WorldWideScience

Sample records for nanoparticle-fluorescent polymer complexes

  1. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  2. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    Science.gov (United States)

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  3. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Uzun, Lokman; Uzek, Recep; Şenel, Serap; Say, Ridvan; Denizli, Adil

    2013-01-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring

  4. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Uzek, Recep; Şenel, Serap [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Say, Ridvan [Anadolu University, Department of Chemistry, 26470, Eskisehir (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey)

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring.

  5. Interfacial adhesion of nanoparticles in polymer blends by intrinsic fluorescence spectra

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available Intrinsic fluorescence was applied to quantitatively describe the interfacial adhesion of nanoparticles in polystyrene/poly(vinyl methyl ether (PS/PVME blends. Due to the aggregation of aromatic rings on PS chains, the temperature dependence of excimer fluorescence intensity (I324 showed the high sensitivity to the phase separation process. Consistent with Ginzburg thermodynamic model, it was found that the addition of spherical hydrophilic nanoparticles shifted the phase separation temperature to higher temperatures due to the aggregation of silica into PVME chains leading to the free energy reduction and slowing down the phase separation dynamics. A certain composition of polymer blend, i.e. 2/8, was focused on to shed light on the dynamic of spinodal decomposition (SD phase separation by using decomposition reaction model. It was shown that the addition of nanoparticles to polymer blends resulted in the deviation of linear relationship between the initial SD phase separation rate (Rp0 and thermodynamic driving force (ΔfSD. Besides, for PS/PVME (2/8 with 2 vol% silica nanoparticles, the apparent activation energy of phase separation (Ea was 196.61 kJ/mol, which was higher than that of neat PS/PVME (2/8 blend (Ea = 173.68 kJ/mol, which strongly confirmed the interfacial adhesion effect of silica nanoparticles as compatibilizers.

  6. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    Science.gov (United States)

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH.

    Science.gov (United States)

    Chen, Jian; Tang, Ying; Wang, Hong; Zhang, Peisheng; Li, Ya; Jiang, Jianhui

    2016-12-15

    The design of effective tools capable of sensing lysosome pH is highly desirable for better understanding its biological functions in cellular behaviors and various diseases. Herein, a lysosome-targetable ratiometric fluorescent polymer nanoparticle pH sensor (RFPNS) was synthesized via incorporation of miniemulsion polymerization and surface modification technique. In this system, the donor: 4-ethoxy-9-allyl-1,8-naphthalimide (EANI) and the acceptor: fluorescein isothiocyanate (FITC) were covalently linked to the polymer nanoparticle to construct pH-responsive fluorescence resonance energy transfer (FRET) system. The FITC moieties on the surface of RFPNS underwent structural and spectral transformation as the presence of pH changes, resulting in ratiometric fluorescent sensing of pH. The as-prepared RFPNS displayed favorable water dispersibility, good pH-induced spectral reversibility and so on. Following the living cell uptake, the as-prepared RFPNS with good cell-membrane permeability can mainly stain in the lysosomes; and it can facilitate visualization of the intracellular lysosomal pH changes. This nanosensor platform offers a novel method for future development of ratiometric fluorescent probes for targeting other analytes, like ions, metabolites,and other biomolecules in biosamples. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  9. Magnetic field control of fluorescent polymer nanorods

    International Nuclear Information System (INIS)

    Kim, Taehyung; He, Le; Bardeen, Christopher J; Morales, Jason R; Beyermann, W P

    2011-01-01

    Nanoscale objects that combine high luminescence output with a magnetic response may be useful for probing local environments or manipulating objects on small scales. Ideally, these two properties would not interfere with each other. In this paper, we show that a fluorescent polymer host material can be doped with high concentrations of 20–30 nm diameter magnetic γ-Fe 2 O 3 particles and then formed into 200 nm diameter nanorods using porous anodic alumina oxide templates. Two different polymer hosts are used: the conjugated polymer polydioctylfluorene and also polystyrene doped with the fluorescent dye Lumogen Red. Fluorescence decay measurements show that 14% by weight loading of the γ-Fe 2 O 3 nanoparticles quenches the fluorescence of the polydioctylfluorene by approximately 33%, but the polystyrene/Lumogen Red fluorescence is almost unaffected. The three-dimensional orientation of both types of nanorods can be precisely controlled by the application of a moderate strength (∼0.1 T) external field with sub-second response times. Transmission electron microscope images reveal that the nanoparticles cluster in the polymer matrix, and these clusters may serve both to prevent fluorescence quenching and to generate the magnetic moment that rotates in response to the applied magnetic field.

  10. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  11. Polymer brushes infiltrated by nanoparticles and applications to the nuclear pore complex

    Science.gov (United States)

    Opferman, Michael G.

    Systems of grafted polymers in the presence of additives are useful in a variety of contexts including industrial applications, solar cells, organic electronics, drug delivery, and nucleocytoplasmic transport. In this thesis, we will consider the morphologies that polymer brushes attain when exposed to a solution of additives (which we generically term "nanoparticles"), particularly when those nanparticles interact attractively with the polymers. We find that nanoparticles of this type can have a dramatic effect on the height of the polymer chains above the grafting surface, and they can induce highly non-uniform morphologies, including ones in which a dense layer of nanoparticles and monomers forms near the grafting surface. We consider especially the relevance of the system to several experiments performed on biopolymers in the nuclear pore complex when they interact attractively with transport factors that regulate nucleocytoplasmic transport. We find that, although these experiments appear to give inconsistent results, the inconsistencies can be reconciled through two simple models: the Alexander-de Gennes polymer brush, and the Milner-Witten-Cates polymer brush. Our findings should contribute to the understanding of the nuclear pore complex in that experiments can be better understood in the context of their relevant control parameters.

  12. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Directory of Open Access Journals (Sweden)

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  13. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1&T2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy.

    Science.gov (United States)

    Wang, Guannan; Qian, Kun; Mei, Xifan

    2018-06-14

    Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.

  14. Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films.

    Science.gov (United States)

    Wang, Zefeng; Ye, Weiwei; Luo, Xinran; Wang, Zhonggang

    2016-04-18

    The motivation of this work is to create luminescent rare earth/polymer films with outstanding water-resistance and superhydrophobicity. Specifically, the emulsion polymerization of styrene leads to core particles. Then core-shell-structured polymer nanoparticles are synthesized by copolymerization of styrene and acrylic acid on the core surface. The coordination reaction between carboxylic groups and rare earth ions (Eu(3+) and Tb(3+)) generates uniform spherical rare earth/polymer nanoparticles, which are subsequently complexed with PTFE microparticles to obtain micro-/nano-scaled PTFE/rare earth films with hierarchical rough morphology. The films exhibit large water contact angle up to 161° and sliding angle of about 6°, and can emit strong red and green fluorescence under UV excitation. More surprisingly, it is found that the films maintain high fluorescence intensity after submersed in water and even in aqueous salt solution for two days because of the excellent water repellent ability of surfaces.

  15. Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ripal Gaudana

    2011-01-01

    Full Text Available The objective of the present study is to formulate and characterize a nanoparticulate-based formulation of a macromolecule in a hydrophobic ion pairing (HIP complex form. So far, HIP complexation approach has been studied only for proteins with molecular weight of 10–20 kDa. Hence, we have selected bovine serum albumin (BSA having higher molecular weight (66.3 kDa as a model protein and dextran sulphate (DS as a complexing polymer to generate HIP complex. We have prepared and optimized the HIP complex formation process of BSA with DS. Ionic interactions between basic amino acids of BSA with sulphate groups of DS were confirmed by FTIR analysis. Further, nanoparticles were prepared and characterized with respect to size and surface morphology. We observed significant entrapment of BSA in nanoparticles prepared with minimal amounts of PLGA polymer. Finally, results of circular dichroism and intrinsic fluorescence assay have clearly indicated that HIP complexation and method of nanoparticle preparation did not alter the secondary and tertiary structures of BSA.

  16. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin

    International Nuclear Information System (INIS)

    Wang, Yi-Zhi; Li, Dong-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2015-01-01

    Epitope imprinted polymer nanoparticles (EI-NPs) were prepared by one-pot polymerization of N-isopropylacrylamide in the presence of CdTe quantum dots and an epitope (consisting of amino acids 598 to 609) of human serum albumin (HSA). The resulting EI-NPs exhibit specific recognition ability and enable direct fluorescence quantification of HSA based on a fluorescence turn-on mode. The polymer was characterized by FT-IR, X-ray photoelectron spectroscopy, transmission electron microscopy and dynamic light scattering. The linear calibration graph was obtained in the range of 0.25–5 μmol · mL −1 with the detection limit of 44.3 nmol · mL −1 . The EI-NPs were successfully applied to the direct fluorometric quantification of HSA in samples of human serum. Overall, this approach provides a promising tool to design functional fluorescent materials with protein recognition capability and specific applications in proteomics. (author)

  17. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    Science.gov (United States)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  18. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber

    International Nuclear Information System (INIS)

    Sebastian, Suneetha; Ajina, C; Vallabhan, C. P. G; Nampoori, V. P. N.; Radhakrishnan, P.; Kailasnath, M.

    2013-01-01

    We report on fabrication of a rhodamine-6G-gold-nanoparticle doped polymer optical fiber. The gold nanoparticle is synthesized directly into the monomer solution of the polymer using laser ablation synthesis in liquid. The size of the particle is found from the transmission electron microscopy. Rhodamine-6G is then mixed with the nanoparticle-monomer solution and optical characterization of the solution is investigated. It is found that there is a pronounced quenching of fluorescence of rhodamine 6G due to fluorescence resonance energy transfer. The monomer solution containing rhodamine 6G and gold nanoparticles is now made into a cylindrical rod and drawn into a polymer optical fiber. Further, the photostability is calculated with respect to the pure dye doped polymer optical fiber

  19. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  1. Preparation and characterization of complex ferrite nanoparticles by a polymer-pyrolysis route

    International Nuclear Information System (INIS)

    Liu Xianming; Fu Shaoyun; Xiao Hongmei; Zhu Luping

    2007-01-01

    The polymer-pyrolysis route used in this work was to synthesize the copolymeric precursor of the mixed metallic ions and then to pyrolyze the precursor into complex spinel ferrite nanoparticles. Thermogravimetric analysis (TGA) showed that the complex ferrite nanoparticles could be obtained by calcination of their precursors at 500 deg. C. The structures, elemental analyses and particle morphology of the as-calcined products were characterized by powder X-ray diffraction (XRD), ICP-AES, transmission electron microscope (TEM) and electron diffraction (ED) pattern. The results revealed that the as-calcined powders were complex spinel ferrites and the size of those nanoparticles ranged from 10 to 20 nm. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). The saturation magnetization of the Mn-Zn ferrites was related to the molar ratio of Mn to Zn and increased with the increase of Mn. The complex Co-Mn-Zn ferrite nanoparticles showed a high magnetization of 58 emu/g at the applied field of 10 kOe and a low coercivity of 30 Oe, which indicated that this materials exhibited characteristics of soft ferromagnetism

  2. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application.

    Science.gov (United States)

    Wang, Chun; Tang, Fu; Wang, Xiaoyu; Li, Lidong

    2015-06-24

    In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.

  3. Mn2+ anchored CdS polymer nanocomposites: An efficient alternative for Mn2+ doped CdS nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Bhaskar Jyoti; Nath, Bikash Chandra; Borah, Chandramika; Dolui, Swapan Kumar

    2015-01-01

    A chelating bi-functional polymer brushes was prepared via atom transfer radical polymerization using grafting-from methodology. Mn 2+ -anchored CdS-polymer nanocomposites were synthesized using this graft copolymer by simple chelation method resulting in emission at about 620 nm which originates from the fluorescence of manganese ions embedded on the surface of CdS nanoparticles. This method provides an efficient straightforward substitute of Mn 2+ dopped CdS nanoparticles. Optical properties of the composites were investigated which indicates that simple Mn 2+ chelation and subsequent binding of CdS in a polymer matrix can have similar effect in the luminescence property as those synthesized via complex doping methods. Moreover this methodology can be applied for synthesis of any metal anchored nanocomposites proficiently and cost effectively in large-scale production. - Highlights: • A chelating bifunctional copolymer brush was synthesized via ATRP. • CdS nanoparticles and Mn 2+ were coupled with the bifunctional polymer. • Composites showed emission properties similar to Mn 2+ doped CdS nanoparticles. • Side chain length of the polymers also affect the emission properties of the composites.

  4. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    Science.gov (United States)

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  6. Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells

    Science.gov (United States)

    Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.

    2011-03-01

    We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG

  7. Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity

    International Nuclear Information System (INIS)

    Cui, Haijun; Chen, Ying; Li, Lianshan; Tang, Zhiyong; Wu, Yishi; Fu, Hongbing; Tian, Zhiyuan

    2014-01-01

    Conjugated polymer nanoparticles (CPNs) were developed based on a polyfluorene-based conjugated polymer with thiophene units carrying pyridyl moieties incorporated in the backbone of polymer chains (PFPyT). Hybrid CPNs fabricated from PFPyT and an amphiphilic polymer (NP1) displayed pH-sensitive fluorescence emission features in the range from pH 4.8 to 13, which makes them an attractive nanomaterial for wide range optical sensing of pH values. The fluorescence of hybrid CPNs based on chemically close polyfluorene derivatives without pyridyl moieties (NP3), in contrast, remains virtually unperturbed by pH values in the same range. The fluorescence emission features of NP1 underwent fully reversible changes upon alternating acidification/basification of aqueous dispersions of the CPNs and also displayed excellent repeatability. The observed pH sensing properties of NP1 are attributed to protonation/deprotonation of the nitrogen atoms of the pyridine moieties. This, in turn, leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation within the polymer main chains. The optically transparent amphiphilic polymers also exerted significant influence on the pH sensing features of the CPNs, likely by acting as proton sponge and/or acid chaperone. (author)

  8. Preparation of polymer-rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    Energy Technology Data Exchange (ETDEWEB)

    Gao Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang Wei; Zhang Zhengguo; Lei Qingjuan [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2012-08-15

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer-rare earth complex, SAPS-Eu(III), was prepared. The structure of SAPS-Eu(III) was characterized, and the fluorescence properties of SAPS-Eu(III) were mainly investigated. The experimental results show that the complex SAPS-Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu{sup 3+} ion, and it enables the complex SAPS-Eu(III) to produce the apparent 'Antenna Effect'. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS-Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS-Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu{sup 3+} ion is equal to 10, and here the binary intrachain complex SAPS-Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS-Eu(III)-Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu{sup 3+} ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS-Eu(III). - Highlights: Black-Right-Pointing-Pointer We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. Black-Right-Pointing-Pointer The polymer-rare earth complex, SAPS-Eu(III), was prepared and a stronger 'antenna effect' was produced. Black

  9. Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing

    KAUST Repository

    Piwonski, Hubert Marek

    2017-05-16

    Applications of conjugated polymer nanoparticles (Pdots) for imaging and sensing depend on their size, fluorescence brightness and intraparticle energy transfer. The molecular design of conjugated polymers (CPs) has been the main focus of the development of Pdots. Here we demonstrate that proper control of the physical interactions between the chains is as critical as the molecular design. The unique design of twisted CPs and fine-tuning of the reprecipitation conditions allow us to fabricate ultrasmall (3.0–4.5 nm) Pdots with excellent photostability. Extensive photophysical and structural characterization reveals the essential role played by the packing of the polymer chains in the particles in the intraparticle spatial alignment of the emitting sites, which regulate the fluorescence brightness and the intraparticle energy migration efficiency. Our findings enhance understanding of the relationship between chain interactions and the photophysical properties of CP nanomaterials, providing a framework for designing and fabricating functional Pdots for imaging applications.

  10. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  11. Spectroscopic studies of nanoparticle-sensitised photorefractive polymers

    Science.gov (United States)

    Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul

    2005-09-01

    We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly( N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs.

  12. Spectroscopic studies of nanoparticle-sensitised photorefractive polymers

    International Nuclear Information System (INIS)

    Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul

    2005-01-01

    We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly(N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs

  13. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  14. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  15. Incorporation of Znq2 complexes into mesoporous silica and their transparent polymer luminescent nanocomposites

    International Nuclear Information System (INIS)

    Du Yaying; Fu Yuqin; Shi Yongli; Lue Xiaodan; Lue Changli; Su Zhongmin

    2009-01-01

    Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent nanocomposites were prepared by in situ bulk polymerization. CMS nanoparticles or nanorods with hydroxyl-, mercapto- and sulfonic-functionalized interiors were obtained by different synthetic routes in the nanosize dimensions between 50 and 500 nm. The luminescent Znq 2 complex was successfully introduced in the pores of different mesoporous silicas by chemical adsorption as the driving force. The different internal circumstances of mesoporous silicas had an obvious effect on the luminescence and lifetime of Znq 2 complex. The transparent fluorescent nanocomposites were fabricated from different Znq 2 -CMS and suitable monomers. The Znq 2 -CMS were uniformly dispersed in the polymer matrix without evident aggregation. The photoluminescence properties of Znq 2 -CMS in the transparent matrix exhibited a dependence on the inner surrounding of CMS due to the interaction between Znq 2 -CMS and polymers. The maximum emission peak of the nanocomposites had a red-shift of 28 nm as compared to pure Znq 2 -CMS. - Graphical abstract: Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent fluorescent nanocomposites were prepared by in situ bulk polymerization. The figure shows the synthetic scheme for the Znq 2 -CMS and their transparent bulk nanocomposites.

  16. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.

    Science.gov (United States)

    Mieszawska, Aneta J; Kim, YongTae; Gianella, Anita; van Rooy, Inge; Priem, Bram; Labarre, Matthew P; Ozcan, Canturk; Cormode, David P; Petrov, Artiom; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2013-09-18

    For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.

  17. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.

    Science.gov (United States)

    Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P

    2013-11-12

    In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.

  18. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wei Kang; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  19. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    International Nuclear Information System (INIS)

    Lim, Wei Kang; Denton, Alan R.

    2014-01-01

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments

  20. Discrepancy between different estimates of the hydrodynamic diameter of polymer-coated iron oxide nanoparticles in solution

    International Nuclear Information System (INIS)

    Regmi, R.; Gumber, V.; Subba Rao, V.; Kohli, I.; Black, C.; Sudakar, C.; Vaishnava, P.; Naik, V.; Naik, R.; Mukhopadhyay, A.; Lawes, G.

    2011-01-01

    We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15–20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.

  1. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  2. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  3. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging.

    Science.gov (United States)

    Shi, Yingge; Jiang, Ruming; Liu, Meiying; Fu, Lihua; Zeng, Guangjian; Wan, Qing; Mao, Liucheng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers. The dopamine was conjugated onto poly(UA-co-PEGMA) through a multicomponent reaction between UA and dopamine to obtain poly(UA-co-PEGMA)-DA, which was further utilized for preparation of polymer-FONs through self-polymerization of dopamine and PEI. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy were employed to characterize the structure, morphology, compositions and optical properties of these polymer-FONs. Cell viability and cell uptake behavior results suggested that these polymer-FONs possess good biocompatibility and can be potentially utilized for biomedical applications. More importantly, the method can be also applied to fabricate many other multifunctional polymer-FONs with great potential for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    2014-08-15

    Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties.

  5. Conformation and elasticity of a charged polymer chain bridging two nanoparticles

    International Nuclear Information System (INIS)

    Nowicki, W.; Nowicka, G.

    2013-01-01

    A complex composed of a charged flexible polymer chain irreversibly attached with its ends to surfaces of two nanoparticles was investigated using the Metropolis Monte Carlo method on a simple cubic lattice. The simulations were performed in the presence of explicit ions. The bridging chain and the nanoparticles bearing the same and the opposite sign charges were considered. Changes in the free energy of the complex upon its stretching or compression, together with the magnitude of the elastic force, were examined. The relative roles of energetic and entropic effects in determining the properties of the complex were identified. Also, the adsorption of charged monomers on the opposite-sign charged nanoparticles and its influence on the examined quantities was studied. Moreover, a simple semi-analytical approach to the thermodynamics of the polymer bridge was derived

  6. Synthesis and characterization of variable-architecture thermosensitive polymers for complexation with DNA.

    Science.gov (United States)

    Pennadam, Sivanand S; Ellis, James S; Lavigne, Matthieu D; Górecki, Dariusz C; Davies, Martyn C; Alexander, Cameron

    2007-01-02

    Copolymers of N-isopropylacrylamide with a fluorescent probe monomer were grafted to branched poly(ethyleneimine) to generate polycations that exhibited lower critical solution temperature (LCST) behavior. The structures of these polymers were confirmed by spectroscopy, and their phase transitions before and after complexation with DNA were followed using ultraviolet and fluorescence spectroscopy and light scattering. Interactions with DNA were investigated by ethidium bromide displacement assays, while temperature-induced changes in structure of both polymers and polymer-DNA complexes were evaluated by fluorescence spectroscopy, dynamic light scattering, laser Doppler anemometry, and atomic force microscopy (AFM) in water and buffer solutions. The results showed that changes in polymer architecture were mirrored by variations in the architectures of the complexes and that the overall effect of the temperature-mediated changes was dependent on the graft polymer architecture and content, as well as the solvent medium, concentrations, and stoichiometries of the complexes. Furthermore, AFM indicated subtle changes in polymer-DNA complexes at the microstructural level that could not be detected by light scattering techniques. Uniquely, variable-temperature aqueous-phase AFM was able to show that changes in the structures of these complexes were not uniform across a population of polymer-DNA condensates, with isolated complexes compacting above LCST even though the sample as a whole showed a tendency for aggregation of complexes above LCST over time. These results indicate that sample heterogeneities can be accentuated in responsive polymer--DNA complexes through LCST-mediated changes--a factor that is likely to be important in cellular uptake and nucleic acid transport.

  7. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    Science.gov (United States)

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, Gyula J.; Duvigneau, Joost; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  9. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    International Nuclear Information System (INIS)

    Ye Jiesheng; Liu Chunxi; Chen Zhijin; Zhang Na; Wang Aihua

    2008-01-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (≤20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14 mV to -17.16 ± 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo

  10. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme.

    Science.gov (United States)

    Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh

    2016-03-01

    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.

  11. Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization.

    Science.gov (United States)

    Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2018-05-31

    The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

  12. Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs.

    Science.gov (United States)

    Xu, Xiaozhe; Qiao, Juan; Li, Nan; Qi, Li; Zhang, Shufeng

    2015-06-16

    A new fluorescent probe based on ensemble of gold nanoclusters (AuNCs) and polymer protected gold nanoparticles (AuNPs) for turn-on sensing of L-cysteine was designed and prepared. The AuNCs were protected by bovine serum albumin and had strong fluorescence. The polymer protected AuNPs were synthesized by a facile in situ strategy at room temperature and could quench the fluorescence of AuNCs due to the Förster resonance energy transfer. Interestingly, it has been observed that the quenched fluorescence of AuNCs was recovered by L-cysteine, which could induce the aggregation of polymer protected AuNPs by sulfur group. Then the prepared fluorescent probe was successfully used for determination of L-Cys in human urines, which would have an evolving aspect and promote the subsequent exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fluorescently Labeled Branched Polymers and Thermal Responsive Nanoparticles for Live Cell Imaging

    NARCIS (Netherlands)

    Zhou, D.; Ma, Y.; Poot, Andreas A.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Branched poly(methoxy-PEG acrylate) and thermally responsive poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) are synthesized by RAFT polymerization. After reduction, these polymers are fluorescently labeled by reacting the free thiol groups with N-(5-fluoresceinyl)maleimide. As shown by

  14. A silica nanoparticle-based sensor for selective fluorescent detection of homocysteine via interaction differences between thiols and particle-surface-bound polymers

    International Nuclear Information System (INIS)

    Yu Changmin; Zeng Fang; Luo Ming; Wu Shuizhu

    2012-01-01

    Biothiols play crucial roles in maintaining biological systems; among them, homocysteine (Hcy) has received increasing attention since elevated levels of Hcy have been implicated as an independent risk factor for cardiovascular disease. Hence, the selective detection of this specific biothiol, which is a disease-associated biomarker, is very important. In this paper, we demonstrate a new mesoporous silica nanoparticle-based sensor for selective detection of homocysteine from biothiols and other common amino acids. In this fluorescent sensing system, an anthracene nitroolefin compound was placed inside the mesopores of mesoporous silica nanoparticles (MSNs) and used as a probe for thiols. The hydrophilic polyethylene glycol (PEG 5000) molecules were covalently bound to the MSN surface and used as a selective barrier for Hcy detection via different interactions between biothiols and the PEG polymer chains. The sensor can discriminate Hcy from the two low-molecular mass biothiols (GSH and Cys) and other common amino acids in totally aqueous media as well as in serum, with a detection limit of 0.1 μM. This strategy may offer an approach for designing other MSN-based sensing systems by using polymers as diffusion regulators in sensing assays for other analytes. (paper)

  15. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  16. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul

    2015-06-05

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  17. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A

    2015-01-01

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  18. Gold and silver nanoparticles based superquenching of fluorescence: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debanjana; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com

    2015-04-15

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K{sub SV}~10{sup 7}–10{sup 10} mol{sup −1} dm{sup 3}) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10{sup 2} mol{sup −1} dm{sup 3}). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors.

  19. Gold and silver nanoparticles based superquenching of fluorescence: A review

    International Nuclear Information System (INIS)

    Ghosh, Debanjana; Chattopadhyay, Nitin

    2015-01-01

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K SV ~10 7 –10 10 mol −1 dm 3 ) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10 2 mol −1 dm 3 ). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors

  20. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy.

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira Silva

    Full Text Available The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm showed a plasmon absorption band located within the near-infrared range (650-900 nm, optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%. Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.

  1. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    Science.gov (United States)

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  2. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    Science.gov (United States)

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Multifunctional PHPMA-Derived Polymer for Ratiometric pH Sensing, Fluorescence Imaging, and Magnetic Resonance Imaging.

    Science.gov (United States)

    Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing

    2018-01-17

    In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.

  4. Formation of nanoparticles by cooperative inclusion between (S-camptothecin-modified dextrans and β-cyclodextrin polymers

    Directory of Open Access Journals (Sweden)

    Thorbjørn Terndrup Nielsen

    2015-01-01

    Full Text Available Novel (S-camptothecin–dextran polymers were obtained by “click” grafting of azide-modified (S-camptothecin and alkyne-modified dextrans. Two series based on 10 kDa and 70 kDa dextrans were prepared with a degree of substitution of (S-camptothecin between 3.1 and 10.2%. The binding properties with β-cyclodextrin and β-cyclodextrin polymers were measured by isothermal titration calorimetry and fluorescence spectroscopy, showing no binding with β-cyclodextrin but high binding with β-cyclodextrin polymers. In aqueous solution nanoparticles were formed from association between the (S-camptothecin–dextran polymers and the β-cyclodextrin polymers.

  5. Modeling the influence of silver nanoparticles on the f–f luminescence of the EuEDTA complex in the polyvinylpirrolidone polymer

    Energy Technology Data Exchange (ETDEWEB)

    Couto dos Santos, M.A., E-mail: marcoscouto@ufs.br [Departamento de Física, Universidade Federal de Sergipe/CCET, São Cristóvão, SE 49100-000 (Brazil); Malta, O.L. [Departamento de Química Fundamental, Universidade Federalde Pernambuco/CCEN, Cidade Universitária, Recife, PE 50670-901 (Brazil); Reisfeld, R. [The Hebrew University of Jerusalem, Chemistry Institute, E. Safra Campus, 91904 Jerusalem (Israel)

    2016-02-15

    A theoretical analysis on experimental results previously obtained on the influence of silver nanoparticles in a polyvinylpirrolidone (PVP) polymer film containing a trivalent europium complex with EDTA ligand is made. Depending on the excitation source (at 393 nm with a xenon lamp or at 532 nm with a focused diode laser) the characteristic Eu{sup 3+} luminescence is observed to be enhanced by factors between 5 and 50. The theoretical analysis presumes a migration process of the EuEDTA complex units towards the silver nanoparticles, during the synthesis of the composite samples, and subsequently the treatment of the competition between local high field gradient effects and Eu{sup 3+} ion to the silver nanoparticles energy transfer successfully accounts for the observed luminescence enhancement factors. - Highlights: • Unusual luminescence enhancement of EuEDTA–silver nanoparticles–polyvinylpyrrolidone is treated theoretically. • A migration process of the EuEDTA complex units towards the silver nanoparticles is assumed. • The local high field gradient effects successfully accounts for the observed unusual luminescence enhancement factor of 50.

  6. A high brightness probe of polymer nanoparticles for biological imaging

    Science.gov (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  7. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi

    2017-01-01

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  8. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  9. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  10. Zein/caseinate/pectin complex nanoparticles: Formation and characterization.

    Science.gov (United States)

    Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao

    2017-11-01

    In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  12. Effects of polymer-nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration.

    Science.gov (United States)

    Hor, Jyo Lyn; Wang, Haonan; Fakhraai, Zahra; Lee, Daeyeon

    2018-03-28

    We explore the effect of confinement and polymer-nanoparticle interactions on the viscosity of unentangled polymers undergoing capillary rise infiltration (CaRI) in dense packings of nanoparticles. In CaRI, a polymer is thermally induced to wick into the dense packings of nanoparticles, leading to the formation of polymer-infiltrated nanoparticle films, a new class of thin film nanocomposites with extremely high concentrations of nanoparticles. To understand the effect of this extreme nanoconfinement, as well as polymer-nanoparticle interactions on the polymer viscosity in CaRI films, we use two polymers that are known to have very different interactions with SiO2 nanoparticles. Using in situ spectroscopic ellipsometry, we monitor the polymer infiltration process, from which we infer the polymer viscosity based on the Lucas-Washburn model. Our results suggest that physical confinement increases the viscosity by approximately two orders of magnitude. Furthermore, confinement also increases the glass transition temperature of both polymers. Thus, under extreme nanoconfinement, the physical confinement has a more significant impact than the polymer-nanoparticle interactions on the viscosity of unentangled polymers, measured through infiltration dynamics, as well as the glass transition temperature. These findings will provide fundamental frameworks for designing processes to enable the fabrication of CaRI nanocomposite films with a wide range of nanoparticles and polymers.

  13. Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles.

    Science.gov (United States)

    Jung, Seung-Ryoung; Han, Rui; Sun, Wei; Jiang, Yifei; Fujimoto, Bryant S; Yu, Jiangbo; Kuo, Chun-Ting; Rong, Yu; Zhou, Xing-Hua; Chiu, Daniel T

    2018-05-15

    We describe here a flow platform for quantifying the number of biomolecules on individual fluorescent nanoparticles. The platform combines line-confocal fluorescence detection with near nanoscale channels (1-2 μm in width and height) to achieve high single-molecule detection sensitivity and throughput. The number of biomolecules present on each nanoparticle was determined by deconvolving the fluorescence intensity distribution of single-nanoparticle-biomolecule complexes with the intensity distribution of single biomolecules. We demonstrate this approach by quantifying the number of streptavidins on individual semiconducting polymer dots (Pdots); streptavidin was rendered fluorescent using biotin-Alexa647. This flow platform has high-throughput (hundreds to thousands of nanoparticles detected per second) and requires minute amounts of sample (∼5 μL at a dilute concentration of 10 pM). This measurement method is an additional tool for characterizing synthetic or biological nanoparticles.

  14. Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer

    International Nuclear Information System (INIS)

    Iwanaga, Hiroki; Amano, Akio; Aiga, Fumihiko; Harada, Kohichi; Oguchi, Masayuki

    2006-01-01

    Relations between molecular structures of europium complexes and their luminescent properties were investigated. Europium complex with β-diketones and two different phosphine oxides 8 was highly soluble in fluorinated medium, and realized largest fluorescence intensities. The luminous intensity of ultraviolet light emitting diodes devices (LEDs) whose fluorescence layer consists of fluorinated polymer and 8 was over 200 mcd (20 mA). Fluorescence compounds of this type are promising for application in next-generation white LEDs. Moreover, we proposed a novel molecular design of europium complex with asymmetric diphosphine dioxide

  15. Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles

    International Nuclear Information System (INIS)

    Karatrantos, A; Clarke, N; Composto, R J; Winey, K I

    2014-01-01

    We investigate the effect of nanoparticles on polymer structure, nanoparticle dynamics and topological constraints (entanglements) in polymer melts for nanoparticle loading above percolation threshold as high as 40.9% using stochastic molecular dynamics (MD) simulations. An increase in the number of entanglements (decrease of N e with 40.9% volume fraction of nanoparticles dispersed in the polymer matrix) in the nanocomposites is observed as evidenced by larger contour lengths of the primitive paths. Attraction between polymers and nanoparticles affects the entanglements in the nanocomposites and alters the primitive path. The diffusivity of small sized nanoparticles deviates significantly from the Stokes- Einstein relation

  16. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  17. Magnetic polymer microcapsules loaded with Nile Red fluorescent dye

    Science.gov (United States)

    Bartel, Marta; Wysocka, Barbara; Krug, Pamela; Kępińska, Daria; Kijewska, Krystyna; Blanchard, Gary J.; Kaczyńska, Katarzyna; Lubelska, Katarzyna; Wiktorska, Katarzyna; Głowala, Paulina; Wilczek, Marcin; Pisarek, Marcin; Szczytko, Jacek; Twardowski, Andrzej; Mazur, Maciej

    2018-04-01

    Fabrication of multifunctional smart vehicles for drug delivery is a fascinating challenge of multidisciplinary research at the crossroads of materials science, physics and biology. We demonstrate a prototypical microcapsule system that is capable of encapsulating hydrophobic molecules and at the same time reveals magnetic properties. The microcapsules are prepared using a templated synthesis approach where the molecules to be encapsulated (Nile Red) are present in the organic droplets that are suspended in the polymerization solution which also contains magnetic nanoparticles. The polymer (polypyrrole) grows on the surface of organic droplets encapsulating the fluorescent dye in the core of the formed microcapsule which incorporates the nanoparticles into its wall. For characterization of the resulting structures a range of complementary physicochemical methodology is used including optical and electron microscopy, magnetometry, 1H NMR and spectroscopy in the visible and X-ray spectral ranges. Moreover, the microcapsules have been examined in biological environment in in vitro and in vivo studies.

  18. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    International Nuclear Information System (INIS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-01-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  19. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Science.gov (United States)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  20. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Tong, Ruijie [Sichuan University, West China Medical Center (China); Song, Yanling [Shenyang University of Chemical Technology, College of Pharmaceutical and Biological Engineering (China); Xiong, Fang [Sichuan University, West China College of Stomatology (China); Li, Jiman [Sichuan Cancer Hospital, Pathology Department (China); Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei, E-mail: zzw2002400@126.com; Wu, Jiang, E-mail: jw@scu.edu.cn [Sichuan University, West China Medical Center (China)

    2017-04-15

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  1. Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography.

    Science.gov (United States)

    Yanagawa, Takumi; Abe, Ryosuke; Hayasaki, Yoshio

    2015-07-15

    Three-dimensional mapping of fluorescent nanoparticles was performed by using incoherent digital holography. The positions of the nanoparticles were quantitatively determined by using Gaussian fitting of the axial- and lateral-diffraction distributions through position calibration from the observation space to the sample space. It was found that the axial magnification was constant whereas the lateral magnification linearly depended on the axial position of the fluorescent nanoparticles. The mapping of multiple fluorescent nanoparticles fixed in gelatin and a single fluorescent nanoparticle manipulated with optical tweezers in water were demonstrated.

  2. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Tran, Dai Lam; Nguyen, Xuan Phuc; Le, Mai Huong; Ha Tran, Thi Hong; Hoang, Thi My Nhung; Huong Le, Thi Thu; Duong, Tuan Quang

    2012-01-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa). (paper)

  3. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  4. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Ruge, Christian A

    2017-01-01

    Lung-delivered polymer nanoparticles provoked dysfunction of the essential lung surfactant system. A steric shielding of the nanoparticle surface with poloxamers could minimize the unwanted interference of polymer nanoparticles with the biophysical function of lung surfactant. The extent of poly......(styrene) and poly(lactide) nanoparticle-induced lung surfactant inhibition could be related to the type and content of the applied poloxamer. Escalations of the adsorbed coating layer thickness (>3 nm) as well as concentration (brush- rather than mushroom-like conformation of poly(ethylene glycol), chain......-associated proteins. Poloxamer-modified polymer nanoparticles represent a promising nanomedicine platform intended for respiratory delivery revealing negligible effects on the biophysical functionality of the lining layer present in the deep lungs....

  5. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications

    Directory of Open Access Journals (Sweden)

    Thomas Hanemann

    2010-05-01

    Full Text Available The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.

  6. Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mthethwa, Thandekile; Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za

    2015-01-15

    Gold nanoparticles (spheres, rods and bipyramids) were synthesized. The nanocrystals were characterized by UV–visible spectrometry, transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The as prepared gold nanoparticles were then conjugated to a quaternized 2,(3)-tetra [2-(dimethylamino) ethanethio] substituted Al(OH) phthalocyanine (complex 1). The conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields and lifetimes. Conversely, an increase in the singlet oxygen quantum yields was observed for the conjugated complex 1 in the presence of AuNPs. - Highlights: • Gold nanoparticles (spheres, rods and bipyramids) were synthesized. • Gold nanoparticles were then conjugated to a quaternized ClAl phthalocyanine. • Conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields. • An increase in the singlet oxygen quantum yields was observed for the phthalocyanine in the presence of nanoparticles.

  7. Advances in Biomagnetic Interfacing Concepts Derived from Polymer-Magnetic Particle Complexes

    National Research Council Canada - National Science Library

    Riffle, Judy S

    2005-01-01

    Our research on the development and characterization of magnetic nanoparticle-polymer complexes for tile project period 6/1/03-12/31/04 has yielded approximately 10-nm diameter cobalt particles coated...

  8. Homogeneous dispersion of gadolinium oxide nanoparticles into a non-aqueous-based polymer by two surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Jorice, E-mail: jorice.samuel@gmail.com [AREVA T and D UK Ltd, AREVA T and D Research and Technology Centre (United Kingdom); Raccurt, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Mancini, Cedric; Dujardin, Christophe; Amans, David; Ledoux, Gilles [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France); Poncelet, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Tillement, Olivier [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France)

    2011-06-15

    Gadolinium oxide nanoparticles are more and more used. They can notably provide interesting fluorescence properties. Herein they are incorporated into a non-aqueous-based polymer, the poly(methyl methacrylate). Their dispersion within the polymer matrix is the key to improve the composite properties. As-received gadolinium oxide nanopowders cannot be homogeneously dispersed in such a polymer matrix. Two surface treatments are, therefore, detailed and compared to achieve a good stability of the nanoparticles in a non-aqueous solvent such as the 2-butanone. Then, once the liquid suspensions have been stabilized, they are used to prepare nanocomposites with homogeneous particles dispersion. The two approaches proposed are an hybrid approach based on the growth of a silica shell around the gadolinium oxide nanoparticles, and followed by a suitable silane functionalization; and a non-hybrid approach based on the use of surfactants. The surface treatments and formulations involved in both methods are detailed, adjusted and compared. Thanks to optical methods and in particular to the use of a 'home made' confocal microscope, the dispersion homogeneity within the polymer can be assessed. Both methods provide promising and conclusive results.

  9. Ratiometric fluorescent nanoparticles for sensing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-Shang, E-mail: hillphs@yahoo.com.cn; Huang, Shi-Hua [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology (China); Wolfbeis, Otto S. [University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors (Germany)

    2010-10-15

    A ratiometric type of fluorescent nanoparticle was prepared via an encapsulation-reprecipitation method. By introducing an alkoxysilanized dye as a reference, the nanoparticles (NPs) give both a green and a red fluorescence under one single-wavelength excitation. The resulted ratiometric fluorescence is found to be highly temperature-dependent in the physiological range (25-45 {sup o}C), with an intensity temperature sensitivity of -4.0%/{sup o}C. Given the small size (20-30 nm in diameter) and biocompatible nature (silica out layer), such kind of NPs were very promising as temperature nanosensors for cellular sensing and imaging.

  10. Nanoparticles of novel organotin(IV) complexes bearing phosphoric triamide ligands

    Science.gov (United States)

    Asadi, Ebadullah; Tavasolinasab, Vahid; Gholivand, Khodayar

    2013-01-01

    Summary Four novel organotin(IV) complexes containing phosphoric triamide ligands were synthesized and characterized by multinuclear (1H, 31P, 13C) NMR, infrared, ultraviolet and fluorescence spectroscopy as well as elemental analysis. The 1H NMR spectra of complexes 1–4 proved that the Sn atoms adopt octahedral configurations. The nanoparticles of the complexes were also prepared by ultrasonication, and their SEM micrographs indicated identical spherical morphologies with particles sizes about 20–25 nm. The fluorescence spectra exhibited blue shifts for the maximum wavelength of emission upon complexation. PMID:23504649

  11. Advances and challenges in the field of plasma polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrei Choukourov

    2017-09-01

    Full Text Available This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  12. Microwave heating of arginine yields highly fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Philippidis, Aggelos; Stefanakis, Dimitrios; Anglos, Demetrios; Ghanotakis, Demetrios

    2013-01-01

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  13. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Donmez, Mert [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey); Yilmaz, M. Deniz, E-mail: deniz.yilmaz@gidatarim.edu.tr [Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya 42080 (Turkey); Kilbas, Benan, E-mail: benankilbas@duzce.edu.tr [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey)

    2017-02-15

    Highlights: • The nanosensors based on gold nanoparticles functionalized with lanthanide complexes were synthesized. • The nanosensors selectively and sensitively detected DPA, a biomarker of bacterial spores. • Ratiometric sensing of DPA by a ternary complex was achieved by ligand displacement strategy. - Abstract: Gold nanoparticles (GNPs) functionalized with ethylenediamine-lanthanide complexes (Eu-GNPs and Tb-GNPs) were used for the selective fluorescent detection of dipicolinic acid (DPA), a unique biomarker of bacterial spores, in water. Particles were characterized by transmission electron microscopy and zeta potential measurements. The coordination of DPA to the lanthanides resulted in the enhancement of the fluorescence. A selective response to DPA was observed over the nonselective binding of aromatic ligands. The ligand displacement strategy were also employed for the ratiometric fluorescent detection of DPA. 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedion (TFNB) was chosen as an antenna to synthesize ternary complexes. The addition of DPA on EuGNP:TFNB ternary complex quenched the initial emission of the complex at 615 nm and increased the TFNB emission at 450 nm when excited at 350 nm. The results demonstrated that the ratiometric fluorescent detection of DPA was achieved by ligand displacement strategy.

  14. Antimicrobial Polymers with Metal Nanoparticles

    Science.gov (United States)

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  15. Polymer Nanocomposites with Prescribed Morphology: Going Beyond Nanoparticle-Filled Polymers (Preprint)

    National Research Council Canada - National Science Library

    Vaia, Richard A; Maguire, John F

    2006-01-01

    Polymer nanocomposites (PNCs), i.e., nanoparticles (spheres, rods, and plates) dispersed in a polymer matrix, have garnered substantial academic and industrial interest since their inception, ca. 1990...

  16. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    Science.gov (United States)

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  17. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    Science.gov (United States)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  18. In vivo integrity of polymer-coated gold nanoparticles

    Science.gov (United States)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  19. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  20. Understanding Molecular Interactions within Chemically Selective Layered Polymer Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gary J. Blanchard

    2009-06-30

    This work focuses on two broad issues. These are (1) the molecular origin of the chemical selectivity achieved with ultrathin polymer multilayers, and (2) how the viscoelastic properties of the polymer layers are affected by exposure to solvent and analytes. These issues are inter-related, and to understand them we need to design experiments that probe both the energetic and kinetic aspects of interfacial adsorption processes. This project focuses on controling the chemical structure, thickness, morphology and sequential ordering of polymer layers bound to interfaces using maleimide-vinyl ether and closely related alternating copolymerization chemistry and efficient covalent cross-linking reactions that allow for layer-by-layer polymer deposition. This chemistry has been developed during the funding cycle of this Grant. We have measure the equilibrium constants for interactions between specific layers within the polymer interfaces and size-controlled, surface-functionalized gold nanoparticles. The ability to control both size and functionality of gold nanoparticle model analytes allows us to evaluate the average “pore size” that characterizes our polymer films. We have measured the “bulk” viscosity and shear modulus of the ultrathin polymer films as a function of solvent overlayer identity using quartz crystal microbalance complex impedance measurements. We have measured microscopic viscosity at specific locations within the layered polymer interfaces with time-resolved fluorescence lifetime and depolarization techniques. We combine polymer, cross-linking and nanoparticle synthetic expertise with a host of characterization techniques, including QCM gravimetry and complex impedance analysis, steady state and time-resolved spectroscopies.

  1. Fluorescent determination of poly(hexamethylene guanidine) via the aggregates it forms with quantum dots and magnetic nanoparticles

    International Nuclear Information System (INIS)

    Likhachev, Konstantin V.; Beklemishev, Mikhail K.; Ovcharenko, Elena O.; Dityuk, Alexander I.; Efimov, Konstantin M.; Abramchuk, Sergei S.

    2016-01-01

    The authors report that the cationic polymer-oligomer poly(hexamethylene guanidine) (PHMG) in the form of its hydrochloride induces the formation of mixed aggregates composed of anionic magnetic nanoparticles (magNPs), PHMG and anionic quantum dots (QDs). The magNPs consisted of polymer-coated magnetite nanoparticles, and the QDs consisted of polymer-coated CdSe-CdS/ZnS nanoparticles with an emission maximum at 617 nm. This finding is exploited in a semi-quantitative method for the determination of PHMG. The protocol includes magnetic separation of the mixed aggregates (magNPs/PHMG/QDs) from the sample and excess QDs, redispersion of the aggregates in water, and measurement of fluorescence intensity. The signal is proportional to the concentration of PHMG in the 0.05 to 0.2 mg L"−"1 concentration range, with intra-day RSDs of up to 27 %. The limit of detection (LOD) of PHMG in spiked run-off waters, swimming pool water and wastewater is 23 μg L"−"1. This PHMG assay is selective in that high concentrations of surfactants and inorganic salts are tolerated. Polyethyleneimine and poly(diallyldimethylammonium chloride) also cause the formation of mixed aggregates but only at higher concentrations. Both a fluorometer and a digital camera (using a 365-nm LED as a light source) were used to measure fluorescence. In case of using a digital camera, the LOD is 40 μg L"−"1 and the intraday RSDs are up to 23 %. The method is sensitive, fairly selective and rather simple. (author)

  2. Structural Modifications and Photophysical Studies of Fluorescent Conjugated Polymers for Solid State Sensor Development

    Science.gov (United States)

    Chen, Anting

    yield for tmpda-PPpETE. The cation selectivity test in solution showed selective fluorescent quenching for iron cations. Investigation of the polymer-iron interaction showed that two binding mechanisms were involved. This is the first report of pentiptycene-derived polymer participating in a metal complex formation. By using 1,3,5-triethynylbenzene as the linker group, a network of PPETE polymer backbone loaded with tmeda receptors was designed and synthesized. This transformed the linear FCP, tmeda-PPETE into a network polymer. Two derivatives of this polymer were also successfully synthesized. The metal cation selectivity test showed similar fluorescent response as tmeda-PPETE, which revealed the potential in developing solid state sensors.

  3. CO2-switchable fluorescence of a dendritic polymer and its applications

    Science.gov (United States)

    Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun

    2015-12-01

    The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the

  4. The internalization of fluorescence-labeled PLA nanoparticles by macrophages.

    Science.gov (United States)

    Li, Fengjuan; Zhu, Aiping; Song, Xiaoli; Ji, Lijun; Wang, Juan

    2013-09-10

    Rhodamine B (RhB)-labeled PLA nanoparticles were prepared through surface grafting copolymerization of glycidyl methacrylate (GMA) onto PLA nanoparticles during the emulsion/evaporation process. RhB firstly interacts with sodium dodecyl sulfate (SDS) through electrostatic interaction to form hydrophobic complex (SDS-RhB). Due to the high-affinity of SDS-RhB with GMA, hydrophilic RhB can be successfully combined into PLA nanoparticles. The internalization of RhB-labeled PLA nanoparticles by macrophages was investigated with fluorescence microscope technology. The effects of the PLA nanoparticle surface nature and size on the internalization were investigated. The results indicate that the PLA particles smaller than 200 nm can avoid the uptake of phagocytosis. The bigger PLA particles (300 nm) with polyethylene glycol (PEG) surface showed less internalization by macrophage compared with those with poly(ethylene oxide-propylene oxide) copolymer (F127) or poly(vinyl alcohol) (PVA) surface. The "stealth" function of PEG on the PLA nanoparticles from internalization of macrophages due to the low protein adsorption is revealed by electrochemical impedance technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A novel self-catalyzed photoATRP strategy for preparation of fluorescent hydroxyapatite nanoparticles and their biological imaging

    Science.gov (United States)

    Jiang, Ruming; Liu, Meiying; Huang, Hongye; Huang, Long; Huang, Qiang; Wen, Yuanqing; Cao, Qian-yong; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen

    2018-03-01

    Hydroxyapatite (HAp), as an important biomaterial for the regeneration and reconstruction of bone tissue, has attracted more and more attention of researchers and scientists due to its unique structure and compositions. However, the preparation of fluorescent HAp with controllable morphology has achieved only limited success. In this work, we reported a novel strategy to construct the water dispersible fluorescent HAp nanorods via the combination of ligand exchange and metal-free atom transfer radical polymerization (ATRP). The Br-containing fluorescent HAp nanorods with controllable size and morphology were first prepared through hydrothermal treatment. A multifunctional organic molecule (named as PTH-Br) with aggregation-induced emission feature was immobilized on the surface of hydrophobic HAp nanorods through ligand exchange reaction. The PTH-Br could be used as the initiator and catalyst for surface-initiated metal-free ATRP using poly(ethylene glycol) methacrylate as monomer to obtain hydrophilic fluorescent HAp polymer nanoparticles. This strategy successfully endowed HAp nanorods excellent fluorescence properties and favorable water dispersibility but well preserved their regular morphology. Biological assays demonstrated that the HAp-PTH-poly(PEGMA) nanoparticles exhibited good biocompatibility and efficient cell uptake performance. Taken together, we have developed a rather facile strategy based on the surface ligand exchange reaction and metal-free photoATRP to fabricate fluorescent HAp with controllable size and morphology, high water dispersibility and biological properties. These HAp-PTH-poly(PEGMA) nanoparticles should be novel and promising candidates for biomedical applications.

  6. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes

    Science.gov (United States)

    Zhou, Yunyou; Bian, Guirong; Wang, Leyu; Dong, Ling; Wang, Lun; Kan, Jian

    2005-06-01

    This paper describes the preparation of organic nanoparticles by reprecipitation method under sonication and vigorous stirring. Transmission electron microscopy (TEM) was used to characterize the size and size distribution of the luminescent nanoparticles. Their average diameter was about 25 nm with a size variation of ±18%. The fluorescence decay lifetime of the nanoparticles also was determined on a self-equipped fluorospectrometer with laser light source. The lifetime (˜0.09 μs) of nanoparticles is about three times long as that of the monomer. The nanoparticles were in abundant of hydrophilic groups, which increased their miscibility in aqueous solution. These organic nanoparticles have high photochemical stability, excellent resistance to chemical degradation and photodegradation, and a good fluorescence quantum yield (25%). The fluorescence can be efficiently quenched by nucleic acids. Based on the fluorescence quenching of nanoparticles, a fluorescence quenching method was developed for determination of microamounts of nucleic acids by using the nanoparticles as a new fluorescent probe. Under optimal conditions, maximum fluorescence quenching is produced, with maximum excitation and emission wavelengths of 345 and 402 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.4-19.0 μg ml -1 for calf thymus DNA (ct-DNA) and 0.3-19.0 μg ml -1 for fish sperm DNA (fs-DNA). The corresponding detection limits are 0.25 μg ml -1 for ct-DNA and 0.17 μg ml -1 for fs-DNA. The relative standard deviation of six replicate measurements is 1.3-2.1%. The method is simple, rapid and sensitive with wide linear range. The recovery and relative standard deviation are very satisfactory.

  7. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    Science.gov (United States)

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  8. Fluorescent Silica Nanoparticles in the Detection and Control of the Growth of Pathogen

    International Nuclear Information System (INIS)

    Chitra, K.; Annadurai, G.

    2013-01-01

    In this present study the bio conjugated fluorescent silica nanoparticles give an efficient fluorescent-based immunoassay for the detection of pathogen. The synthesized silica nanoparticles were poly dispersed and the size of the silica nanoparticles was in the range of 114-164 nm. The energy dispersive X-ray spectrophotometer showed the presence of silica at 1.8 keV and the selected area diffractometer showed amorphous nature of silica nanoparticles. The FTIR spectrum confirmed the attachment of dye and carboxyl group onto the silica nanoparticles surface. The fluorescent silica nanoparticles showed highly efficient fluorescence and the fluorescent emission of silica nanoparticles occurred at 536 nm. The SEM image showed the aggregation of nanoparticles and bacteria. The growth of the pathogenic E. coli was controlled using silica nanoparticles; therefore silica nanoparticles could be used in food packaging material, biomedical material, and so forth. This work provides a rapid, simple, and accurate method for the detection of pathogen using fluorescent-based immunoassay.

  9. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.

    Science.gov (United States)

    Hadinoto, Kunn; Sundaresan, Ajitha; Cheow, Wean Sin

    2013-11-01

    Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticle structures comprising polymer cores and lipid/lipid-PEG shells, which exhibit complementary characteristics of both polymeric nanoparticles and liposomes, particularly in terms of their physical stability and biocompatibility. Significantly, the LPNs have recently been demonstrated to exhibit superior in vivo cellular delivery efficacy compared to that obtained from polymeric nanoparticles and liposomes. Since their inception, the LPNs have advanced significantly in terms of their preparation strategy and scope of applications. Their preparation strategy has undergone a shift from the conceptually simple two-step method, involving preformed polymeric nanoparticles and lipid vesicles, to the more principally complex, yet easier to perform, one-step method, relying on simultaneous self-assembly of the lipid and polymer, which has resulted in better products and higher production throughput. The scope of LPNs' applications has also been extended beyond single drug delivery for anticancer therapy, to include combinatorial and active targeted drug deliveries, and deliveries of genetic materials, vaccines, and diagnostic imaging agents. This review details the current state of development for the LPNs preparation and applications from which we identify future research works needed to bring the LPNs closer to its clinical realization. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Characterization of Plasmid DNA Location within Chitosan/PLGA/pDNA Nanoparticle Complexes Designed for Gene Delivery

    Directory of Open Access Journals (Sweden)

    Hali Bordelon

    2011-01-01

    Full Text Available Poly(D,L-lactide-co-glycolide- (PLGA-chitosan nanoparticles are becoming an increasingly common choice for the delivery of nucleic acids to cells for various genetic manipulation techniques. These particles are biocompatible, with tunable size and surface properties, possessing an overall positive charge that promotes complex formation with negatively charged nucleic acids. This study examines properties of the PLGA-chitosan nanoparticle/plasmid DNA complex after formation. Specifically, the study aims to determine the optimal ratio of plasmid DNA:nanoparticles for nucleic acid delivery purposes and to elucidate the location of the pDNA within these complexes. Such characterization will be necessary for the adoption of these formulations in a clinical setting. The ability of PLGA-chitosan nanoparticles to form complexes with pDNA was evaluated by using the fluorescent intercalating due OliGreen to label free plasmid DNA. By monitoring the fluorescence at different plasmid: nanoparticle ratios, the ideal plasmid:nanoparticle ration for complete complexation of plasmid was determined to be 1:50. Surface-Enhanced Raman Spectroscopy and gel digest studies suggested that even at these optimal complexation ratios, a portion of the plasmid DNA was located on the outer complex surface. This knowledge will facilitate future investigations into the functionality of the system in vitro and in vivo.

  11. Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains.

    Science.gov (United States)

    Liu, Yihua; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-11-01

    To add novel functionality to quantum dots (QDs), we synthesized water-soluble and pH-responsive block-type polymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were composed of cytocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer segments, which contain a small fraction of active ester groups and can be used to conjugate biologically active compounds to the polymer, and pH-responsive poly(2-(N,N-diethylamino) ethyl methacrylate (DEAEMA)) segments. One terminal of the polymer chain had a hydrophobic alkyl group that originated from the RAFT initiator. This hydrophobic group can bind to the hydrophobic layer on the QD surface. A fluorescent dye was conjugated to the polymer chains via the active ester group. The block-type polymers have an amphiphilic nature in aqueous medium. The polymers were thus easily bound to the QD surface upon evaporation of the solvent from a solution containing the block-type polymer and QDs, yielding QD/fluorescence dye-conjugated polymer hybrid nanoparticles. Fluorescence resonance energy transfer (FRET) between the QDs (donors) and the fluorescent dye molecules (acceptors) was used to obtain information on the conformational dynamics of the immobilized polymers. Higher FRET efficiency of the QD/fluorescent dye-conjugated polymer hybrid nanoparticles was observed at pH 7.4 as compared to pH 5.0 due to a stretching-shrinking conformational motion of the poly(DEAEMA) segments in response to changes in pH. We concluded that the block-type MPC polymer-modified nanoparticles could be used to evaluate the pH of cells via FRET fluorescence based on the cytocompatibility of the MPC polymer. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  13. Complex-mediated microwave-assisted synthesis of polyacrylonitrile nanoparticles

    Directory of Open Access Journals (Sweden)

    Trinath Biswal

    2010-10-01

    Full Text Available Trinath Biswal, Ramakanta Samal, Prafulla K SahooDepartment of Chemistry, Utkal University, Vani Vihar, Bhubaneswar 751004, IndiaAbstract: The polymerization of acrylonitrile (AN is efficiently, easily, and quickly achieved in the presence of trans-[Co(IIIen2Cl2]Cl complex in a domestic microwave (MW oven. MW irradiation notably promoted the polymerization reaction; this phenomenon is ascribed to the acceleration of the initiator, ammonium persulfate (APS, decomposition by microwave irradiation in the presence of [Co(IIIen2Cl2]Cl. The conversion of monomer to the polymer was mostly excellent in gram scale. Irradiation at low power and time produced more homogeneous polymers with high molecular weight and low polydispersity when compared with the polymer formed by a conventional heating method. The interaction of reacting components was monitored by UV-visible spectrometer. The average molecular weight was derived by gel permeation chromatography (GPC, viscosity methods, and sound velocity by ultrasonic interferometer. The uniform and reduced molecular size was characterized by transmission electron microscopy, the diameter of polyacrylonitrile nanoparticles (PAN being in the range 50–115 nm and 40–230 nm in microwave and conventional heating methods respectively. The surface morphology of PAN prepared by MW irradiation was characterized by scanning electron microscope (SEM. From the kinetic results, the rate of polymerization (Rp was expressed as Rp = [AN]0.63 [APS]0.57 [complex (I].0.88Keywords: microwave, complex catalyst, nanoparticle, kinetics

  14. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles.

    Science.gov (United States)

    Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit

    2015-11-01

    Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymerizations and main-chain supramolecular polymers . Macromolecules. 2009;42:6823–6835. 17. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond...ARL-TR-7687 ● MAY 2016 US Army Research Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by...Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by Alice M Savage Oak Ridge Institute of Science and Education

  16. Copper nanoparticles synthesized in polymers by ion implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Nuzhdin, Vladimir; Valeev, Valerij

    2015-01-01

    nanoparticles are observed to partly tower above the sample surface due to a side effect of high-fluence irradiation leading to considerable sputtering of polymers. Implantation and particle formation significantly change optical properties of both polymers reducing transmittance in the UV-visible range due...... as optical transmission spectroscopy. It is found that copper nanoparticles nucleation and growth are strongly fluence dependent as well as they are affected by the polymer properties, in particular, by radiation stability yielding different nanostructures for the implanted PI and PMMA. Shallow synthesized...

  17. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid Coated Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhenhai Gan

    2011-01-01

    Full Text Available Poly(methacrylic acid (PMAA-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid coated gelatin (FPMAAG nanoparticles had a uniform spherical shape and a size distribution of 60±5 nm. Infrared spectral analysis confirmed the formation of PMAA coating on the gelatin nanoparticles. Based on UV-Vis spectra, the loading efficiency of rhodamine B for the FPMAAG nanoparticles was 0.26 μg per mg nanoparticles. The encapsulated rhodamine B could sustain for two weeks. Favorable fluorescence property and fluorescence imaging of cells confirmed that the FPMAAG nanoparticles have promising biochemical, bioanalytical, and biomedical applications.

  18. Synthesis and photocatalytic activity of TiO2/conjugated polymer complex nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Shi Xiong Min; Fang Wang; Lei Feng; Yong Chun Tong; Zi Rong Yang

    2008-01-01

    A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ=190-800nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃>300℃>340℃>220℃>180℃.

  19. A Fluorescent Thermometer Based on a Pyrene-Labeled Thermoresponsive Polymer

    Directory of Open Access Journals (Sweden)

    Ulrich S. Schubert

    2010-08-01

    Full Text Available Thermoresponsive polymers that undergo a solubility transition by variation of the temperature are important materials for the development of ‘smart’ materials. In this contribution we exploit the solubility phase transition of poly(methoxy diethylene glycol methacrylate, which is accompanied by a transition from hydrophilic to hydrophobic, for the development of a fluorescent thermometer. To translate the polymer phase transition into a fluorescent response, the polymer was functionalized with pyrene resulting in a change of the emission based on the microenvironment. This approach led to a soluble polymeric fluorescent thermometer with a temperature range from 11 °C to 21 °C. The polymer phase transition that occurs during sensing is studied in detail by dynamic light scattering.

  20. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  1. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  2. Nanoparticles in Polymers: Assembly, Rheology and Properties

    Science.gov (United States)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  3. Graphene oxide-sensitized molecularly imprinted opto-polymers for charge-transfer fluorescent sensing of cyanoguanidine.

    Science.gov (United States)

    Liu, Huilin; Zhou, Kaiwen; Chen, Xiaomo; Wang, Jing; Wang, Shuo; Sun, Baoguo

    2017-11-15

    The hierarchical structuring of materials offers exciting opportunities to construct functional sensors. Multiple processes were combined to create complex materials for the selective detection of cyanoguanidine (CYA) using graphene oxide-sensitized molecularly imprinted opto-polymers (MIOP). Molecular imprinting was used to construct molecular-scale analyte-selective cavities, graphene oxide was introduced to provide a platform for the polymerization, and increase the stability and binding kinetic properties, and 3-methacryloxy propyl trimethoxy silane-modified quantum dots were combined with a functional monomer to increase the fluorescence quantum yield. Polymer cross-linking and fluorescence intensity were optimized for molecular recognition and opto-sensing detection. Selective and sensitive, fluorescence sensing of CYA was possible at concentrations as low as to 1.6μM. It could be applied to the rapid and cost-effective monitoring of CYA in infant formula. The approach is generic and applicable to many molecules and conventional opto-sensors, based on molecularly imprinted polymer formulations, individually or in multiplexed arrays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme.

    Science.gov (United States)

    Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin

    2015-03-01

    Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.

  5. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Chen Jian; Zeng Fang; Wu Shuizhu; Su Junhua; Zhao Jianqing; Tong Zhen

    2009-01-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu 2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu 2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu 2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu 2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu 2+ /PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu 2+ detection is 1 μM for a nanoparticle sample with a diameter of ∼30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu 2+ ion among the metal ions examined (Na + , K + , Mg 2+ , Ca 2+ , Zn 2+ , Hg 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Co 2+ and Pb 2+ ). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  6. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  7. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  8. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  9. Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors.

    Science.gov (United States)

    Wang, Haitao; Xie, Yisha; Liu, Shan; Cong, Shuang; Song, Yukun; Xu, Xianbing; Tan, Mingqian

    2017-08-30

    The presence of nanoparticles in food has drawn much attention in recent years. Fluorescent carbon nanoparticles are a new class of nanostructures; however, the distribution and physicochemical properties of such nanoparticles in food remain unclear. Herein, the presence of fluorescent carbon nanoparticles in baked lamb was confirmed, and their physicochemical properties were investigated. The fluorescent carbon nanoparticles from baked lamb emit strong blue fluorescence under ultraviolet light with a 10% fluorescent quantum yield. The nanoparticles are roughly spherical in appearance with a diameter of around 2.0 nm. Hydroxyl, amino, and carboxyl groups exist on the surface of nanoparticles. In addition, the nanoparticles could serve as a fluorescence sensor for glucose detection through an oxidation-reduction reaction. This work is the first report on fluorescent carbon nanoparticles present in baked lamb, which provides valuable insight into the physicochemical properties of such nanoparticles and their potential application in sensors.

  10. Microwave absorption properties of gold nanoparticle doped polymers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Ouattara, Lassana; Ingrosso, Chiara

    2011-01-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5GHz to 20GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property...... of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate...... that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect....

  11. Microwave absorption properties of gold nanoparticle doped polymers

    Science.gov (United States)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  12. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen

    2011-08-02

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers on silica nanoparticles (see picture). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    Science.gov (United States)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  14. Concentration Dependence of Gold Nanoparticles for Fluorescence Enhancement

    Science.gov (United States)

    Solomon, Joel; Wittmershaus, Bruce

    Noble metal nanoparticles possess a unique property known as surface plasmon resonance in which the conduction electrons oscillate due to incoming light, dramatically increasing their absorption and scattering of light. The oscillating electrons create a varying electric field that can affect nearby molecules. The fluorescence and photostability of fluorophores can be enhanced significantly when they are near plasmonic nanoparticles. This effect is called metal enhanced fluorescence (MEF). MEF from two fluorescence organic dyes, Lucifer Yellow CH and Riboflavin, was measured with different concentrations of 50-nm colloidal gold nanoparticles (Au-NP). The concentration range of Au-NP was varied from 2.5 to 250 pM. To maximize the interaction, the dyes were chosen so their emission spectra had considerable overlap with the absorption spectra of the Au-NP, which is common in MEF studies. If the dye molecules are too close to the surface of Au-NP, fluorescence quenching can occur instead of MEF. To try to observe this difference, silica-coated Au-NP were compared to citrate-based Au-NP; however, fluorescence quenching was observed with both Au-NP. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  15. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  16. Preparation of dual-responsive hybrid fluorescent nano probe based on graphene oxide and boronic acid/BODIPY-conjugated polymer for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Kang, Eun Bi [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Mazrad, Zihnil Adha Islamy [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Lee, Gibaek [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); In, Insik [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of)

    2017-02-01

    Here, we report a pH- and thermo-responsive fluorescent nanomaterial of functionalized reduced graphene oxide (rGO) with cross-linked polymer produced via catechol-boronate diol binding mechanism. When conjugated with the hydrophobic dye boron dipyrromethane (BODIPY), this material can act as a dual-responsive nanoplatform for cells imaging. 2-Chloro-3′,4′-dihydroxyacetophenone (CCDP)-quaternized-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [C-PDN] was cross-linked with BODIPY and 4-chlorophenyl boronic acid (BA)-quaternized-poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [BB-PPDN]. The GO was then reduced by the catechol group in the cross-linked polymer to synthesize rGO nanoparticles, which able to stabilize the quenching mechanism. This nanoplatform exhibits intense fluorescence at acidic pH and low fluorescence at physiological pH. Confocal laser scanning microscopy (CLSM) images shows bright fluorescence at lysosomal pH and total quench at physiological pH. Therefore, we have successfully developed a promising sensitive bio-imaging probe for identifying cancer cells. - Graphical abstract: [BB-PPDN]-[C-PDN]/rGO nanoparticles with boronic acid-catechol cis-diol binding mechanism toward change in pH demonstrated good biocompatibility and effective quenching for cancer cell detection. - Highlights: • Dual responsive (pH- and thermo) fluorescent nano probe was proposed for cells imaging. • The mechanism was based on cis-diol binding mechanism of boronic acid and catechol. • Reduced graphene oxide was used as quencher on nano-platform. • Detection was controlled dependent on pH based on diol compound of boron chemistry.

  17. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  18. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-01-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology

  19. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.

    Science.gov (United States)

    Fölling, Jonas; Polyakova, Svetlana; Belov, Vladimir; van Blaaderen, Alfons; Bossi, Mariano L; Hell, Stefan W

    2008-01-01

    We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52 % and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing light-induced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

  20. Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pekka Hänninen

    2011-11-01

    Full Text Available Besides the typical short-lived fluorescence with decay times in the nanosecond range, colloidal II/VI semiconductor nanoparticles dispersed in buffer also possess a long-lived fluorescence component with decay times in the microsecond range. Here, the signal intensity of the long-lived luminescence at microsecond range is shown to increase 1,000-fold for CdTe nanoparticles in PBS buffer. This long-lived fluorescence can be conveniently employed for time-gated fluorescence detection, which allows for improved signal-to-noise ratio and thus the use of low concentrations of nanoparticles. The detection principle is demonstrated with a time-resolved fluorescence immunoassay for the detection of C-reactive protein (CRP using CdSe-ZnS nanoparticles and green light excitation.

  1. Synthesis and fluorescence properties of some difluoroboron β-diketonate complexes and composite containing PMMA

    Science.gov (United States)

    Xing, Dongye; Hou, Yanjun; Niu, Haijun

    2018-03-01

    A series of difluoroboron β-diketonate complexes, containing the indon-β-diketonate ligand carrying methyl or methoxyl substituents was synthesized. The crystal structures of the complexes were confirmed by single crystal X-ray diffraction studies. The fluorescence properties of compounds were studied in solution state, solid state and on PMMA polymer matrix. The photophysical data of compounds 2a-2d exhibited strong fluorescence and photostability under the ultraviolet light (Hg lamp). The complex 2b showed higher fluorescence intensity in solution state as compared to other complexes of the series. The complexes 2c and 2d showed higher fluorescence intensity in the solid state, which are ascribed to the stronger π-π interactions between ligands in the solid state. The introduction of methoxyl or methyl groups on the benzene rings enhanced the absorption intensity, emission intensity, quantum yields and fluorescence lifetimes due to their electron-donating nature. Furthermore, the complex 2b was doped into the PMMA to produce hybrid materials, where the PMMA matrix acted as sensitizer for the central boron ion to enhance the fluorescence emission intensity and quantum yields.

  2. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A

    2015-09-08

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2 nanoparticles to form self-suspended suspensions facilitates detailed studies of slow global chain and fast segmental mode dynamics under surface and geometrical confinement-from experiments performed in bulk materials. We report that unentangled polymer molecules tethered to nanoparticles relax far more slowly than their tethered entangled counterparts. Specifically, at fixed grafting density we find, counterintuitively, that increasing the tethered polymer molecular weight up to values close to the entanglement molecular weight speeds up chain relaxation dynamics. Decreasing the polymer grafting density for a fixed molecular weight has the opposite effect: it dramatically slows down chain relaxation, increases interchain coupling, and leads to a transition in rheological response from simple fluid behavior to viscoelastic fluid behavior for tethered PI chains that are unentangled by conventional measures. Increasing the measurement temperature produces an even stronger elastic response and speeds up molecular relaxation at a rate that decreases with grafting density and molecular weight. These observations are discussed in terms of chain confinement driven by crowding between particles and by the existence of an entropic attractive force produced by the space-filling constraint on individual chains in a self-suspended material. Our results indicate that the entropic force between densely grafted polymer molecules couples motions of individual chains in an analogous manner to reversible cross-links in associating polymers.

  3. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  4. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  5. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    Energy Technology Data Exchange (ETDEWEB)

    Alhijry, Ibraheem A. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Faculty of Education, Department of Physics, Hajjah University, Hajjah (Yemen); Gadallah, A.-S. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Abdelkader, H.I. [Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abou Kana, Maram T.H., E-mail: mabou202@niles.edu.eg [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt)

    2016-03-15

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10{sup −9} mol/L. 40% C (1.356×10{sup −9} mol/L) Ag NPs was found to have the optimum distance with (1×10{sup −4} mol/L PM597 in liquid medium and 1×10{sup −3} mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10{sup −3} mol/L PM597] complex samples had 3.12 cm{sup −1} and 3.89 cm{sup −1} gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm{sup −1} and 3.45 cm{sup −1} gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  6. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    International Nuclear Information System (INIS)

    Alhijry, Ibraheem A.; Gadallah, A.-S.; Abdelkader, H.I.; Abou Kana, Maram T.H.

    2016-01-01

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10 −9 mol/L. 40% C (1.356×10 −9 mol/L) Ag NPs was found to have the optimum distance with (1×10 −4 mol/L PM597 in liquid medium and 1×10 −3 mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10 −3 mol/L PM597] complex samples had 3.12 cm −1 and 3.89 cm −1 gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm −1 and 3.45 cm −1 gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  7. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification

  8. Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2016-01-01

    Full Text Available Malignant spinal tumors, categorized into primary and metastatic ones, are one of the most serious diseases due to their high morbidity and mortality rates. Common primary spinal tumors include chordoma, chondrosarcoma, osteosarcoma, Ewing’s sarcoma, and multiple myeloma. Spinal malignancies are not only locally invasive and destructive to adjacent structures, such as bone, neural, and vascular structures, but also disruptive to distant organs (e.g., lung. Current treatments for spinal malignancies, including wide resection, radiotherapy, and chemotherapy, have made significant progress like improving patients’ quality of life. Among them, chemotherapy plays an important role, but its potential for clinical application is limited by severe side effects and drug resistance. To ameliorate the current situation, various polymer nanoparticles have been developed as promising excipients to facilitate the effective treatment of spinal malignancies by utilizing their potent advantages, for example, targeting, stimuli response, and synergetic effect. This review overviews the development of polymer nanoparticles for antineoplastic delivery in the treatment of spinal malignancies and discusses future prospects of polymer nanoparticle-based treatment methods.

  9. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  10. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George, E-mail: gchumak@clemson.edu

    2015-12-01

    Graphical abstract: - Highlights: • Spin-coating of polymers onto 2D assemblies of Ag NPs was used to stabilize the assemblies against aggregation. • The polymer filled the space between the particles leaving the metal surface uncoated and accessible to various chemical reactions. • Etching nanoparticles produced crater-like structures. - Abstract: Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  11. Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling

    International Nuclear Information System (INIS)

    Tan Mingqian; Wang Guilan; Ye Zhiqiang; Yuan Jingli

    2006-01-01

    Inorganic-organic hybrid titania-based nanoparticles covalently bound to a fluorescent Eu 3+ chelate of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl) chlorosulfo-o-terphenyl (BHHCT-Eu 3+ ) were synthesized by a sol-gel technique. A conjugate of BHHCT with 3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (APTS) was used as a precursor for the nanoparticle preparation and monodisperse nanoparticles consisting of titania network and silica sub-network covalently bound to the Eu 3+ chelate were prepared by the copolymerization of APTS-BHHCT conjugate, titanium tetraisopropoxide (TTIP) and free APTS in EuCl 3 water-alcohol solution. The effects of reaction conditions on size and fluorescence lifetime of the nanoparticles were investigated. The characterizations by transmission electron microscopy and fluorometric methods indicate that the nanoparticles are near spherical and strongly fluorescent having a fluorescence quantum yield of 11.6% and a long fluorescence lifetime of ∼0.4 ms. The direct-introduced amino groups on the nanoparticle's surface by using free APTS in nanoparticle preparation facilitated the biolabeling process of the nanoparticles. The nanoparticle-labeled streptavidin (SA) was prepared and used in a sandwich-type time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) by using a 96-well microtiter plate as the solid phase carrier. The method gives a detection limit of 66 pg/ml for the PSA assay

  12. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods

    DEFF Research Database (Denmark)

    Mulberg, Mads Westergaard; Taskova, Maria; Thomsen, Rasmus P.

    2017-01-01

    in the synthesis of new fluorescent nanoparticles. Here, the fluorescent nanoparticles were made by simple and inexpensive radical emulsion polymerization of butyl acrylate in the presence of fluorescent dyes and additional functionalization reagents. This provided ultra-bright macrofluorophores of 9-84nm mean...

  14. Application of aluminum phthalocyanine nanoparticles for fluorescent diagnostics in dentistry and skin autotransplantology.

    Science.gov (United States)

    Vasilchenko, Sergey Yu; Volkova, Anna I; Ryabova, Anastasiya V; Loschenov, Victor B; Konov, Vitaly I; Mamedov, Adil A; Kuzmin, Sergey G; Lukyanets, Evgeniy A

    2010-06-01

    This paper deals with the possibility of application of aluminum phthalocyanine (AlPc) nanoparticles in clinical practice. AlPc fluoresces in the molecular form but in the form of nanoparticles it does not. Separation of molecules from an AlPc nanoparticle and therefore the appearance of fluorescence occurs under the effect of a number of biochemo-physical factors. Owing to this feature the application of AlPc nanoparticles followed by the measurement of fluorescence spectra is proposed as a diagnostics method. It was shown that after AlPc nanoparticle application on a tooth surface the fluorescence intensity in the enamel microdamage area is 2-3 times higher than that in the normal enamel area. The appearance of fluorescence after application of AlPc nanoparticles on skin autografts testifies to the presence of inflammation. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: An atomistic investigation

    Science.gov (United States)

    Kumar, Sunil; Pattanayek, Sudip K.

    2018-06-01

    Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.

  16. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer

    International Nuclear Information System (INIS)

    Cohen, Sarit; Pellach, Michal; Kam, Yossi; Grinberg, Igor; Corem-Salkmon, Enav; Rubinstein, Abraham; Margel, Shlomo

    2013-01-01

    Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. - Highlights: ► Near IR human serum albumin nanoparticles were synthesized and characterized. ► Nanoparticles were shown to be physically and chemically stable and photostable. ► Tumor-targeting ligands were covalently conjugated to the nanoparticles. ► Specific colon cancer tumor detection was demonstrated in chicken-embryo and rat models.

  17. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-Gonzá lez, R.; Garcí a-Cerda, L. A.; Alshareef, Husam N.; Gnade, Bruce E.; Quevedo-Ló pez, Manuel Angel Quevedo

    2010-01-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  18. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  19. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    International Nuclear Information System (INIS)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-01-01

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources

  20. Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions

    Science.gov (United States)

    Singh, Rina; Soni, R. K.

    2014-08-01

    Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.

  1. Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2016-06-01

    Full Text Available This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of chemical crosslinking of the PVA on the fluorescence emission is studied in both cases of adding ceria nanoparticles in situ or of a post-synthesis addition via a spin-coating mechanism. Other optical and structural characteristics such as absorbance dispersion, direct bandgap, FTIR spectroscopy, and SEM analysis are presented. The synthesized optical nanocomposite could be helpful in different applications such as environmental monitoring and bioimaging.

  2. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Sarit; Pellach, Michal [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel); Kam, Yossi [Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120 (Israel); Grinberg, Igor; Corem-Salkmon, Enav [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel); Rubinstein, Abraham [Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120 (Israel); Margel, Shlomo, E-mail: shlomo.margel@mail.biu.ac.il [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2013-03-01

    Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. - Highlights: Black-Right-Pointing-Pointer Near IR human serum albumin nanoparticles were synthesized and characterized. Black-Right-Pointing-Pointer Nanoparticles were shown to be physically and chemically stable and photostable. Black-Right-Pointing-Pointer Tumor-targeting ligands were covalently conjugated to the nanoparticles. Black-Right-Pointing-Pointer Specific colon cancer tumor detection was demonstrated in chicken-embryo and rat models.

  3. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Quansheng, E-mail: q.s.chen@hotmail.com; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin

    2016-09-28

    Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF{sub 4}:Yb/Ho/Gd and NaYF{sub 4}:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF{sub 4} nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001–0.1 ng ml{sup −1} with the limit of detection (LOD) of 0.001 ng ml{sup −1}. Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. - Highlights: • Improved rare earth-doped upconversion nanoparticles were prepared with detailed optimizations. • Setup of an upconversion fluorescence spectrometer. • An advanced UCNPs-based immunosensor for dual-sensing mycotoxins was developed with a LOD of 0.001 ng ml{sup −1}. • Application of this biosensor to detect targets in real samples were confirmed with satisfied results.

  4. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications

    International Nuclear Information System (INIS)

    Sarkar, Sudipta; Guibal, E.; Quignard, F.; SenGupta, A. K.

    2012-01-01

    Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.

  5. Precise control of polymer coated nanopores by nanoparticle additives: Insights from computational modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari Nasrabad, Afshin; Coalson, Rob D. [Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Jasnow, David [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Zilman, Anton [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2016-08-14

    Polymer-nanoparticle composites are a promising new class of materials for creation of controllable nano-patterned surfaces and nanopores. We use coarse-grained molecular dynamics simulations augmented with analytical theory to study the structural transitions of surface grafted polymer layers (brushes) induced by infiltration of nanoparticles that are attracted to the polymers in the layer. We systematically compare two different polymer brush geometries: one where the polymer chains are grafted to a planar surface and the other where the chains are grafted to the inside of a cylindrical nanochannel. We perform a comprehensive study of the effects of the material parameters such as the polymer chain length, chain grafting density, nanoparticle size, strength of attraction between nanoparticles and polymer monomers, and, in the case of the cylindrically grafted brush, the radius of the cylinder. We find a very general behavioral motif for all geometries and parameter values: the height of the polymer brush is non-monotonic in the nanoparticle concentration in solution. As the nanoparticle concentration increases, the brush height first decreases and after passing through a minimum value begins to increase, resulting in the swelling of the nanoparticle infused brush. These morphological features may be useful for devising tunable “smart” nano-devices whose effective dimensions can be reversibly and precisely adjusted by changing the nanoparticle concentration in solution. The results of approximate Self-Consistent Field Theory (SCFT) calculations, applicable in the regime of strong brush stretching, are compared to the simulation results. The SCFT calculations are found to be qualitatively, even semi-quantitatively, accurate when applied within their intended regime of validity, and provide a useful and efficient tool for modeling such materials.

  6. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Cohen Sarit

    2012-08-01

    Full Text Available Abstract Background The use of near-infrared (NIR fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. Methods The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR. Tumor-targeting ligands such as peanut agglutinin (PNA, anti-carcinoembryonic antigen antibodies (anti-CEA and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72 were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Results and discussion Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. Conclusions These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA

  7. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer.

    Science.gov (United States)

    Cohen, Sarit; Margel, Shlomo

    2012-08-14

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to use them for both detection as well as therapy of colon

  8. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Swati, E-mail: swatijain.iitd@gmail.com; Chattopadhyay, Sruti, E-mail: sruticiitd@gmail.com; Jackeray, Richa; Abid, Zainul; Singh, Harpal, E-mail: harpal2000@yahoo.com [Centre for Biomedical Engineering, Indian Institute of Technology-Delhi (India)

    2016-05-15

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10{sup −19} g or 21 × 10{sup 4} bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10{sup 2} cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract.

  9. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    International Nuclear Information System (INIS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, Zainul; Singh, Harpal

    2016-01-01

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10"−"1"9 g or 21 × 10"4 bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10"2 cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract

  10. Highly Sensitive Ratiometric Fluorescent Sensor for Trinitrotoluene Based on the Inner Filter Effect between Gold Nanoparticles and Fluorescent Nanoparticles.

    Science.gov (United States)

    Lu, Hongzhi; Quan, Shuai; Xu, Shoufang

    2017-11-08

    In this work, we developed a simple and sensitive ratiometric fluorescent assay for sensing trinitrotoluene (TNT) based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent nanoparticles (RFNs), which was designed by hybridizing green emissive carbon dots (CDs) and red emissive quantum dots (QDs) into a silica sphere as a fluorophore pair. AuNPs in their dispersion state can be a powerful absorber to quench CDs, while the aggregated AuNPs can quench QDs in the IFE-based fluorescent assays as a result of complementary overlap between the absorption spectrum of AuNPs and emission spectrum of RFNs. As a result of the fact that TNT can induce the aggregation of AuNPs, with the addition of TNT, the fluorescent of QDs can be quenched, while the fluorescent of CDs would be recovered. Then, ratiometric fluorescent detection of TNT is feasible. The present IFE-based ratiometric fluorescent sensor can detect TNT ranging from 0.1 to 270 nM, with a detection limit of 0.029 nM. In addition, the developed method was successfully applied to investigate TNT in water and soil samples with satisfactory recoveries ranging from 95 to 103%, with precision below 4.5%. The simple sensing approach proposed here could improve the sensitivity of colorimetric analysis by changing the ultraviolet analysis to ratiometric fluorescent analysis and promote the development of a dual-mode detection system.

  11. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    International Nuclear Information System (INIS)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-01-01

    Terbium layered hydroxide nanoparticles (Tb_2(OH)_5NO_3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb_2(OH)_5NO_3 resulted in the preparation of two optimized nanoparticles. In particular, Tb_2(OH)_5NO_3:Eu and Tb_2(OH)_5NO_3-FA were prepared when Tb_2(OH)_5NO_3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb_2(OH)_5NO_3, could render these nanoparticles appropriate for biomedical applications.

  12. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    International Nuclear Information System (INIS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-01-01

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH_4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  13. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Debasmita [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Sengupta, Manideepa; Bordoloi, Ankur [Nano Catalysis, Catalytic Conversion and Process Division, CSIR—Indian Institute of Petroleum (IIP), Mohkampur, Dehradun 248005 (India); Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Jain, Ruchi; Gopinath, Chinnakonda S. [Catalysis Division and Center of Excellence on Surface Science, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (India); Bala, Tanushree, E-mail: tanushreebala@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2017-05-31

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH{sub 4}, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  14. Cutaneous penetration of soft nanoparticles via photodamaged skin: Lipid-based and polymer-based nanocarriers for drug delivery.

    Science.gov (United States)

    Hung, Chi-Feng; Chen, Wei-Yu; Hsu, Ching-Yun; Aljuffali, Ibrahim A; Shih, Hui-Chi; Fang, Jia-You

    2015-08-01

    Photoaging is recognized as the factor damaging skin-barrier function. The aim of this study was to examine the impact of ultraviolet (UV) irradiation on the cutaneous penetration of soft nanoparticles, including nanostructured lipid carriers (NLCs) and poly(lactic-co-glycolic acid) polymer nanoparticles (PNs). In vitro cutaneous permeation of retinoic acid (RA) carried by nanoparticles was evaluated. In vivo nude mouse skin distribution of topically applied nanoparticles was observed by fluorescence and confocal microscopies. The association of nanoparticles with cultured keratinocytes was measured by flow cytometry and fluorescence microscopy. The average diameter and surface charge were 236nm and -32mV for NLCs, and 207nm and -12mV for PNs. The ultrastructural images of skin demonstrated that the application of UV produced a loss of Odland bodies and desmosomes, the organelles regulating skin-barrier function. UVA exposure increased skin deposition of RA regardless of nanoparticle formulation. UVB did not alter RA deposition from nanoparticles as compared to the non-treated group. Exposure to UVA promoted RA delivery into hair follicles from NLCs and PNs by 4.2- and 4.9-fold, respectively. The in vivo skin distribution also showed a large accumulation of Nile red-loaded nanoparticles in follicles after UVA treatment. The soft nanoparticles were observed deep in the dermis. PNs with higher lipophilicity showed a greater association with keratinocytes compared to NLCs. The cell association of PNs was increased by UVA application, whereas the association between NLCs and keratinocytes was reduced two times by UVA. It was concluded that both follicles and intercellular spaces were the main pathways for nanoparticle diffusion into photodamaged skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends.

    Science.gov (United States)

    Grabowski, Christopher A; Koerner, Hilmar; Meth, Jeffrey S; Dang, Alei; Hui, Chin Ming; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Durstock, Michael F; Vaia, Richard A

    2014-12-10

    Demands to increase the stored energy density of electrostatic capacitors have spurred the development of materials with enhanced dielectric breakdown, improved permittivity, and reduced dielectric loss. Polymer nanocomposites (PNCs), consisting of a blend of amorphous polymer and dielectric nanofillers, have been studied intensely to satisfy these goals; however, nanoparticle aggregates, field localization due to dielectric mismatch between particle and matrix, and the poorly understood role of interface compatibilization have challenged progress. To expand the understanding of the inter-relation between these factors and, thus, enable rational optimization of low and high contrast PNC dielectrics, we compare the dielectric performance of matrix-free hairy nanoparticle assemblies (aHNPs) to blended PNCs in the regime of low dielectric contrast to establish how morphology and interface impact energy storage and breakdown across different polymer matrices (polystyrene, PS, and poly(methyl methacrylate), PMMA) and nanoparticle loadings (0-50% (v/v) silica). The findings indicate that the route (aHNP versus blending) to well-dispersed morphology has, at most, a minor impact on breakdown strength trends with nanoparticle volume fraction; the only exception being at intermediate loadings of silica in PMMA (15% (v/v)). Conversely, aHNPs show substantial improvements in reducing dielectric loss and maintaining charge/discharge efficiency. For example, low-frequency dielectric loss (1 Hz-1 kHz) of PS and PMMA aHNP films was essentially unchanged up to a silica content of 50% (v/v), whereas traditional blends showed a monotonically increasing loss with silica loading. Similar benefits are seen via high-field polarization loop measurements where energy storage for ∼15% (v/v) silica loaded PMMA and PS aHNPs were 50% and 200% greater than respective comparable PNC blends. Overall, these findings on low dielectric contrast PNCs clearly point to the performance benefits of

  16. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    Science.gov (United States)

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fluorescent polymer-based post-translational differentiation and subtyping of breast cancer cells.

    Science.gov (United States)

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Wagh, Anil; Gustad, Thomas R; Law, Benedict; Friesner, Daniel L; Mallik, Sanku

    2012-12-07

    Herein, we report the application of synthesized fluorescent, water soluble polymers for post-translational subtyping and differentiation of breast cancer cells in vitro. The fluorescence emission spectra from these polymers were modulated differently in the presence of conditioned cell culture media from various breast cancer cells. These polymers differentiate at a post-translation level possibly due to their ability to interact with extracellular enzymes that are over-expressed in cancerous conditions.

  18. Cross-Linked Fluorescent Supramolecular Nanoparticles as Finite Tattoo Pigments with Controllable Intradermal Retention Times.

    Science.gov (United States)

    Choi, Jin-Sil; Zhu, Yazhen; Li, Hongsheng; Peyda, Parham; Nguyen, Thuy Tien; Shen, Mo Yuan; Yang, Yang Michael; Zhu, Jingyi; Liu, Mei; Lee, Mandy M; Sun, Shih-Sheng; Yang, Yang; Yu, Hsiao-Hua; Chen, Kai; Chuang, Gary S; Tseng, Hsian-Rong

    2017-01-24

    Tattooing has been utilized by the medical community for precisely demarcating anatomic landmarks. This practice is especially important for identifying biopsy sites of nonmelanoma skin cancer (NMSC) due to the long interval (i.e., up to 3 months) between the initial diagnostic biopsy and surgical treatment. Commercially available tattoo pigments possess several issues, which include causing poor cosmesis, being mistaken for a melanocytic lesion, requiring additional removal procedures when no longer desired, and potentially inducing inflammatory responses. The ideal tattoo pigment for labeling of skin biopsy sites for NMSC requires (i) invisibility under ambient light, (ii) fluorescence under a selective light source, (iii) a finite intradermal retention time (ca. 3 months), and (iv) biocompatibility. Herein, we introduce cross-linked fluorescent supramolecular nanoparticles (c-FSNPs) as a "finite tattoo" pigment, with optimized photophysical properties and intradermal retention time to achieve successful in vivo finite tattooing. Fluorescent supramolecular nanoparticles encapsulate a fluorescent conjugated polymer, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (MPS-PPV), into a core via a supramolecular synthetic approach. FSNPs which possess fluorescent properties superior to those of the free MPS-PPV are obtained through a combinatorial screening process. Covalent cross-linking of FSNPs results in micrometer-sized c-FSNPs, which exhibit a size-dependent intradermal retention. The 1456 nm sized c-FSNPs display an ideal intradermal retention time (ca. 3 months) for NMSC lesion labeling, as observed in an in vivo tattoo study. In addition, the c-FSNPs induce undetectable inflammatory responses after tattooing. We believe that the c-FSNPs can serve as a "finite tattoo" pigment to label potential malignant NMSC lesions.

  19. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  20. Polymer filters for ultraviolet-excited integrated fluorescence sensing

    International Nuclear Information System (INIS)

    Dandin, Marc; Abshire, Pamela; Smela, Elisabeth

    2012-01-01

    Optical filters for blocking ultraviolet (UV) light were fabricated by doping various polymer hosts with a UV absorbing chromophore. The polymers were polydimethylsiloxane (PDMS), a silicone elastomer frequently used in microfluidics, SU-8, a photopatternable epoxy, and Humiseal 1B66, an acrylic coating used for moisture protection of integrated circuits. The chromophore was 2-(2′-hydroxy-5′-methylphenyl) benzotriazole (BTA), which has a high extinction coefficient between 300 nm and 400 nm. We demonstrate filters 5 µm thick that exhibit high ultraviolet rejection (nearly −40 dB at 342 nm) yet pass visible light (near 0 dB above 400 nm), making them ideal for ultraviolet-excited fluorescence sensing within microsystems. The absorbance of the BTA depended on the host polymer. These filters are promising for integrated fluorescence spectroscopy in bioanalytical platforms because they can be patterned by dry etching, molding or exposure to ultraviolet light. (paper)

  1. Conjugated polymer dots for ultra-stable full-color fluorescence patterning.

    Science.gov (United States)

    Chang, Kaiwen; Liu, Zhihe; Chen, Haobin; Sheng, Lan; Zhang, Sean Xiao-An; Chiu, Daniel T; Yin, Shengyan; Wu, Changfeng; Qin, Weiping

    2014-11-12

    Stable full-color fluorescence patterning are achieved by multicolor polymer-dot inks. The fluorescent patterns show extraordinary stability upon various treatments, offering a superior combination of bright fluorescence, excellent photostability, chemical resistance, and eco-friendship. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen; Chopra, Madhur; Archer, Lynden A.

    2011-01-01

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers

  3. Nanoparticle-based, organic receptor coupled fluorescent chemosensors for the determination of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navneet, E-mail: navneetkaur@pu.ac.in [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Kaur, Simanpreet; Kaur, Amanpreet [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Saluja, Preeti; Sharma, Hemant [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Saini, Anu; Dhariwal, Nisha [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Singh, Ajnesh; Singh, Narinder [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India)

    2014-01-15

    The sensors have been developed using silver nanoparticles coated with organic ligands and are fully characterized with spectroscopic methods. The energy-dispersive X-ray (EDX) analysis revealed the presence of organic receptors on the surface of metal nanoparticles. These chemosensors were tested against a range of biological and environmentally relevant cations in the HEPES buffered DMSO/H{sub 2}O (8:2, v/v) solvent system. The fluorescence intensity of these chemosensors was quenched upon coordination with open shell metal ions such as Cu{sup 2+}/Fe{sup 3+}. Anion recognition properties of the corresponding metal complexes have been studied and the original fluorescence intensity of sensors was restored upon addition of phosphate (0–20 µM). Thus, a highly selective chemosensor has been devised for the micromolar estimation of phosphate in semi-aqueous medium. -- Highlights: • The silver nanoparticles have been decorated with organic receptors for chemosensor applications. • The sensor properties are developed for the estimation of phosphate anion. • Thus the sensor relies on the cation displacement assay. • The phosphate sensing event displays the “ON–OFF–ON” mode of switching in sensor.

  4. Seeing the electroporative uptake of cell-membrane impermeable fluorescent molecules and nanoparticles

    Science.gov (United States)

    Kim, Kisoo; Kim, Jeong Ah; Lee, Soon-Geul; Lee, Won Gu

    2012-07-01

    This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities that occurred at cell membranes in both uptake directions toward the electrodes have been sequentially recorded and quantitatively analyzed pixel by pixel. In our experiments, we found that fluorescent molecules, even not labeled to target biomolecules, had their own uptake direction with different intensities. It is also observed that the uptake intensity toward the cell membrane had a maximal value at a certain electric voltage, not at the highest value of voltages applied. The results also imply that the uptake direction of fluorescence-doped nanoparticles can be determined by a net surface charge of uptake materials and sizes in the electroporative environments. In summary, we performed a quantitative screening and direct visualization of uptake directionality for a set of fluorescent molecules and fluorescence-doped nanoparticles using electric-pulsation. Taking a closer look at the uptake direction of exogenous materials will help researchers to understand an unknown uptake phenomenon in which way foreign materials are inclined to move, and furthermore to design functional nanoparticles for electroporative gene delivery.This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities

  5. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  6. Fate of nanoparticles during life cycle of polymer nanocomposites

    International Nuclear Information System (INIS)

    Nguyen, T; Pellegrin, B; Bernard, C; Gu, X; Gorham, J M; Stutzman, P; Stanley, D; Shapiro, A; Byrd, E; Hettenhouser, R; Chin, J

    2011-01-01

    Nanoparticles are increasingly used in consumer and structural polymeric products to enhance a variety of properties. Under the influence of environmental factors (e.g., ultraviolet, moisture, temperature) and mechanical actions (e.g., scratching, vibrations, abrasion), nanoparticles could potentially release from the products and thus have negative effects on the environment, health and safety. The fate of nanoparticles in polymer nanocomposites during their exposure to UV environment has been investigated. Epoxy polymer containing multi-walled carbon nanotubes (MWCNTs) and silica nanoparticles were studied. Specially-designed cells containing nanocomposite specimens were irradiated with UV radiation between 295 nm and 400 nm. Chemical degradation, mass loss and surface morphology of the epoxy nanocomposites, and release of nanoparticles were measured. Epoxy containing MWCNTs exposed to UV radiation degraded at a much slower rate than the unfilled epoxy or the epoxy/nanosilica composite. Photodegradation of the matrix resulted in substantial accumulation of nanoparticles on the composite surfaces. Silica nanoparticles were found to release into the environment, but MWCNTs formed a dense network on the composite surface, with no evidence of release even after prolonged exposure. Conceptual models for silica nanoparticle release and MWCNT retention on the surface during UV exposure of nanocomposites are presented.

  7. Synthesis of Nanometer-Sized Poly (methyl methacrylate) Polymer Network by Gold Nanoparticle Template

    Science.gov (United States)

    Liu, Fu-Ken; Hsieh, Shang-Yu; Ko, Fu-Hsiang; Chu, Tieh-Chi; Dai, Bau-Tong

    2003-06-01

    Gold nanoparticle/polymer composites have been produced using a one-system polymer synthesis. The linear polymer, poly (methyl methacrylate) (PMMA, MW = 15,000 g/mol) is applied for the stabilization of gold nanoparticles. The Fourier transfer infrared (FT-IR) analysis data and transition electron microscopy (TEM) image reveal that the core shell structure of gold/PMMA nanocomposite has been synthesized. The ratio of the concentration of the capping polymer material to the concentration of the gold precursor could control the sizes of gold nanoparticles. With specific concentration of the reductant, the core-shell nanostructure could be fluctuated in order. After heating treatment, the network structure of PMMA capped gold nanoparticles could be synthesized as confirmed by the TEM image. The result indicates that PMMA not only acts as the stabilizer, but also as the bridge of the neighboring gold nanoparticles.

  8. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system

    Directory of Open Access Journals (Sweden)

    Vivek Dave

    2017-12-01

    Full Text Available Poly lactic acid is a biodegradable, biocompatible, and non-toxic polymer, widely used in many pharmaceutical preparations such as controlled release formulations, parenteral preparations, surgical treatment applications, and tissue engineering. In this study, we prepared lipid-polymer hybrid nanoparticles for topical and site targeting delivery of Norfloxacin by emulsification solvent evaporation method (ESE. The design of experiment (DOE was done by using software to optimize the result, and then a surface plot was generated to compare with the practical results. The surface morphology, particle size, zeta potential and composition of the lipid-polymer hybrid nanoparticles were characterized by SEM, TEM, AFM, and FTIR. The thermal behavior of the lipid-polymer hybrid nanoparticles was characterized by DSC and TGA. The prepared lipid-polymer hybrid nanoparticles of Norfloxacin exhibited an average particle size from 178.6 ± 3.7 nm to 220.8 ± 2.3 nm, and showed very narrow distribution with polydispersity index ranging from 0.206 ± 0.36 to 0.383 ± 0.66. The surface charge on the lipid-polymer hybrid nanoparticles were confirmed by zeta potential, showed the value from +23.4 ± 1.5 mV to +41.5 ± 3.4 mV. An Antimicrobial study was done against Staphylococcus aureus and Pseudomonas aeruginosa, and the lipid-polymer hybrid nanoparticles showed potential activity against these two. Lipid-polymer hybrid nanoparticles of Norfloxacin showed the %cumulative drug release of 89.72% in 24 h. A stability study of the optimized formulation showed the suitable condition for the storage of lipid-polymer hybrid nanoparticles was at 4 ± 2 °C/60 ± 5% RH. These results illustrated high potential of lipid-polymer hybrid nanoparticles Norfloxacin for usage as a topical antibiotic drug carriers.

  9. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  10. Facile method for CLSM imaging unfunctionalized Au nanoparticles through fluorescent channels

    International Nuclear Information System (INIS)

    Yuan Lan; Wei Wei; Li Juan; Sun, Zhiwei; Wang Hongfang; Zhang Xiuzhi; Chen Yueyue

    2009-01-01

    The microscopic visualization of metal nanoparticles has become a useful tool for the investigation of their applications in cell labeling and the study of their bio-effects. In the current study, we have developed a facile method with confocal laser scanning microscope (CLSM) to observe unfunctionalized Au nanoparticles through fluorescent channels. The sharp reflected signal and photostable property of the metal nanoparticles makes the present method very ideal for fluorescent co-localization, real-time imaging, and further quantitative analysis.

  11. Fluorescence Decay Dynamics of Ethidium Bromide in Polymers

    International Nuclear Information System (INIS)

    Jee, Ah Young; Min Yung

    2010-01-01

    The fluorescence lifetimes of EB in five polymers covering LDPE, HDPE, PC, PS, and PAA were measured by picosecond time-correlated single photon counting. The lifetime change of EB has been previously described by hydrogen bonding ability. In this work, we have observed that the lifetime of EB depends strongly on the Young's modulus of medium. Thus, it is possible that the fluorescence decay dynamics of EB could be influenced by medium rigidity rather than hydrogen bonding ability in polymer. The medium influence on the fluorescence decay dynamics of ethidium bromide (EB) has been investigated in various environments. For example, Ohmstead and Kearns related the fluorescence lifetime of EB to the excited-state proton transfer process. In addition, they reported that the solvent viscosity plays a minor role in the excited state decay process of EB. Chirico et al. measured the fluorescence decay of EB as 1.7 ns in water and 6.5 ns in ethanol and concluded that hydrogen bonding ability is a key factor for the nonradiative relaxation. Pal et al. measured the fluorescence decay time of EB in acetone, acetonitrile, and their mixtures. They observed that the fluorescence decay processes were independent on the solvent polarity. These results show that the EB lifetime does not depend much on polarity or viscosity, but is mainly influenced by hydrogen bonding. Overall, EB is one of most widely used dyes for probing DNA. When EB is intercalated into the helical structure of DNA, a large increase in the fluorescence lifetime has been observed in comparison with water environment, and the fluorescence enhancement was attributed to the blocking of the excited-state proton transfer

  12. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    Science.gov (United States)

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.

    2013-03-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  14. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.; Koerner, Hilmar; Giannelis, Emmanuel P.; Vaia, Richard A.

    2013-01-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  15. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@uoc.gr [University of Crete, Department of Chemistry (Greece)

    2016-07-15

    Terbium layered hydroxide nanoparticles (Tb{sub 2}(OH){sub 5}NO{sub 3}) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb{sub 2}(OH){sub 5}NO{sub 3} resulted in the preparation of two optimized nanoparticles. In particular, Tb{sub 2}(OH){sub 5}NO{sub 3}:Eu and Tb{sub 2}(OH){sub 5}NO{sub 3}-FA were prepared when Tb{sub 2}(OH){sub 5}NO{sub 3} was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb{sub 2}(OH){sub 5}NO{sub 3}, could render these nanoparticles appropriate for biomedical applications.

  16. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    Science.gov (United States)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  17. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects

    NARCIS (Netherlands)

    Dulkeith, E.; Morteani, A.C.; Niedereichholz, T.; Klar, T.A.; Feldman, J.; Levi, S.; van Veggel, F.C.J.M.; Reinhoudt, David; Möller, M.; Gittins, D.I.

    2002-01-01

    The radiative and nonradiative decay rates of lissamine dye molecules, chemically attached to differently sized gold nanoparticles, are investigated by means of time-resolved fluorescence experiments. A pronounced fluorescence quenching is observed already for the smallest nanoparticles of 1  nm

  18. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-03-01

    Full Text Available Linhua Zhang,1 Dunwan Zhu,1 Xia Dong,1 Hongfan Sun,1 Cunxian Song,1 Chun Wang,2 Deling Kong1 1Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China; 2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA Abstract: The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA modified lipid-shell and polymer-core nanoparticles (FLPNPs for sustained, controlled, and targeted delivery of paclitaxel (PTX. The core-shell NPs consist of 1 a poly(ε-caprolactone hydrophobic core based on self-assembly of poly(ε-caprolactone–poly(ethylene glycol–poly(ε-caprolactone (PCL-PEG-PCL amphiphilic copolymers, 2 a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000] (DSPE-PEG2000, 3 a targeting ligand (FA on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation. In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More

  19. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  20. Optical imaging of non-fluorescent nanoparticle probes in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Stender, Anthony S.; Sun, Wei; and Fang, Ning

    2009-12-17

    Precise imaging of cellular and subcellular structures and dynamic processes in live cells is crucial for fundamental research in life sciences and in medical applications. Non-fluorescent nanoparticles are an important type of optical probe used in live-cell imaging due to their photostability, large optical cross-sections, and low toxicity. Here, we provide an overview of recent developments in the optical imaging of non-fluorescent nanoparticle probes in live cells.

  1. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

    Science.gov (United States)

    Zhu, Ming; Huang, Xingyi; Yang, Ke; Zhai, Xing; Zhang, Jun; He, Jinliang; Jiang, Pingkai

    2014-11-26

    The interfacial region plays a critical role in determining the electrical properties and energy storage density of dielectric polymer nanocomposites. However, we still know a little about the effects of electrical properties of the interfacial regions on the electrical properties and energy storage of dielectric polymer nanocomposites. In this work, three types of core-shell structured polymer@BaTiO3 nanoparticles with polymer shells having different electrical properties were used as fillers to prepare ferroelectric polymer nanocomposites. All the polymer@BaTiO3 nanoparticles were prepared by surface-initiated reversible-addition-fragmentation chain transfer (RAFT) polymerization, and the polymer shells were controlled to have the same thickness. The morphology, crystal structure, frequency-dependent dielectric properties, breakdown strength, leakage currents, energy storage capability, and energy storage efficiency of the polymer nanocomposites were investigated. On the other hand, the pure polymers having the same molecular structure as the shells of polymer@BaTiO3 nanoparticles were also prepared by RAFT polymerization, and their electrical properties were provided. Our results show that, to achieve nanocomposites with high discharged energy density, the core-shell nanoparticle filler should simultaneously have high dielectric constant and low electrical conductivity. On the other hand, the breakdown strength of the polymer@BaTiO3-based nanocomposites is highly affected by the electrical properties of the polymer shells. It is believed that the electrical conductivity of the polymer shells should be as low as possible to achieve nanocomposites with high breakdown strength.

  2. Application of Nanoparticle Technology to Reduce the Anti-Microbial Resistance through β-Lactam Antibiotic-Polymer Inclusion Nano-Complex.

    Science.gov (United States)

    Salamanca, Constain H; Yarce, Cristhian J; Roman, Yony; Davalos, Andrés F; Rivera, Gustavo R

    2018-02-10

    Biocompatible polymeric materials with potential to form functional structures in association with different therapeutic molecules have a high potential for biological, medical and pharmaceutical applications. Therefore, the capability of the inclusion of nano-Complex formed between the sodium salt of poly(maleic acid- alt -octadecene) and a β-lactam drug (ampicillin trihydrate) to avoid the chemical and enzymatic degradation and enhance the biological activity were evaluated. PAM-18Na was produced and characterized, as reported previously. The formation of polymeric hydrophobic aggregates in aqueous solution was determined, using pyrene as a fluorescent probe. Furthermore, the formation of polymer-drug nano-complexes was characterized by Differential Scanning Calorimetry-DSC, viscometric, ultrafiltration/centrifugation assays, zeta potential and size measurements were determined by dynamic light scattering-DLS. The PAM-18Na capacity to avoid the chemical degradation was studied through stress stability tests. The enzymatic degradation was evaluated from a pure β-lactamase, while the biological degradation was determined by different β-lactamase producing Staphylococcus aureus strains. When ampicillin was associated with PAM-18Na, the half-life time in acidic conditions increased, whereas both the enzymatic degradation and the minimum inhibitory concentration decreased to a 90 and 75%, respectively. These results suggest a promissory capability of this polymer to protect the β-lactam drugs against chemical, enzymatic and biological degradation.

  3. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M.; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2014-01-01

    Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches

  4. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation.

    Science.gov (United States)

    Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina

    2014-07-01

    Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T; Costa-Fernandez, Jose M; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2014-08-11

    Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches. Copyright © 2014. Published by Elsevier B.V.

  6. Self-assembled fluorescent organic nanoparticles for live cell imaging

    NARCIS (Netherlands)

    Fischer, I.; Petkau, K.; Dorland, Y.L.; Schenning, A.P.H.J.; Brunsveld, L.

    2013-01-01

    Fluorescent, cell-permeable, organic nanoparticles based on self-assembled p-conjugated oligomers with high absorption cross-sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge-mediated cellular uptake by a

  7. Poly-β-hydroxybutyrate sensitizing effect on the photophysical properties of environment friendly fluorescent films containing europium complex

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chaolong, E-mail: yclzjun@163.com [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Zhang, Pan; Zhou, Hualin [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Xu, Jing [Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Azaaoba 6-3, Aoba-ku, Sendai (Japan); Li, Youbing [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Lu, Mangeng [Key Laboratory of Polymer Materials for Electronics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China); Lei, Lei; Zhang, Qiang; Zhang, Yi; Chen, Shaopeng [School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2016-10-15

    A series of environment friendly Eu/PHB fluorescent films through doped the Eu-complex precursor Eu(TTA){sub 2}(Tpy-OCH{sub 3})(2H{sub 2}O) into polymer matrices poly-β-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, and 7 (mass) were designed, fabricated and characterized. TGA and PL results indicated the Eu-complex precursor was immobilized in PHB matrix through the interaction between the Eu-complex. DSC results indicated the crystallinity of Eu/PHB films decreased with the increase of Eu-complex doping percentage. The emission spectra of the Eu-complex and Eu/PHB films recorded at room temperature exhibited the characteristic bands arising from the {sup 5}D{sub 0}/{sup 7}F{sub J}. The fact that the quantum efficiencies (η) of the doped film increased significantly revealed that the PHB matrix acts as an efficient co-sensitizer for Eu{sup 3+} ions luminescent center and therefore enhances the quantum efficiency of the emitter {sup 5}D{sub 0} level. In particular, all Eu/PHB films can be excited by visible light (410 nm), and also showed good photoluminescent properties. So the new Eu/PHB fluorescent films showed considerable promise for polymer light-emitting diode, active polymer optical fiber and biomedical analysis applications.

  8. Poly-β-hydroxybutyrate sensitizing effect on the photophysical properties of environment friendly fluorescent films containing europium complex

    International Nuclear Information System (INIS)

    Yang, Chaolong; Zhang, Pan; Zhou, Hualin; Xu, Jing; Li, Youbing; Lu, Mangeng; Lei, Lei; Zhang, Qiang; Zhang, Yi; Chen, Shaopeng

    2016-01-01

    A series of environment friendly Eu/PHB fluorescent films through doped the Eu-complex precursor Eu(TTA) 2 (Tpy-OCH 3 )(2H 2 O) into polymer matrices poly-β-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, and 7 (mass) were designed, fabricated and characterized. TGA and PL results indicated the Eu-complex precursor was immobilized in PHB matrix through the interaction between the Eu-complex. DSC results indicated the crystallinity of Eu/PHB films decreased with the increase of Eu-complex doping percentage. The emission spectra of the Eu-complex and Eu/PHB films recorded at room temperature exhibited the characteristic bands arising from the 5 D 0 / 7 F J . The fact that the quantum efficiencies (η) of the doped film increased significantly revealed that the PHB matrix acts as an efficient co-sensitizer for Eu 3+ ions luminescent center and therefore enhances the quantum efficiency of the emitter 5 D 0 level. In particular, all Eu/PHB films can be excited by visible light (410 nm), and also showed good photoluminescent properties. So the new Eu/PHB fluorescent films showed considerable promise for polymer light-emitting diode, active polymer optical fiber and biomedical analysis applications.

  9. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  10. Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions.

    Science.gov (United States)

    Chandran, Sivasurender; Saw, Shibu; Kandar, A K; Dasgupta, C; Sprung, M; Basu, J K

    2015-08-28

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP:PS size ratios, ξ = 0.14 and 2.76 (where, ξ = Mg/Mm, Mg and Mm being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with ξ = 0.14 could be modeled reasonably well, while the structure of blends with ξ = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with ξ = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with ξ = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to

  11. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  12. Current directions in core-shell nanoparticle design

    Science.gov (United States)

    Schärtl, Wolfgang

    2010-06-01

    Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems.Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems

  13. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application

    International Nuclear Information System (INIS)

    Girija Aswathy, Ravindran; Sivakumar, Balasubramanian; Brahatheeswaran, Dhandayudhapani; Fukuda, Takahiro; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D

    2012-01-01

    We report the synthesis of 5-fluorouracil (5-FU) loaded biocompatible fluorescent zein nanoparticles. Zein is the storage protein in corn kernels that has a variety of unique characteristics and functionalities that makes zein valuable in various commercial applications. It is classified as generally recognized as safe (GRAS) by the Food and Drug Administration (FDA). We synthesized zein nanoparticles of around 800 nm in size and conjugated with quantum dot ZnS:Mn. The nanoparticle was in turn encapsulated with the drug 5-FU. The luminescent properties of these nanoparticles were studied by using fluorescence microscopy. The nanoparticles were characterized and the drug release profile was studied. The biocompatibility of zein nanoparticle and the cytotoxicity with drug-loaded nanoparticle was studied in L929 and MCF-7 cell lines. The nanoparticles were successfully employed for cellular imaging. In vitro drug release studies were also performed. The biocompatibility of the nanoparticle showed that nanoparticles at higher concentrations are compatible for cells and are expected to be promising agents for the targeted delivery of drugs in the near future

  14. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges.

    Science.gov (United States)

    Boyle, N J; Evans, G M

    2013-01-01

    The effect of using small-scale, high surface area, nanoparticles to supplement polymer-conditioned wastewater sludge dewatering was investigated. Aerobically digested sludge and waste activated sludge sourced from the Hunter Valley, NSW, Australia, were tested with titanium dioxide nanoparticles. The sludge samples were dosed with the nanoparticles in an attempt to adsorb a component of the charged biopolymer surfactants present naturally in sludge. The sludge was conditioned with a cationic polymer. The dewatering characteristics were assessed by measuring the specific resistance to filtration through a modified time-to-filter testing apparatus. The solids content of the dosed samples was determined by a mass balance and compared to the original solids content in the activated sludge. Test results indicated that nanoparticle addition modified the structure of the sludge and provided benefits in terms of the dewatering rate. The samples dosed with nanoparticles exhibited faster water removal, indicating a more permeable filter cake and hence more permeable sludge. A concentration of 2-4% nanoparticles was required to achieve a noticeable benefit. As a comparison, the sludge samples were also tested with a larger particle size, powdered activated carbon (PAC). It was found that the PAC did provide some minor benefits to sludge dewatering but was outperformed by the nanoparticles. The solids content of the final sludge was increased by a maximum of up to 0.6%. The impact of the order sequence of particles and polymer was also investigated. It was found that nanoparticles added before polymer addition provided the best dewatering performance. This outcome was consistent with current theories and previous research through the literature. An economic analysis was undertaken to confirm the viability of the technology for implementation at a full-scale plant. It was found that, currently, this technology is unlikely to be favourable unless the nanoparticles can be

  15. Dry powder inhaler formulation of lipid-polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles.

    Science.gov (United States)

    Yang, Yue; Cheow, Wean Sin; Hadinoto, Kunn

    2012-09-15

    Lipid-polymer hybrid nanoparticles have emerged as promising nanoscale carriers of therapeutics as they combine the attractive characteristics of liposomes and polymers. Herein we develop dry powder inhaler (DPI) formulation of hybrid nanoparticles composed of poly(lactic-co-glycolic acid) and soybean lecithin as the polymer and lipid constituents, respectively. The hybrid nanoparticles are transformed into inhalable microscale nanocomposite structures by a novel technique based on electrostatically-driven adsorption of nanoparticles onto polysaccharide carrier particles, which eliminates the drawbacks of conventional techniques based on controlled drying (e.g. nanoparticle-specific formulation, low yield). First, we engineer polysaccharide carrier particles made up of chitosan cross-linked with tripolyphosphate and dextran sulphate to exhibit the desired aerosolization characteristics and physical robustness. Second, we investigate the effects of nanoparticle to carrier mass ratio and salt inclusion on the adsorption efficiency, in terms of the nanoparticle loading and yield, from which the optimal formulation is determined. Desorption of the nanoparticles from the carrier particles in phosphate buffer saline is also examined. Lastly, we characterize aerosolization efficiency of the nanocomposite product in vitro, where the emitted dose and respirable fraction are found to be comparable to the values of conventional DPI formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Hybrid white organic light-emitting diodes combining blue-fluorescent polymer and red phosphorescent Pt(II) complexes as active layer

    Energy Technology Data Exchange (ETDEWEB)

    Germino, Jose Carlos; Faleiros, Marcelo Meira; Moraes, Emmanuel Santos; Atvars, Teresa Dib Zambon, E-mail: kakagermino@hotmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Domingues, Raquel Aparecida [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Quites, Fernando Junior [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil); Freitas, Jilian Nei de [Centro de Tecnologia da Informacao Renato Archer, Campinas, SP (Brazil)

    2016-07-01

    Full text: In this work we proposed a PFO composite with two salicylidene based Pt(II) coordination compounds, the [Pt(salophen)] and [Pt(sal-3,4-ben)] (red emitters), as emissive layer (EML) for Organic Light-emitting Diodes (OLEDs), combining a blue-fluorescent polymer (PFO) with red-phosphorescent Pt(II) coordination complexes in order to obtain an efficient white electroluminescent EML for WOLEDs application. Firstly, [Pt(salophen)] and [Pt(sal-3,4-ben)] were synthesized, purified and characterized by single crystal X-ray diffraction, yielding their respective expected molecular structures. The photoluminescence properties of the devices were evaluated by steady-state (electronic absorption and emission spectroscopies) and transient (fluorescence decays and TRES) measurements. It was observed the presence of non-radiative energy transfer processes between the PFO derivative and Pt(II) complexes. Posteriorly, the Pt(II) complexes were blended with PVK at 1% mol:mol ratio and OLEDs were made, leading to red-emitting devices with high color purity for the two coordination compounds. However, the two devices present low current efficiency values. In order to improve the electroluminescence properties of Pt(II) complexes PhOLEDs, PVK host was substituted by PFO at 0.5, 1.0 and 2.5% mol:mol ratios of complex and it was observed a great improvement of their optical-electronic properties in terms of luminance, voltage, current density and current efficiency in comparison to PVK composites or pure PFO devices. At 2.5% concentration, predominant bands of Pt(II) complexes were observed at low and high voltages. For the other concentrations, a different behavior was observed: the emission bands and device color were function of applied electrical field, exhibiting a red color at lower voltages (5 to 9V) and the PFO characteristic emission between 9 and 13V, leading to a white light emission at 13V. The best results were obtained for [Pt(sal-3,4-ben)] coordination compound

  17. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    Science.gov (United States)

    He, Rong; You, Xiaogang; Shao, Jun; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2007-08-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g-1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays.

  18. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    International Nuclear Information System (INIS)

    He Rong; You Xiaogang; Shao Jun; Gao Feng; Pan Bifeng; Cui Daxiang

    2007-01-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g -1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays

  19. Effect of Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    Science.gov (United States)

    Petrie, J. D.; Fredrickson, G. H.; Kramer, E. J.

    2009-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize either in the PS domains of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σc has been shown to scale as σc˜ ((R + Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σc as a function of R.

  20. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications

    Czech Academy of Sciences Publication Activity Database

    Jäger, Eliezer; Höcherl, Anita; Janoušková, Olga; Jäger, Alessandro; Hrubý, Martin; Konefal, Rafal; Netopilík, Miloš; Pánek, Jiří; Šlouf, Miroslav; Ulbrich, Karel; Štěpánek, Petr

    2016-01-01

    Roč. 8, č. 13 (2016), s. 6958-6963 ISSN 2040-3364 R&D Projects: GA MŠk(CZ) 7F14009; GA MPO(CZ) FR-TI4/625; GA MŠk(CZ) LH14292; GA MŠk(CZ) LO1507; GA TA ČR(CZ) TE01020118 Institutional support: RVO:61389013 Keywords : reactive oxygen species (ROS) * responsive nanoparticles * fluorescence life -time imaging (FLIM) Subject RIV: CC - Organic Chemistry Impact factor: 7.367, year: 2016

  1. Large-scale solvothermal synthesis of fluorescent carbon nanoparticles

    International Nuclear Information System (INIS)

    Ku, Kahoe; Park, Jinwoo; Kim, Nayon; Kim, Woong; Lee, Seung-Wook; Chung, Haegeun; Han, Chi-Hwan

    2014-01-01

    The large-scale production of high-quality carbon nanomaterials is highly desirable for a variety of applications. We demonstrate a novel synthetic route to the production of fluorescent carbon nanoparticles (CNPs) in large quantities via a single-step reaction. The simple heating of a mixture of benzaldehyde, ethanol and graphite oxide (GO) with residual sulfuric acid in an autoclave produced 7 g of CNPs with a quantum yield of 20%. The CNPs can be dispersed in various organic solvents; hence, they are easily incorporated into polymer composites in forms such as nanofibers and thin films. Additionally, we observed that the GO present during the CNP synthesis was reduced. The reduced GO (RGO) was sufficiently conductive (σ ≈ 282 S m −1 ) such that it could be used as an electrode material in a supercapacitor; in addition, it can provide excellent capacitive behavior and high-rate capability. This work will contribute greatly to the development of efficient synthetic routes to diverse carbon nanomaterials, including CNPs and RGO, that are suitable for a wide range of applications. (paper)

  2. Smart phone based bacterial detection using bio functionalized fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Rajendran, Vinoth Kumar; Bakthavathsalam, Padmavathy; Ali, Baquir Mohammed Jaffar

    2014-01-01

    We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 10 5 cfu mL −1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring. (author)

  3. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    Science.gov (United States)

    Smith, G. B.; Deller, C. A.; Swift, P. D.; Gentle, A.; Garrett, P. D.; Fisher, W. K.

    2002-04-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior.

  4. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    International Nuclear Information System (INIS)

    Smith, G.B.; Deller, C.A.; Swift, P.D.; Gentle, A.; Garrett, P.D.; Fisher, W.K.

    2002-01-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior

  5. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  6. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    Science.gov (United States)

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Entropy driven spontaneous formation of highly porous films from polymer-nanoparticle composites

    International Nuclear Information System (INIS)

    Korampally, Venumadhav; Yun, Minseong; Rajagopalan, Thiruvengadathan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Dasgupta, Purnendu K

    2009-01-01

    Nanoporous materials have become indispensable in many fields ranging from photonics, catalysis and semiconductor processing to biosensor infrastructure. Rapid and energy efficient process fabrication of these materials is, however, nontrivial. In this communication, we describe a simple method for the rapid fabrication of these materials from colloidal dispersions of Polymethyl Silsesquioxane nanoparticles. Nanoparticle-polymer composites above the decomposition temperature of the polymer are examined and the entropic gain experienced by the nanoparticles in this rubric is harnessed to fabricate novel highly porous films composed of nanoparticles. Optically smooth, hydrophobic films with low refractive indices (as low as 1.048) and high surface areas (as high as 1325 m 2 g -1 ) have been achieved with this approach. In this communication we address the behavior of such systems that are both temperature and substrate surface energy dependent. The method is applicable, in principle, to a variety of nanoparticle-polymer systems to fabricate custom nanoporous materials.

  8. Low-Dimensional Nanoparticle Clustering in Polymer Micelles and Their Transverse Relaxivity Rates

    Science.gov (United States)

    Hickey, Robert J.; Meng, Xin; Zhang, Peijun; Park, So-Jung

    2015-01-01

    One- or two-dimensional arrays of iron oxide nanoparticles were formed in colloidal assemblies of amphiphilic polymers. Electron tomography imaging revealed that nanoparticles are arranged into one-dimensional strings in magneto-micelles or two-dimensional sheets in magneto-core/shell assemblies. The distinct directional assembly behavior was attributed to the interparticle interaction relative to the nanoparticle–polymer interaction, which was modulated by varying the cosolvent used for the solution phase self-assembly. Magneto-core/shell assemblies with varying structural parameters were formed with a range of different sized as-synthesized nanoparticles. The transverse magnetic relaxivity rates (r2) of a series of different assemblies were determined to examine the effect of nanoparticle arrangement on the magnetic relaxivity for their potential applications in MRI. The results indicated that the assembly structure of nanoparticles in polymer micelles significantly affects the r2 of surrounding water, providing a way to control magnetic relaxivity. PMID:23731021

  9. Chemical point detection using differential fluorescence from molecularly imprinted polymers

    Science.gov (United States)

    Pestov, Dmitry; Anderson, John E.; Nelson, Jean; Tepper, Gary C.

    2004-12-01

    Fluorescence represents one of the most attractive approaches for chemical sensing due to the abundant light produced by most fluorophores, resulting in excellent detection sensitivity. However, the broad and overlapping emission spectra of target and background species have made it difficult to perform species identification in a field instrument because of the need to perform spectral decomposition and analysis. This paper describes a new chemical sensing strategy based on differential fluorescence measurements from molecularly imprinted polymers, which eliminates the need to perform any spectral analysis. Species identification is accomplished by measuring the differential light output from a pair of polymers-one imprinted to a target species and the other identical, but not imprinted. The imprinted polymer selectively concentrates the target molecule and controls the energy (wavelength) of the emitted fluorescence signal and the differential output eliminates common mode signals associated with non-specific background interference. Because no spectral analysis is required, the sensors can be made extremely small and require very little power. Preliminary performance parameters from a prototype sensor are presented and discussed.

  10. Delivery of Fluorescent Nanoparticles to the Brain.

    Science.gov (United States)

    Shimoni, Olga; Shi, Bingyang; Adlard, Paul A; Bush, Ashley I

    2016-11-01

    Nanotechnology applications in neuroscience promises to deliver significant scientific and technological breakthroughs, providing answers to unresolved questions regarding the processes occurring in the brain. In this perspective, we provide a short background on two distinct fluorescent nanoparticles and summarize several studies focussed on achieving delivery of these into the brain and their interaction with brain tissue. Furthermore, we discuss challenges and opportunities for further development of nanoparticle-based therapies for targeting delivery of drugs across the blood-brain barrier.

  11. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Cui, Fude; Shi, Kai; Zhang, Liqiang; Tao, Anjin; Kawashima, Yoshiaki

    2006-08-28

    Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 nm mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained.

  12. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    Science.gov (United States)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug

  13. Multifunctional Polymer Nanoparticles for Dual Drug Release and Cancer Cell Targeting

    Directory of Open Access Journals (Sweden)

    Yu-Han Wen

    2017-06-01

    Full Text Available Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin (HBD in which doxorubicin (DOX was conjugated by a hydrazone bond to encapsulate an immunotherapy drug, imiquimod (IMQ, to form dual cancer-targeting and dual drug-loaded nanoparticles. At low pH, polymeric nanoparticles could disrupt and simultaneously release DOX and IMQ. Our experimental results show that the nanoparticles exhibited pH-dependent drug release behavior and had an ability to target cancer cells via biotin and protonated histidine.

  14. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A; Mangal, Rahul; Archer, Lynden A.

    2015-01-01

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2

  15. Group 12 dithiocarbamate complexes: Synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites

    Science.gov (United States)

    Ajibade, Peter A.; Ejelonu, Benjamin C.

    2013-09-01

    Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, 1H- and 13C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix.

  16. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid) Coated Gelatin Nanoparticles

    OpenAIRE

    Gan, Zhenhai; Ju, Jianhui; Zhang, Ting; Wu, Daocheng

    2011-01-01

    Poly(methacrylic acid) (PMAA)-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid)...

  17. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Corem-Salkmon E

    2012-10-01

    Full Text Available Enav Corem-Salkmon, Benny Perlstein, Shlomo MargelThe Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, IsraelBackground: Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near-infrared (NIR fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices.Methods and results: NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA, were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin

  18. Structural studies of thin films of semiconducting nanoparticles in polymer matrices

    International Nuclear Information System (INIS)

    Di Luccio, Tiziana; Piscopiello, Emanuela; Laera, Anna Maria; Antisari, Marco Vittori

    2007-01-01

    Ordered films of nanoscale materials are issue of wide interest for applications in several fields, such as optics, catalysis, and bioelectronics. In particular, semiconducting nanoparticles incorporation in a processable polymer film is an easy way to manipulate such materials for their application. We deposited thin layers of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles embedded in a thermoplastic cyclo-olephin copolymer (COC) with elevated optical transparency and highly bio-compatible. The nanoparticles were obtained by thiolate precursors previously dispersed in the polymer upon thermal treatment at temperatures ranging between 200 and 300 deg. C depending on the desired size. The precursor/polymer solutions were spin-coated in order to get thin films. The spinning conditions were changed in order to optimise the layer thickness and uniformity. The samples were mainly characterised by X-ray reflectivity (XRR) and by high-resolution transmission electron microscopy (HRTEM) analyses. The thinnest layer we have deposited is 8 nm thick, as evaluated by XRR. The HRTEM measurements showed that the nanoparticles have quasi-spherical shape without evident microstructural defects. The size of the nanoparticles depends on the annealing temperature, e.g. at 232 deg. C the size of the CdS nanoparticles is about 4-5 nm

  19. Structural studies of thin films of semiconducting nanoparticles in polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Di Luccio, Tiziana [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy)], E-mail: tiziana.diluccio@portici.enea.it; Piscopiello, Emanuela; Laera, Anna Maria [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy); Antisari, Marco Vittori [ENEA, Centro Ricerche Casaccia, Via Anguillarese 301, I-00060 S. Maria di Galeria (Roma) (Italy)

    2007-09-15

    Ordered films of nanoscale materials are issue of wide interest for applications in several fields, such as optics, catalysis, and bioelectronics. In particular, semiconducting nanoparticles incorporation in a processable polymer film is an easy way to manipulate such materials for their application. We deposited thin layers of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles embedded in a thermoplastic cyclo-olephin copolymer (COC) with elevated optical transparency and highly bio-compatible. The nanoparticles were obtained by thiolate precursors previously dispersed in the polymer upon thermal treatment at temperatures ranging between 200 and 300 deg. C depending on the desired size. The precursor/polymer solutions were spin-coated in order to get thin films. The spinning conditions were changed in order to optimise the layer thickness and uniformity. The samples were mainly characterised by X-ray reflectivity (XRR) and by high-resolution transmission electron microscopy (HRTEM) analyses. The thinnest layer we have deposited is 8 nm thick, as evaluated by XRR. The HRTEM measurements showed that the nanoparticles have quasi-spherical shape without evident microstructural defects. The size of the nanoparticles depends on the annealing temperature, e.g. at 232 deg. C the size of the CdS nanoparticles is about 4-5 nm.

  20. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  1. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    Science.gov (United States)

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  2. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  3. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz; Kalachyova, Y. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Solovyev, A. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Vytykacova, S. [Institute of Chemical Technology, Department of Glass and Ceramics (Czech Republic); Svanda, J.; Siegel, J. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [Institute of Chemical Technology, Department of Biochemistry and Microbiology (Czech Republic); Svorcik, V. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic)

    2015-03-15

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  4. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-01-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications

  5. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    Science.gov (United States)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  6. Incorporation of europium III complex into nanoparticles and films obtained by the Sol-Gel methodology

    Directory of Open Access Journals (Sweden)

    Faley Jean de Sousa

    2010-03-01

    Full Text Available The sol-gel process is very effective for the preparation of new materials with potential applications in optics, sensors, catalyst supports, coatings, and specialty inorganic polymers that can be used as hosts for the accommodation of organic molecules. The low temperature employed in the process is the main advantage of this methodology. In this work, the europium (III complex with 1,10-phenantroline was prepared, and this luminescent complex was incorporated into silica nanoparticles and films by the sol-gel process. The nanoparticles were obtained by the modified Stöber methodology. The films were obtained by the dip-coating technique, at different deposition rates and numbers of layers. The nanoparticles and films were characterized by photoluminescence, thermal analysis, and Raman and infrared spectroscopies. Characterization revealed that the europium (III complex was not affected upon incorporation into the nanoparticles and films, opening a new field for the application of these materials.

  7. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  8. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    Science.gov (United States)

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  9. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Science.gov (United States)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S. K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-05-01

    Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV-vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  10. Well-defined single-chain polymer nanoparticles via thiol-Michael addition

    NARCIS (Netherlands)

    Kröger, A. Pia P.; Boonen, Roy J.E.A.; Paulusse, Jos M.J.

    2017-01-01

    A synthetic strategy has been developed giving facile access to well-defined single-chain polymer nanoparticles (SCNPs) from styrene-, acrylate- and methacrylate-based polymers. Random copolymers (polydispersity indices 1.10–1.15) of methyl (meth)acrylate, benzyl methacrylate or styrene containing

  11. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    OpenAIRE

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-01-01

    Photoswitchable fluorescent proteins with controllable light?dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive ...

  12. Tunable Semiconducting Polymer Nanoparticles with INDT-Based Conjugated Polymers for Photoacoustic Molecular Imaging.

    Science.gov (United States)

    Stahl, Thomas; Bofinger, Robin; Lam, Ivan; Fallon, Kealan J; Johnson, Peter; Ogunlade, Olumide; Vassileva, Vessela; Pedley, R Barbara; Beard, Paul C; Hailes, Helen C; Bronstein, Hugo; Tabor, Alethea B

    2017-06-21

    Photoacoustic imaging combines both excellent spatial resolution with high contrast and specificity, without the need for patients to be exposed to ionizing radiation. This makes it ideal for the study of physiological changes occurring during tumorigenesis and cardiovascular disease. In order to fully exploit the potential of this technique, new exogenous contrast agents with strong absorbance in the near-infrared range, good stability and biocompatibility, are required. In this paper, we report the formulation and characterization of a novel series of endogenous contrast agents for photoacoustic imaging in vivo. These contrast agents are based on a recently reported series of indigoid π-conjugated organic semiconductors, coformulated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, to give semiconducting polymer nanoparticles of about 150 nm diameter. These nanoparticles exhibited excellent absorption in the near-infrared region, with good photoacoustic signal generation efficiencies, high photostability, and extinction coefficients of up to three times higher than those previously reported. The absorption maximum is conveniently located in the spectral region of low absorption of chromophores within human tissue. Using the most promising semiconducting polymer nanoparticle, we have demonstrated wavelength-dependent differential contrast between vasculature and the nanoparticles, which can be used to unambiguously discriminate the presence of the contrast agent in vivo.

  13. The Positively Charged Hyperbranched Polymers with Tunable Fluorescence and the Cell Imaging Application.

    Science.gov (United States)

    Ma, Hengchang; Qin, Yanfang; Yang, Zenming; Yang, Manyi; Ma, Yucheng; Yin, Pei; Yang, Yuan; Wang, Tao; Lei, Ziqiang; Yao, Xiaoqiang

    2018-04-25

    Fluorescence-tunable materials are becoming increasingly attractive for their potential application in optics, electronics, and biomedical technology. Herein, a multi-color molecular pixel system is realized using simple copolymerization method. Bleeding both of complementary colors from blue and yellow fluorescence segments, reproduced a serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability, and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] (TPPA-DBO) has prominent selectivity to DNA over RNA inside cells.

  14. Patterned immobilisation of silicon dioxide nanoparticles on the surface of a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Muhr, Nina, E-mail: nina.muhr@unileoben.ac.at [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto-Gloeckel-Strasse 2, A-8700 Leoben (Austria); Grinschgl, Markus; Griesser, Thomas [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto-Gloeckel-Strasse 2, A-8700 Leoben (Austria); Kern, Wolfgang [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto-Gloeckel-Strasse 2, A-8700 Leoben (Austria); Polymer Competence Center Leoben GmbH, Peter-Rosegger-Strasse 12, A-8700 Leoben (Austria); Schroettner, Hartmuth [Institute for Electron Microscopy, Technical University of Graz, Steyrergasse 17, A-8010 Graz (Austria)

    2012-01-01

    A photosensitive co-polymer of styrene and 4-vinylbenzyl thiocyanate was synthesised and employed for the immobilisation of aminofunctionalised silica nanoparticles (SiO{sub 2}-NP) at the polymer surface. Upon UV irradiation of the co-polymer, isothiocyanate groups are generated by a photo-isomerisation reaction of the thiocyanate groups. The silica nanoparticles were selectively immobilised in irradiated areas by immersing the illuminated polymer surface in a solution of SiO{sub 2}-NP. Depending on the time of immersion and the nanoparticle concentration, different amounts of silica can be deposited in the irradiated areas, whilst no immobilisation of SiO{sub 2}-NP is observed in the non-irradiated areas. By using photolithographic methods, patterned silica structures ({mu}m scale) were produced on the polymer surface. The SiO{sub 2}-NP covered surfaces are of potential interest to generate protective surface layers and to carry out further functionalisation reactions of the immobilised SiO{sub 2}-NP particles.

  15. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  16. Poly(amino acid) functionalized maghemite and gold nanoparticles

    International Nuclear Information System (INIS)

    Perego, Davide; Manuel Domínguez-Vera, José; Gálvez, Natividad; Masciocchi, Norberto; Guagliardi, Antonietta

    2013-01-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging. (paper)

  17. Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.

    Science.gov (United States)

    Ferrer, Maria L; del Monte, Francisco

    2005-01-13

    Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).

  18. The fluorescence quenching mechanism of coumarin 120 with CdS nanoparticles in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Murat; Bozkurt, Ebru; Meral, Kadem; Arık, Mustafa; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    2015-01-15

    The interaction of coumarin 120 (C120) with CdS nanoparticles (CdS NPs) in aqueous suspension was examined by using UV–vis absorption, steady-state, time-resolved fluorescence, and electron paramagnetic resonance (EPR) spectroscopy techniques. The fluorescence intensity of C120 was quenched with increasing the amount of CdS NPs in the aqueous suspension. The spectroscopic data revealed that the C120 molecules adsorbed on CdS NPs via electrostatic interactions. The apparent association constant (K{sub app}) and the degree of association (α) for C120/CdS NPs were determined as 130.3 M{sup −1} and 0.51 for 4 nm CdS NPs and 624.3 M{sup −1} and 0.71 for 8 nm CdS NPs, respectively. The photoinduced EPR studies exhibited that no electron transfers between CdS and C120 taking place. The results revealed that the fluorescence quenching of C120 with different CdS NPs is due to the formation of a non-fluorescent complex. - Highlights: • Interaction of C120 with CdS NPs in aqueous solution was spectroscopically examined. • Nonfluorescent C120–CdS NPs complexes in aqueous solution were formed. • In the system, CdS NPs in aqueous solution acted as a fluorescence quencher.

  19. The fluorescence quenching mechanism of coumarin 120 with CdS nanoparticles in aqueous suspension

    International Nuclear Information System (INIS)

    Acar, Murat; Bozkurt, Ebru; Meral, Kadem; Arık, Mustafa; Onganer, Yavuz

    2015-01-01

    The interaction of coumarin 120 (C120) with CdS nanoparticles (CdS NPs) in aqueous suspension was examined by using UV–vis absorption, steady-state, time-resolved fluorescence, and electron paramagnetic resonance (EPR) spectroscopy techniques. The fluorescence intensity of C120 was quenched with increasing the amount of CdS NPs in the aqueous suspension. The spectroscopic data revealed that the C120 molecules adsorbed on CdS NPs via electrostatic interactions. The apparent association constant (K app ) and the degree of association (α) for C120/CdS NPs were determined as 130.3 M −1 and 0.51 for 4 nm CdS NPs and 624.3 M −1 and 0.71 for 8 nm CdS NPs, respectively. The photoinduced EPR studies exhibited that no electron transfers between CdS and C120 taking place. The results revealed that the fluorescence quenching of C120 with different CdS NPs is due to the formation of a non-fluorescent complex. - Highlights: • Interaction of C120 with CdS NPs in aqueous solution was spectroscopically examined. • Nonfluorescent C120–CdS NPs complexes in aqueous solution were formed. • In the system, CdS NPs in aqueous solution acted as a fluorescence quencher

  20. Fluorescence enhancement of modified silver nanoparticles.

    Science.gov (United States)

    Liu, Meicen; Zhang, Zhenglong; Liu, Gaining; Dong, Jun; Sun, Yu; Zheng, Hairong; Li, Guian

    2011-11-01

    Surface enhanced fluorescence (SEF) effect of acridine orange fluorophore in the proximity of silver nanoparticles (NPs) has been investigated experimentally in the aqueous solution system. It was found that the SEF effect could be influenced by the distribution of the NPs and the separation between the fluorophore molecule and metal surface. The fluorescence enhancement was improved significantly when Ag NPs was capped with 4-Aminothiophenol (PATP) that was acted as an isolating layer between the metal surface and fluorophore molecules. The results suggest that a proper distribution of metallic NPs and proper separation between fluorophore molecule and the particle surface are important for obtaining an optimal SEF effect.

  1. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium

    International Nuclear Information System (INIS)

    Walia, Shanka; Acharya, Amitabha

    2014-01-01

    The detection of pesticide residues in ground water, food, or soil samples is extremely important. The currently available laboratory techniques have several drawbacks and needs to be replaced. Fluorescent chemosensors for pesticide detection were reported in the literature, with few reports published on quantum dot-based pesticide sensors, but none of these were focused toward differentiating organophosphorus and organochlorine pesticides specifically. In this respect, glutathione-coated CdS nanoparticles were synthesized and characterized. The TEM studies of the nanoparticles suggested mostly monodispersed spherical particles, with size in the range of 11.5±1 nm. The prepared fluorescent nanoparticles were found to selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles ∼ 2.5 times. Similar studies carried out with organophosphorous pesticide dimethoate did not result any change in the fluorescence intensity of the nanoparticles. Further studies carried out with commercially available pesticide solutions, also confirmed similar results. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol. Control experiments suggested possible role of both amine and carboxylic acid functional groups of glutathione in the recognition of dicofol. The limit of detection of dicofol was found to be ∼ 55±11 ppb.Graphical AbstractGlutathione-coated CdS nanoparticles selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol

  2. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Shanka; Acharya, Amitabha, E-mail: amitabhachem@gmail.com [CSIR-Institute of Himalayan Bioresource Technology, Biotechnology Division (India)

    2014-12-15

    The detection of pesticide residues in ground water, food, or soil samples is extremely important. The currently available laboratory techniques have several drawbacks and needs to be replaced. Fluorescent chemosensors for pesticide detection were reported in the literature, with few reports published on quantum dot-based pesticide sensors, but none of these were focused toward differentiating organophosphorus and organochlorine pesticides specifically. In this respect, glutathione-coated CdS nanoparticles were synthesized and characterized. The TEM studies of the nanoparticles suggested mostly monodispersed spherical particles, with size in the range of 11.5±1 nm. The prepared fluorescent nanoparticles were found to selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles ∼ 2.5 times. Similar studies carried out with organophosphorous pesticide dimethoate did not result any change in the fluorescence intensity of the nanoparticles. Further studies carried out with commercially available pesticide solutions, also confirmed similar results. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol. Control experiments suggested possible role of both amine and carboxylic acid functional groups of glutathione in the recognition of dicofol. The limit of detection of dicofol was found to be ∼ 55±11 ppb.Graphical AbstractGlutathione-coated CdS nanoparticles selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol.

  3. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.R., E-mail: iglesias@ugr.es [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Delgado, A.V.; González-Caballero, F. [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Ramos-Tejada, M.M. [Department of Physics, University of Jaén, Linares 23700 (Spain)

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles. - Highlights: • Magnetite NPs coated with polymers are used for drug delivery and hyperthermia. • The SAR of polyelectrolyte-coated NPs is larger because of their improved stability. • The antitumor drug doxorubicin is adsorbed on the coated particles. • The release rate of the drug is not affected by the ac magnetic field used in hyperthermia.

  4. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    Science.gov (United States)

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.; Kubo, S.; Nakagawa, M.; Vacha, M.; Habuchi, Satoshi

    2013-01-01

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can

  6. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  7. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Ke [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China); Xu, Liang [The University of Kansas, Department of Molecular Biosciences (United States); Wu, Daocheng, E-mail: wudaocheng@mail.xjtu.edu.cn [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China)

    2014-12-15

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications.

  8. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    International Nuclear Information System (INIS)

    Liu, Hao; Li, Ke; Xu, Liang; Wu, Daocheng

    2014-01-01

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications

  9. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    International Nuclear Information System (INIS)

    Jiang Shan; Zhang Yong; Lim, Kian Meng; Sim, Eugene K W; Ye Lei

    2009-01-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF 4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  10. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    Science.gov (United States)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  11. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  12. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles.

    Science.gov (United States)

    Gu, Luo; Hall, David J; Qin, Zhengtao; Anglin, Emily; Joo, Jinmyoung; Mooney, David J; Howell, Stephen B; Sailor, Michael J

    2013-01-01

    Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating shorter-lived (50-fold in vitro and by >20-fold in vivo when imaging porous silicon nanoparticles. Time-gated imaging of porous silicon nanoparticles accumulated in a human ovarian cancer xenograft following intravenous injection is demonstrated in a live mouse. The potential for multiplexing of images in the time domain by using separate porous silicon nanoparticles engineered with different excited state lifetimes is discussed.

  13. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  14. Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin.

    Science.gov (United States)

    Mayavan, Sundar; Dutta, Naba K; Choudhury, Namita R; Kim, Misook; Elvin, Christopher M; Hill, Anita J

    2011-04-01

    In this investigation we report the synthesis of optically coupled hybrid architectures based on a new biomimetic fluorescent protein rec1-resilin and nanometer-scale gold nanoparticles (AuNPs) in a one-step method using a non-covalent mode of binding protocol. The presence of uniformly distributed fluorophore sequences, -Ser(Thr)-Tyr-Gly- along the molecular structure of rec1-resilin provides significant opportunity to synthesize fluorophore-modified AuNPs bioconjugates with unique photophysical properties. The detailed analyses of the AuNP-bioconjugates, synthesized under different experimental conditions using spectroscopic, microscopic and scattering techniques demonstrate the organizational pathways and the electronic and photophysical properties of the developed AuNP-rec1-resilin bioconjugates. The calculation of the bimolecular quenching constant using the Stern-Volmer equation confirms that the dominant mechanism involved in quenching of fluorescence of rec1-resilin in the presence of AuNP is static. Photoacoustic infrared spectroscopy was employed to understand the nature of the interfacial interaction between the AuNP and rec1-resilin and its evolution with pH. In such bioconjugates the quenched emission of fluorescence by AuNP on the fluorophore moiety of rec1-resilin in the immediate vicinity of the AuNP has significant potential for fluorescence-based detection schemes, sensors and also can be incorporated into nanoparticle-based devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Multifunctional pH-Responsive Folate Receptor Mediated Polymer Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Cai, Xiaoqing; Yang, Xiaoye; Wang, Fang; Zhang, Chen; Sun, Deqing; Zhai, Guangxi

    2016-07-01

    Multifunctional pH-responsive folate receptor mediated targeted polymer nanoparticles (TPNps) were developed for docetaxel (DTX) delivery based on poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)poly (β-amino ester) (P123-PAE) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-folate (P123-FA) copolymers. The DTX was loaded into the TPNps with a decent drug loading content of 15.02 ± 0.14 wt%. In vitro drug release results showed that the DTX was released from the TPNps at a pH-dependent manner. Tetrazolium dye (MTT) assay revealed that the bland polymer nanoparticles displayed almost nontoxicity at 200 μg/mL concentration. However, the DTX-loaded TPNps showed high anti-tumor activity at low IC50 (0.72 μg/mL) for MCF-7 cells following 48 h incubation. Cellular uptake experiments revealed that the TPNps had higher degree of cellular uptake than nontargeted polymer nanoparticles, indicating that the nanoparticles were internalized into the cells via FA receptor-mediated endocytosis. Moreover, the cellular uptake pathways for the FA grafted polymer were involved in energy-dependent, clathrin-mediated and caveolae-mediated endocytosis. The cell killing effect and cellular uptake of the DTX-TPNps by the MCF-7 cells were all enhanced by about two folds at pH 5.5 when compared with pH 7.4. The TPNps also significantly prolonged the in vivo retention time for the DTX. These results suggest that the biocompatible pH responsive folate-modified polymer nanoparticles present a promising safe nanosystem for intracellular targeted delivery of DTX.

  16. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    Science.gov (United States)

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    International Nuclear Information System (INIS)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge; Huang Jinfeng; Chen Yuxin; Lan Shi

    2011-01-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  18. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  19. Applications of functional polymer brushes for nanoparticle uptake and prevention of protein adsorption

    Science.gov (United States)

    Arifuzzaman, Shafi M.

    The central theme of this Ph.D. dissertation is to develop novel multifunctional polymer coatings for understanding partition of proteins and nanoparticles on polymers grafted to flat surfaces (so-called brushes). Systematic investigation of the adsorption phenomena is accomplished by utilizing surface-anchored assemblies comprising grafted polymers with variation in physical properties (i.e., length or/and grafting density) and chemical functionality. The chemical composition of the brush is tailored by either "chemical coloring" of a parent homopolymer brush with selective chemical moieties or by sequential growth of two chemically dissimilar polymer blocks. We present preparation of two types of tailor-made, surface-grafted copolymers: (1) those composed of hydrophilic and hydrophobic blocks (so-called amphiphilic polymer brushes), and (2) those comprising of anionic and cationic polymer segments (so-called polyampholyte brushes). We describe the organization of functionality in the grafted polymer brushes and the partitioning of proteins and nanoparticles using a battery of complementary analytical probes. Specifically, we address how varying the molecular weight, grafting density, and chemical composition of the brush affects adsorbtion and desorbtion of model proteins and gold nanoparticles. Our observations indicate densely-populated responsive amphiphilic polymers are very efficient in suppressing protein adsorption. In addition, we have established that the length of poly(ethylene glycol) spacers attached to a parent homopolymer brush is a key factor governing uptake of gold nanoparticles. Both grafting density and molecular weight of the coating are important in controlling the kinetics and thermodynamics of protein adsorption on surfaces. Our findings and methodologies can lead to the development of next generation environmentally friendly antifouling surfaces and will find application in medical devices, antifouling coatings and anti reflection finishes.

  20. Preparation of Magnetic Iron Oxide Nanoparticles (MIONs with Improved Saturation Magnetization Using Multifunctional Polymer Ligand

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Majeed

    2016-11-01

    Full Text Available This paper describes the preparation of ultra-small magnetic iron oxide (Fe3O4 nanoparticles (MIONs coated with water-soluble thioether end-functionalized polymer ligand pentaerythritol tetrakis 3-mercaptopropionate-polymethacrylic acid (PTMP-PMAA. The MIONs were prepared by co-precipitation of aqueous iron precursor solution at a high temperature. The polymer modified MIONs were characterized by dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, thermogravimetric analysis (TGA, and vibrating sample magnetometery (VSM. It was found that these MIONs were successfully modified by this water-soluble polymer ligand with a fairly uniform size and narrow size distribution. The dried powder of MIONs could be stored for a long time and re-dispersed well in water without any significant change. Additionally, the polymer concentration showed a significant effect on size and magnetic properties of the MIONs. The saturation magnetization was increased by optimizing the polymer concentration. Furthermore, the 3-(4,5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT-assay demonstrated that these MIONs were highly biocompatible and they could be successfully coupled with fluorescent dye Rhodamine due to the formation of amide bond between carboxylic acid groups of MIONs and amine groups of dye. The obtained results indicated that these multifunctional MIONs with rich surface chemistry exhibit admirable potential in biomedical applications.

  1. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Science.gov (United States)

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  2. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    Science.gov (United States)

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  3. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Rufeng Li

    2017-11-01

    Full Text Available This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1 Gaussian filtering to remove the noise of overall fluorescent targets, (2 a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3 an red maximizing inter-class variance thresholding method (OTSU to segment the enhanced image for getting the binary map of the overall micro-droplets, (4 a circular Hough transform (CHT method to detect overall micro-droplets and (5 an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  4. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    Science.gov (United States)

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  5. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts.

    Science.gov (United States)

    Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-06-28

    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.

  6. Light scattering from polymer solutions and nanoparticle dispersions

    CERN Document Server

    Schärtl, Wolfgang; Janca, Josef

    2007-01-01

    Light scattering is a very powerful method to characterize the structure of polymers and nanoparticles in solution. Recent technical developments have strongly enhanced the possible applications of this technique, overcoming previous limitations like sample turbidity or insufficient experimental time scales. However, despite their importance, these new developments have not yet been presented in a comprehensive form. In addition, and maybe even more important to the broad audience, there lacks a simple-to-read textbook for students and non-experts interested in the basic principles and fundamental techniques of light scattering. As part of the Springer Laboratory series, this book tries not only to provide such a simple-to-read and illustrative textbook about the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, but also intends to cover some of the newest technical developments in experimental light scattering.

  7. Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2015-01-01

    The potential of using active coated nano-particles to determine the orientation of fluorescing molecules is reported. By treating each fluorescing molecule as an electric Hertzian dipole, single and multiple fluorescing molecules emitting coherently and incoherently in various orientations...... are considered in the presence of active coated nano-particles. It is demonstrated that in addition to offering a means to determine the orientation of a single molecule or the over-all orientation of the molecules surrounding it, the nature of the far-field response from the active coated nano...

  8. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    Science.gov (United States)

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Influence of Surface Coating of Magnetic Nanoparticles on Mechanical Properties of Polymer Nanocomposites

    Science.gov (United States)

    Yarar, Ecem; Karakas, Gizem; Rende, Deniz; Ozisik, Rahmi; Malta, Seyda

    Polymer nanocomposites have emerged as promising materials due to improved properties when compared with conventional bulk polymers. Nanofillers are natural or synthetic organic/inorganic particles that are less than 100 nm in at least one dimension. Even the addition of trace amounts of nanofillers to polymers may lad to unique combinations of properties. Among variety of inorganic nanofillers, iron oxide magnetic nanoparticles are of great interest due to their unique physical and chemical properties, such as low toxicity, biocompatibility, large magnetization and conductivity, owing to their extremely small size and large specific surface area. In this study, approximately 8-10 nm magnetic nanoparticles coated with either citric acid or oleic acid are synthesized and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) (PEO). The hydrophobicity/hydrophillicity of the polymer and the surface coating on the iron oxide nanoparticles are exploited to control the dispersion state of nanoparticles, and the effect of dispersion on mechanical and thermal properties of the nanocomposite are investigated via experimental methods such as dynamic mechanical analysis and differential scanning calorimetry. This material is based upon work partially supported by the National Science Foundation under Grant No. CMMI-1538730 and TUBITAK 112M666.

  10. Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibing [Nanjing Forestry Univ. (China); Georgia Inst. of Technology, Atlanta, GA (United States); Huang, Fang [Georgia Inst. of Technology, Atlanta, GA (United States); Pan, Shaobo [Georgia Inst. of Technology, Atlanta, GA (United States); Mu, Wei [Georgia Inst. of Technology, Atlanta, GA (United States); Meng, Xianzhi [Georgia Inst. of Technology, Atlanta, GA (United States); Yang, Haitao [Hubei Univ. of Technology, Wuhan (China); Xu, Zhaoyang [Nanjing Forestry Univ. (China); Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Deng, Yulin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    Fluorescent and thermo-responsive cellulose nanocrystals (CNCs) with tuned polymer brushes were preparedviasurface initiated activators generated by electron transfer for atom transfer radical polymerization.

  11. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436

  12. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong

    2012-07-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

  13. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  14. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore.

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-08-30

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu 2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu 2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu 2+ . The detection limits of the polymer and vinyl monomer towards Cu 2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.

  15. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-01-01

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer. PMID:28867764

  16. Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices

    Directory of Open Access Journals (Sweden)

    Jejenija Osuntokun

    2016-01-01

    Full Text Available We report the synthesis and structural studies of ZnS and CdS nanoparticles in polyvinylpyrrolidone (PVP, poly(vinyl alcohol (PVA, and poly(methyl methacrylate (PMMA matrices. The metal sulfides/polymer nanocomposites were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy, electronic spectroscopy (UV-Vis, transmission electron microscopy (TEM, and thermogravimetric analysis (TGA. The particle sizes as calculated from the absorption spectra were in agreement with the results obtained from TEM and XRD data. They showed metal sulfides nanoparticles in the polymers matrices with average crystallite sizes of 1.5–6.9 nm. The TGA results indicate that incorporation of the nanoparticles significantly altered the thermal properties of the respective polymers with ZnS/PVA and CdS/PVA nanocomposites displaying higher thermal stability than the other polymer nanocomposites.

  17. Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties

    Directory of Open Access Journals (Sweden)

    Felisa Reyes-Ortega

    2017-12-01

    Full Text Available Magnetic nanoparticles (MNPs have been widely used to increase the efficacy of chemotherapeutics, largely through passive accumulation provided by the enhanced permeability and retention effect. Their incorporation into biopolymer coatings enables the preparation of magnetic field-responsive, biocompatible nanoparticles that are well dispersed in aqueous media. Here we describe a synthetic route to prepare functionalized, stable magnetite nanoparticles (MNPs coated with a temperature-responsive polymer, by means of the hydrothermal method combined with an oil/water (o/w emulsion process. The effects of both pH and temperature on the electrophoretic mobility and surface charge of these MNPs are investigated. The magnetite/polymer composition of these systems is detected by Fourier Transform Infrared Spectroscopy (FTIR and quantified by thermogravimetric analysis. The therapeutic possibilities of the designed nanostructures as effective heating agents for magnetic hyperthermia are demonstrated, and specific absorption rates as high as 150 W/g, with 20 mT magnetic field and 205 kHz frequency, are obtained. This magnetic heating response could provide a promising nanoparticle system for combined diagnostics and cancer therapy.

  18. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    Science.gov (United States)

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  19. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles

    International Nuclear Information System (INIS)

    Meerabai Devi, L; Negi, Devendra P S

    2011-01-01

    We have used fluorescent ZnS nanoparticles as a probe for the determination of adenine. A typical 2 x 10 -7 M concentration of adenine quenches 39.3% of the ZnS fluorescence. The decrease in ZnS fluorescence as a function of adenine concentration was found to be linear in the concentration range 5 x 10 -9 -2 x 10 -7 M. The limit of detection (LOD) of adenine by this method is 3 nM. Among the DNA bases, only adenine quenched the fluorescence of ZnS nanoparticles in the submicromolar concentration range, thus adding selectivity to the method. The amino group of adenine was important in determining the quenching efficiency. Steady-state fluorescence experiments suggest that one molecule of adenine is sufficient to quench the emission arising from a cluster of ZnS consisting of about 20 molecules. Time-resolved fluorescence measurements indicate that the adenine molecules block the sites on the surface of ZnS responsible for emission with the longest lifetime component. This method may be applied for the determination of adenine in biological samples since the measurements have been carried out at pH 7.

  20. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.

    2013-10-22

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns. 2013 Author(s).

  1. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    Directory of Open Access Journals (Sweden)

    Yu Yabiku

    2013-10-01

    Full Text Available We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns.

  2. The hydrodynamic size of polymer stabilized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)

    2007-11-28

    For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.

  3. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  4. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  5. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect

    Science.gov (United States)

    Bongiovanni Abel, Silvestre; Yslas, Edith I.; Rivarola, Claudia R.; Barbero, Cesar A.

    2018-03-01

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer’s nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  6. Analysis of nanoparticle biomolecule complexes.

    Science.gov (United States)

    Gunnarsson, Stefán B; Bernfur, Katja; Mikkelsen, Anders; Cedervall, Tommy

    2018-03-01

    Nanoparticles exposed to biological fluids adsorb biomolecules on their surface forming a biomolecular corona. This corona determines, on a molecular level, the interactions and impact the newly formed complex has on cells and organisms. The corona formation as well as the physiological and toxicological relevance are commonly investigated. However, an acknowledged but rarely addressed problem in many fields of nanobiotechnology is aggregation and broadened size distribution of nanoparticles following their interactions with the molecules of biological fluids. In blood serum, TiO 2 nanoparticles form complexes with a size distribution from 30 nm to more than 500 nm. In this study we have separated these complexes, with good resolution, using preparative centrifugation in a sucrose gradient. Two main apparent size populations were obtained, a fast sedimenting population of complexes that formed a pellet in the preparative centrifugation tube, and a slow sedimenting complex population still suspended in the gradient after centrifugation. Concentration and surface area dependent differences are found in the biomolecular corona between the slow and fast sedimenting fractions. There are more immunoglobulins, lipid binding proteins, and lipid-rich complexes at higher serum concentrations. Sedimentation rate and the biomolecular corona are important factors for evaluating any experiment including nanoparticle exposure. Our results show that traditional description of nanoparticles in biological fluids is an oversimplification and that more thorough characterisations are needed.

  7. A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal

    Science.gov (United States)

    Diao, Haipeng; Guo, Lixia; Liu, Wen; Feng, Liheng

    2018-05-01

    A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10-8 mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field.

  8. Synthesis of [Fe(Leq(Lax]n coordination polymer nanoparticles using blockcopolymer micelles

    Directory of Open Access Journals (Sweden)

    Christoph Göbel

    2017-06-01

    Full Text Available Spin-crossover compounds are a class of materials that can change their spin state from high spin (HS to low spin (LS by external stimuli such as light, pressure or temperature. Applications demand compounds with defined properties concerning the size and switchability that are maintained when the compound is integrated into composite materials. Here, we report the synthesis of [Fe(Leq(Lax]n coordination polymer (CP nanoparticles using self-assembled polystyrene-block-poly(4-vinylpyridine (PS-b-P4VP block copolymer (BCP micelles as template. Variation of the solvent (THF and toluene and the rigidity of the axial ligand Lax (Lax = 1,2-di(pyridin-4-ylethane (bpea, trans-1,2-di(pyridin-4-ylethene (bpee, and 1,2-di(pyridin-4-ylethyne (bpey; Leq = 1,2-phenylenebis(iminomethylidyne-bis(2,4-pentanedionato(2− allowed the determination of the preconditions for the selective formation of nanoparticles. A low solubility of the CP in the used solvent and a high stability of the Fe–L bond with regard to ligand exchange are necessary for the formation of composite nanoparticles where the BCP micelle is filled with the CP, as in the case of the [FeLeq(bpey]n@BCP. Otherwise, in the case of more flexible ligands or ligands that lead to high spin complexes, the formation of microcrystals next to the CP–BCP nanoparticles is observed above a certain concentration of [Fe(Leq(Lax]n. The core of the nanoparticles is about 45 nm in diameter due to the templating effect of the BCP micelle, independent of the used iron complex and [Fe(Leq(Lax]n concentration. The spin-crossover properties of the composite material are similar to those of the bulk for FeLeq(bpea]n@BCP while pronounced differences are observed in the case of [FeLeq(bpey]n@BCP nanoparticles.

  9. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    International Nuclear Information System (INIS)

    Hamon, Casey L.; Dorsey, Christopher L.; Özel, Tuğba; Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania

    2016-01-01

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract

  10. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, Casey L.; Dorsey, Christopher L. [Texas State University, Department of Chemistry and Biochemistry (United States); Özel, Tuğba [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania, E-mail: tb26@txstate.edu [Texas State University, Department of Chemistry and Biochemistry (United States)

    2016-07-15

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract.

  11. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreactor

    Science.gov (United States)

    Muzyka, Kateryna; Karim, Khalku; Guerreiro, Antonio; Poma, Alessandro; Piletsky, Sergey

    2014-03-01

    A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions.

  12. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays.

    Science.gov (United States)

    Generalova, Alla N; Sizova, Svetlana V; Zdobnova, Tatiana A; Zarifullina, Margarita M; Artemyev, Michail V; Baranov, Alexander V; Oleinikov, Vladimir A; Zubov, Vitaly P; Deyev, Sergey M

    2011-02-01

    This study aimed to design a panel of uniform particulate biochemical reagents and to test them in specific bioassays. These reagents are polymer particles of different sizes doped with semiconductor nanocrystals and conjugated with either full-size antibodies or recombinant mini-antibodies (4D5 scFv fragment) designed by genetic engineering approaches. A panel of highly fluorescent polymer particles (150-800 nm) were formed by embedding CdSe/ZnS nanocrystals (quantum dots) into preformed polyacrolein and poly(acrolein-co-styrene) particles. Morphology, content and fluorescence characteristics of the prepared materials were studied by laser correlation spectroscopy, spectrophotometry, optical and fluorescent microscopy and fluorimetry. The obtained fluorescent particles sensitized by anti-Yersinia pestis antibodies were used for rapid agglutination glass test suitable for screening analysis of Y. pestis antigen and for microtiter particle agglutination, which, owing to its speed and simplicity, is very beneficial for diagnostic detection of Y. pestis antigen. Recombinant 4D5 scFv antibodies designed and conjugated with polymer particles containing quantum dots provide multipoint highly specific binding with cancer marker HER2/neu on the surface of SKOV-3 cell.

  13. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water

    Science.gov (United States)

    Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad

    2017-12-01

    Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.

  14. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Rudolf Herrmann

    2014-12-01

    Full Text Available The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter. Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation.

  15. pH-responsive fluorescence chemical sensor constituted by conjugated polymers containing pyridine rings.

    Science.gov (United States)

    Adachi, Naoya; Kaneko, Yuki; Sekiguchi, Kazuki; Sugiyama, Hiroki; Sugeno, Masafumi

    2015-12-01

    Poly(p-pyridinium phenylene ethynylene)s (PPyPE) functionalized with alternating donor-acceptor repeat units were synthesized by a Pd-catalyzed Sonogashira coupling reaction between diethynyl monomer and di-iodopyridine for use as a pH-responsive fluorescence chemical sensor. The synthesized PPyPE, containing pyridine units, was characterized by FT-IR, (1)H and (13)C NMR, UV-visible and fluorescence spectroscopies. We investigated the relationship between changes of optical properties and protonation/deprotonation of PPyPE containing pyridine units in solution. Addition of HCl decreased and red-shifted the fluorescence intensity of the conjugated polymers that contained pyridine rings; fluorescence intensity of the polymers increased upon addition of NaOH solution. The synthesized PPyPE was found to be an effective and reusable chemical sensor for pH sensing. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2011-07-01

    Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All

  17. Thermal Dynamics of Xanthene Dye in Polymer Matrix Excited by Double Pulse Laser Radiation

    Science.gov (United States)

    Samusev, Ilia; Borkunov, Rodion; Tsarkov, Maksim; Konstantinova, Elizaveta; Antipov, Yury; Demin, Maksim; Bryukhanov, Valery

    2018-01-01

    Double-pulse laser excitation of the eosin and silver nanoparticles embedded into polymer media is known to be a method of electronic-vibrational energy deactivation kinetic process information obtaining and polymer thermal dynamics investigation. We have studied the vibrational relaxation processes in dye molecules (eosin) and nanoparticles in polyvinyl alcohol after two time-shifted laser pulses with fast and delayed fluorescence kinetics study. In order to simulate thermal and photophysical processes caused by double photon excitation, we solved heat transfer and energy deactivation differential equations numerically. The simulation allowed us to obtain the value of heat conductivity coefficient of polymer matrix.

  18. Cation-sensitive compartmentalization in metallacarborane containing polymer nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ďorďovič, V.; Uchman, M.; Reza, M.; Ruokolainen, J.; Zhigunov, Alexander; Ivankov, O. I.; Matějíček, P.

    2016-01-01

    Roč. 6, č. 12 (2016), s. 9884-9892 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-14608S Institutional support: RVO:61389013 Keywords : polymer nanoparticles * metallacarborane * double-hydrophilic block copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.108, year: 2016

  19. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    KAUST Repository

    Kshirsagar, Prakash

    2014-01-06

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles was about 3 and 4 nm, respectively. The nanoparticles were characterized using x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. Both silver and gold nanoparticles synthesized by this method exhibited fluorescence properties and their use for cell imaging applications has been demonstrated. © 2014 IOP Publishing Ltd.

  20. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    Science.gov (United States)

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  1. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry

    Science.gov (United States)

    Ouadahi, Karima; Sbargoud, Kamal; Allard, Emmanuel; Larpent, Chantal

    2012-01-01

    Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength.Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength. Electronic supplementary information (ESI) available: Experimental details and figures S1-S16 as mentioned in the text. See DOI: 10.1039/c2nr11413e

  2. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun, E-mail: hjun@whut.edu.cn; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2} nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10 mg COD (in 15 mg carrier) and solution pH of 7.0. Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles showed maximal catalytic activity at pH 7.0 and 50 °C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50 °C for 5 h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4 °C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy){sub 3}Cl{sub 2}) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. - Highlights: • COD was immobilized on magnetic fluorescent core-shell structured nanoparticles. • The nanoparticles were optical sensitive to oxygen in water solution. • The nanoparticles have remarkable improved stability compared with free COD. • The nanoparticles can probably be used in multi parameter fiber optic Biosensor.

  3. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    Science.gov (United States)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  4. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    Science.gov (United States)

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  5. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  6. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Cole, Joseph R; Joshi, Amit; Halas, Naomi J

    2009-03-24

    Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.

  7. Characterization of eco-friendly fluorescent nanoparticle-doped tracers for environmental sensing

    International Nuclear Information System (INIS)

    Tauro, Flavia; Rapiti, Emiliano; Al-Sharab, Jafar F.; Ubertini, Lucio; Grimaldi, Salvatore; Porfiri, Maurizio

    2013-01-01

    Particle tracers are extensively used in quantitative flow visualization and environmental sensing. In this paper, we provide a thorough characterization of the novel eco-friendly fluorescent particle tracers formulated in Tauro et al. (AIP Adv 3(3): 032108, 2013). The tracers are synthesized from natural beeswax and are functionalized by encapsulating nontoxic fluorophore nanoparticles in the beads’ matrix through an inexpensive thermal procedure. Visibility and durability studies are conducted through a wide array of techniques to investigate the tracers’ surface morphological microfeatures, crystal nature and size, chemical composition, fluorophore incorporation into the beeswax matrix, and fluorescence response under severe settings resembling exposure to natural environments. Our findings demonstrate that fluorescent nanoparticles ranging from 1.51 to 3.73 nm are homogeneously distributed in the superficial layer (12 nm) of the tracers. In addition, fluorescence emissions are observed up to 26 days of continuous exposure of the tracers to high energy radiation. To demonstrate the particles’ use in environmental flow sensing, a set of proof of concept outdoor tests are conducted, in which image analysis tools are utilized for detecting the fluorescent tracers. Experimental results suggest that fluorescent microparticles deployed in high flow-rate flows (2 m/s) and under direct sunlight can be sensed through commercially available cameras (frame rate set to 30 Hz)

  8. Redox-Active Carbohydrate-Coated Nanoparticles: Self-Assembly of a Cyclodextrin-Polystyrene Glycopolymer with Tetrazine-Naphthalimide.

    Science.gov (United States)

    Gross, Andrew J; Haddad, Raoudha; Travelet, Christophe; Reynaud, Eric; Audebert, Pierre; Borsali, Redouane; Cosnier, Serge

    2016-11-15

    The controlled self-assembly of precise and well-defined photochemically and electrochemically active carbohydrate-coated nanoparticles offers the exciting prospect of biocompatible catalysts for energy storage/conversion and biolabeling applications. Here an aqueous nanoparticle system has been developed with a versatile outer layer for host-guest molecule encapsulation via β-cyclodextrin inclusion complexes. A β-cyclodextrin-modified polystyrene polymer was first obtained by copper nanopowder click chemistry. The glycopolymer enables self-assembly and controlled encapsulation of tetrazine-naphthalimide, as a model redox-active agent, into nanoparticles via nanoprecipitation. Cyclodextrin host-guest interactions permit encapsulation and internanoparticle cross-linking for the formation of fluorescent compound and clustered self-assemblies with chemically reversible electroactivity in aqueous solution. Light scattering experiments revealed stable particles with hydrodynamic diameters of 138 and 654 nm for nanoparticles prepared with tetrazine, of which 95% of the nanoparticles represent the smaller objects by number. Dynamic light scattering revealed differences as a function of preparation method in terms of size, 3-month stability, polydispersity, radius of gyration, and shape factor. Individual self-assemblies were visualized by atomic force microscopy and fluorescence microscopy and monitored in real-time by nanoparticle tracking analysis. UV-vis and fluorescence spectra provided insight into the optical properties and critical evidence for host-guest encapsulation as evidenced by solvachromatism and enhanced tetrazine uptake. Cyclic voltammetry was used to investigate the electrochemical properties and provided further support for encapsulation and an estimate of the tetrazine loading capacity in tandem with light scattering data.

  9. Effect of Ligand Molecular Weight and Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    Science.gov (United States)

    Petrie, Joshua; Kim, Bumjoon; Fredrickson, Glenn; Kramer, Ed

    2008-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize in either domain of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σchas been shown to scale as σc˜ ((R+Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σcas a function of R.

  10. Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors

    NARCIS (Netherlands)

    Teigell Beneitez, N.; Missinne, J.; Schleipen, J.J.H.B.; Orsel, J.G.; Prins, M.W.J.; Steenberge, Van G.; Cartwright, A.N.; Nicolau, D.V.

    2010-01-01

    We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target molecules from a sample

  11. Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype.

    Science.gov (United States)

    Brunner, S; Fomin, P; Kargel, Ch

    2015-04-01

    The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance

  12. Bioimaging of M1 cells using ceramic nanophosphors: Synthesis and toxicity assay of Y2O3 nanoparticles

    International Nuclear Information System (INIS)

    Venkatachalam, N; Soga, K; Tsuji, T; Okumura, Y; Fukuda, R

    2009-01-01

    Er 3+ doped Y 2 O 3 nanoparticles were synthesized by enzymatic and polymer-assisted homogeneous co-precipitation methods. Resultant particle size is about 30-40 nm with narrow size distribution whereas the particle size is smaller than those acquired by conventional homogeneous and alkali precipitation methods. The particles shows bright green (550 nm) and red (660 nm) upconversion (UC) as well as near infrared (NIR) fluorescence (1550 nm) under 980 nm excitation. Bioimaging of M1 cells using the nanoparticles were successfully attempted. It is observed that 0.5 mg/ml of nanoparticles is the nominal concentration for bioimaging of M1 cells under the physiological conditions. The cellular uptake of nanoparticles is evidenced from bright field, UC and NIR fluorescence images of live M1 cells. Our studies suggest that lower concentration of nanoparticles is sufficient for imaging when the particles are taken in the M1 cells and also the concentration can keep the cells alive. Further it was demonstrated that under the physiological conditions, Y 2 O 3 nanoparticles emit UC and NIR fluorescence in M1 cells even after the surface modification with PEG-b-PAAc polymer. Moreover, surface modified nanoparticles shows lower toxic effect in M1 cells while compare to bare nanoparticles.

  13. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    International Nuclear Information System (INIS)

    Ray, Aniruddha; Mukundan, Ananya; Karamchand, Leshern; Kopelman, Raoul; Xie, Zhixing; Wang, Xueding

    2014-01-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well. (paper)

  14. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects the measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.

  15. Optical response of heterogeneous polymer layers containing silver nanostructures

    Directory of Open Access Journals (Sweden)

    Miriam Carlberg

    2017-05-01

    Full Text Available This work is focused on the study of the optical properties of silver nanostructures embedded in a polymer host matrix. The introduction of silver nanostructures in polymer thin films is assumed to result in layers having adaptable optical properties. Thin film layers with inclusions of differently shaped nanoparticles, such as nanospheres and nanoprisms, and of different sizes, are optically characterized. The nanoparticles are produced by a simple chemical synthesis at room temperature in water. The plasmonic resonance peaks of the different colloidal solutions range from 390 to 1300 nm. The non-absorbing, transparent polymer matrix poly(vinylpyrrolidone (PVP was chosen because of its suitable optical and chemical properties. The optical studies of the layers include spectrophotometry and spectroscopic ellipsometry measurements, which provide information about the reflection, transmission, absorption of the material as well as the complex optical indices, n and k. Finite difference time domain simulations of nanoparticles in thin film layers allow the visualization of the nanoparticle interactions or the electric field enhancement on and around the nanoparticles to complete the optical characterization. A simple analysis method is proposed to obtain the complex refractive index of nanospheres and nanoprisms in a polymer matrix.

  16. Three-dimensional selective growth of nanoparticles on a polymer microstructure

    International Nuclear Information System (INIS)

    Wu Shaomin; Han, L-H; Chen Shaochen

    2009-01-01

    We demonstrate a new technique for selectively growing gold nanoparticles on a patterned three-dimensional (3D) polymer microstructure. The technique integrates 3D direct writing of heterogeneous microstructures with nanoparticle synthesis. A digital micromirror device is employed as a dynamic mask in the digital projection photopolymerization process to build the heterogeneous microstructure layer by layer. An amine-bearing polyelectrolyte, branched poly(ethylenimine), is selectively attached to the microstructure and acts as both a reducing and a protective agent in the nanoparticle synthesis. Scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy are utilized to analyze the microstructure and the 3D selectivity of the nanoparticle growth.

  17. Silver nanoparticles plasmonic effect on eosin and rhodamine 6G luminescence in various media

    Science.gov (United States)

    Samusev, Ilia G.; Tikhomirova, Nadezhda S.; Slezhkin, Vasiliy A.; Zyubin, Andrey Yu.; Bryukhanov, Valery V.; Tsibulnikova, Anna V.

    2016-11-01

    The plasmonic enhancement and quenching of phosphorescence and fluorescence of the anionic (eosin) and cationic (rhodamine 6G) dyes have been studied in various environments: silver nanoparticles of silver hydrosol citrate in water, in polymer films and on the surface of nanoporous silica in order to determine the kinetic and spectral effects on the dye luminescence. Depending on the silver nanoparticles concentration both the enhancement and quenching of the dyes phosphorescence and fluorescence have been detected. The mechanism of interaction between the excited molecules and silver nanoparticles has been discussed.

  18. Polymer Coated Echogenic Lipid Nanoparticles with Dual Release Triggers

    Science.gov (United States)

    Nahire, Rahul; Haldar, Manas K.; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H.; Katti, Kalpana S.; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2013-01-01

    Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging. PMID:23394107

  19. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei [Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China); Zhao, Xinmin, E-mail: zhao.xinmin@hotmail.com [School of Foreign Language, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China); Zhang, Feng, E-mail: fengzhang1978@hotmail.com [Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China)

    2015-12-30

    Graphical abstract: With the non-uniform coating of amphiphilic polymer, the silver nanoparticles (AgNPs) can form protein coronas which can become discrete protein–nanoparticle conjugates when controlling the protein–nanoparticle molar ratios. The protein's conformational changes upon binding NPs was also studied by both circular dichroism and three-dimensional fluorescence spectroscopy. - Highlights: • The amphiphilic polymer coating can not only transfer hydrophobic NPs into water soluble, but also providing a thick shell responsible for the strong physisorption to proteins without significantly changing their spatial conformations. • NP with discrete proteins can be simply obtained by a simple mixing procedure followed by a gel electrophoresis separation, and the resulting conjugates are robust enough to resist common separation techniques like gel electrophoresis. • In combination with the universal amphiphilic polymer coating strategy and the physisorption mediated protein–NP conjugation, proteins like BSA can be effectively conjugated to different materials such as noble metal, semiconductor and magnetic NPs. • In contrast to chemical coupling methods, the physisorption mediated protein–NP conjugation holds facile, robust and reversible advantages, which may find wide applications in nano-biomedicine field. - Abstract: The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 10{sup 7} M{sup −1} and the interaction was spontaneously driven by mainly the van der Waals force and

  20. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    Science.gov (United States)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei; Zhao, Xinmin; Zhang, Feng

    2015-12-01

    The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 107 M-1 and the interaction was spontaneously driven by mainly the van der Waals force and hydrogen-bond mediated interactions, and negatively cooperative from the point of view of thermodynamics. With the non-uniform coating of amphiphilic polymer, the silver nanoparticles can form protein coronas which can become discrete protein-nanoparticle conjugates when controlling their molar ratios of mixing. The protein's conformational changes upon binding nanoparticles was also studied by using the three-dimensional fluorescence spectroscopy.

  1. The effective complex permittivity stability in filled polymer nanocomposites studied above the glass transition temperature

    Directory of Open Access Journals (Sweden)

    Elhaouzi F.

    2018-01-01

    Full Text Available The temperature effecton the dielectric response of nanocomposite at low frequencies range is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate (EBA polymer filled with three concentrations of the dispersed conducting carbon black (CB nanoparticles. The temperature dependence of the complex permittivity has been analyzedabove the glass transition temperature of the neat polymer matrix Tg=-75°C. For all CB concentrations, the dielectric spectra follow a same trend in frequency range 100-106Hz. More interestingly, the stability of the effective complex permittivity ɛ=ɛ' -iɛ'' with the temperature range of 10-70°C is explored. While the imaginary part of the complex permittivity ɛ'' exhibits a slight decreasewith temperature, the real part ɛ' shows a significant reduction especially for high loading samples. The observed dielectric response may be related to the breakup of the three-dimensional structurenetwork formed by the aggregation of CB particles causing change at the interfaceEBA-CB.This interface is estimated bythe volume fraction of constrained polymer chain according to loss tangent data of dynamic mechanical analysis.

  2. Fluorescence lifetime, dipole orientation and bilayer polymer films

    Science.gov (United States)

    Ho, Xuan Long; Chen, Po-Jui; Woon, Wei-Yen; White, Jonathon David

    2017-10-01

    Bilayer films consisting of the optically transparent polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were spin-cast on glass substrates. The upper 13.5 nm layer (PS) was lightly doped with Rhodamine-6 G (RH6G) or MEH-PPV. While the fluorescence of MEH-PPV was independent of PMMA thickness, the lifetime of RH6G increased 3-fold as the underlying PMMA thickness increased from 0 to 500 nm while the collected flux decreased suggesting a reorientation of the smaller molecule's dipole with respect to the air-polymer interface with PMMA thickness. This suggests lifetime may find application for nondestructive thickness measurements of transparent films with sub-micron lateral resolution and large range.

  3. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk (Russian Federation); Solomonov, Alexey V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001 (Israel); Kumagai, Akiko; Miyawaki, Atsushi [Cell Function Dynamics, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198 (Japan); Khashirova, Svetlana Yu; Zhansitov, Azamat [Kabardino-Balkar State University, 173 Chernyshevskogo St., Nal' chik, 360004, Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation)

    2016-11-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  4. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    International Nuclear Information System (INIS)

    Timin, Alexander S.; Solomonov, Alexey V.; Kumagai, Akiko; Miyawaki, Atsushi; Khashirova, Svetlana Yu; Zhansitov, Azamat; Rumyantsev, Evgeniy V.

    2016-01-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  5. Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in Polyvinyl Alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep; Verma, R.K.; Rai, D.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India)

    2012-07-15

    Silver (Ag) nanoparticles (NPs) were prepared by laser ablation in water with an aim to enhance the luminescence of rare earth coordinated complex in polymer host. A fixed concentration of the complex containing Samarium (Sm), Salicylic acid (Sal) and 1, 10-phenanthroline (Phen) were combined with different concentrations of silver NPs in PolyVinyl Alcohol at room temperature. Absorption spectrum and XRD patterns of the sample show that the Sm(Sal){sub 3}Phen complex is accompanied by Ag NPs. The luminescence from the complex was recorded in the presence and absence of Ag NPs using two different excitation wavelengths viz. 400 and 355 nm. Of these, 400 nm radiation falls in the surface plasmon resonance of Ag NPs. It was found that the Ag NPs led to a significant enhancement in luminescence of the complex. Surprisingly, a high concentration of Ag NPs tends to quench the luminescence. - Highlights: Black-Right-Pointing-Pointer Sm complex with Ag nanoparticles in PVA was prepared at room temperature. Black-Right-Pointing-Pointer UV-vis absorption and XRD confirms the presence of Sm complex and Ag NPs. Black-Right-Pointing-Pointer Enhancement in luminescence of complex was observed with Ag NPs. Black-Right-Pointing-Pointer Coupling between radiative transitions of Sm and SPR of NPs enhances the emission. Black-Right-Pointing-Pointer The higher concentration of Ag NPs quenches the luminescence of the complex.

  6. New compositions of cadmium selenium nanoparticles and dye molecules with cyclodextrin inclusion complexes

    International Nuclear Information System (INIS)

    Asimov, M.M.; Anufrik, S.S.; Tarkovsky, V.V.; Sazonko, H.H.

    2013-01-01

    Spectroscopic properties of new heterogeneous multicolor compositions based on cadmium selenium (CdSe/ZnS) nano crystal and inclusion complexes of dye molecule with cyclodextrin are presented. Spectral fluorescence of proposed compositions investigated in thin films. Signals from multicolor fluorescence of proposing compositions may be combined to definite spectral codes that could be used for tracking or verification of different objects. Calibration bar of signal within spectral codes guarantee high reliability in practical application of proposed multicolor compositions. Express analysis the size of nanoparticles during their synthesis and purification by spectroscopic methods is suggested. Application of Cyclodextrin molecules as target delivery systems is considered. (authors)

  7. Nanoparticles Stabilize Thin Polymer Films: A Fundamental Study to Understand the Phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Michael E. Mackay

    2009-03-04

    A new understanding of thermodynamics at the nanoscale resulted in a recently discovered first order phase transition that nanoparticles in a polymer film will all segregate to the supporting substrate. This is an unusual phase transition that was predicted using a modeling technique developed at Sandia National Laboratories and required the equivalent of many computational years on one computer. This project is a collaboration between Prof. Michael Mackay's group and Dr. Amalie Frischknecht (Sandia National Laboratories) where experimental observation and theoretical rationalization and prediction are brought together. Other discoveries were that this phase transition could be avoided by changing the nanoparticle properties yielding control of the assembly process at the nanoscale. In fact, the nanoparticles could be made to assemble to the supporting substrate, to the air interface or not assemble at all within a thin polymer film of order 100 nm in thickness. However, when the assembly process is present it is so robust that it is possible to make rough liquid films at the nanoscale due to nanoparticles assembling around three-dimensional objects. From this knowledge we are able to design and manufacture new coatings with particular emphasis on polymer-based solar cells. Careful control of the morphology at the nanoscale is expected to provide more efficient devices since the physics of these systems is dictated at this length scale and assembly of nanoparticles to various interfaces is critical to operation.

  8. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    Science.gov (United States)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in

  9. Distinct Interfacial Fluorescence in Oil-in-Water Emulsions via Exciton Migration of Conjugated Polymers.

    Science.gov (United States)

    Koo, Byungjin; Swager, Timothy M

    2017-09-01

    Commercial dyes are extensively utilized to stain specific phases for the visualization applications in emulsions and bioimaging. In general, dyes emit only one specific fluorescence signal and thus, in order to stain various phases and/or interfaces, one needs to incorporate multiple dyes and carefully consider their compatibility to avoid undesirable interactions with each other and with the components in the system. Herein, surfactant-type, perylene-endcapped fluorescent conjugated polymers that exhibit two different emissions are reported, which are cyan in water and red at oil-water interfaces. The interfacially distinct red emission results from enhanced exciton migration from the higher-bandgap polymer backbone to the lower-bandgap perylene endgroup. The confocal microscopy images exhibit the localized red emission exclusively from the circumference of oil droplets. This exciton migration and dual fluorescence of the polymers in different physical environments can provide a new concept of visualization methods in many amphiphilic colloidal systems and bioimaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method

    International Nuclear Information System (INIS)

    Li, Yuan-Qing; Wang, Jian-Lei; Fu, Shao-Yun; Mei, Shi-Gang; Zhang, Jian-Min; Yong, Kang

    2010-01-01

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 o C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as the Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO 2 nanoparticles is reduced by more than three orders compared with the pure SnO 2 nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In 2 O 3 .

  11. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    Science.gov (United States)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  12. Amphiphilic Quantum Dots with Asymmetric, Mixed Polymer Brush Layers: From Single Core-Shell Nanoparticles to Salt-Induced Vesicle Formation

    Directory of Open Access Journals (Sweden)

    Brian R. Coleman

    2018-03-01

    Full Text Available A mixed micelle approach is used to produce amphiphilic brush nanoparticles (ABNPs with cadmium sulfide quantum dot (QD cores and surface layers of densely grafted (σ = ~1 chain/nm2 and asymmetric (fPS = 0.9 mixed polymer brushes that contain hydrophobic polystyrene (PS and hydrophilic poly(methyl methacrylate (PMAA chains (PS/PMAA-CdS. In aqueous media, the mixed brushes undergo conformational rearrangements that depend strongly on prior salt addition, giving rise to one of two pathways to fluorescent and morphologically disparate QD-polymer colloids. (A In the absence of salt, centrosymmetric condensation of PS chains forms individual core-shell QD-polymer colloids. (B In the presence of salt, non-centrosymmetric condensation of PS chains forms Janus particles, which trigger anisotropic interactions and amphiphilic self-assembly into the QD-polymer vesicles. To our knowledge, this is the first example of an ABNP building block that can form either discrete core-shell colloids or self-assembled superstructures in water depending on simple changes to the chemical conditions (i.e., salt addition. Such dramatic and finely tuned morphological variation could inform numerous applications in sensing, biolabeling, photonics, and nanomedicine.

  13. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaoqun [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Yan, Huan; Yang, Jiumin [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Wu, Yudong; Zhang, Jian; Yao, Yingyi [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Ping [Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300300 (China); Wang, Huiquan [Department of Biomedical Engineering, School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Hu, Zhidong, E-mail: huzhidong27@163.com [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Chang, Jin, E-mail: jinchang@tju.edu.cn [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-10-05

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe{sub 3}O{sub 4} nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe{sub 3}O{sub 4} nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection. - Graphical abstract: We designed a novel strategy to prepare a kind of high-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip support with long-time fluorescent encoding and immunodetection stability for AFP detection. - Highlights: • A novel strategy combined the high temperature with chemical swelling technology is designed. • Based on hydrophobic interaction and polymer thermal motion, QDs and Fe{sub 3}O{sub 4} were effectively packaged into microbeads. • The fluorescence-encoded magnetic microbeads show long-term fluorescent encoding and immunodetection stability.

  14. Enhanced fluorescence of a molecular dipole near metal nanoparticle

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N.

    2010-01-01

    We study theoretically radiative and nonradiative decay of a single molecule near small gold nanoparticle. The local field enhancement leads to an increased radiative decay rate while the energy transfer from molecule to optically inactive electronic states in nanoparticle results in a decrease in the fluorescence quantum efficiency for small molecule-nanoparticle distances. We performed a DFT-TDLDA calculation of both the enhancement and the quenching for small nanometersized gold nanoparticles. We found that in close proximity to the surface, the nonradiative decay rate is dominated by generation of electron-hole pairs out of the Fermi sea resulting in a significantly lower quantum efficiency as compared to that obtained from electromagnetic calculations. For large distances, the efficiency is maximal for molecule polarized normal to the surface, whereas for small distances it is maximal for parallel orientation.

  15. Enhanced fluorescence of a molecular dipole near metal nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Pustovit, Vitaliy N., E-mail: pustovit@ccmsi.u [Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv-164 (Ukraine)

    2010-01-15

    We study theoretically radiative and nonradiative decay of a single molecule near small gold nanoparticle. The local field enhancement leads to an increased radiative decay rate while the energy transfer from molecule to optically inactive electronic states in nanoparticle results in a decrease in the fluorescence quantum efficiency for small molecule-nanoparticle distances. We performed a DFT-TDLDA calculation of both the enhancement and the quenching for small nanometersized gold nanoparticles. We found that in close proximity to the surface, the nonradiative decay rate is dominated by generation of electron-hole pairs out of the Fermi sea resulting in a significantly lower quantum efficiency as compared to that obtained from electromagnetic calculations. For large distances, the efficiency is maximal for molecule polarized normal to the surface, whereas for small distances it is maximal for parallel orientation.

  16. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal....

  17. Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water.

    Science.gov (United States)

    Nie, Kaixuan; Dong, Bo; Shi, Huanhuan; Liu, Zhengchun; Liang, Bo

    2017-03-07

    A technique for encapsulating fluorescent organic probes in a micelle system offers an important alternative method to manufacture water-soluble organic nanoparticles (ONPs) for use in sensing Hg 2+ . This article reports on a study of a surfactant-free micelle-like ONPs based on a 3,6-di(2-thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) amphiphile, (2-(2-(2-methoxyethoxy)ethyl)-3,6-di(2-thiophyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (NDPP) fabricated to monitor Hg 2+ in water. NDPP was synthesized through a simple one-step modification of a commercially available dye TDPP with a flexible and hydrophilic alkoxy. This study reports, for the first time, that TDPP dyes can respond reversibly, sensitively, and selectively to Hg 2+ through TDPP-Hg-TDPP complexation, similar to the well-known thymine(T)-Hg-thymine(T) model and the accompanying molecular aggregation. Interestingly, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed that, in water, NDPP forms loose micelle-like fluorescent ONPs with a hydrohobic TDPP portion encapsulated inside. These micelle-like nanoparticles offer an ideal location for TDPP-Hg complexation with a modest molecular aggregation, thereby providing both clear visual and spectroscopic signals for Hg 2+ sensing. An estimated detection limit of 11 nM for Hg 2+ sensing with this NDPP nanoparticle was obtained. In addition, NDPP ONPs show good water solubility and high selectivity to Hg 2+ in neutral or alkalescent water. It was superior to most micelle-based nanosensors, which require a complicated process in the selection or synthesis of suitable surfactants. The determinations in real samples (river water) were made and satisfactory results were achieved. This study provides a low-cost strategy for fabricating small molecule-based fluorescent nanomaterials for use in sensing Hg 2+ . Moreover, the NDPP nanoparticles show potential ability in Hg 2+ ion adsorption and recognization of cysteine

  18. Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Duncan, K. [U.S. Army, Communications-Electronics Research, Development and Engineering Center, Space and Terrestrial Communications Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Giri, A. K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Bowhead Science and Technology, LLC, Belcamp, Maryland 21017 (United States); Xiao, J. Q. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Karna, S. P., E-mail: shashi.p.karna.civ@mail.mil [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-05-07

    The magnetic properties of polycrystalline NiZn ferrite nanoparticles synthesized using a polyol-reduction and coprecipitation reaction methods have been investigated. The effects on magnetization of synthesis approach, chemical composition, processing conditions, and on the size of nanoparticles on magnetization have been investigated. The measured room-temperature magnetization for the as-prepared magnetic nanoparticles (MNP) synthesized via polyol-reduction and coprecipitation is 69 Am{sup 2} kg{sup −1} and 14 Am{sup 2} kg{sup −1}, respectively. X-ray diffraction measurements confirm spinel structure of the particles with an estimated grain size of ∼80 nm obtained from the polyol-reduction and 28 nm obtained from these coprecipitation techniques. Upon calcination under atmospheric conditions at different temperatures between 800 °C and 1000 °C, the magnetization, M, of the coprecipitated MNP increases to 76 Am{sup 2} kg{sup −1} with an estimated grain size of 90 nm. The MNP-polymer nanocomposites made from the synthesized MNP in various loading fraction and high density polyethylene exhibit interesting electromagnetic properties. The measured permeability and permittivity of the magnetic nanoparticle-polymer nanocomposites increases with the loading fractions of the magnetic nanoparticles, suggesting control for impedance matching for antenna applications.

  19. Surface Modification of Indium Tin Oxide Nanoparticles to Improve Its Distribution in Epoxy-Silica Polymer Matrix

    Directory of Open Access Journals (Sweden)

    Mostafa Jafari

    2014-10-01

    Full Text Available A semiconducting nanoparticle indium tin oxide (ITO was modified with silane groups and for this purpose trimethoxysilane (TMOS precursor was used under specific experimental conditions for surface modification of ITO nanoparticles. It is found that the modification of ITO nanoparticles increases the interactions between the filler and the matrix and subsequently improves the distibution of indium tin oxide nanoparticles in the polymer matrix. The epoxisilica polymer matrix was produced using trimethoxysilane and 3-glycidyloxypropyl trimethoxysilane precursors and ethylenediamine (EDA as curing agent at low temperature by sol-gel process. The sol-gel process was very useful due to its easily controllable process, solution concentration and homogeneity without using expensive and complicated equipments in comparison with other methods. Then, Fourier transform infrared (FTIR spectroscopy was employed to study the formation of Si-O-Si and Si-OH groups on ITO nanoparticles. X-Ray diffraction (XRD technique and thermal gravimetric analysis (TGA were employed to investigate the modification and weight loss of the modified ITO, respectively, as an indication of the presence of organic groups on these nanoparticles. The separation analyzer tests were performed to check the stability of the nanoparticles suspension and it revealed that due to better interaction of nanoparticles with the polymer matrix the stability of modified ITO suspention is higher than the unmodified sample. The morphology and particle distribution were determined by scanning electron microscopy (SEM. It was found that the distibution of modified indium tin oxide in epoxy-silica polymer matrix was improved in comparison with pure ITO.

  20. Smart dual-mode fluorescent gold nanoparticle agents.

    Science.gov (United States)

    Kang, Kyung A; Wang, Jianting

    2014-01-01

    Fluorophore-mediated, molecular sensing is one of the most popular and important technique in biomedical studies. As in any sensing technique, the two most important factors in this sensing are the sensitivity and specificity. Since the fluorescence of a fluorophore is emitted in the process of fluorophore electrons returning from their excited to ground state, a tool that can locally manipulate the electron state can be useful to maximize the sensitivity and specificity. A good tool candidate for this purpose is nanosized metal particles that can form an electromagnetic (EM) field at a sufficiently strong level, upon receiving a particular wavelength that fits the excitation wavelength of the fluorophore to be used. There are several metal nanoparticle types that can generate a sufficiently strong EM field for this purpose. Nevertheless, for the biomedical studies, which require minimal toxicity, gold nanoparticles (GNPs) are known to be the most suitable. In this article, various methods for fluorescence alteration using GNPs, which can be beneficially utilized for biomarker-specific, highly sensitive molecular sensing and imaging, are discussed. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 Wiley Periodicals, Inc.

  1. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    International Nuclear Information System (INIS)

    Kshirsagar, Prakash; Brunetti, Virgilio; Malvindi, Maria Ada; Pompa, Pier Paolo; Sangaru, Shiv Shankar

    2014-01-01

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles was about 3 and 4 nm, respectively. The nanoparticles were characterized using x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. Both silver and gold nanoparticles synthesized by this method exhibited fluorescence properties and their use for cell imaging applications has been demonstrated. (paper)

  2. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  3. Lanthanide-based fluorescent tracers in complex media

    International Nuclear Information System (INIS)

    Brichart, Thomas

    2014-01-01

    Tracers are objects allowing the determination of the position or the distribution of a product; tracers are currently used in a great variety of domains. Despite the fact that each field has it's own specifications, it is possible to find tracers in medicine (contrast agents), anti-counterfeiting or geological exploration. We have developed lanthanide complex tracers for oil field injection waters. Those tracers, derived from the DOTA, have been detected at concentration lower than 1 ppb, thanks to a simple and compact apparatus. This detection has been made possible by the use of time-resolved fluorescence spectroscopy, this technique allows us to get rid of the background noise created by the intrinsic fluorescence of oil residues that are present in production waters. We also demonstrated how we can, through a reverse microemulsion synthesis, encapsulate several different dyes inside a single nanoparticle composed of a gold core and a silica shell. We showed as well, how those particles can be used as smart tracers to gather data, such as temperature, pH, solvents, etc. inside the well. Finally the use of lanthanides and scale inhibitors properties allowed us to create a simple and fast dosing protocol of such scale inhibitors in injection waters. This dosage will then allow the quick adjustment of their concentration inside each well. (author) [fr

  4. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    Science.gov (United States)

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  5. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  6. Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles

    Science.gov (United States)

    Kavitha, S. R.; Umadevi, M.; Janani, S. R.; Balakrishnan, T.; Ramanibai, R.

    2014-06-01

    Silver nanoparticles (Ag NPs) of different sizes have been prepared by chemical reduction method and characterized using UV-vis spectroscopy and transmission electron microscopy (HRTEM). Fluorescence spectral analysis showed that the quenching of fluorescence of textile dyeing waste water (TDW) has been found to decrease with decrease in the size of the Ag NPs. Experimental results show that the silver nanoparticles can quench the fluorescence emission of adsorbed TDW effectively. The fluorescence interaction between Ag NPs (acceptor) and TDW (donor) confirms the Förster Resonance Energy Transfer (FRET) mechanism. Long range dipole-dipole interaction between the excited donor and ground state acceptor molecules is the dominant mechanism responsible for the energy transfer. Furthermore, photocatalytic degradation of TDW was measured spectrophotometrically by using silver as nanocatalyst under UV light illumination. The kinetic study revealed that synthesized Ag NPs was found to be effective in degrading TDW.

  7. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26, Polytechnicheskaya Str., St Petersburg 194021 (Russian Federation)], E-mail: aleshin@transport.ioffe.ru

    2009-05-21

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at {approx}420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  8. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    International Nuclear Information System (INIS)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P

    2009-01-01

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at ∼420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  9. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  10. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao Liang [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Song Chaojun; Sun Yuanjie [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Li Xiaohua; Li Yunyun [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Jin Boquan [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang Zhujun, E-mail: zhangzj@snnu.edu.cn [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang Kun, E-mail: yangkunkun@fmmu.edu.cn [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Difunctional amino mesoporous silica nanoparticles (FCMSN) were synthesized. Black-Right-Pointing-Pointer The fluorescence and chemiluminescence properties of the FCMSN were studied. Black-Right-Pointing-Pointer The NaIO{sub 4} oxidation method was used for modification of the FCMSN. Black-Right-Pointing-Pointer Liver cancer 7721 cell was detected. Black-Right-Pointing-Pointer The specificity affected by FCMSN's amino groups was studied. - Abstract: A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2 Prime -bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO{sub 4} oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.

  11. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  12. Noninvasive control of the transport function of fluorescent coloured liposomal nanoparticles

    Science.gov (United States)

    Stelmashchuk, O.; Zherebtsov, E.; Zherebtsova, A.; Kuznetsova, E.; Vinokurov, A.; Dunaev, A.; Mamoshin, A.; Snimshchikova, I.; Borsukov, A.; Bykov, A.; Meglinski, I.

    2017-06-01

    The use of liposomal nanoparticles with an incorporated active substance is an innovative and promising approach to diagnostics and therapy. The application of liposomal nanoparticle-based drugs allows for targeted localized delivery, overcomes the natural barriers within the body effectively, and minimizes possible side effects. Liposomes are able to contain a variety of ingredients with practically no limitations to their chemical composition, chemical properties, or size of constituent molecules. This study evaluated the ability to control the passage of fluorescent dye-filled liposomes through the intestinal mucosal barrier after oral administration. For this purpose, the increase in transcutaneous registered fluorescence from tetrabromofluorescein dye was recorded and analysed. Fluorescence intensity was measured at the proximal end of the tail of an animal model after oral administration of the liposomes. Measurements were taken at the excitation wavelengths of 365 and 450 nm. The fluorescence intensity in the group treated with the fluorescent contrast agent encapsulated in liposomal particles increased 140% of the initial level, but in the group treated with pure contrast agent, the increase in detected fluorescence intensity did not exceed 110%. Mice that received empty liposomes as well as the control group did not demonstrate statistically significant changes in fluorescence intensity. A potential application of our results is an express laser optical method of monitoring the transport of orally administered liposomal particles. The results can be used to help create new optical tools for use in the development of new drugs and in high-throughput screening used during their testing.

  13. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

    Directory of Open Access Journals (Sweden)

    Xue S

    2014-05-01

    Full Text Available Sihan Xue,1 Yao Wang,1 Mengxing Wang,2 Lu Zhang,1 Xiaoxia Du,2 Hongchen Gu,1 Chunfu Zhang1,31School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 2Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In this study, a novel magnetic resonance imaging (MRI/computed tomography (CT/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs. Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2 markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/C/fluorescence trimodal imaging.Keywords: multifunctional probe, SPIONs, mesoporous silica

  14. Study of interaction between tryptophan, tyrosine, and phenylalanine separately with silver nanoparticles by fluorescence quenching method

    International Nuclear Information System (INIS)

    Roy, S.; Das, T.K.

    2015-01-01

    Using the spectroscopic method, the individual interaction of the three biochemically important amino acids, which are constituents of protein, namely, tryptophan, tyrosine, and phenylalanine with biologically synthesized silver nanoparticles has been investigated. The obtained UV-Vis spectra show the formation of ground-state complexes between tryptophan, tyrosine, and phenylalanine with silver nanoparticles. Silver nanoparticles possess the ability to quench the intrinsic fluorescence of the aforesaid amino acids by a dynamic quenching process. The binding constant, number of binding sites, and corresponding thermodynamic parameters (ΔH, ΔS, and ΔG) based on the interaction system were calculated for 293, 303, and 313 K. In the case of tryptophan and phenylalanine, with increase in temperature, the binding constant K was found to decrease; conversely, it was found to increase with increase in temperature in the case of tyrosine. The thermodynamic results revealed that the binding process was spontaneous; hydrogen bonding and van der Waals interaction were the predominant forces responsible for the complex stabilization in the case of tryptophan and phenylalanine, respectively, whereas in the case of tyrosine, hydrophobic interaction was the sole force conferring stability. Moreover, the Förster non-radiation energy transfer theory has been applied to calculate the average binding distance among the above amino acids and silver nanoparticles. The results show a binding distance of <7 nm, which ensures that energy transfer does occur between the said amino acids and silver nanoparticles. (authors)

  15. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)

    2015-09-15

    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  16. Efficient Synthesis of Single-Chain Polymer Nanoparticles via Amide Formation

    Directory of Open Access Journals (Sweden)

    Ana Sanchez-Sanchez

    2015-01-01

    Full Text Available Single-chain technology (SCT allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful “click” chemistry driving force for SCNP construction. By employing poly(methyl methacrylate- (PMMA- based copolymers bearing β-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, dynamic light scattering (DLS, and elemental analysis (EA.

  17. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  18. Optical properties of BaTiO3 nanoparticles and silver nanoprisms in polymer host matrices

    Science.gov (United States)

    Requena, Sebastian

    Nanocomposites are materials comprised of a host matrix, such as glass or polymer, with embedded nanoparticles. Embedding nanoparticles into the host makes it possible to create materials with properties that are distinctly unique from those of their host and nanoparticle constituents. Nanocomposites can have superior mechanical, thermal, and optical properties compared to their host materials. We characterized the photoluminescent properties of BaTiO3 polymer nanocomposites and the effects of chemically modifying the nanoparticles surface on said properties. BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at ˜3.0 eV and multiple bands centered at ˜2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the ˜3.0 eV emission at low-temperature. On the other hand, polymer coating of the functionalized nanoparticles significantly enhances ˜3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at ˜2.5 eV. Chemical modification of the surface with 3APTS and PMMA presents a pathway to tune and control the photoluminescent properties of BTO nanoparticles. We also present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at ˜520 nm and the other with a dipole resonance at ˜650 nm, placed in different media. The silver nanoprisms were embedded in a polyvinyl alcohol (PVA) polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon

  19. Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-05-01

    We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.

  20. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.

    Science.gov (United States)

    Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J

    2016-04-06

    The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Chufeng Sun

    2018-01-01

    Full Text Available To increase the durability of antibacterial coating on cotton and polymeric substrates, surface initiated grafting polymer brushes are introduced onto the substrates surface to bridge copper nanoparticles coatings and substrate. The morphologies of the composites consisting of the copper nanoparticles and polymer brushes were characterized with scanning electron microscopy (SEM. It was found that copper nanoparticles were uniformly and firmly distributed on the surfaces of the substrates by the polymer brushes; meanwhile, the reinforced concrete-like structures were formed in the composite materials. The substrates coated by the copper nanoparticles showed the efficient antibacterial activity against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli even after washing by 30 cycles. The copper nanoparticles were tethered on the substrates by the strong chemical bonds, which led to the excellent washable fitness and durability. The change of the phase structure of the copper was analyzed to investigate the release mechanism of copper ions.

  2. Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application.

    Science.gov (United States)

    Zheng, Nannan; Ding, Sha; Zhou, Xingping

    2016-06-01

    Fluorescent carbon nanoparticle (FCN) is a new type of carbon-based materials. Because of its wide raw material sources, excellent optical properties and good biocompatibility, FCN is getting more and more attentions. However, its synthesis from resources at low cost under mild conditions is still a challenge. Here we report a novel and simple method derived from monosodium glutamate carbonization to make tricolor fluorescent carbon nanoparticles with an average size below 10nm, a high yield up to 35.2% based on the carbon content in the resource, a long life-time of 3.71ns, and a high fluorescence quantum yield up to 51.5% by using quinine sulfate as the standard substance. We discovered that the fluorescent stability of the FCNs was very excellent under UV irradiation for hours in aqueous solutions of pH ranged from 2.0 to 9.0. The cell viability tested under a pretty high concentration of FCNs indicated their safety for biological applications. Based on their high fluorescence quantum efficiency and the advantages mentioned above, these FCNs were then used for cell imaging and exhibited a perfect performance under 3 kinds of excitation bands (UV, blue, and green lights). Thus, they can be practically applied to immune labeling and imaging in vivo in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline.

    Science.gov (United States)

    Inoue, Yuki; Kuwahara, Atsushi; Ohmori, Kohei; Sunayama, Hirobumi; Ooya, Tooru; Takeuchi, Toshifumi

    2013-10-15

    Protein-imprinted polymers, capable of specific transduction of protein binding events into fluorescent signal change, were designed and synthesized by using dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline (Hyp-En-Dans). Human serum albumin (HSA) was used as a model target protein and HSA-imprinted polymers (HSA-IP) were prepared on glass substrates. Specific fluorescence change was observed for HSA binding on the imprinted polymer thin film, whereas a weaker response was observed for other proteins, including bovine serum albumin, chymotrypsin, lysozyme, and avidin. The binding specificity was found to derive from the rigid structure of the hydrogen-bondable pyrrolidine moiety. Compared with SPR measurements, the non-specific binding caused by the polymer matrix and/or randomly located fluorescent monomer residues that did not compose specific binding sites did not contribute to the observed fluorescence change. These results revealed that the proposed protein-imprinting technique using Hyp-En-Dans could provide a highly selective protein-sensing platform, in which only specific binding events would be detected by fluorescent measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang

    2014-05-01

    The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.

  5. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Nalbant, Perihan [University of Duisburg-Essen, Faculty of Biology, Institute of Molecular Cell Biology (Germany); Buer, Jan; Knuschke, Torben; Westendorf, Astrid M. [University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-06-15

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  6. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Science.gov (United States)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  7. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    International Nuclear Information System (INIS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-01-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100–250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  8. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede; Eita, Mohamed Samir; Khan, Jafar Iqbal; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic

  9. Modulating fluorescence quantum yield of highly concentrated fluorescein using differently shaped green synthesized gold nanoparticles

    International Nuclear Information System (INIS)

    John, Jisha; Thomas, Lincy; Kurian, Achamma; George, Sajan D.

    2016-01-01

    The interaction of dye molecules with differently shaped nanoparticles is of great interest owing to the potential applications in areas of bioimaging, sensing and photodynamic therapy (biology) as well as solar cells (photonics) applications. For such applications, noble metallic nanoparticles are commonly employed to either enhance or quench the luminescence of a nearby fluorophore. However, in most of the studies, the dye concentration is limited to avoid self-quenching. This paper reports the influence of differently shaped gold nanoparticles (spherical, bean and star), prepared via green synthesis, on the emission behavior as well as on the fluorescence quantum yield of fluorescein dye at concentrations for which self-quenching occurs. The emission behavior is probed via laser based steady state fluorescence whereas quantum yield is measured using a dual beam laser based thermal lens technique. The experimentally observed fluorescence quenching with a concomitant increase in thermal lens signal in the vicinity of nanoparticles are explained in terms of nonradiative energy transfer between the donor and the acceptor. Further, the influence of pH of the prepared gold nanofluid on the absorption, emission as well as quantum yield are also accounted. These studies elucidate that even at high concentrations of dye, the gold nanoparticle and its shape clearly influences the optical properties of nearby dye molecules and thus can be exploited for future applications. - Highlights: • Green synthesis of differently shaped gold nanoparticles. • Tailoring emission properties of fluorescein with respect to nanoparticle concentration and shape. • Tailoring the quantum yield of highly concentrated fluorescein with nanoparticles.

  10. Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging

    Directory of Open Access Journals (Sweden)

    Da Hye Shin

    2015-03-01

    Full Text Available In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid(γ-PGA formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine(PLL and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N and double bonds (C=C were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells. These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells.

  11. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites.

    Science.gov (United States)

    Zhou, Li; He, Benzhao; Huang, Jiachang

    2013-09-21

    A facile and green approach for the synthesis of amphibious fluorescent carbon dots (CDs) from natural polysaccharide is reported. Light-emitting polymer nanocomposites with excellent optical performance can be easily prepared by incorporation of the amphibious CDs into the polymer matrix.

  12. Preparation of polymer–rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    International Nuclear Information System (INIS)

    Gao Baojiao; Zhang Wei; Zhang Zhengguo; Lei Qingjuan

    2012-01-01

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer–rare earth complex, SAPS–Eu(III), was prepared. The structure of SAPS–Eu(III) was characterized, and the fluorescence properties of SAPS–Eu(III) were mainly investigated. The experimental results show that the complex SAPS–Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu 3+ ion, and it enables the complex SAPS–Eu(III) to produce the apparent “Antenna Effect”. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS–Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS–Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu 3+ ion is equal to 10, and here the binary intrachain complex SAPS–Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS–Eu(III)–Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu 3+ ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS–Eu(III). - Highlights: ► We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. ► The polymer-rare earth complex, SAPS–Eu(III), was prepared and a stronger “antenna effect” was produced. ► For the intramolecular complex SAPS–Eu(III), the apparent

  13. Structural diversity and fluorescence properties of three 2-sulfoterephthalate Cd{sup II}/Zn{sup II} coordination polymers employing 1,4-bisbenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yixia, E-mail: renyixia1@163.com; Chai, Hongmei; Tang, Long; Hou, Xiangyang; Wang, Jijiang

    2016-02-15

    Three novel coordination polymers, namely, [Cd(2-Hstp)(1,4-bbi)(H{sub 2}O){sub 2}]·3H{sub 2}O (1), [Cd{sub 1.5}(2-stp)(1,4-bbi)(H{sub 2}O){sub 2}]·H{sub 2}O (2) and [Zn{sub 2}(2-stp)(μ{sub 2}-OH)(1,4-bbi){sub 1.5}(H{sub 2}O)]·6H{sub 2}O (3) (2-H{sub 3}stp is equal to 2-sulfoterephthalate and 1,4-bisbenzimidazole is equal to 1,4-bbi), have been synthesized by hydrothermal reaction. The structural analyses show that 1 and 2 possess different structural features despite the same raw materials, which are 1D chain structure featuring 6-member-water H-bonds cluster and 3D bbi-pillared wavy-like layer framework, respectively. As changing the metal ion to zinc ion, 3 exhibits 3D stp-pillared layer architecture, which discovers the effect of the central metal ions on the formation of metal–organic frameworks. The fluorescence studies show that the emissions of the coordination polymers are attributed to the ligand π–π* transition, which means they could be potential fluorescence materials. - Graphical abstract: Three new Cd{sup II}/Zn{sup II} 2-sulfoterephthalate (2-H{sub 3}stp) complexes with 1,4-bisbenzimidazole (1,4-bbi) are described. Complex 1 exhibits one-dimensional chain-like structure, 2 is a three-dimensional bbi-pillared wavy-like layer framework, while 3 is a three-dimensional stp-pillared layer architecture. Fluorescence spectra exhibit the π–π* transition of two organic ligands. - Highlights: • Three Cd{sup II}/Mn{sup II} 2-sulfoterephthalate complexes containing 1,4-bisbenzimidazole. • Different structural features despite the same raw materials for 1 and 2. • Fluorescence spectra exhibit the π–π* transition of organic ligands.

  14. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-09-01

    Full Text Available Bo Wu,1,2 Shu-Ting Lu,1 Kai Deng,2 Hui Yu,2 Can Cui,2 Yang Zhang,2 Ming Wu,2 Ren-Xi Zhuo,2 Hai-Bo Xu,1 Shi-Wen Huang2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People’s Republic of China Abstract: In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX. They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo. Keywords: redox-sensitive, tumor-targeted, gadolinium, contrast agents, PLGA

  15. Enhanced efficiency of a fluorescing nanoparticle with a silver shell

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Wallace C H; Chen Xuewen [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); He Sailing [Centre for Optical and Electromagnetic Research, Zhejiang University, Zhijingang campus, Hangzhou 310058 (China)], E-mail: chchoy@eee.hku.hk

    2009-09-01

    Spontaneous emission (SE) rate and the fluorescence efficiency of a bare fluorescing nanoparticle (NP) and the NP with a silver nanoshell are analyzed rigorously by using a classical electromagnetic approach with the consideration of the nonlocal effect of the silver nano-shell. The dependences of the SE rate and the fluorescence efficiency on the core-shell structure are carefully studied and the physical interpretations of the results are addressed. The results show that the SE rate of a bare NP is much slower than that in the infinite medium by almost an order of magnitude and consequently the fluorescence efficiency is usually low. However, by encapsulating the NP with a silver shell, highly efficient fluorescence can be achieved as a result of a large Purcell enhancement and high out-coupling efficiency (OQE) for a well-designed core-shell structure. We also show that a higher SE rate may not offer a larger fluorescence efficiency since the fluorescence efficiency not only depends on the internal quantum yield but also the OQE.

  16. Nickel ethylene tetrathiolate polymers as nanoparticles: a new synthesis for future applications?

    Energy Technology Data Exchange (ETDEWEB)

    Faulmann, Christophe, E-mail: christophe.faulmann@lcc-toulouse.fr; Chahine, Joe; Jacob, Kane; Coppel, Yannick; Valade, Lydie; Caro, Dominique de [Laboratoire de Chimie de Coordination (LCC-CNRS UPR 8241) (France)

    2013-04-15

    Coordination polymers (CP) based on the ethylene tetrathiolate ligand (C{sub 2}S{sub 4}){sup 4-} and Ni{sup 2+}, and previously isolated as insoluble conductive powders are grown as nanoparticles (NP) using ionic liquid (IL) as stabilizing agent. The time of addition of the IL determines the morphology, and consequently the properties of the CP. The smaller (10-20 nm) and soluble NP are obtained when IL is present at the complexation step. The mechanism of growth of NP is studied. The NP size is sensitive to the amount of IL and to the reaction temperature. NPs are studied by TEM/EDX, DLS, liquid- and solid-state NMR, and conductivity.

  17. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Wu, Bo; Lu, Shu-Ting; Deng, Kai; Yu, Hui; Cui, Can; Zhang, Yang; Wu, Ming; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP) for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX). They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo.

  18. Improved polymer thin-film wetting behavior through nanoparticle segregation to interfaces

    International Nuclear Information System (INIS)

    Krishnan, R S; Mackay, M E; Duxbury, P M; Hawker, C J; Asokan, Suba; Wong, Michael S; Goyette, Rick; Thiyagarajan, P

    2007-01-01

    We report a systematic study of improved wetting behavior for thin polymer films containing nanoparticles, as a function of nanoparticle size and concentration, the energy of the substrate and the dielectric properties of the nanoparticles. An enthalpy matched system consisting of polystyrene nanoparticles in linear polystyrene is used to show that nanoparticles are uniformly distributed in the film after spin coating and drying. However, on annealing the film above its bulk glass transition temperature these nanoparticles segregate strongly to the solid substrate. We find that for a wide range of film thicknesses and nanoparticle sizes, a substrate coverage of nanoparticles of approximately a monolayer is required for dewetting inhibition. Cadmium selenide quantum dots also inhibit dewetting of polystyrene thin films, again when a monolayer is present. Moreover, TEM microscopy images indicate that CdSe quantum dots segregate primarily to the air interface. Theoretical interpretation of these phenomena suggests that gain of linear chain configurational entropy promotes segregation of nanoparticles to the solid substrate, as occurs for polystyrene nanoparticles; however, for CdSe nanoparticles this is offset by surface energy or enthalpic terms which promote segregation of the nanoparticles to the air interface

  19. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Science.gov (United States)

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  20. Generic delivery of payload of nanoparticles intracellularly via hybrid polymer capsules for bioimaging applications.

    Directory of Open Access Journals (Sweden)

    Haider Sami

    Full Text Available Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM capsules has been reported, where polystyrene sulfonate (PSS/polyallylamine hydrochloride (PAH polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells, without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+ was observed after internalization of LaF(3:Tb(3+(5% nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery without the need of individual cargo design/modification.

  1. Binding analysis for interaction of diacetylcurcumin with β-casein nanoparticles by using fluorescence spectroscopy and molecular docking calculations

    Science.gov (United States)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Fani, Najme; Keyhanfar, Mehrnaz

    2013-11-01

    The interaction of diacetylcurcumin (DAC), as a novel synthetic derivative of curcumin, with bovine β-casein (an abundant milk protein that is highly amphiphilic and self assembles into stable micellar nanoparticles in aqueous solution) was investigated using fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations. The fluorescence quenching measurements revealed the presence of a single binding site on β-casein for DAC with the binding constant value equals to (4.40 ± 0.03) × 104 M-1. Forster energy transfer measurements suggested that the distance between bound DAC and Trp143 residue is higher than the respective critical distance, hence, the static quenching is more likely responsible for fluorescence quenching other than the mechanism of non-radiative energy transfer. Our results from molecular docking calculations indicated that binding of DAC to β-casein predominantly occurred through hydrophobic contacts in the hydrophobic core of protein. Additionally, in vitro investigation of the cytotoxicity of free DAC and DAC-β-casein complex in human breast cancer cell line MCF7 revealed the higher cytotoxic effect of DAC-β-casein complex.

  2. Antibiotic polymeric nanoparticles for biofilm-associated infection therapy.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2014-01-01

    Polymeric nanoparticles are highly attractive as drug delivery vehicles due to their high structural integrity, stability during storage, ease of preparation and functionalization, and controlled release capability. Similarly, lipid-polymer hybrid nanoparticles, which retain the benefits of polymeric nanoparticles plus the enhanced biocompatibility and prolonged circulation time owed to the lipids, have recently emerged as a superior alternative to polymeric nanoparticles. Drug nanoparticle complex prepared by electrostatic interaction of oppositely charged drug and polyelectrolytes represents another type of polymeric nanoparticle. This chapter details the preparation, characterization, and antibiofilm efficacy testing of antibiotic-loaded polymeric and hybrid nanoparticles and antibiotic nanoparticle complex.

  3. Sustainability of silver nanoparticles in solutions and polymer materials

    International Nuclear Information System (INIS)

    Khaydarov, R.R.; Malikov, Sh.; Khaydarov, R.A.; Mironov, V.V.

    2006-01-01

    The technology of obtaining stable silver nanoparticles in solutions and composite materials for attainment of antimicrobial and antifungal properties to different surfaces has been developed. The shape of particles is spherical, diameter is about 5 nm. Various concentrations of silver nanoparticles have been deposited onto surfaces of different materials (cotton and synthetic fabrics, fibroid sorbents and polymer materials). Different ways of treatment and densities of nanoparticles on the treated surface have been studied during 6 months with respect to the best sustainability. In order to prevent agglomeration of obtained metal nanoparticles on the surface of materials treated, stabilizing reagents (ethylene glycol, formic acid, sodium dodecyl sulphate, etc.) have been used and their relative efficacy has been examined. Residual concentrations of the nanoparticles on various fabrics after 1, 3, 5 and 10 cycles of washing have been also studied. The treated fabrics keep their antibacterial properties after at least 3 times of laundering. The best finishing process to attach silver nanoparticles combination to various materials has been compared with biocidal properties of such antibacterial agents as metal salt solutions and zinc pyrithione.The possibility of treatment of nuclear track membranes by silver nanoparticles in order to prevent microbial growth on the surface of membranes has been discussed. (author)

  4. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  5. Scaling Behavior of Dendritic Nanoparticle Mobility in Semidilute Polymer Solutions

    NARCIS (Netherlands)

    Kort, de D.W.; Rombouts, W.H.; Hoeben, F.J.M.; Janssen, H.M.; As, van H.; Duynhoven, van J.P.M.

    2015-01-01

    In our studies on particle mobility in polymer solutions, we have investigated and determined self-diffusion coefficients of nanoparticles in semidilute solutions of poly(ethylene glycol) (PEG, Mw = 6, 20, 35, and 100 kDa). Specially designed PEGylated dendrimers with well-defined sizes (dh =

  6. One-step Preparation of Antimicrobial Silver Nanoparticles in Polymer Matrix.

    Czech Academy of Sciences Publication Activity Database

    Lyutakov, O.; Kalachyova, Y.; Solovyev, Andrey; Vytykačová, S.; Švanda, J.; Siegel, J.; Ulbrich, P.; Švorčík, V.

    2015-01-01

    Roč. 17, č. 3 (2015), s. 120 ISSN 1388-0764 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985858 Keywords : polymer * silver nanoparticles * antimicrobial test Subject RIV: JJ - Other Materials Impact factor: 2.101, year: 2015

  7. Significance of Algal Polymer in Designing Amphotericin B Nanoparticles

    Directory of Open Access Journals (Sweden)

    Saurabh Bhatia

    2014-01-01

    Full Text Available Development of oral amphotericin B (AmB loaded nanoparticles (NPs demands a novel technique which reduces its toxicity and other associated problems. Packing of AmB in between two oppositely charged ions by polyelectrolyte complexation technique proved to be a successful strategy. We have developed a novel carrier system in form of polyelectrolyte complex of AmB by using chitosan (CS and porphyran (POR as two oppositely charged polymers with TPP as a crosslinking agent. Initially POR was isolated from Porphyra vietnamensis followed by the fact that its alkali induced safe reduction in molecular weight was achieved. Formulation was optimized using three-factor three-level (33 central composite design. High concentration of POR in NPs was confirmed by sulfated polysaccharide (SP assay. Degradation and dissolution studies suggested the stability of NPs over wide pH range. Hemolytic toxicity data suggested the safety of prepared formulation. In vivo and in vitro antifungal activity demonstrated the high antifungal potential of optimized formulation when compared with standard drug and marketed formulations. Throughout the study TPP addition did not cause any significant changes. Therefore, these experimental oral NPs may represent an interesting carrier system for the delivery of AmB.

  8. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)

    2016-08-15

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  9. A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young's Modulus of Polymer Nanocomposites

    Science.gov (United States)

    Ma, Xinyue; Zare, Yasser; Rhee, Kyong Yop

    2017-12-01

    A two-step technique based on micromechanical models is suggested to determine the influence of aggregated/agglomerated nanoparticles on Young's modulus of polymer nanocomposites. The nanocomposite is assumed to include nanoparticle aggregation/agglomeration and effective matrix phases. This method is examined for different samples, and the effects of important parameters on the modulus are investigated. Moreover, the highest and the lowest levels of predicted modulus are calculated based on the current methodology. The suggested technique can correctly predict Young's modulus for the samples assuming the aggregation/agglomeration of nanoparticles. Additionally, the aggregation/agglomeration of nanoparticles decreases Young's modulus of polymer nanocomposites. It is demonstrated that the high modulus of nanoparticles is not sufficient to obtain a high modulus in nanocomposites, and the surface chemistry of components should be adjusted to prevent aggregation/agglomeration and to disperse nano-sized particles in the polymer matrix.

  10. Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores

    International Nuclear Information System (INIS)

    Yoo, Hyojong; Pak, Joonsung

    2013-01-01

    Water-soluble, highly fluorescent double-layered silica nanoparticles (FL-DLSN) have been successfully synthesized through a reverse (water-in-oil) microemulsion method. The microemulsion was prepared by mixing a surfactant (Brij35), co-surfactant, organic solvent, water, and fluorescein as an organic fluorophore. The sizes of the silica nanoparticles were successfully controlled in the reverse microemulsion using Brij35 by changing the water-to-Brij35 ratio and by adding HCl. Initially, tetraethylorthosilicate was hydrolyzed by adding NH 4 OH as a catalyst and then polymerized to generate core fluorescent silica nanoparticles with fluorescein. 3-(Aminopropyl)triethoxysilane (APTS) was sequentially added into the reaction mixture, and reacted on the surface of pre-generated core silica nanoparticles to form the second layer in the form of a shell. The second silica layer that was derived from the condensation of APTS effectively protected the fluorescein dye within the silica matrix. This is a novel and simple synthetic approach to generate highly fluorescent, monodispersed silica nanoparticles by doping organic molecules into a silica matrix.Graphical Abstract

  11. Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyojong, E-mail: hyojong@hallym.ac.kr; Pak, Joonsung [Hallym University, Department of Chemistry (Korea, Republic of)

    2013-05-15

    Water-soluble, highly fluorescent double-layered silica nanoparticles (FL-DLSN) have been successfully synthesized through a reverse (water-in-oil) microemulsion method. The microemulsion was prepared by mixing a surfactant (Brij35), co-surfactant, organic solvent, water, and fluorescein as an organic fluorophore. The sizes of the silica nanoparticles were successfully controlled in the reverse microemulsion using Brij35 by changing the water-to-Brij35 ratio and by adding HCl. Initially, tetraethylorthosilicate was hydrolyzed by adding NH{sub 4}OH as a catalyst and then polymerized to generate core fluorescent silica nanoparticles with fluorescein. 3-(Aminopropyl)triethoxysilane (APTS) was sequentially added into the reaction mixture, and reacted on the surface of pre-generated core silica nanoparticles to form the second layer in the form of a shell. The second silica layer that was derived from the condensation of APTS effectively protected the fluorescein dye within the silica matrix. This is a novel and simple synthetic approach to generate highly fluorescent, monodispersed silica nanoparticles by doping organic molecules into a silica matrix.Graphical Abstract.

  12. Synthesis and characterization of TiO2/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Park, Jung Tae; Koh, Joo Hwan; Seo, Jin Ah; Cho, Yong Soo; Kim, Jong Hak

    2011-01-01

    We report on the novel ternary hybrid materials consisting of semiconductor (TiO 2 ), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO 2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO 2 -POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF 3 SO 3 precursor and a NaBH 4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO 2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the C=O groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.

  13. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-01-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex ® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  14. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  15. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D., E-mail: sakthi@toyo.jp

    2013-10-15

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering

  16. Magnetic Alignment of γ-Fe2O3 Nanoparticles in Polymer Nanocomposites

    Science.gov (United States)

    Jimenez, Andrew; Kumar, Sanat K.; Jestin, Jacques

    Recent work in nanocomposites has been heavily focused on controlling the dispersion state of filler particles. The use of internal self-assembly based on matrix properties provides a limited solution to the desire for specified organizations. By introducing a magnetic field during the casting of a polymer solution it has been shown that particles can be oriented to form anisotropic structures - commonly sought after for improved mechanical properties. Here, magnetic nanoparticles were cast in two different polymer matrices to study the effect of various forces that lead to this highly desired alignment. The addition of the magnetic field as an external trigger was shown to not necessarily force the clustering, but rather orient the agglomerates already available in solution. This demonstrates the importance of other dominant forces introduced into the system by characteristics of the polymers themselves. While this magnetic field provides a direction for the sample, the key forces lie in the interactions between the polymers and nanoparticles (as well as their solvent). The study shows a dependence of anisotropy on the particle loading, matrix, and casting time, from which continued work hopes to quantify the clustering necessary to optimize alignment in the composite.

  17. Characterization of temperature and pH-responsive poly-N-isopropylacrylamide-co-polymer nanoparticles for the release of antimicrobials

    International Nuclear Information System (INIS)

    Hill, Laura E; Gomes, Carmen L

    2014-01-01

    Chitosan and alginate are both pH-responsive biopolymers extracted from crustacean exoskeletons and brown algae, respectively. Poly-N-isopropylacrylamide (PNIPAAM) is a hydrogel that becomes hydrophobic at a lower-critical solution temperature. This study sought to combine pH- and temperature-responsive polymers via crosslinking, in order to create a dual-stimuli responsive polymer for hydrophobic antimicrobial compounds delivery, improving their antimicrobial effects. Cinnamon bark extract (CBE) was used as a model for hydrophobic antimicrobial. Two co-polymers were synthesized to create two nanoparticles types: chitosan-co-PNIPAAM and alginate-co-PNIPAAM. Nanoparticles were formed from the resulting co-polymers using a self-assembly top-down process followed by glutaraldehyde or calcium chloride crosslinking. These nanoparticles were then used as controlled delivery vehicles for CBE, whose rapid release could be triggered by specific external stimuli. For the same pH and temperature conditions, the chitosan-co-PNIPAAM nanoparticles were significantly more potent bacterial inhibitors against both pathogens and also exhibited a faster CBE release over time as well as slightly higher entrapment efficiency. The alginate-co-PNIPAAM nanoparticles were significantly smaller and exhibited a slow, gradual release over a long time period. Although both nanoparticles were able to effectively inhibit pathogen growth at lower (P < 0.05) concentration than free CBE, the chitosan-co-PNIPAAM nanoparticles were more effective in delivering a natural antimicrobial with controlled release against foodborne pathogens. (paper)

  18. On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions.

    Science.gov (United States)

    Mun, Ellina A; Hannell, Claire; Rogers, Sarah E; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2014-01-14

    Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

  19. Using fluorescence measurement of zinc ions liberated from ZnS nanoparticle labels in bioassay for Escherichia coli O157:H7

    International Nuclear Information System (INIS)

    Cowles, Chad L.; Zhu Xiaoshan; Pai, Chi-Yun

    2011-01-01

    In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.

  20. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    Science.gov (United States)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  1. Fluorescent quenching immune chromatographic strips with quantum dots and upconversion nanoparticles as fluorescent donors for visual detection of sulfaquinoxaline in foods of animal origin

    International Nuclear Information System (INIS)

    Hu, Gaoshuang; Sheng, Wei; Li, Jingmin; Zhang, Yan; Wang, Junping; Wang, Shuo

    2017-01-01

    In this study, two novel fluorescence quenching immune chromatographic strips (FQICS) were developed to detect sulfaquinoxaline (SQX) in foods of animal origin. These proposed FQICSs were based on fluorescence resonance energy transfer (FRET) from fluorescence donors (quantum dots or upconversion nanoparticles) to fluorescence acceptors (colloidal gold nanoparticles). Compared with traditional colloidal gold-based immune chromatographic strips (ICS), these FQICSs showed positive correlation between the fluorescent signals and the targets, and allowed user to get test results from weak fluorescent signals. The visual detection limits of these two FQICSs were both 1 ng mL −1 in standard solution and 8 μg kg −1 in samples, while the visual detection limit of the colloidal gold-based ICS was 10 ng mL −1 in standard solution and 80 μg kg −1 in samples. Besides, the results we obtained by the use of FQICS showed high agreement with those obtained by the use of commercial ELISA kits, indicating the good accuracy of these strips. As a conclusion, these proposed FQICS based on quantum dots and upconversion nanoparticles can be applied in sensitive, rapid and on-site detection of SQX in foods of animal origin. - Highlights: • Two novel FQICS based on FRET were developed for the first time. • QDs and UCNPs were used as fluorescent donors in the FQICS. • The proposed FQICS showed low LOD compared with traditional ICS. • The proposed FQICS were applied in real samples analysis. • The proposed FQICS were verified by commercial ELISA kits.

  2. Problems of fluorescent imaging and its solution using nanofluorophores. Part I: Advantages of fluorescent nanoparticles over conventional organic fluorophores

    International Nuclear Information System (INIS)

    Zhelev, Z.; Hadjidekov, G.; Zlateva, G.; Spasov, L.; Bakalova, R.

    2011-01-01

    The application of fluorescence in deep-tissue imaging is rapidly expanding in fast several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecules in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With development of novel bright fluorophores based on nano-technologies and fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. This review outlines the current status and future trends of fluorescent nanoparticles - quantum dots (QDs), as a new generation of fluorophores in experimental and pre-clinical fluorescent imaging diagnostic. Part 1 focuses on the advantages of quantum dots over conventional organic fluorophores and defines the major requirements to the 'perfect' fluorophore for fluorescent deep-tissue imaging diagnostic. The analysis is based on the limitations of fluorescent imaging in vivo and overcome by using quantum dots

  3. 50th Anniversary Perspective: Polymers with Complex Architectures

    KAUST Repository

    Polymeropoulos, George

    2017-02-09

    The scope of this Perspective is to highlight innovative contributions in the synthesis of well-defined complex macromolecular architectures and to emphasize the importance of these materials to polymer physical chemistry, physics, theory, and applications. In addition, this Perspective tries to enlighten the past and show possible pathways for the future. Among the plethora of polymerization methods, we briefly report the impact of the truly living and controlled/living polymerization techniques focusing mainly on anionic polymerization, the mother of all living and controlled/living polymerizations. Through anionic polymerization well-defined model polymers with complex macromolecular architectures having the highest molecular weight, structural and compositional homogeneity can be achieved. The synthesized structures include star, comb/graft, cyclic, branched and hyberbranched, dendritic, and multiblock multicomponent polymers. In our opinion, in addition to the work needed on the synthesis, properties, and application of copolymers with more than three chemically different blocks and complex architecture, the polymer chemists in the future should follow closer the approaches Nature, the perfect chemist, uses to make functional complex macromolecular structures by noncovalent chemistry. Moreover, development of new analytical methods for the characterization/purification of polymers with complex macromolecular architectures is essential for the synthesis and properties study of this family of polymeric materials.

  4. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing

    International Nuclear Information System (INIS)

    Lapresta-Fernandez, Alejandro; Doussineau, Tristan; Moro, Artur J; Dutz, Silvio; Steiniger, Frank; Mohr, Gerhard J

    2011-01-01

    This paper describes the preparation of nanoparticles composed of a magnetic core surrounded by two successive silica shells embedding two fluorophores, showing uniform nanoparticle size (50-60 nm in diameter) and shape, which allow ratiometric pH measurements in the pH range 5-8. Uncoated iron oxide magnetic nanoparticles (∼10 nm in diameter) were formed by the coprecipitation reaction of ferrous and ferric salts. Then, they were added to a water-in-oil microemulsion where the hydrophilic silica shells were obtained through hydrolysis and condensation of tetraethoxyorthosilicate together with the corresponding silylated dye derivatives-a sulforhodamine was embedded in the inner silica shell and used as the reference dye while a pH-sensitive fluorescein was incorporated in the outer shell as the pH indicator. The magnetic nanoparticles were characterized using vibrating sample magnetometry, dynamic light scattering, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The relationship between the analytical parameter, that is, the ratio of fluorescence between the sensing and reference dyes versus the pH was adjusted to a sigmoidal fit using a Boltzmann type equation giving an apparent pK a value of 6.8. The fluorescence intensity of the reference dye did not change significantly (∼3.0%) on modifying the pH of the nanoparticle dispersion. Finally, the proposed method was statistically validated against a reference procedure using samples of water and physiological buffer with 2% of horse serum, indicating that there are no significant statistical differences at a 95% confidence level.

  5. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique

    Science.gov (United States)

    Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.

    2018-05-01

    In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.

  6. Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Prashanthi, K.; Zhang, H.; Thundat, T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Ramgopal Rao, V. [Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai (India)

    2012-02-15

    Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo-epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU-8 polymer. These results have strong implications for simple photolithography based low-cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Comprehensive studies on the interactions between chitosan nanoparticles and some live cells

    International Nuclear Information System (INIS)

    Zheng Aiping; Liu Huixue; Yuan Lan; Meng Meng; Wang Jiancheng; Zhang Xuan; Zhang Qiang

    2011-01-01

    As more and more oral formulations of nanoparticles are used in clinical contexts, a comprehensive study on the mechanisms of interaction between polymer nanoparticles and live cells seems merited. Such a study was conducted and the results were compared to the polymer itself in order to demonstrate different kinds of effects that are brought into the cell by polymer and its nanoparticles, especially the effects on the biomembrane. Several techniques, including surface plasmon resonance (SPR), Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, fluorescence polarization spectroscopy (FP), flow cytometry (FCM) with quantitative analysis, and confocal images with antibody staining were employed toward this end. The cytotoxicity in vitro was also evaluated. Chitosan (CS), a polycationic polymer, was used to prepare the nanoparticles. We demonstrate that chitosan nanoparticles (CS-NP) induce strong alterations in the distribution of membrane proteins, fluidity of membrane lipids, and general membrane structure. Furthermore, the uptake of CS-NP into Caco-2 cells was found to have a similar mechanism to that of CS molecules, but the differences in degree were noted. These results indicate that positive charge and nanoscale size were the factors that most significantly affected the interactions between the nanoparticles of polycationic polymers and live cells. However, no difference in cytotoxicity toward the Caco-2 cells was found between CS and CS-NP. This supports the idea that CS-NP is an effective and safe carrier for oral drug delivery.

  8. Plasmonic effects of gold colloids on the fluorescence behavior of dye-doped SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tarpani, Luigi, E-mail: luigi.tarpani@unipg.it; Latterini, Loredana

    2017-05-15

    The interactions of dye molecules with gold nanoparticles are of great interest owing to the potential applications in the areas of bioimaging, sensing and photodynamic therapy applications. In many cases the distances between fluorophores and the metal particles can change during the experiment and the spectral features of the units are not taken into account. In this work, the fluorescence behaviour of two dyes with different spectral properties (Rhodamine B and 9-aminoacridine) are investigated in the presence of gold nanoparticles having diameters of 2 or 26 nm and hence different plasmonic properties. In order to fix the distance between the dye and the gold nanoparticles, the dyes are entrapped in 20 nm silica nanoparticles, and the metal colloids are adsorbed on the silica surface. The distance between the fluorescent units and the metal particles is tuned by growing additional silica layers on the pristine nanoparticles. Steady-state and time-resolved fluorescence measurements show that in the presence of gold nanoparticles, having 2 nm diameter, a drastic quenching of the dye emission is observed, for all the prepared samples, despite the average dye-metal distances. When gold nanoparticles with 26 nm diameters are used, their interactions with the dyes are strongly dependent on the averaged distances between the metal colloids and the dyes and on the overlap of their spectral properties. Indeed, an enhanced emission is observed for 9-aminoacridine while the fluorescence of longer wavelength emitting Rhodamine B is quenched. The steady state and time-resolved data are analysed to evaluate the plasmonic impact of the radiative and non-radiative rate constants of the dyes.

  9. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    International Nuclear Information System (INIS)

    Gueltekin, Aytac; Ersoez, Arzu; Huer, Deniz; Sarioezlue, Nalan Yilmaz; Denizli, Adil; Say, Ridvan

    2009-01-01

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  10. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    Science.gov (United States)

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  11. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    International Nuclear Information System (INIS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-01-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 − 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail. (topical review)

  12. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  13. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples.

    Science.gov (United States)

    Xiang, Guoqiang; Wang, Yule; Zhang, Heng; Fan, Huanhuan; Fan, Lu; He, Lijun; Jiang, Xiuming; Zhao, Wenjie

    2018-09-15

    In this work, a simple and effective strategy for designing a ratiometric fluorescent nanosensor was described. A carbon dots (CDs) based dual-emission nanosensor for nitrite was prepared by coating the CDs on to dye-doped silica nanoparticles. Dual-emission silica nanoparticles fluorescence was quenched in sulfuric acid using potassium bromate (KBrO 3 ). The nitrite present catalyzed the KBrO 3 oxidation, resulting in ratiometric fluorescence response of the dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated. Under optimized conditions, the limit of detection was 1.0 ng mL -1 and the linear range 10-160 ng mL -1 . Furthermore, the sensor was suitable for nitrite determination in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine-terbium complex.

    Science.gov (United States)

    Lotfi, Ali; Manzoori, Jamshid L

    2016-11-01

    In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium-fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV-Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium-sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb 3+ concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium-fluoxetine-AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10 -4 mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.

    Science.gov (United States)

    Huang, Huajun; Li, Weifei; Shi, Yan; Deng, Jianping

    2017-05-25

    Constructing optically active helical polymer based nanomaterials without using expensive and limited chirally helical polymers has become an extremely attractive research topic in both chemical and materials science. In this study, we prepared a series of optically active helical polymer nanoparticles/graphene oxide (OAHPNs/GO) hybrid nanocomposites through an unprecedented strategy-the co-precipitation of optically inactive helical polymers and chirally modified GO. This approach is named helix-sense-selective co-precipitation (HSSCP), in which the chirally modified GO acted as a chiral source for inducing and further stabilizing the predominantly one-handed helicity in the optically inactive helical polymers. SEM and TEM images show quite similar morphologies of all the obtained OAHPNs/GO nanocomposites; specifically, the chirally modified GO sheets were uniformly decorated with spherical polymer nanoparticles. Circular dichroism (CD) and UV-vis absorption spectra confirmed the preferentially induced helicity in the helical polymers and the optical activity of the nanocomposites. The established HSSCP strategy is thus proven to be widely applicable and is expected to produce numerous functional OAHPNs/GO nanocomposites and even the analogues.

  16. Gelatin modified lipid nanoparticles for anti- viral drug delivery.

    Science.gov (United States)

    K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu

    2017-10-01

    The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  18. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  19. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  20. Fluorescent zinc–terpyridine complex containing coordinated ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Zinc peroxo complex; terpyridine complexes; fluorescence ... structure determination 3. Zinc is an essential element for normal function of most .... 63 179; (d) De Silva A P, Gunaratna H Q N, Gunnlaugsson T, Huxley A J M, Mcloy C.

  1. Synthesis, Structural Characterization, and Preclinical Efficacy of a Novel Paclitaxel-Loaded Alginate Nanoparticle for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Ahmed A. Markeb

    2016-01-01

    Full Text Available Purpose. The antitumor activity of a novel alginate (ALG polymer-based particle that contained paclitaxel (PTX was evaluated using human primary breast cancer cells. Materials and Methods. PTX was combined with ALG in a nanoparticle as a drug delivery system designed to improve breast cancer tumor cell killing. PTX-ALG nanoparticles were first synthesized by nanoemulsification polymer cross-linking methods that improved the aqueous solubility. Structural and biophysical properties of the PTX-ALG nanoparticles were then determined by transmission electron microscopy (TEM and high performance liquid chromatography (HPLC fluorescence. The effect on cell cycle progression and apoptosis was determined using flow cytometry. Results. PTX-ALG nanoparticles were prepared and characterized by ultraviolet (UV/visible (VIS, HPLC fluorescence, and TEM. PTX-ALG nanoparticles demonstrated increased hydrophobicity and solubility over PTX alone. Synthetically engineered PTX-ALG nanoparticles promoted cell-cycle arrest, reduced viability, and induced apoptosis in human primary patient breast cancer cells superior to those of PTX alone. Conclusion. Taken together, our results demonstrate that PTX-ALG nanoparticles represent an innovative, nanoscale delivery system for the administration of anticancer agents that may avoid the adverse toxicities with enhanced antitumor effects to improve the treatment of breast cancer patients.

  2. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    Science.gov (United States)

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  3. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-01-01

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  4. DNA-functionalized gold nanoparticle-based fluorescence polarization for the sensitive detection of silver ions.

    Science.gov (United States)

    Wang, Gongke; Wang, Shuangli; Yan, Changling; Bai, Guangyue; Liu, Yufang

    2018-04-05

    Despite their practical applications, Ag + ions are environmental pollutants and affect human health. So the effective detection methods of Ag + ions are imperative. Herein, we developed a simple, sensitive, selective, and cost-effective fluorescence polarization sensor for Ag + detection in aqueous solution using thiol-DNA-functionalized gold nanoparticles (AuNPs). In this sensing strategy, Ag + ions can specifically interact with a cytosine-cytosine (CC) mismatch in DNA duplexes and form stable metal-mediated cytosine-Ag + -cytosine (C-Ag + -C) base pairs. The formation of the C-Ag + -C complex results in evident changes in the molecular volume and fluorescence polarization signal. To achieve our aims, we prepared two complementary DNA strands containing C-base mismatches (probe A: 5'-SH-A 10 -TACCACTCCTCAC-3' and probe B: 5'-TCCTCACCAGTCCTA-FAM-3'). The stable hybridization between probe A and probe B occurs with the formation of the C-Ag + -C complex in the presence of Ag + ions, leading to obvious fluorescence quenching in comparison to the system without AuNP enhancement. The assay can be used to identify nanomolar levels of Ag + within 6 min at room temperature, and has extremely high specificity for Ag + , even in the presence of higher concentrations of interfering metal ions. Furthermore, the sensor was successfully applied to the detection of Ag + ions in environmental water samples and showed excellent selectivity and high sensitivity, implying its promising application in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Multifunctional material based on ionic transition metal complexes and gold-silica nanoparticles: synthesis and photophysical characterization for application in imaging and therapy.

    Science.gov (United States)

    Ricciardi, Loredana; Martini, Matteo; Tillement, Olivier; Sancey, Lucie; Perriat, Pascal; Ghedini, Mauro; Szerb, Elisabeta I; Yadav, Yogesh J; La Deda, Massimo

    2014-11-01

    A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.

  6. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    Science.gov (United States)

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Surface-modified multifunctional MIP nanoparticles

    Science.gov (United States)

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2013-04-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity

  8. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells.

    Science.gov (United States)

    Adinolfi, Barbara; Pellegrino, Mario; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Sotgiu, Giovanna; Varchi, Greta; Ballestri, Marco; Posati, Tamara; Carpi, Sara; Nieri, Paola; Baldini, Francesco

    2017-02-15

    One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm 2 ), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm 2 ). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    Science.gov (United States)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  10. Complex conductivity response to silver nanoparticles in ...

    Science.gov (United States)

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co

  11. A micromotor based on polymer single crystals and nanoparticles: toward functional versatility

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2014-07-01

    We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection.We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S8 and Video S1-S4. See DOI: 10.1039/c4nr02593h

  12. Turkevich method for silver/titanium dioxide nanoparticles with antimicrobial application in polymers systems

    International Nuclear Information System (INIS)

    Olyveira, Gabriel Molina de; Pessan, Luiz Antonio

    2009-01-01

    Titanium dioxide nanoparticles were covered with silver nanoparticles using Turkevich Method or citrate reduction method. Silver and titanium dioxide has proved antimicrobial properties then the nanocomposite can be successful incorporated in polymer systems. Silver nitrate was reduced by sodium citrate in the presence of poly(vinyl pyrrolidone)(PVP) resulting in nano-Ag/TiO 2 stabilized suspension. It was tested ammonia hydroxide in the synthesis to avoid the nanoparticles growth. The Ag/TiO 2 nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The best system of coloidal nanoparticles was that one with Poly(vinyl pyrrolidone) and ammonia in the synthesis. (author)

  13. Surface chemistry of photoluminescent F8BT conjugated polymer nanoparticles determines protein corona formation and internalization by phagocytic cells.

    Science.gov (United States)

    Ahmad Khanbeigi, Raha; Abelha, Thais Fedatto; Woods, Arcadia; Rastoin, Olivia; Harvey, Richard D; Jones, Marie-Christine; Forbes, Ben; Green, Mark A; Collins, Helen; Dailey, Lea Ann

    2015-03-09

    Conjugated polymer nanoparticles are being developed for a variety of diagnostic and theranostic applications. The conjugated polymer, F8BT, a polyfluorene derivative, was used as a model system to examine the biological behavior of conjugated polymer nanoparticle formulations stabilized with ionic (sodium dodecyl sulfate; F8BT-SDS; ∼207 nm; -31 mV) and nonionic (pegylated 12-hydroxystearate; F8BT-PEG; ∼175 nm; -5 mV) surfactants, and compared with polystyrene nanoparticles of a similar size (PS200; ∼217 nm; -40 mV). F8BT nanoparticles were as hydrophobic as PS200 (hydrophobic interaction chromatography index value: 0.96) and showed evidence of protein corona formation after incubation with serum-containing medium; however, unlike polystyrene, F8BT nanoparticles did not enrich specific proteins onto the nanoparticle surface. J774A.1 macrophage cells internalized approximately ∼20% and ∼60% of the F8BT-SDS and PS200 delivered dose (calculated by the ISDD model) in serum-supplemented and serum-free conditions, respectively, while cell association of F8BT-PEG was minimal (<5% of the delivered dose). F8BT-PEG, however, was more cytotoxic (IC50 4.5 μg cm(-2)) than F8BT-SDS or PS200. The study results highlight that F8BT surface chemistry influences the composition of the protein corona, while the properties of the conjugated polymer nanoparticle surfactant stabilizer used determine particle internalization and biocompatibility profile.

  14. Integrin-mediated targeting of protein polymer nanoparticles carrying a cytostatic macrolide

    Science.gov (United States)

    Shi, Pu

    Cytotoxicity, low water solubility, rapid clearance from circulation, and offtarget side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or nonpolymeric. This chapter summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. This chapter explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for

  15. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    Science.gov (United States)

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  16. Coupling of a single active nanoparticle to a polymer-based photonic structure

    Directory of Open Access Journals (Sweden)

    Dam Thuy Trang Nguyen

    2016-03-01

    Full Text Available The engineered coupling between a guest moiety (molecule, nanoparticle and the host photonic nanostructure may provide a great enhancement of the guest optical response, leading to many attractive applications. In this article, we describe briefly the basic concept and some recent progress considering the coupling of a single nanoparticle into a photonic structure. Different kinds of nanoparticles of great interest including quantum dots and nitrogen-vacancy centers in nanodiamond for single photon source, nonlinear nanoparticles for efficient nonlinear effect and sensors, magnetic nanoparticles for Kerr magneto-optical effect, and plasmonic nanoparticles for ultrafast optical switching and sensors, are briefly reviewed. We focus further on the coupling of plasmonic gold nanoparticles and polymeric photonic structures by optimizing theoretically the photonic structures and developing efficient way to realize desired hybrid structures. The simple and low-cost fabrication technique, the optical enhancement of the fluorescent nanoparticles induced by the photonic structure, as well as the limitations, challenges and appealing prospects are discussed in details.

  17. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  18. New fluorescent polymeric nanocomposites synthesized by antimony dodecyl-mercaptide thermolysis in polymer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In this work, the formation of semiconductive Sb2S3 nanoparticles inside amorphous polystyrene has been achieved by thermal degradation of the corresponding antimony dodecyl-mercaptide, Sb(SC12H253. The thermolysis of the dodecyl-mercaptide precursor was studied as both pure phase and mercaptide solution in polystyrene. The thermal decomposition of the antimony mercaptide precursor at 350°C, under vacuum, showed the formation of a mixture of antimony trisulfide (stibnite, Sb2S3 and zero-valent antimony (Sb phase. X-ray Powder Diffraction (XRD and Rietveld analysis carried out on the obtained nanostructured powder confirmed the presence of Sb and Sb2S3 phases in 10.4 wt% and 89.6 wt% amount, respectively. The same pyrolysis reaction was carried out in the polymer and the resulting nanocomposite material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, UV-VIS spectroscopy, and fluorescence spectroscopy. The nanocomposite structural characterization indicated the presence of well-dispersed nanoclusters of antimony and stibnite (15–30 nm in size inside the amorphous polymeric phase. Optical measurements on the obtained nanocomposite films showed a strong emission at 432 nm upon excitation at 371 nm, probably related to the presence of Sb2S3 nanoclusters.

  19. Goat anti-rabbit IgG conjugated fluorescent dye-doped silica nanoparticles for human breast carcinoma cell recognition.

    Science.gov (United States)

    Chen, Min-Yan; Chen, Ze-Zhong; Wu, Ling-Ling; Tang, Hong-Wu; Pang, Dai-Wen

    2013-11-12

    We report an indirect method for cancer cell recognition using photostable fluorescent silica nanoprobes as biological labels. The dye-doped fluorescent silica nanoparticles were synthesized using the water-in-oil (W/O) reverse microemulsion method. The silica matrix was produced by the controlled hydrolysis of tetraethylorthosilicate (TEOS) in water nanodroplets with the initiation of ammonia (NH3·H2O). Fluorescein isothiocyanate (FITC) or rhodamine B isothiocyanate conjugated with dextran (RBITC-Dextran) was doped in silica nanoparticles (NPs) with a size of 60 ± 5 nm as a fluorescent signal element by covalent bonding and steric hindrance, respectively. The secondary antibody, goat anti-rabbit IgG, was conjugated on the surface of the PEG-terminated modified FITC-doped or RBITC-Dextran-doped silica nanoparticles (PFSiNPs or PBSiNPs) by covalent binding to the PEG linkers using the cyanogen bromide method. The concentrations of goat anti-rabbit IgG covering the nanoprobes were quantified via the Bradford method. In the proof-of-concept experiment, an epithelial cell adhesion molecule (EpCAM) on the human breast cancer SK-Br-3 cell surface was used as the tumor marker, and the nanoparticle functionalized with rabbit anti-EpCAM antibody was employed as the nanoprobe for cancer cell recognition. Compared with fluorescent dye labeled IgG (FITC-IgG and RBITC-IgG), the designed nanoprobes display dramatically increased stability of fluorescence as well as photostability under continuous irradiation.

  20. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    Science.gov (United States)

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene

    Science.gov (United States)

    Maharramov, A. A.; Ramazanov, M. A.; Di Palma, Luca; Shirinova, H. A.; Hajiyeva, F. V.

    2018-01-01

    Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102-106 Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity ɛ, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases.

  2. Analytical detection and biological assay of antileukemic drug using gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: rajselva_77@yahoo.co.in; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: mkalagar@yahoo.com; Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-11-12

    Gold nanoparticles are reported and evaluated as probes for the detection of anticancer drug 6-mercaptopurine (6-MP). The nature of binding between 6-MP and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The bound antileukemic drug is fluorescent and the quenching property of gold nanoparticles could be exploited for biological investigations. The 6-MP-colloidal gold complex is observed to have appreciable antibacterial and antifungal activity against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus fumigatus, and Aspergillus niger. The experimental studies suggest that gold nanoparticles have the potential to be used as effective carriers for anticancer drugs.

  3. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  4. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    Science.gov (United States)

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.

  5. Growth of polymer nanoparticles in microemulsion polymerization initiated with γ ray

    International Nuclear Information System (INIS)

    Xu Xiangling; Ge Xuewu; Ye Qiang; Zhang Zhicheng; Zuo Ju; Niu Aizhen; Zhang Manwei

    1999-01-01

    In microemulsion polymerization of styrene, butyl acrylate and methyl methacrylate initiated with gamma ray, growth of polymer nanoparticles was observed with photon correlation spectroscopy, and the conversion curve was recorded with a dilatometer. There is some similarity in the growth of polymer particles. The size of polymer particles rapidly increases up to their maximum at the early stage. With the increase of conversion, the large particles supply their monomer to newly formed particles and become smaller. In all these three microemulsion polymerizations, the evidence of continuous nucleation was observed. When monomer is styrene or butyl acrylate, a plateau of polymerization rate emerges. When monomer is methyl methacrylate, no plateau of polymerization is observed

  6. Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine)

    International Nuclear Information System (INIS)

    Ji Minglei; Yang Wuli; Ren Qingguang; Lu Daru

    2009-01-01

    In order to enhance the dispersion ability of hydrophobic nanoparticles in water while maintaining their unique properties, we utilized poly(ethylene glycol) grafted hyperbranched poly(amido amine) (h-PAMAM-g-PEG) to modify three types of hydrophobic nanoparticle, CdSe, Au, and Fe 3 O 4 , and transferred them into water to extend their applications in biology. Considering the large amounts of amino groups in hyperbranched poly(amido amine) (h-PAMAM) polymer, complexation interaction between h-PAMAM-g-PEG copolymer and nanoparticles was achieved and ligand exchange between the copolymers and original small molecules ligands occurred. The transferred nanoparticles could be easily dispersed in water with better stability, and their unique properties, such as fluorescence, surface plasmon resonance, and superparamagnetism, were well maintained in the ligand exchange process. In addition, increasing the number of grafted PEG showed a negative effect on the ligand exchange process. Due to the existence of h-PAMAM-g-PEG ligands, the stabilized nanoparticles have improved stability in aqueous and ionic solutions. In the case of CdSe nanoparticles, the h-PAMAM-g-PEG layer leads to a lower cytotoxicity when compared with bare CdSe particles, and they could be directly used in bioimaging.

  7. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.

    Science.gov (United States)

    Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao

    2015-07-01

    A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.

  9. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format

    Science.gov (United States)

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey

    2016-11-01

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  10. Controllable synthesis and characterization of highly fluorescent silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Junlin [Nanjing Normal University, School of Chemistry and Materials Science (China); An Xueqing, E-mail: anxueqin@ecust.edu.cn [East China University of Science and Technology, School of Chemistry and Molecular Engineering (China); Zhu Yinyan [Nanjing Normal University, School of Chemistry and Materials Science (China)

    2012-12-15

    Highly fluorescent silver nanoparticles (AgFNPs) have been prepared by microemulsion method and the sizes of AgFNPs were controlled by altering the molar ratio ({omega}) of water-to-surfactant in the water-in-oil microemulsion. The results were shown that the AgFNPs sizes increased with incremental molar ratio ({omega}) of water-to-surfactant. The AgFNPs have been characterized by transmission electron microscopy, dynamic light scattering, fluorescence and absorption spectroscopy, and fluorescence lifetime study. Study of the spectral characteristics was shown that the absorbance of AgFNPs increased significantly with the {omega}, and linear relationship between absorbance and the size of AgFNPs was observed. The increase of AgFNPs size caused a red shift of maximum absorption wavelength in the UV-Vis spectra, and the relationship between maximum absorption wavelength and AgFNPs size appeared linear dependence. The maximum fluorescence emission wavelength did not shift with the change of particles size, but the emission intensity increases with the {omega}. The results were shown that the other factors to affect the fluorescence properties of AgFNPs were the surface properties and microstructure, except the AgFNPs size. These surface properties depend upon the stabilizing agent, reactant concentration, and solvents and so on.

  11. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  12. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  13. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization.

    Science.gov (United States)

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2017-10-01

    The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    Science.gov (United States)

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoxia [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Huang, Yankai [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Xu; Hao, Yuanqiang [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Ding, Yujie [College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wei, Wei; Wang, Qi [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Qu, Peng, E-mail: qupeng0212@163.com [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xu, Maotian, E-mail: xumaotian@sqnc.edu.cn [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg{sup 2+} detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb{sup 3+} from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg{sup 2+} into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg{sup 2+}. As a kind of Hg{sup 2+} nanosensor, the probe exhibited excellent selectivity for Hg{sup 2+} and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg{sup 2+} in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg{sup 2+} was achieved based on time-resolved spectroscopy.

  16. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    International Nuclear Information System (INIS)

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-01-01

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg"2"+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb"3"+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg"2"+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg"2"+. As a kind of Hg"2"+ nanosensor, the probe exhibited excellent selectivity for Hg"2"+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg"2"+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg"2"+ was achieved based on time-resolved spectroscopy.

  17. Fluorescence enhancement of samarium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix

    International Nuclear Information System (INIS)

    Jiu Hongfang; Zhang Lixin; Liu Guode; Fan Tao

    2009-01-01

    The fluorescence property of Sm(DBM) 3 phen- (DBM-dibenzoylmethide, phen-1,10-phenanthroline) and Tb(DBM) 3 phen-co-doped poly(methyl methacrylate) (PMMA) was investigated. The excitation, emission spectra and fluorescence lifetime of the co-doped samples were examined. In the co-doped samples, the luminescence intensities of Sm 3+ enhance with an increase of the Tb(DBM) 3 phen content and with a decrease of the Sm(DBM) 3 phen content. The reason for the fluorescence enhancement effect in the co-doped polymer is the intermolecular energy transfer. To give a vivid picture for this co-doped system, a model for the fluorescence enhancement of Sm(DBM) 3 phen- and Tb(DBM) 3 phen-co-doped PMMA is presented

  18. Cross Linking Polymers (PVA & PEG with TiO2 Nanoparticles for Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Monika Joshi

    2009-11-01

    Full Text Available Humidity Sensors of different types are being used for various applications. Resistive Humidity Sensor has advantage over others for being small, low cost, interchangeable and long term stable. This makes them suitable for industrial, commercial and residential applications. In the present investigation humidity sensing behavior of various composite films made of Polyvinyl Alcohol (PVA, Polyethylene glycol (PEG, alkalies and oxide nanoparticles has been studied. It was found that relationship of resistance v/s relative humidity (RH was linear from 40 RH to 60 RH for a composite film made of PVA + PEG+ alkalies .The film can work with reliable efficiency for more than 100 days for the above range of humidity at room temperature. In order to improve the efficiency of composite polymer film TiO2 nanoparticles were added in the film and studied for resistance vs. RH responses. It was found that humidity range expands from 30 RH to 65 RH indicating the proportional decrease in resistance with increase in humidity at both ends as a result of the presence of TiO2 nanoparticles. The composite film with TiO2 nanoparticles can thus be used for wider range of humidity with reasonable stability and consistency. The observed behavior of the film has been attributed to the transportation of charge through TiO2 nanoparticles enhancing the conduction with the cross linked polymers.

  19. Study of gold nanoparticle synthesis by synchrotron x-ray diffraction and fluorescence

    Science.gov (United States)

    Yan, Zhongying; Wang, Xiao; Yu, Le; Moeendarbari, Sina; Hao, Yaowu; Cai, Zhonghou; Cheng, Xuemei

    Gold nanoparticles have a wide range of potential applications, including therapeutic agent delivery, catalysis, and electronics. Recently a new process of hollow nanoparticle synthesis was reported, the mechanism of which was hypothesized to involve electroless deposition around electrochemically evolved hydrogen bubbles. However, the growth mechanism still needs experimental evidence. We report investigation of this synthesis process using synchrotron x-ray diffraction and fluorescence measurements performed at beamline 2-ID-D of the Advanced Photon Source (APS). A series of gold nanoparticle samples with different synthesis time (50-1200 seconds) were deposited using a mixture electrolyte solution of Na3Au(SO3)2 and H4N2NiO6S2 on anodic aluminum oxide (AAO) membranes. The 2D mapping of fluorescence intensity and comparison of x-ray diffraction peaks of the samples have provided valuable information on the growth mechanism. Work at Bryn Mawr College and University of Texas at Arlington is supported by NSF Grants (1207085 and 1207377) and use of the APS at Argonne National Laboratory is supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357.

  20. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing.

    Science.gov (United States)

    Chen, Chen; Tang, Yongan; Vlahovic, Branislav; Yan, Fei

    2017-12-01

    The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility, compatibility, and selectivity. It is expected that further development of this field will eventually make a wide impact on many areas of research.

  1. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Kim, Ji-Hwan; Park, Dong-Hee; Choi, Won Kook; Li, Fushan; Ham, Jung Hun; Kim, Tae Whan

    2008-01-01

    The bistable effects of CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole (PVK) polymer layer by using flexible poly-vinylidene difluoride (PVDF) and polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that CdSe/ZnS nanoparticles were formed inside the PVK polymer layer. Current-voltage (I-V) measurement on the Al/[CdSe/ZnS nanoparticles+ PVK]/ITO/PVDF and Al/[CdSe/ZnS nanoparticles+ PVK ]/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the CdSe/ZnS nanoparticles, indicative of trapping, storing and emission of charges in the electronic states of the CdSe nanoparticles. A bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results. These results indicate that OBDs fabricated by embedding inorganic CdSe/ZnS nanoparticles in a conducting polymer matrix on flexible substrates are prospects for potential applications in flexible nonvolatile flash memory devices

  2. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T., E-mail: ktlim@pknu.ac.kr [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  3. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    International Nuclear Information System (INIS)

    Garabagiu, Sorina

    2011-01-01

    Highlights: ► The interaction was studied using UV–vis and fluorescence spectroscopy. ► Gold nanoparticles quench the fluorescence emission of hemoglobin solution. ► The binding and thermodynamic constants were calculated. ► Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV–vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longer wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern–Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.

  4. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    Science.gov (United States)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  5. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  6. Characterization of tapered polymer optical fibers under side illumination for fluorescence sensing applications

    Science.gov (United States)

    Pulido, C.; Esteban, Ó.

    2011-05-01

    In this work we present the fabrication and characterization of tapered polymer fibers used as fluorescence based sensors with a side-illumination arrangement. The fabrication method consists of a travelling-heater that gives a tight control of the tapered fibers parameters, namely the taper waist and the profile of the transition length between the unaltered fiber and the taper waist. Furthermore, a different approach for using fluorophores in fluorescence based sensors has been developed. With our method, we can locally introduce a fluorescent dye inside the taper region, which could lead to the generation of cuasi-distributed sensors for lengths of hundred of meters.

  7. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  8. Detection of SiO2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy.

    Science.gov (United States)

    Veith, Lothar; Vennemann, Antje; Breitenstein, Daniel; Engelhard, Carsten; Wiemann, Martin; Hagenhoff, Birgit

    2017-07-10

    The direct detection of nanoparticles in tissues at high spatial resolution is a current goal in nanotoxicology. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is widely used for the direct detection of inorganic and organic substances with high spatial resolution but its capability to detect nanoparticles in tissue sections is still insufficiently explored. To estimate the applicability of this technique for nanotoxicological questions, comparative studies with established techniques on the detection of nanoparticles can offer additional insights. Here, we compare ToF-SIMS imaging data with sub-micrometer spatial resolution to fluorescence microscopy imaging data to explore the usefulness of ToF-SIMS for the detection of nanoparticles in tissues. SiO 2 nanoparticles with a mean diameter of 25 nm, core-labelled with fluorescein isothiocyanate, were intratracheally instilled into rat lungs. Subsequently, imaging of lung cryosections was performed with ToF-SIMS and fluorescence microscopy. Nanoparticles were successfully detected with ToF-SIMS in 3D microanalysis mode based on the lateral distribution of SiO 3 - (m/z 75.96), which was co-localized with the distribution pattern that was obtained from nanoparticle fluorescence. In addition, the lateral distribution of protein (CN - , m/z 26.00) and phosphate based signals (PO 3 - , m/z 78.96) originating from the tissue material could be related to the SiO 3 - lateral distribution. In conclusion, ToF-SIMS is suitable to directly detect and laterally resolve SiO 2 nanomaterials in biological tissue at sufficient intensity levels. At the same time, information about the chemical environment of the nanoparticles in the lung tissue sections is obtained.

  9. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    Science.gov (United States)

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cyborg cells: functionalisation of living cells with polymers and nanomaterials.

    Science.gov (United States)

    Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N

    2012-06-07

    Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.

  11. Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films

    International Nuclear Information System (INIS)

    Zhou Jingli; Yang Jianjun; Sun Youyi; Zhang Douguo; Shen Jing; Zhang Qijin; Wang Keyi

    2007-01-01

    A series of polymer films containing azo groups and silver nanoparticles were prepared. Photo-induced reorientation of the film was conducted under irradiation of polarized light with wavelength at 365 nm, 442 nm and 532 nm, respectively. The influence of the concentration of dopant silver on the reorientation of the azo groups was studied. An enhancement of about 50% for the reorientation rate and about 70% for the reorientation amplitude was achieved. From a comparison of the enhancement obtained by irradiating with three different light sources, it was realized that the mechanism for enhancement of reorientation of azo groups is due to plasmon resonance of silver nanoparticles doped in the polymer films

  12. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  13. Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material

    International Nuclear Information System (INIS)

    Scalzullo, Stefania; Mondal, Kartick; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik; Witcomb, Mike

    2008-01-01

    A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures

  14. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    Science.gov (United States)

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb 3+ ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H + is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb 3+ . The long luminescence lifetime of Tb 3+ allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H + in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optical and diffractive properties of polymer: nanoparticles periodic structures obtained by holographic method

    Science.gov (United States)

    Smirnova, T. N.; Sakhno, O. V.; Goldberg, L.; Stumpe, J.

    2007-06-01

    The ordering of nanoparticles in polymer matrix using holographic photopolymerization is investigated. The general approach to the selection of the photopolymerizable compounds is proposed. The nonlinear and luminescent properties of obtained gratings are studied.

  16. Influence of complexing on physicochemical properties of polymer-salt solutions

    International Nuclear Information System (INIS)

    Ostroushko, A.A.; Yushkova, S.M.; Koridze, N.V.; Skobkoreva, N.V.; Zhuravleva, L.I.; Palitskaya, T.A.; Antropova, S.V.; Ostroushko, I.P.; AN SSSR, Moscow

    1993-01-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated

  17. The role of rare earth oxide nanoparticles in suppressing the photobleaching of fluorescent organic dyes

    Science.gov (United States)

    Guha, Anubhav; Basu, Anindita

    2013-03-01

    Organic dyes are widely used for both industrial as well as in scientific applications such as the fluorescent tagging of materials. However the process of photobleaching can rapidly degrade dye fluorescence rendering the material non-functional. Thus exploring novel methods for preventing photobleaching can have widespread benefits. In this work we show that the addition of minute quantities of rare earth (RE) oxide nanoparticles can significantly suppress the photobleaching of dyes. The fluorescence of Rhodamine and AlexaFluor dyes was measured as a function of time with and without the addition of CeO2 and La2O3 nanoparticle additives (two RE oxides that contain an oxygen vacancy based defect structure), as well as with FeO nanoparticles (which has an oxygen excess stoichiometry). We find that the rare earth oxides significantly prolonged the lifetimes of the dyes. The results allow us to develop a model based upon the presence of oxygen vacancies defects that allow the RE oxides to act as oxygen scavengers. This enables the RE oxide particles to effectively remove reactive oxygen free radicals generated in the dye solutions during the photoabsorption process. Current affiliation: Harvard University

  18. Dual Colorimetric and Fluorescent Authentication Based on Semiconducting Polymer Dots for Anticounterfeiting Applications.

    Science.gov (United States)

    Tsai, Wei-Kai; Lai, Yung-Sheng; Tseng, Po-Jung; Liao, Chia-Hsien; Chan, Yang-Hsiang

    2017-09-13

    Semiconducting polymer dots (Pdots) have recently emerged as a novel type of ultrabright fluorescent probes that can be widely used in analytical sensing and material science. Here, we developed a dual visual reagent based on Pdots for anticounterfeiting applications. We first designed and synthesized two types of photoswitchable Pdots by incorporating photochromic dyes with multicolor semiconducting polymers to modulate their emission intensities and wavelengths. The resulting full-color Pdot assays showed that the colorimetric and fluorescent dual-readout abilities enabled the Pdots to serve as an anticounterfeiting reagent with low background interference. We also doped these Pdots into flexible substrates and prepared these Pdots as inks for pen handwriting as well as inkjet printing. We further applied this reagent in printing paper and checks for high-security anticounterfeiting purposes. We believe that this dual-readout method based on Pdots will create a new avenue for developing new generations of anticounterfeiting technologies.

  19. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  20. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.