy and nanomedicine. These artificially engineered nanoparticles are mainly synthesized from in vitro transcribed RNAs, purified by denaturing and native polyacrylamide gel electrophoresis (PAGE), and characterized with native PAGE, AFM, and TEM technologies. The protocols of in vitro transcription, denaturing and native PAGE, and RNA nanoparticle self-assembly are described in detail.

  4. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    International Nuclear Information System (INIS)

    Li, Su; Wang, Anxun; Jiang, Wenqi; Guan, Zhongzhen

    2008-01-01

    It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t 1/2 , 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (V D , 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05). In our

  5. Biogenic synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa

    Science.gov (United States)

    Bose, Debadin; Chatterjee, Someswar

    2016-08-01

    Among the various inorganic nanoparticles, silver nanoparticles have received substantial attention in the field of antimicrobial research. For safe and biocompatible use of silver nanoparticles in antimicrobial research, the different biogenic routes are developed to synthesize silver nanoparticles that do not use toxic chemicals. Among those, to synthesize silver nanoparticles, the use of plant part extract becomes an emerging field because plant part acts as reducing as well as capping agent. For large-scale production of antibacterial silver nanoparticles using plant part, the synthesis route should be very simple, rapid, cost-effective and environment friendly based on easy availability and non-toxic nature of plant, stability and antibacterial potential of biosynthesized nanoparticles. In the present study, we report a very simple, rapid, cost-effective and environment friendly route for green synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties, and it is easily available in all seasons and everywhere. The biosynthesized silver nanoparticles are characterized by UV-Vis and TEM analysis. The average particle size is 40 nm in the range of 10-90 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show that green synthesized silver nanoparticles, using guava ( Psidium guajava) leaf extract, have a potential to inhibit the growth of bacteria.

  6. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    Science.gov (United States)

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  7. Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans.

    Science.gov (United States)

    Strehl, Cindy; Maurizi, Lionel; Gaber, Timo; Hoff, Paula; Broschard, Thomas; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank

    Combined individually tailored methods for diagnosis and therapy (theragnostics) could be beneficial in destructive diseases, such as rheumatoid arthritis. Nanoparticles are promising candidates for theragnostics due to their excellent biocompatibility. Nanoparticle modifications, such as improved surface coating, are in development to meet various requirements, although safety concerns mean that modified nanoparticles require further review before their use in medical applications is permitted. We have previously demonstrated that iron oxide nanoparticles with amino-polyvinyl alcohol (a-PVA) adsorbed on their surfaces have the unwanted effect of increasing human immune cell cytokine secretion. We hypothesized that this immune response was caused by free-floating PVA. The aim of the present study was to prevent unwanted immune reactions by further surface modification of the a-PVA nanoparticles. After cross-linking of PVA to nanoparticles to produce PVA-grafted nanoparticles, and reduction of their zeta potential, the effects on cell viability and cytokine secretion were analyzed. PVA-grafted nanoparticles still stimulated elevated cytokine secretion from human immune cells; however, this was inhibited after reduction of the zeta potential. In conclusion, covalent cross-linking of PVA to nanoparticles and adjustment of the surface charge rendered them nontoxic to immune cells, nonimmunogenic, and potentially suitable for use as theragnostic agents.

  8. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Szade, J. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Talik, E. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Zubko, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Wasilkowski, D. [Department of Biochemistry, University of Silesia, Jagiellońska 28, 40-032 Katowice (Poland); Dulski, M. [Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chórzow (Poland); Balin, K. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); and others

    2016-07-15

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover, UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.

  9. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    Science.gov (United States)

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  10. Association of ACE, VEGF and CCL2 gene polymorphisms with Henoch-Schönlein purpura and an evaluation of the possible interaction effects of these loci in HSP patients.

    Science.gov (United States)

    Mohammadian, Tahereh; Bonyadi, Mortaza; Nabat, Elahe; Rafeey, Mandana

    2017-07-01

    Henoch-Schönlein purpura (HSP) is a multisystem, small vessel, leucocytoclastic vasculitis. It is predominantly a childhood vasculitis, rarely reported in adults. Studies have shown that several different genetic factors such as genes involved in inflammatory system and renin-angiotensin system (RAS) are important in the pathogenesis of Henoch-Schönlein purpura. The purpose of this study was to evaluate the independent effect of 3 gene polymorphisms including CCL2-2518 C/T, VEGF-634G/C and ACE(I/D) with HSP disease and their possible joint interactions in developing the disease. In this case-control study 47 HSP cases and 74 unrelated healthy controls were enrolled for evaluation. All individuals were genotyped for CCL2-2518C/T, VEGF-634G/C and ACE(I/D) gene polymorphisms. The possible association of these polymorphisms with susceptibility to develop HSP disease independently and in different joint combinations was evaluated. The frequencies of TT genotype and T allele of CCL2-2518C/T gene polymorphism and CC genotype and C allele of VEGF-634G/C gene polymorphism were significantly high in HSP children (p-values = 0.005 and = 0.007 respectively). Interestingly, studying the joint interaction of these 2 genotypes (CC genotype of VEGF G-634C and TT genotype of CCL2 C-2518T) in this cohort showed a more significant effect in the development of the disease (p gene when combined with II genotype of ACE gene in HSP children was significantly higher (p gene-gene interaction effects of CCL2, VEGF and ACE genes in developing HSP disease.

  11. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Kim

    2016-02-01

    Full Text Available Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS. The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549 against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1 signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

  12. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.; El Tall, Omar; Raja, Inam U.

    2014-01-01

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  13. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  14. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    Cholesteryl nonanoate (CN), myristate (CM), palmitate (CP) and oleate (CO) alone or in combination were evaluated as matrix lipids for the preparation of supercooled smectic nanoparticles with a high stability against recrystallization during storage. The phase behavior of the cholesterol esters......, laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... at room temperature. Nanoparticles with a pure CN and mixed CM/CN matrix with a high fraction of CN (60% of the whole lipid matrix) could even be stored at 4 degrees C for at least 18 months without any recrystallization. As smectic nanoparticles are studied especially with regard to parenteral...

  15. Repairing Nanoparticle Surface Defects

    NARCIS (Netherlands)

    Marino, Emanuele; Kodger, Thomas E.; Crisp, R.W.; Timmerman, Dolf; MacArthur, Katherine E.; Heggen, Marc; Schall, Peter

    2017-01-01

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We

  16. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  17. siRNA associated with immunonanoparticles directed against cd99 antigen improves gene expression inhibition in vivo in Ewing's sarcoma.

    Science.gov (United States)

    Ramon, A L; Bertrand, J R; de Martimprey, H; Bernard, G; Ponchel, G; Malvy, C; Vauthier, C

    2013-07-01

    Ewing's sarcoma is a rare, mostly pediatric bone cancer that presents a chromosome abnormality called EWS/Fli-1, responsible for the development of the tumor. In vivo, tumor growth can be inhibited specifically by delivering small interfering RNA (siRNA) associated with nanoparticles. The aim of the work was to design targeted nanoparticles against the cell membrane glycoprotein cd99, which is overexpressed in Ewing's sarcoma cells to improve siRNA delivery to tumor cells. Biotinylated poly(isobutylcyanoacrylate) nanoparticles were conceived as a platform to design targeted nanoparticles with biotinylated ligands and using the biotin-streptavidin coupling method. The targeted nanoparticles were validated in vivo for the targeted delivery of siRNA after systemic administration to mice bearing a tumor model of the Ewing's sarcoma. The expression of the gene responsible of Ewing's sarcoma was inhibited at 78% ± 6% by associating the siRNA with the cd99-targeted nanoparticles compared with an inhibition of only 41% ± 9% achieved with the nontargeted nanoparticles. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Cryochemistry of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia

  19. Cryochemistry of Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, Gleb B. [Moscow State University, Laboratory of Low Temperature Chemistry, Chemistry Department (Russian Federation)], E-mail: gbs@kinet.chem.msu.ru

    2003-12-15

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  20. Cryochemistry of Metal Nanoparticles

    Science.gov (United States)

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  1. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Young, Mark; Douglas, Trevor

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  2. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    Science.gov (United States)

    Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.

    2009-11-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (Pcancer and inflammatory diseases.

  3. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    Science.gov (United States)

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  4. Nanolubricant: magnetic nanoparticle based

    Science.gov (United States)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  5. Protein trapping of nanoparticles

    International Nuclear Information System (INIS)

    Ang, Joo C.; Lin, Jack M.; Yaron, Peter N.; White, John W.

    2009-01-01

    Full text: We have observed the formation of protein-nanoparticle complexes at the air-water interfaces from three different methods of presenting the nanoparticles to proteins. The structures formed resemble the 'protein-nanoparticle corona' proposed by Lynch et al. [1-3) in relation to a possible route for nanoparticle entry into living cells. To do this, the methods of x-ray and neutron reflectivity (with isotopic contrast variation between the protein and nanoparticles) have been used to study the structures formed at the air-water interface of l 3 - casein presented to silica nanoparticle dispersions. Whilst the silica dispersions showed no observable reflectivity, strong signals appear in the reflectivity when protein is present. Drop-wise spreading of a small amount of protein at the air-silica sol interface and presentation of the silica sol to an isolated monomolecular protein film (made by the 'flow-trough' method [4]) gave an immediate signal. Mixing the components in solution only produces a slow response but in all cases a similar structure is formed. The different responses are interpreted in structural and stoichiometric ways.

  6. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Isam M.; Ali, Iftikhar M. [Department of physics, College of Science, Baghdad University, Baghdad (Iraq); Dheeb, Batol Imran [Department of Biology, College of Education, Iraqia University, Baghdad (Iraq); Abas, Qayes A. [Department of physics, College of Education, University of Anbar, Anbar (Iraq); Asmeit Ramizy, E-mail: asmat_hadithi@yahoo.com [Department of physics, College of Science, University of Anbar, Anbar (Iraq); Renewable energy Research Center, University of Anbar, Anbar (Iraq); Eisa, M.H. [Department of physics, College of Science, Sudan University of Science Technology, Khartoum 11113 (Sudan); Department of physics, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623 (Saudi Arabia); Aljameel, A.I. [Department of physics, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623 (Saudi Arabia)

    2017-04-01

    The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition. - Highlights: • The manganese doped zinc sulfide nanoparticles were synthesized. • Thioglycolic acid is used as capping agent for controlling the nanoparticle size. • The structural, morphological and chemical composition of the nanoparticles has been investigated. • The presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes.

  7. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi

    International Nuclear Information System (INIS)

    Ibrahim, Isam M.; Ali, Iftikhar M.; Dheeb, Batol Imran; Abas, Qayes A.; Asmeit Ramizy; Eisa, M.H.; Aljameel, A.I.

    2017-01-01

    The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition. - Highlights: • The manganese doped zinc sulfide nanoparticles were synthesized. • Thioglycolic acid is used as capping agent for controlling the nanoparticle size. • The structural, morphological and chemical composition of the nanoparticles has been investigated. • The presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes.

  8. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3.

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy Boreddy

    Full Text Available Our previous studies have shown that benzyl isothiocyanate (BITC suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175, and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 µmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705, HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.

  9. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species

    Science.gov (United States)

    Alcayaga-Miranda, Francisca; González, Paz L.; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-01-01

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies. PMID:27286448

  10. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications.

    Science.gov (United States)

    Singh, Priyanka; Singh, Hina; Kim, Yeon Ju; Mathiyalagan, Ramya; Wang, Chao; Yang, Deok Chun

    2016-05-01

    The present study highlights the microbial synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 strain, in an efficient way. The synthesized nanoparticles were characterized by ultraviolet-visible spectrophotometry, which displayed maximum absorbance at 424nm and 531nm for silver and gold nanoparticles, respectively. The spherical shape of nanoparticles was characterized by field emission transmission electron microscopy. The energy dispersive X-ray spectroscopy and elemental mapping were displayed the purity and maximum elemental distribution of silver and gold elements in the respective nanoproducts. The X-ray diffraction spectroscopy results demonstrate the crystalline nature of synthesized nanoparticles. The particle size analysis demonstrate the nanoparticles distribution with respect to intensity, volume and number of nanoparticles. For biological applications, the silver nanoparticles have been explored in terms of MIC and MBC against pathogenic microorganisms such as Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, Bacillus anthracis, Bacillus cereus and Staphylococcus aureus. Moreover, the silver nanoparticles in combination with commercial antibiotics, such as vancomycin, rifampicin, oleandomycin, penicillin G, novobiocin, and lincomycin have been explored for the enhancement of antibacterial activity and the obtained results showed that 3μg concentration of silver nanoparticles sufficiently enhance the antimicrobial efficacy of commercial antibiotics against pathogenic microorganism. Furthermore, the silver nanoparticles potential has been reconnoitered for the biofilm inhibition by S. aureus, Pseudomonas aeruginosa and E. coli and the results revealed sufficient activity at 6μg concentration. In addition, gold nanoparticles have been applied for catalytic activity, for the reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride and positive results were attained. Copyright © 2016 Elsevier Inc. All

  11. Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ana G. Luque-Alcaraz

    2012-01-01

    Full Text Available Nobiletin is a polymethoxyflavonoid with a remarkable antiproliferative effect. In order to overcome its low aqueous solubility and chemical instability, the use of nanoparticles as carriers has been proposed. This study explores the possibility of binding nobiletin to chitosan nanoparticles, as well as to evaluate their antiproliferative activity. The association and loading efficiencies are 69.1% and 7.0%, respectively. The formation of an imine bond between chitosan amine groups and the carbonyl group of nobiletin, via Schiff-base, is proposed. Nobiletin-loaded chitosan nanoparticles exhibit considerable inhibition (IC50=8 μg/mL of cancerous cells, revealing their great potential for applications in cancer chemotherapy.

  12. The study of nonlinear two-photon phenomenon in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)

    2007-02-28

    A theory of the nonlinear two-photon absorption has been developed in a photonic crystal doped with an ensemble of four-level nanoparticles. We have considered that the nanoparticles are interacting with the photonic crystal. An expression of two-photon absorption has been obtained by using the density matrix method. The effect of the dipole-dipole interaction has also been included in the formulation. Interesting new phenomena have been predicted. For example, it is found that the inhibition of two-photon absorption can be turned on and off when the decay resonance energies of the four-level nanoparticles are moved within the energy band.

  13. Addition of selenium nanoparticles to electrospun silk scaffolds improves mammalian cell activity while reducing bacterial growth

    Directory of Open Access Journals (Sweden)

    Stanley Chung

    2016-07-01

    Full Text Available Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas compared to non-electrospun equivalents. However, purified silk promotes microbial growth. In contrast, selenium nanoparticles have excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics.

  14. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.

    Science.gov (United States)

    Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C

    2014-07-01

    In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).

  15. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles.

    Science.gov (United States)

    Biao, Linhai; Tan, Shengnan; Wang, Yuanlin; Guo, Ximin; Fu, Yujie; Xu, Fengjie; Zu, Yuangang; Liu, Zhiguo

    2017-07-01

    This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  17. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  18. Alpha amylase assisted synthesis of TiO{sub 2} nanoparticles: Structural characterization and application as antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Razi; Mohsin, Mohd [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmad, Tokeer [Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Sardar, Meryam, E-mail: msardar@jmi.ac.in [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India)

    2015-02-11

    Graphical abstract: - Highlights: • Green synthesis of TiO{sub 2} nanoparticles using an enzyme alpha amylase has been described. • The morphology and shape depends upon the concentration of the alpha amylase enzyme. • The biosynthesized nanoparticles show good bactericidal effect against both gram positive and gram negative bacteria. • The bactericidal effect was further confirmed by Confocal microscopy and TEM. - Abstract: The enzyme alpha amylase was used as the sole reducing and capping agent for the synthesis of TiO{sub 2} nanoparticles. The biosynthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopic (TEM) methods. The XRD data confirms the monophasic crystalline nature of the nanoparticles formed. TEM data shows that the morphology of nanoparticles depends upon the enzyme concentration used at the time of synthesis. The presence of alpha amylase on TiO{sub 2} nanoparticles was confirmed by FTIR. The nanoparticles were investigated for their antibacterial effect on Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentration value of the TiO{sub 2} nanoparticles was found to be 62.50 μg/ml for both the bacterial strains. The inhibition was further confirmed using disc diffusion assay. It is evident from the zone of inhibition that TiO{sub 2} nanoparticles possess potent bactericidal activity. Further, growth curve study shows effect of inhibitory concentration of TiO{sub 2} nanoparticles against S. aureus and E. coli. Confocal microscopy and TEM investigation confirm that nanoparticles were disrupting the bacterial cell wall.

  19. Inhibition of lactation.

    Science.gov (United States)

    Llewellyn-Jones, D

    1975-01-01

    The mechanism and hormonal regulation of lactation is explained and illustrated with a schematic representation. Circulating estrogen above a critical amount seems to be the inhibitory factor controlling lactation during pregnancy. Once delivery occurs, the level of estrogen falls, that of prolactin rises, and lactation begins. Nonsuckling can be used to inhibit lactation. Estrogens can also be used to inhibit lactation more quickly and with less pain. The reported association between estrogens and puerperal thromboembolism cannot be considered conclusive due to defects in the reporting studies. There is no reason not to use estrogens in lactation inhibition except for women over 35 who experienced a surgical delivery. Alternative therapy is available for these women. The recently-developed drug, brom-ergocryptine, may replace other methods of lactation inhibition.

  20. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  1. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  2. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  3. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  4. The prognostic value of the hypoxia markers CA IX and GLUT 1 and the cytokines VEGF and IL 6 in head and neck squamous cell carcinoma treated by radiotherapy ± chemotherapy

    International Nuclear Information System (INIS)

    De Schutter, Harlinde; Landuyt, Willy; Verbeken, Erik; Goethals, Laurence; Hermans, Robert; Nuyts, Sandra

    2005-01-01

    Several parameters of the tumor microenvironment, such as hypoxia, inflammation and angiogenesis, play a critical role in tumor aggressiveness and treatment response. A major question remains if these markers can be used to stratify patients to certain treatment protocols. The purpose of this study was to investigate the inter-relationship and the prognostic significance of several biological and clinicopathological parameters in patients with head and neck squamous cell carcinoma (HNSCC) treated by radiotherapy ± chemotherapy. We used two subgroups of a retrospective series for which CT-determined tumoral perfusion correlated with local control. In the first subgroup (n = 67), immunohistochemistry for carbonic anhydrase IX (CA IX) and glucose transporter-1 (GLUT-1) was performed on the pretreatment tumor biopsy. In the second subgroup (n = 34), enzyme linked immunosorbent assay (ELISA) was used to determine pretreatment levels of the cytokines vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) in serum. Correlation was investigated between tumoral perfusion and each of these biological markers, as well as between the markers mutually. The prognostic value of these microenvironmental parameters was also evaluated. For CA IX and GLUT-1, the combined assessment of patients with both markers expressed above the median showed an independent correlation with local control (p = 0.02) and disease-free survival (p = 0.04) with a trend for regional control (p = 0.06). In the second subgroup, IL-6 pretreatment serum level above the median was the only independent predictor of local control (p = 0.009), disease-free survival (p = 0.02) and overall survival (p = 0.005). To our knowledge, we are the first to report a link in HNSCC between IL-6 pretreatment serum levels and radioresistance in vivo. This link is supported by the strong prognostic association of pretreatment IL-6 with local control, known to be the most important parameter to judge radiotherapy

  5. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.

    Science.gov (United States)

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J; Hofmann, Marie-Claude

    2005-12-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO(3)) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro.

  6. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    International Nuclear Information System (INIS)

    Beyth, N.; Weiss, E.I.; Pilo, R.

    2012-01-01

    Glass ionomer cements (GICs) are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial micro leakage may occur, resulting in secondary caries. As micro leakage cannot be completely prevented, GCS possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (Qp) nanoparticles incorporated at 1% w/w in two clinically available GCS were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (Dct) and the agar diffusion test (Ad). Using the direct contact test, antibacterial activity (P<0.05) was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  7. Phytotoxicity of silver nanoparticles to Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Gubbins, Eva J. [Department of Geography and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Batty, Lesley C., E-mail: l.c.batty@bham.ac.uk [Department of Geography and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Lead, Jamie R. [Department of Geography and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2011-06-15

    The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there has been some attempt to determine the toxic effects of AgNPs, there is little information on aquatic plants which have a vital role in ecosystems. This study reports the use of Lemna minor L. clone St to investigate the phytotoxicity of AgNPs under modified OECD test conditions. AgNPs were synthesised, characterised and subsequently presented to the L. minor. Results showed that inhibition of plant growth was evident after exposure to small ({approx}20 nm) and larger ({approx}100 nm) AgNPs at low concentrations (5 {mu}g L{sup -1}) and this effect became more acute with a longer exposure time. There was a linear dose-response relationship after 14 d exposure. Using predicted environmental concentrations for wastewaters it was found that AgNPs may pose a significant potential risk to the environment. - Highlights: > Silver nanoparticles are toxic to Lemna minor at concentrations of 5 {mu}g L{sup -1}. > The effect of silver nanoparticles varies with size and concentration. > Standard toxicity tests are not appropriate for application to NPs. > Silver nanoparticles pose a potential environmental risk based on modelled environmental concentrations. - Silver nanoparticles are toxic to Lemna minor at low concentrations and constitute a significant environmental risk.

  8. Phytotoxicity of silver nanoparticles to Lemna minor L

    International Nuclear Information System (INIS)

    Gubbins, Eva J.; Batty, Lesley C.; Lead, Jamie R.

    2011-01-01

    The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there has been some attempt to determine the toxic effects of AgNPs, there is little information on aquatic plants which have a vital role in ecosystems. This study reports the use of Lemna minor L. clone St to investigate the phytotoxicity of AgNPs under modified OECD test conditions. AgNPs were synthesised, characterised and subsequently presented to the L. minor. Results showed that inhibition of plant growth was evident after exposure to small (∼20 nm) and larger (∼100 nm) AgNPs at low concentrations (5 μg L -1 ) and this effect became more acute with a longer exposure time. There was a linear dose-response relationship after 14 d exposure. Using predicted environmental concentrations for wastewaters it was found that AgNPs may pose a significant potential risk to the environment. - Highlights: → Silver nanoparticles are toxic to Lemna minor at concentrations of 5 μg L -1 . → The effect of silver nanoparticles varies with size and concentration. → Standard toxicity tests are not appropriate for application to NPs. → Silver nanoparticles pose a potential environmental risk based on modelled environmental concentrations. - Silver nanoparticles are toxic to Lemna minor at low concentrations and constitute a significant environmental risk.

  9. Effects of Superparamagnetic Nanoparticle Clusters on the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Toshiaki Higashi

    2012-04-01

    Full Text Available The polymerase chain reaction (PCR method is widely used for the reproduction and amplification of specific DNA segments, and a novel PCR method using nanomaterials such as gold nanoparticles has recently been reported. This paper reports on the effects of superparamagnetic nanoparticles on PCR amplification without an external magnetic field, and clarifies the mechanism behind the effects of superparamagnetic particle clusters on PCR efficiency by estimating the structures of such clusters in PCR. It was found that superparamagnetic nanoparticles tend to inhibit PCR amplification depending on the structure of the magnetic nanoparticle clusters. The paper also clarifies that Taq polymerase is captured in the spaces formed among magnetic nanoparticle clusters, and that it is captured more efficiently as a result of their motion from heat treatment in PCR thermal cycles. Consequently, Taq polymerase that should be used in PCR is reduced in the PCR solution. These outcomes will be applied to novel PCR techniques using magnetic particles in an external magnetic field.

  10. Antimicrobial Effect of Biocompatible Silicon Nanoparticles Activated Using Therapeutic Ultrasound.

    Science.gov (United States)

    Shevchenko, Svetlana N; Burkhardt, Markus; Sheval, Eugene V; Natashina, Ulyana A; Grosse, Christina; Nikolaev, Alexander L; Gopin, Alexander V; Neugebauer, Ute; Kudryavtsev, Andrew A; Sivakov, Vladimir; Osminkina, Liubov A

    2017-03-14

    In this study, we report a method for the suppression of Escherichia coli (E. coli) vitality by means of therapeutic ultrasound irradiation (USI) using biocompatible silicon nanoparticles as cavitation sensitizers. Silicon nanoparticles without (SiNPs) and with polysaccharide (dextran) coating (DSiNPs) were used. Both types of nanoparticles were nontoxic to Hep 2 cells up to a concentration of 2 mg/mL. The treatment of bacteria with nanoparticles and application of 1 W/cm 2 USI resulted in the reduction of their viabilities up to 35 and 72% for SiNPs and DSiNPs, respectively. The higher bacterial viability reduction for DSiNPs as compared with SiNPs can be explained by the fact that the biopolymer shell of the polysaccharide provides a stronger adhesion of nanoparticles to the bacterial surface. Transmission electron microscopy (TEM) studies showed that the bacterial lipid shell was partially perforated after the combined treatment of DSiNPs and USI, which can be explained by the lysis of bacterial membrane due to the cavitation sensitized by the SiNPs. Furthermore, we have shown that 100% inhibition of E. coli bacterial colony growth is possible by coupling the treatments of DSiNPs and USI with an increased intensity of up to 3 W/cm 2 . The observed results reveal the application of SiNPs as promising antimicrobial agents.

  11. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2012-01-01

    Full Text Available Glass ionomer cements (GICs are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial microleakage may occur, resulting in secondary caries. As microleakage cannot be completely prevented, GICs possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (QPEI nanoparticles incorporated at 1% w/w in two clinically available GICs were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (DCT and the agar diffusion test (ADT. Using the direct contact test, antibacterial activity (<0.05 was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  12. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol.

    Science.gov (United States)

    Ilk, Sedef; Sağlam, Necdet; Özgen, Mustafa; Korkusuz, Feza

    2017-01-01

    Quorum sensing (QS) is a cell density dependent expression of species in bacteria mediated by compounds called autoinducers (AI). Several processes responsible for successful establishment of bacterial infection are mediated by QS. Inhibition of QS is therefore being considered as a new target for antimicrobial chemotherapy. Flavonoid compounds are strong antioxidant and antimicrobial agents but their applications are limited due to their poor dissolution and bioavailability. Our objective was to investigate the effect of kaempferol loaded chitosan nanoparticles on modulating QS mediated by AI in model bioassay test systems. For this purpose, kaempferol loaded nanoparticles were synthesized and characterized in terms of hydrodynamic diameter, hydrogen bonding, amorphous transformation and antioxidant activity. QS inhibition in time dependent manner of nanoparticles was measured in violacein pigment producing using the biosensor strain Chromobacterium violaceum CV026 mediated by AI known as acylated homoserine lactone (AHL). Our results indicated that the average kaempferol loaded chitosan/TPP nanoparticle size and zeta potential were 192.27±13.6nm and +35mV, respectively. The loading and encapsulation efficiency of kaempferol into chitosan/TPP nanoparticles presented higher values between 78 and 93%. Kaempferol loaded chitosan/TPP nanoparticle during the 30 storage days significantly inhibited the production of violacein pigment in Chromobacterium violaceum CV026. The observation that kaempferol encapsulated chitosan nanoparticles can inhibit QS related processes opens up an exciting new strategy for antimicrobial chemotherapy as stable QS-based anti-biofilm agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics

    International Nuclear Information System (INIS)

    Patra, Sujata; Mukherjee, Sudip; Barui, Ayan Kumar; Ganguly, Anirban; Sreedhar, Bojja; Patra, Chitta Ranjan

    2015-01-01

    In the present article, we demonstrate the delivery of anti-cancer drug to the cancer cells using biosynthesized gold and silver nanoparticles (b-AuNP & b-AgNP). The nanoparticles synthesized by using Butea monosperma (BM) leaf extract are thoroughly characterized by various analytical techniques. Both b-AuNP and b-AgNP are stable in biological buffers and biocompatible towards normal endothelial cells (HUVEC, ECV-304) as well as cancer cell lines (B16F10, MCF-7, HNGC2 & A549). Administration of nanoparticle based drug delivery systems (DDSs) using doxorubicin (DOX) [b-Au-500-DOX and b-Ag-750-DOX] shows significant inhibition of cancer cell proliferation (B16F10, MCF-7) compared to pristine drug. Therefore, we strongly believe that biosynthesized nanoparticles will be useful for the development of cancer therapy using nanomedicine approach in near future. - Highlights: • Biosynthesis of gold and silver nanoparticles using plant leaf extract • The approach is clean, efficient, eco-friendly & economically safe. • Biosynthesized nanoparticles are biocompatible towards normal and cancer cells. • Design and development of biosynthesized nanoparticle based drug delivery systems • Biosynthesized nanoparticles could be useful for cancer and other diseases

  14. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Sujata; Mukherjee, Sudip; Barui, Ayan Kumar; Ganguly, Anirban [Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State (India); Sreedhar, Bojja [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State (India); Patra, Chitta Ranjan, E-mail: crpatra@iict.res.in [Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State (India)

    2015-08-01

    In the present article, we demonstrate the delivery of anti-cancer drug to the cancer cells using biosynthesized gold and silver nanoparticles (b-AuNP & b-AgNP). The nanoparticles synthesized by using Butea monosperma (BM) leaf extract are thoroughly characterized by various analytical techniques. Both b-AuNP and b-AgNP are stable in biological buffers and biocompatible towards normal endothelial cells (HUVEC, ECV-304) as well as cancer cell lines (B16F10, MCF-7, HNGC2 & A549). Administration of nanoparticle based drug delivery systems (DDSs) using doxorubicin (DOX) [b-Au-500-DOX and b-Ag-750-DOX] shows significant inhibition of cancer cell proliferation (B16F10, MCF-7) compared to pristine drug. Therefore, we strongly believe that biosynthesized nanoparticles will be useful for the development of cancer therapy using nanomedicine approach in near future. - Highlights: • Biosynthesis of gold and silver nanoparticles using plant leaf extract • The approach is clean, efficient, eco-friendly & economically safe. • Biosynthesized nanoparticles are biocompatible towards normal and cancer cells. • Design and development of biosynthesized nanoparticle based drug delivery systems • Biosynthesized nanoparticles could be useful for cancer and other diseases.

  15. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  16. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium.

    Science.gov (United States)

    Bankura, K P; Maity, D; Mollick, M M R; Mondal, D; Bhowmick, B; Bain, M K; Chakraborty, A; Sarkar, J; Acharya, K; Chattopadhyay, D

    2012-08-01

    A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-07-01

    Full Text Available Abstract Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL® 816 and AEROSIL® 200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample (solid phase and surfactant solution (aqueous phase. The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.

  18. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery

    International Nuclear Information System (INIS)

    Li Yuanpei; Pan Shirong; Zhang Wei; Du Zhuo

    2009-01-01

    Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(γ-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 deg. C) and that used in local hyperthermia (about 43 deg. C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and atom force microscopy (AFM). The mean diameter of the nanoparticles increased slightly from 110 to 129 nm when paclitaxel (PTX), a poorly water-soluble anti-tumor drug, was encapsulated. A stability study in bovine serum albumin (BSA) solution indicated that the PTX loaded nanoparticles may have a long circulation time under physiological environments as the LCST was above physiological body temperature and the shell remained hydrophilic at 37 deg.C. The PTX release profiles showed thermo-sensitive controlled behavior. The proliferation inhibiting activity of PTX loaded nanoparticles was evaluated against Hela cells in vitro, compared with Taxol (a formulation of paclitaxel dissolved in Cremophor EL and ethanol). The cytotoxicity of PTX loaded nanoparticles increased obviously when hyperthermia was performed. The nanoparticles synthesized here could be an ideal candidate for thermal triggered anti-tumor PTX delivery system.

  19. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    International Nuclear Information System (INIS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.; Marzoog, Thorria R.

    2015-01-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe 2 O 3 ) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field

  20. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  1. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  2. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Science.gov (United States)

    Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  3. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  4. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-01-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  5. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    Science.gov (United States)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  6. Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Abrikossova, Natalia; Skoglund, Caroline; Ahrén, Maria; Uvdal, Kajsa; Bengtsson, Torbjörn

    2012-01-01

    We have previously shown that gadolinium oxide (Gd 2 O 3 ) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd 2 O 3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd 2 O 3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd 2 O 3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd 2 O 3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes. (paper)

  7. Magnetic nanoparticle assemblies

    CERN Document Server

    Trohidou, Kalliopi N

    2014-01-01

    Magnetic nanoparticles with diameters in the range of a few nanometers are today at the cutting edge of modern technology and innovation because of their use in numerous applications ranging from engineering to biomedicine. A great deal of scientific interest has been focused on the functionalization of magnetic nanoparticle assemblies. The understanding of interparticle interactions is necessary to clarify the physics of these assemblies and their use in the development of high-performance magnetic materials. This book reviews prominent research studies on the static and dynamic magnetic properties of nanoparticle assemblies, gathering together experimental and computational techniques in an effort to reveal their optimized magnetic properties for biomedical use and as ultra-high magnetic recording media.

  8. Nanostructures from nanoparticles

    International Nuclear Information System (INIS)

    Mendes, Paula M; Chen Yu; Palmer, Richard E; Nikitin, Kirill; Fitzmaurice, Donald; Preece, Jon A

    2003-01-01

    This paper reviews recent experimental approaches to the development of surface nanostructures from nanoparticles. The formation of nanowires by electron beam writing in films of gold nanoparticles passivated with a specially designed class of ligand molecules (dialkyl sulfides) is presented, together with illustrations of practical nanostructures. Potential applications of this methodology are discussed. Another alternative to the controlled fabrication of arrays of nanoparticles, based on nanocrystals which contain molecular recognition elements in the ligand shell, is also surveyed. These particles aggregate in the presence of specifically designed molecular dications which act as a molecular binder. Finally, recent work on the formation of nanoscale surface architectures using x-ray patterning of self-assembled monolayers is introduced. Current and potential future applications of these surface nanostructures are discussed

  9. EVALUATION OF INHIBITORY MEASURES FOR FOOD SPOILER YEAST CANDIDA KRUSEI DURING FERMENTATION PROCESS BY CHEMICAL, BIOCHEMICAL AND NANOPARTICLE APPROACHES

    Directory of Open Access Journals (Sweden)

    Indrani Bhattacharya

    2016-06-01

    Full Text Available Screening of chemical, biochemical and biomolecule-nanoparticle methods for the inhibition of Candida krusei were evaluated without hampering the growth of dairy yeast Kluyveromyces marxianus. The effective inhibition was observed with the help of H2O2, Williopsis saturnus, at specific combination of pH and temperature (pH 5.0 and 40 °C and Ag-KT4561 nanoparticles among the various methods used. However, the most efficient inhibition was observed with Ag-KT4561 nanoparticles. In general H2O2 works best at pH range 4.0 to 10.0 and at temperature 30 °C or above. H2O2 concentration of 4000 ppm at 45 °C and pH 5.5 exhibited significant inhibition of C. krusei, while K. marxianus remains unaffected. But, when used with lyophilized supernatant of W. saturnus, 2400 ppm H2O2 was effective. Further, nanoparticle with silver was synthesized to reduce the quantity of killer protein and enhance the efficiency of protein. Complete inhibition of C. krusei was observed at 350 µM of synthesized silver nano-particle (AgNPs of the killer protein from W. saturnus, with little effect on K. marxianus concentration. A stability test confirms the effect of protein silver nanoparticles on C. krusei for more than 20 weeks without any change in pH and temperature. Thus, the nanoparticles could be potentially used for inhibition of C. krusei without affecting the growth of K. marxianus and the process could be run non-aseptically.

  10. Potencial risks of nanoparticles

    Directory of Open Access Journals (Sweden)

    Tamara Forbe

    2011-12-01

    Full Text Available Nanotoxicology is an emergent important subdiscipline of Nanosciences, which refers to the study of the interactions of nanostructures with biological systems giving emphasis to the elucidation of the relationship between the physical and chemical properties of nanostructures with induction of toxic biological responses. Although potential beneficial effects of nanotechnologies are generally well described, the potential (eco toxicological effects and impacts of nanoparticles have so far received little attention. This is the reason why some routes of expousure, distribution, metabolism, and excretion, as well as toxicological effects of nanoparticles are discussed in this review.

  11. Nanoparticle shuttle memory

    Science.gov (United States)

    Zettl, Alex Karlwalter [Kensington, CA

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  12. NANOPARTICLES IN NUCLEAR IMAGING

    Directory of Open Access Journals (Sweden)

    Dr. Vicky V Mody PhD

    2011-01-01

    Full Text Available The present review article summarizes the current state radiolabeled nanoparticles for molecular imaging applications mainly targeting cancer. Due to their enormous flexibility, and versatility the radiolabeled nanoparticles have shown their potential in the diagnosis and therapy. As the matter of fact, these radiolabeled imaging agents enable the visualization of the cellular function and the follow-up of the molecular process in living organisms. Moreover, the rapidly advancing field of nanotechnology has provided various innovative radionuclides and delivery systems, such as liposomes, magnetic agents, polymers, dendrimers, quantum dots, and carbon nanotubes to cope up with the hurdles which have been posed by various disease states.

  13. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  14. Nanoparticles of nickel hexacyanoferrate

    International Nuclear Information System (INIS)

    Bicalho, U.O.; Santos, D.C.; Silvestrini, D.R.; Trama, B.; Carmo, D.R. do

    2014-01-01

    Nanoparticles of nickel hexacyanoferrate (NHNi) were prepared in three medium (aqueous, formamide and aqueous/formamide). The materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), electronica spectroscopy in the ultraviolet-visible (UV-Vis) region and also by cyclic voltammetry (CV). By spectroscopic analysis of X-ray diffraction was possible to estimate the size of the particles obtained by the Scherrer equation. The graphite paste electrodes containing nanoparticles of nickel hexacyanoferrate means formamide was sensitive to different concentrations of Dipyrone. (author)

  15. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  16. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  17. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells.

    Science.gov (United States)

    Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John

    2016-11-01

    Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Rabia [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Usman, Muhammad, E-mail: uk_phy@yahoo.com [Department of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54729 (Pakistan); Tabassum, Saira; Zia, Muhammad [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2016-11-15

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  19. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-01-01

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  20. Thermally stable nanoparticles on supports

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  1. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  2. Pristimerin Inhibits Prostate Cancer Bone Metastasis by Targeting PC-3 Stem Cell Characteristics and VEGF-Induced Vasculogenesis of BM-EPCs

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2015-08-01

    Full Text Available Background/Aims: Prostate cancer (PCa is one of the most common malignant cancers and a major leading cause of cancer deaths in men. Cancer stem-like cells are shown to be highly tumorigenic, pro-angiogenic and can significantly contribute to tumor new vessel formation and bone marrow derived-EPCs (BM-EPCs are shown to recruit to the angiogenic switch in tumor growth and metastatic progression, suggesting the importance of targeting cancer stem cells (CSCs and EPCs for novel tumor therapies. Pristimerin, an active component isolated from Celastraceae and Hippocrateaceae, has shown anti-tumor effects in some cell lines in previous studies. However, the effect and mechanism of Pristimerin on CSCs and EPCs in PCa bone metastasis are not well studied. Methods: The effect of Pristimerin on PC-3 stem cell characteristics and metastasis were detected by spheroid formation, CD133 and CD44 protein expression, matrix-gel invasive assay and colony-formation assay in vitro, VEGF and pro-inflammatory cytokines expression by ELISA assay, and tumor tumorigenicity by X-ray and MR in NOD-SCID mice model in vivo. In addition, we also detected the effect of Pristimerin on VEGF-induced vasculogenesis and protein expression of BM-EPCs. Results: Pristimerin could significantly inhibit spheroid formation and protein expression of CD133 and CD44, reduce VEGF and pro-inflammation cytokines expression of PC-3 cell, and prevent the xenografted PC-3 tumor growth in the bone of nude mice. The present data also showed that Pristimerin significantly inhibited VEGF-induced vasculogenesis of BM-EPCs by suppressing the EPCs functions including proliferation, adhesion, migration, tube formation and inactivation the phosphorylation of VEGFR-2, Akt and eNOS. Conclusion: These data provide evidence that Pristimerin has strong potential for development as a novel agent against prostate bone metastasis by suppressing PC-3 stem cell characteristics and VEGF-induced vasculogenesis of BM-EPCs.

  3. Stresses in hollow nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří

    2010-01-01

    Roč. 47, č. 20 (2010), s. 2799-2805 ISSN 0020-7683 R&D Projects: GA ČR GAP108/10/1781 Institutional research plan: CEZ:AV0Z20410507 Keywords : Spherical nanoparticles * Micromechanics * Interface Subject RIV: BJ - Thermodynamics Impact factor: 1.677, year: 2010

  4. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  5. Nanoparticles in forensic science

    Science.gov (United States)

    Cantu, Antonio A.

    2008-10-01

    Nanoparticles appear in several areas of forensic science including security documents, paints, inks, and reagents that develop latent prints. One reagent (known as the silver physical developer) that visualizes the water insoluble components of latent print residue is based on the formation of highly charged silver nanoparticles. These attach to and grow on the residue and generate a silver image. Another such reagent involves highly charged gold nanoparticles. These attach to the residue forming a weak gold image which can be amplified with a silver physical developer. Nanoparaticles are also used in items such as paints, printing inks, and writing inks. Paints and most printing inks consist of nano-sized pigments in a vehicle. However, certain modern ink jet printing inks now contain nano-sized pigments to improve their light fastness and most gel inks are also based on nano scale pigments. These nanoparticlecontaining materials often appear as evidence and are thus subject to forensic characterization. Both luminescent (quantum dots), up-converting nano scale phosphors, and non luminescent nanoparticles are used as security tags to label product, add security to documents, and as anti counterfeiting measures. These assist in determining if an item is fraudulently made.

  6. Nanoparticle-Assisted Metabolomics

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-03-01

    Full Text Available Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.

  7. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  8. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  9. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    /receptor transcriptional regulator in some clinically relevant Gram-negative bacteria. The present review contains all reported compound types that are currently known to inhibit the QS transcriptional regulator in Gram-negative bacteria. These compounds are sub-divided into two main groups, one comprising structural...

  10. Cooperation for Better Inhibiting.

    Science.gov (United States)

    Novoa, Eva Maria; Ribas de Pouplana, Lluís

    2015-06-18

    Cladosporin is an antimalarial drug that acts as an ATP-mimetic to selectively inhibit Plasmodium lysyl-tRNA synthetase. Using multiple crystal structures, Fang et al. (2015) reveal in this issue of Chemistry & Biology the fascinating mechanism responsible for cladosporin selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  12. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  13. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  14. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Wenqi

    2008-04-01

    Full Text Available Abstract Background It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU loaded block copolymers, with poly(γ-benzyl-L-glutamate (PBLG as the hydrophobic block and poly(ethylene glycol (PEG as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. Methods 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC. To study in vivo effects, LoVo cells (human colon cancer cell line or Tca8113 cells (human oral squamous cell carcinoma cell line were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. Results 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min, lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L, and greater distribution volume (VD, 0.114 L vs. 0.069 L. Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p 0.05. Conclusion In our model system, 5-FU/PEG-PBLG nanoparticles

  15. Plant-mediated synthesis of biosilver nanoparticles using Pandanus amaryllifolius extract and its bactericidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Akhir, Rabiatuladawiyah Md.; Fairuzi, Afiza Ahmad [School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Ismail, Nur Hilwani [School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor Darul Ehsan Malaysia (Malaysia)

    2015-08-28

    In this work, we describe a cost effective, easily scaled up and environmental friendly technique for green synthesis of silver nanoparticles (AgNPs) from 5 mM AgNO{sub 3} solution using aqueous extract of Pandanus amaryllifolius (P. amaryllifolius) leaves as reducing agent. Biosynthesized silver nanoparticles was confirmed by sampling the reaction mixture at regular intervals and the absorption maxima was scanned by Ultraviolet-Visible (UV-Vis) spectroscopy at wavelength of 200-500 nm. Images from Field Emission Scanning Electron Microscope (FESEM) have shown that the silver nanoparticles are 17-30 nm in range and assembled in mostly spherical shape. Elemental composition analysis by using Energy Dispersive X-ray (EDX) confirmed the presence of silver. Low concentration of biosynthesized silver nanoparticles have been found to exhibit good antibacterial activity against Staphylococcus aureus bacteria with average mean diameter of zone of inhibition (ZOI) of 16 mm.

  16. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    Directory of Open Access Journals (Sweden)

    Shahzadi Shamaila

    2016-04-01

    Full Text Available Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM analysis confirmed the size and X-ray diffractometry (XRD analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria.

  17. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    Science.gov (United States)

    Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti

    2013-09-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.

  18. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    International Nuclear Information System (INIS)

    Tripathi, R M; Shrivastav, Archana; Gupta, Rohit Kumar; Singh, M P; Shrivastav, B R; Singh, Priti

    2013-01-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV–Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV–Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8–24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity. (paper)

  19. Bactericidal, structural and morphological properties of ZnO2 nanoparticles synthesized under UV or ultrasound irradiation

    International Nuclear Information System (INIS)

    Colonia, R; Solís, J L; Gómez, M

    2014-01-01

    Nanoparticles of ZnO 2 were synthesized by a sol–gel method using Zn(CH 3 COO) 2 and H 2 O 2 in an aqueous solution exposed to either ultraviolet (UV) or ultrasound irradiation. X-ray diffraction and scanning electron microscopy showed that the nanostructures consisted of spherical blackberry-like clusters. Nanoparticles fabricated by using UV irradiation had smaller sizes and narrower size distributions than nanoparticles prepared by using ultrasound. Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used as test microorganisms, and the antibacterial activity of the ZnO 2 nanoparticles was studied by use of the well diffusion agar bacteriological test. ZnO 2 nanoparticles synthetized using UV had the best antibacterial properties. The inhibition zone was largest for B. subtilis but was present also for S. aureus and E. coli. (paper)

  20. Synthesis and electrochemical characterization of stabilized nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A.; Ramirez-Meneses, E.; Torres Huerta, A.M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, CICATA-IPN Unidad Altamira, Carretera Tampico-Puerto Industrial, C.P. 89600 Altamira, Tamaulipas (Mexico); Montiel-Palma, V. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Colonia Chamilpa, C.P.62201 Cuernavaca, Morelos (Mexico); Dorantes Rosales, H. [Departamento de Metalurgia, Escuela Superior de Ingenieria Quimica e Industrias Extractivas - IPN, C.P. 07300, D.F. (Mexico)

    2009-02-15

    Nickel stabilized nanoparticles produced by an organometallic approach (Chaudret's method) starting from the complex Ni(1,5-COD){sub 2} were used as electrode materials for hydrogen evolution in NaOH at two temperatures (298 and 323 K). The synthesis of the nickel nanoparticles was performed in the presence of two different stabilizers, 1,3-diaminopropane (DAP) and anthranilic acid (AA), by varying the molar ratios (1:1, 1:2 and 1:5 metal:ligand) in order to evaluate their influence on the shape, dispersion, size and electrocatalytic activity of the metallic particles. The presence of an appropriate amount of stabilizer is an effective alternative to the synthesis of small monodispersed metal nanoparticles with diameters around 5 and 8 nm for DAP and AA, respectively. The results are discussed in terms of morphology and the surface state of the nanoparticles. The importance of developing a well-controlled synthetic method which results in higher performances of the resulting nanoparticles is highlighted. Herein we found that the performance with respect to the HER of the Ni electrodes dispersed on a carbon black Vulcan substrate is active and comparable to that reported in the literature for the state-of-the-art electrocatalysts. Appreciable cathodic current densities of {proportional_to}240 mA cm{sup -2} were measured with highly dispersed nickel particles (Ni-5{sub DAP}). This work demonstrates that the aforementioned method can be extended to the preparation of highly active stabilized metal particles without inhibiting the electron transfer for the HER reaction, and it could also be applied to the synthesis of bimetallic nanoparticles. (author)

  1. Progress toward clonable inorganic nanoparticles

    Science.gov (United States)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  2. 糖尿病视网膜病变患者血中VEGF及IGF-1的定量测定与分析%Investigation of VEGF and IGF-1 concentration in blood of patients with type 2 diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    陈启城; 徐威; 蔡应木; 王彩霞

    2014-01-01

    目的:检测糖尿病视网膜病变(DR)患者外周血中的VEGF和IGF-1水平,并探讨其临床意义。方法选取30例健康者作为对照组,2型糖尿病患者120例为试验组;试验组再分为无糖尿病视网膜病变(NDR)组30例,单纯型糖尿病视网膜病变(BDR)组33例,单纯型糖尿病视网膜病变合并黄斑水肿(macular edema ME)组22例,增生型糖尿病视网膜病变(PDR)组35例。用ELISA法检测血浆VEGF和IGF-1水平。结果2型糖尿病患者外周血中VEGF及IGF-1水平明显高于正常者,差异有统计学意义(P0.05)。结论2型糖尿病患者血清中VEGF及IGF-1水平随着DR的发生、黄斑水肿以及DR的加重而逐渐升高,对其进行监测有利于糖尿病视网膜病变的早期诊断和治疗。%Objective To detect the concentration of VEGF and IGF-1 in blood of patients with type 2 diabetic retinopathy, and to explore its clinical significance. Methods A total of 30 healthy person as normal control group, and 120 patients with type 2 diabetic retinopathy as experiment group. The cases of experiment group were divided into non-diabetic retinopathy(NDR) group(30 patients), background diabetic retinopathy(BDR) group(33 patients), background diabetic retinopathy combined with macular edema (BDR Combined with ME) group (22 patients) and proliferative diabetic retinopathy (PDR) group (35 patients). The levels of serum VEGF and IGF-1 were assayed by ELISA. Results The levels of serum VEGF and IGF-1 were significantly higher in DR group than those in healthy person (P0.05).Conclusion The levels of serum VEGF and IGF-1 increased when combining with macular edema, and increased during the development of DR. To detect the concentration of VEGF and IGF-1 in blood of patients with type 2 diabetic retinopathy maybe play a key role in the early diagnosis and in the treatment.

  3. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity

    Directory of Open Access Journals (Sweden)

    Neveen Abdel-Raouf

    2017-05-01

    Full Text Available The synthesis of gold nanoparticles (Au using Galaxaura elongata (powder or extract is demonstrated here. The rapid formation of stable Au nanoparticles has been found using G. elongata extract in aqueous medium at normal atmospheric condition. Transmission electron microscopy (TEM analysis revealed that the particles are spherical in shape along with a few rod, triangular, truncated triangular and hexagonal shaped nanoparticles. Zeta potential measurements indicated that the Au nanoparticles were in the size range of 3.85–77.13 nm. Fourier transform infrared spectroscopy (FTIR showed that nanoparticles were capped with alga compounds. The chemical constituents, viz. Andrographolide, Alloaromadendrene oxide, glutamic acid, hexadecanoic acid, oleic acid, 11-eicosenoic acid, stearic acid, gallic acid, Epigallocatechin Catechin and Epicatechin gallate of the algal extract were identified which may act as a reducing, stabilizing and capping agent. The nanoparticles were also evaluated for their antibacterial activities which showed better antibacterial effects with maximum inhibition zones of 17–16 mm by AuNPs synthesized by ethanolic extract against Escherichia coli, Klebsiella pneumoniae and MRSA, respectively, followed by Staphylococcus aureus and Pseudomonas aeruginosa (13 mm. Furthermore, the nanoparticles synthesized by the powder of G. elongata were found to be highly effective against E. coli and K. pneumoniae (13.5 and 13 mm, respectively. On the other hand, the free ethanolic extract of G. elongata exhibits high activity only against MRSA (14 mm.

  4. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    International Nuclear Information System (INIS)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J

    2011-01-01

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  5. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise [Department of Biological Sciences, Boise State University, Boise, ID 83725 (United States); Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew [Department of Physics, Boise State University, Boise, ID 83725 (United States)], E-mail: denisewingett@boisestate.edu

    2008-07-23

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells ({approx}28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity.

  6. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J, E-mail: sjchoi@swu.ac.kr [Department of Food Science and Technology, Seoul Women' s University, 126 Gongneung 2-dong, Nowon-gu, Seoul 139-774 (Korea, Republic of)

    2011-07-06

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  7. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles

    International Nuclear Information System (INIS)

    Hanley, Cory; Layne, Janet; Feris, Kevin; Wingett, Denise; Punnoose, Alex; Reddy, K M; Coombs, Isaac; Coombs, Andrew

    2008-01-01

    Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells (∼28-35 x) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity, as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. Mechanisms of toxicity appear to involve the generation of reactive oxygen species, with cancerous T cells producing higher inducible levels than normal T cells. In addition, nanoparticles were found to induce apoptosis and the inhibition of reactive oxygen species was found to be protective against nanoparticle induced cell death. The novel findings of cell selective toxicity, towards potential disease causing cells, indicate a potential utility of ZnO nanoparticles in the treatment of cancer and/or autoimmunity

  8. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  9. Nanobiotechnology today: focus on nanoparticles

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2007-12-01

    Full Text Available Abstract In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications in some of these areas http://www.jnanobiotechnology.com.

  10. Vacancy clusters at nanoparticle surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W. [Oak Ridge National Lab., TN (United States); Mills, A.P. Jr. [Bell Labs., Lucent Technologies, Murray Hill, NJ (United States); Suzuki, R.; Ishibashi, S. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Ueda, A.; Henderson, D. [Physics Dept., Fisk Univ., Nashville, TN (United States)

    2001-07-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v{sub 4}) are attached to the gold nanoparticle surfaces within the projected range (R{sub p}). (orig.)

  11. Vacancy clusters at nanoparticle surfaces

    International Nuclear Information System (INIS)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W.; Mills, A.P. Jr.; Suzuki, R.; Ishibashi, S.; Ueda, A.; Henderson, D.

    2001-01-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ). (orig.)

  12. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, J. [Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago (United States); Thippegowda, P.B., E-mail: btprabha@uic.edu [Department of Pharmacology, (M/C 868), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612 (United States); Kanum, S.A. [Department of Chemistry, Yuvaraj' s College, University of Mysore, Mysore (India)

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  13. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne

    2016-11-29

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.

  14. JNK inhibition reduces apoptosis and neovascularization in a murine model of age-related macular degeneration.

    Science.gov (United States)

    Du, Hongjun; Sun, Xufang; Guma, Monica; Luo, Jing; Ouyang, Hong; Zhang, Xiaohui; Zeng, Jing; Quach, John; Nguyen, Duy H; Shaw, Peter X; Karin, Michael; Zhang, Kang

    2013-02-05

    Age-related macular degeneration (AMD) is the leading cause of registered blindness among the elderly and affects over 30 million people worldwide. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in pathogenesis of AMD. In advanced wet AMD, although, most of the severe vision loss is due to bleeding and exudation of choroidal neovascularization (CNV), and it is well known that vascular endothelial growth factor (VEGF) plays a pivotal role in the growth of the abnormal blood vessels. VEGF suppression therapy improves visual acuity in AMD patients. However, there are unresolved issues, including safety and cost. Here we show that mice lacking c-Jun N-terminal kinase 1 (JNK1) exhibit decreased inflammation, reduced CNV, lower levels of choroidal VEGF, and impaired choroidal macrophage recruitment in a murine model of wet AMD (laser-induced CNV). Interestingly, we also detected a substantial reduction in choroidal apoptosis of JNK1-deficient mice. Intravitreal injection of a pan-caspase inhibitor reduced neovascularization in the laser-induced CNV model, suggesting that apoptosis plays a role in laser-induced pathological angiogenesis. Intravitreal injection of a specific JNK inhibitor decreased choroidal VEGF expression and reduced pathological CNV. These results suggest that JNK1 plays a key role in linking oxidative stress, inflammation, macrophage recruitment apoptosis, and VEGF production in wet AMD and pharmacological JNK inhibition offers a unique and alternative avenue for prevention and treatment of AMD.

  15. Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria

    International Nuclear Information System (INIS)

    Varghese, S.; Jose, S.; Varghese, S.; Kuriakose, S.; Jose, S.

    2013-01-01

    This paper describes the isolation of carbon nanoparticles (CNPs) from kitchen soot, characterization of the CNPs by UV/visible spectroscopy, SEM and XRD, and their antimicrobial action. The antibacterial activity of the isolated carbon nanoparticles was tested against various pathogenic bacterial strains such as Gram-negative Proteus refrigere and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus and Streptococcus haemolyticus. The inhibition zones were measured, and it was found that the carbon nanoparticles isolated from natural sources are active against these Gram-negative and Gram-positive bacterial strains

  16. Biosynthesis of Cr(III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity.

    Science.gov (United States)

    Kanakalakshmi, A; Janaki, V; Shanthi, K; Kamala-Kannan, S

    2017-11-01

    The aim of this study was to synthesize and characterize Cr(III) nanoparticles using wastewater from electroplating industries and chromium-resistant Bacillus subtilis. Formation of Cr(III) nanoparticles was confirmed by UV-visible (UV-Vis) spectroscopy at 300 nm. The size of the nanoparticles varied from 4 to 50 nm and energy dispersive spectroscopy profile shows strong Cr peak approximately at 4.45 and 5.2 keV. The nanoparticles inhibited the growth of pathogenic bacteria Staphylococcus aureus and Escherichia coli. The cytotoxic effect of the synthesized Cr(III) nanoparticle was studied using HEK 293 cells, and the cell viability was found to decrease with increasing concentration of Cr(III) nanoparticles.

  17. Synthesis of environmentally friendly highly dispersed magnetite nanoparticles based on rosin cationic surfactants as thin film coatings of steel.

    Science.gov (United States)

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2014-04-22

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.

  18. Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-04-01

    Full Text Available This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy propyl-triethyl ammonium chloride (LPMQA as capping agent. Fourier transform infrared spectroscopy (FTIR was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM and X-ray powder diffraction (XRD were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS. Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.

  19. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  20. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  1. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers...... study. "Unprotected" Pt and Ru nanoparticles were characterized by NMR spectroscopy, which does not evidence the presence of any C-H containing species bound to the particle surface. Instead, the colloids were found to be covered by CO, as demonstrated by IR spectroscopy. However, analysis...

  2. Biomimetic nanoparticles for inflammation targeting

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.

  3. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  4. Inhibiting the inevitable

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2006-01-01

    conservation is to ‘buy time’ for the object. Inhibitive conservation of plastics involves the removal or reduction of factors causing or accelerating degradation including light, oxygen, acids, relative humidity and acidic breakdown products. Specific approaches to conservation have been developed......Once plastics objects are registered in museum collections, the institution becomes responsible for their long term preservation, until the end of their useful lifetime. Plastics appear to deteriorate faster than other materials in museum collections and have a useful lifetime between 5 and 25...... years. Preventive or in